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Abstract. In this paper we summarize recent results on the exact boundary
controllability of a trapezoidal time discrete wave equation in a bounded do-
main. It is shown that the projection of the solution in an appropriate space
in which the high frequencies have been filtered is exactly controllable with
uniformly bounded controls (with respect to the time-step). By classical dual-
ity arguments, the problem is reduced to a boundary observability inequality
for a time-discrete wave equation. Using multiplier techniques the uniform ob-
servability property is proved in a class of filtered initial data. The optimality
of the order of filtering parameter is also established, although a careful anal-
ysis of the expected velocity of propagation of time discrete waves indicates
that its actual value could be improved.
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1. Introduction

Let Ω be an open bounded domain in lRd (d ∈ lN∗) with C2 boundary Γ. Let
T > 0 be a given time duration. We consider the following wave equation with a
controller acting on the nonempty subset Γ0 of the boundary Γ = ∂Ω:




y′′ −∆xy = 0 in (0, T )× Ω
y = u1Γ0 on (0, T )× Γ
y(0) = y0, y′(0) = y1 in Ω.

(1.1)
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Here and henceforth, ′ denotes the partial derivative with respect to time t, 1Γ0

is the characteristic function of the set Γ0, and ∆x the Laplacian in the space
variable x ∈ Ω.

This paper is devoted to analyze whether the known controllability result
for (1.1) can be recovered as a consequence of similar result for the time-discrete
versions. This kind of problems has been the object of intensive research in the past
few years but mainly in the context of space semi-discretizations. In the present
paper we summarize the main results by the authors [15] in the time discrete case.

The exact controllability of (1.1) requires that the subset Γ0 of the boundary
fulfills some geometric conditions. It holds in particular for those subsets that are
obtained through the multiplier method. More precisely, fix some x0 ∈ lRd, and
put 




R
4
= maxx∈Ω|x− x0|,

Γ0
4
= {x ∈ Γ | (x− x0) · ν(x) > 0},

(1.2)

where ν(x) is the unit outward normal vector of Ω at x ∈ Γ. For these subsets Γ0

the exact controllability property of (1.1) holds provided T > 2R.
To be more precise, the following exact controllability result for (1.1) is well

known (see [8]): For any (y0, y1) ∈ L2(Ω) × H−1(Ω), there exists a control u ∈
L2((0, T )× Γ0) such that the solution y = y(t, x) of (1.1), defined by the classical
transposition method ([8]), satisfies:

y(T ) = y′(T ) = 0 in Ω. (1.3)

By classical duality arguments ([8]), the above controllability property is equivalent
to a (boundary) observability of the following uncontrolled wave equation:




ϕ′′ −∆xϕ = 0, in (0, T )× Ω
ϕ = 0 on (0, T )× Γ
ϕ(T ) = ϕ0, ϕ′(T ) = ϕ1, in Ω,

(1.4)

i.e., to the fact that solutions of (1.4) satisfy

E(0) ≤ C

∫ T

0

∫

Γ0

∣∣∣∂ϕ

∂ν

∣∣∣
2

dΓ0dt, ∀ (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω). (1.5)

Here and thereafter, we will use C to denote a generic positive constant (depending
only on T , Ω and Γ0) which may vary from line to line. On the other hand, E(0)
stands for the energy E(t) of (1.4) at t = 0, with

E(t) =
1
2

∫

Ω

[
|ϕt(t, x)|2 + |∇ϕ(t, x)|2

]
dx, (1.6)

which remains to be constant, i.e.

E(t) = E(0), ∀ t ∈ [0, T ].

Inequality (1.5) can be proved by several methods including multiplier tech-
niques ([8]), microlocal analysis ([1]) and Carleman inequalities ([14]). In the par-
ticular case of subset Γ0 as above and T > 2R, inequanlity (1.5) can be provided
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easily by the method of multipliers ([8]) that in the present paper we adapt to
time-discrete equations.

Note however that the subsets Γ0 of the boundary and the times of control
obtained on this way are not optimal. The obtention of optimal control subsets
and times requires the use of methods of geometric optics (see [1]).

In this paper, we analyze the time semi-discretization schemes for systems
(1.1) and (1.4). We are thus replacing the continuous dynamics (1.1) and (1.4) by
time-discrete ones and analyze their controllability/observability properties. Here
we take the point of view of numerical analysis and, therefore, we analyze the limit
behavior as the time-step tends to zero.

More precisely, we set the time step h by h = T/K, where K > 1 is a given
integer. Denote by yk and uk respectively the approximations of the solution y and
the control u of (1.1) at time tk = kh for any k = 0, · · · ,K. We then introduce
the following trapezoidal time semi-discretization of (1.1):





yk+1 + yk−1 − 2yk

h2
−∆x

(yk+1 + yk−1

2

)
= 0,

in Ω, k = 1, · · · ,K − 1

yk = uk1Γ0 , on Γ, k = 0, · · · ,K

y0 = y0, y1 = y0 + hy1, in Ω.

(1.7)

Here (y0, y1) ∈ L2(Ω) × H−1(Ω) are the data given in system (1.1) that allow
determining the initial data for the time-discrete system too.

We will establish the well-posedness of system (1.7) by means of the trans-
position method which is the first result of [15], as we shall see in Theorem 2.6
below.

The controllability problem for system (1.7) may be formulated as follows:
For any (y0, y1) ∈ L2(Ω) × H−1(Ω), to find a control {uk ∈ L2(Γ0)}k=1,··· ,K−1

such that the solution {yk}k=0,··· ,K of (1.7) satisfies:

yK−1 = yK = 0 in Ω. (1.8)

Note that (1.8) is equivalent to the condition yK−1 = (yK − yK−1)/h = 0 that is
a natural discrete version of (1.3).

As in the context of the above continuous wave equation, we also consider
the uncontrolled system





ϕk+1 + ϕk−1 − 2ϕk

h2
−∆x

(
ϕk+1 + ϕk−1

2

)
= 0,

in Ω, k = 1, · · · ,K − 1

ϕk = 0, on Γ, k = 0, · · · ,K

ϕK = ϕh
0 + hϕh

1 , ϕK−1 = ϕh
0 , in Ω,

(1.9)
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where (ϕh
0 , ϕh

1 ) ∈ (H1
0 (Ω))2. In particular, to guarantee the convergence of the

solutions of (1.9) towards those of (1.4) one considers convergent data such that{
ϕh

0 → ϕ0 strongly in H1
0 (Ω),

ϕh
1 → ϕ1 strongly in L2(Ω). as K →∞ (or h → 0), (1.10)

with hϕh
1 being bounded in H1

0 (Ω). Obviously because of the density of H1
0 (Ω) in

L2(Ω) this choice is always possible.

Remark 1.1. Note that the choice of the values of ϕK and ϕK−1 in (1.9) is moti-
vated by the transposition arguments that are needed to define the solution of the
time-discrete non-homogenous problem (1.7) (see in [15]).

The energy of system (1.9) is given by

Ek
h
4
=

1
2

∫

Ω

(∣∣∣ϕ
k+1 − ϕk

h

∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx, k = 0, · · · ,K − 1,

which is a discrete counterpart of the continuous energy E in (1.6). By multiplying
the first equation of (1.9) by (ϕk+1− ϕk−1)/2h and integrating it in Ω, using
integration by parts, it is easy to show that Ek

h is conserved in the discrete time
variable k = 0, · · · ,K − 1. Consequently the scheme under consideration is stable
and its convergence (in the classical sense of numerical analysis) is guaranteed in
an appropriate functional setting (in particular in the finite-energy space H1

0 (Ω)×
L2(Ω), under the condition (1.10)).

As we mentioned above, the controllability/observability of numerical ap-
proximation schemes for the wave equation has been the object of intensive stud-
ies. However most analytical results concern the case of space semi-discretizations
(see [18] and the references cited therein). In practical applications, fully discrete
schemes need to be used. The most typical example is the classical fully-discrete
central scheme which converges under a suitable CFL condition ([3, 4, 12]). How-
ever, in the present setting in which the Laplacian ∆x is kept continuous, without
discretizing it, this scheme is unsuitable since it is unstable. Indeed, it is easy to
see that the scheme

ϕk+1 + ϕk−1 − 2ϕk

h2
−∆xϕk = 0 (1.11)

is unstable since −∆x, with homogenous Dirichlet conditions, is a positive self-
adjoint operator with an infinite sequence of eigenvalues {µ2

j}j≥1 tending to infin-
ity. The stability of (1.11) would be equivalent to the stability of the scheme

ϕk+1 + ϕk−1 − 2ϕk

h2
+ µ2

jϕ
k = 0

for all values of µ2
j , j ≥ 1. The stability property fails clearly, regardless how small

h is, when µ2
j is large enough. Hence, we choose the trapezoidal schemes (1.9) for

the time-discrete problem, which is stable (due to the property of conservation of
energy), as mentioned before.

Let us now return to the analysis of (1.7) and (1.9) and present the second
results in [15]. It is of negative nature: For any given h > 0 and any nonempty
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open subset Γ∗ of Γ, system (1.9) is not observable and system (1.7) is not exactly
controllable. Indeed, similar to [16], for any fixed h, it is easy to find a series of initial
data {(ϕ0

n, ϕ1
n)}n=0,··· ,∞ of (1.9) with finite energies such that the corresponding

observed quantities on Γ vanish as n tends to infinity. Thus, the observability fails.
By duality, the exact controllability property of system (1.7) fails, too.

Obviously, these negative results of observability and controllability are re-
lated to the fact that the spaces in which the solutions evolve are infinite dimen-
sional; while the number of time-steps is finite. Accordingly, to make the observ-
ability inequality possible one has to restrict the class of solutions of the adjoint
system (1.9) under consideration by filtering the high frequency components. Sim-
ilarly, since the property of exact controllability of system (1.7) fails, the final
requirement (1.8) has to be relaxed by considering only low frequency projections
of the solutions. Controlling such a projection can be viewed as a partial controlla-
bility problem. This filtering method has been applied successfully in the context of
controllability of time discrete heat equations in [16] and space semi-discretization
schemes for wave equations in [6, 17, 18].

Here we sketch the discrete version of the classical multiplier approach devel-
oped in [15] which allows to derive the uniform observability estimate (with respect
to the time step h) for system (1.9) with initial data in a suitable filtered space,
which, in turn, by duality, implies the partial controllability of (1.7), uniformly on
h.

As in the continuous case, the multiplier technique applies mainly to the case
when the controller/observer Γ0 is given in (1.2) and some variants ([10]), but
does not work when (T, Ω,Γ0) is assumed to satisfy the sharp Geometric Control
Condition (GCC) in [1]. As we shall see, the main advantage of our multiplier
approach is that the filtering parameter we use has the optimal scaling in what
concerns the frequency of observed/controlled solutions with respect to h.

It is important to note that this kind of results can not be obtained by stan-
dard perturbation arguments that rely simply on measuring the distance between
solutions of the time-discrete and continuous wave equations. Indeed, when pro-
ceeding that way, one needs much stronger filtering requirements. In other words,
the optimal filtering can only be obtained by a careful analysis of the time evo-
lution of the system under consideration. This is already well-known in the con-
text of space semi-discretizations (see [18]). Our discrete multiplier approach can
also be extended to other PDEs of conservative nature, and in particular to the
Schrödinger, plate, Maxwell’s equations, among others.

The rest of the paper is organized as follows. In Section 2, we show the
well-posedness of system (1.7). In Section 3 we state the main results, i.e., the
uniform controllability and observability of systems (1.7) and (1.9) after filtering,
respectively. The key ingredients in the proof of the uniform observability results
will be sketched in Sections 4 and 5. Finally, in Section 6, we shall briefly discuss
some open problems and closely related issues.



6 Xu Zhang, Chuang Zheng and Enrique Zuazua

2. Hidden regularity and well-posedness

This section is devoted to establish the well-posedness of system (1.7).

First of all, for any given {fk ∈ L2(Ω)}k=1,··· ,K−1 and {gk ∈ H1
0 (Ω)}k=1,··· ,K

with g1 = gK = 0, suppose {θk ∈ H1
0 (Ω)}k=0,··· ,K solves the system





θk+1 + θk−1 − 2θk

h2
−∆x

(
θk+1 + θk−1

2

)
= fk +

gk+1 − gk

h
,

in Ω, k = 1, · · · ,K − 1
θk = 0, on Γ, k = 0, · · · ,K.

(2.1)

We define the energy of system (2.1) by

Ek
h
4
=

1
2

∫

Ω

(∣∣∣∣
θk+1 − θk

h

∣∣∣∣
2

+
|∇θk+1|2 + |∇θk|2

2

)
dx. (2.2)

Following the multiplier techniques introduced in [8] in the continuous level, one
can establish the following discrete version of the energy estimate:

Lemma 2.1. For any h > 0, it holds

max0≤k≤K−1Ek
h ≤ C



min

(E0
h, EK−1

h

)
+

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+h
K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx

}
. (2.3)

Consequently, we have the following hidden regularity property of solutions
of system (2.1):

Theorem 2.2. For any h > 0, any {gk ∈ H1
0 (Ω)}k=1,··· ,K with g1 = gK = 0 in Ω,

any {fk ∈ L2(Ω)}k=1,··· ,K−1, and any {θk ∈ H1
0 (Ω)}k=0,··· ,K satisfying (2.1), it

holds

h

K−1∑

k=1

∫

Γ

∣∣∣∣
∂

∂ν

(
θk+1 + θk−1

2

)∣∣∣∣
2

dΓ ≤ C

{
min

(E0
h, EK−1

h

)

+

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+ h
K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx



 . (2.4)

Remark 2.3. When h tends to zero, the limit of the system (2.1) is
{

θtt −∆xθ = f + gt, in (0, T )× Ω
θ = 0, in (0, T )× Γ.

(2.5)
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Inequality (2.4) is a time discrete analogue of the following boundary estimate of
(2.5):

∫ T

0

∫

Γ

∣∣∣∣
∂ϕ

∂ν

∣∣∣∣
2

dΓdt ≤ C

{[
|f |L1(0,T ;L2(Ω)) + |g|L1(0,T ;H1

0 (Ω))

]2

+
∫ T

0

∫

Ω

|fg|dxdt

+min
(∫

Ω

[
|∇θ(0)|2 + |θt(0)|2

]
dx,

∫

Ω

[
|∇θ(T )|2 + |θt(T )|2

]
dx

)}
.

We now establish the well-posedness of system (1.7) by means of a discrete
version of the classical transposition approach ([8]). For this purpose, for any
{fk ∈ L2(Ω)}k=1,··· ,K−1, and any {gk ∈ H1

0 (Ω)}k=1,··· ,K with g1 = gK = 0, we
consider the following adjoint problem of system (1.7):





ζk+1 + ζk−1 − 2ζk

h2
−∆x

(
ζk+1 + ζk−1

2

)
= fk +

gk+1 − gk

h
,

in Ω, k = 1, · · · ,K − 1
ζk = 0, on Γ, k = 0, · · · ,K
ζK = ζK−1 = 0, in Ω.

(2.6)

It is easy to see that (2.6) admits a unique solution {ζk ∈ H1
0 (Ω)}k=0,··· ,K . By

Theorem 2.2, this solution has the regularity property ∂
∂ν

(
ζk+1+ζk−1

2

)
∈ L2(Γ),

for k = 1, · · · ,K − 1.
In order to give a reasonable definition for the solution of the non-homogenous

boundary problem (1.7) in terms of the transposition method, we consider first
the case when the control {uk}k=0,··· ,K and the initial data (y0, y1) are sufficiently
smooth. The following result holds:

Lemma 2.4. Assume that {yk ∈ H2(Ω)}k=0,··· ,Ksatisfies (1.7). Then

h

K−1∑

k=1

∫

Ω

fk yk+1 + yk−1

2
dx− h

2

K−1∑

k=2

∫

Ω

gk

(
yk+1 − yk

h
+

yk−1 − yk−2

h

)
dx

=
∫

Ω

ζ0 y1 − y0

h
dx−

∫

Ω

ζ1 − ζ0

h
y0dx− h

K−1∑

k=1

∫

Γ0

∂

∂ν

(
ζk+1 + ζk−1

2

)
ukdΓ0. (2.7)

Multiplying both sides of (2.1) by (yk+1 + yk−1)/2, integrating the resulting
identity in Ω, summing it for k = 1, · · · ,K − 1, one can easily obtain the desired
identity (2.7).

Note that (2.7) still makes sense even if the regularity of {yk}k=0,··· ,K is
relaxed as follows




yk+1 + yk−1 ∈ L2(Ω), k = 1, · · · ,K − 1,

yk+1 − yk

h
+

yk−1 − yk−2

h
∈ H−1(Ω), k = 2, · · · ,K − 1.

(2.8)
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This is consistent with the existence result for (1.1) (in terms of the transposition
method). Indeed, under the condition u ∈ L2(Γ × (0, T )) it is well-known that
the solution of (1.1) satisfies y ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)). Note that
formally, letting h → 0, (2.8) leads to y(t, ·) ∈ L2(Ω) and yt(t, ·) ∈ H−1(Ω). This
observation motivates the definition of solution for system (1.7).

More precisely, set

H =
{
{yk}k=0,··· ,K

∣∣∣ y0, · · · , yK satisfy (2.8)
}

. (2.9)

We introduce the following

Definition 2.5. We say {yk}k=0,··· ,K ∈ H to be a solution of (1.7), in the sense of
transposition, if y0 = y0, y1 = y0 + hy1, and for any {fk ∈ L2(Ω)}k=1,··· ,K−1, and
{gk ∈ H1

0 (Ω)}k=1,··· ,K with g1 = gK = 0, it holds

h

K−1∑

k=1

∫

Ω

fk yk+1 + yk−1

2
dx−h

2

K−1∑

k=2

〈
gk,

yk+1 − yk

h
+

yk−1 − yk−2

h

〉

H1
0 (Ω),H−1(Ω)

=
〈
ζ0, y1

〉
H1

0 (Ω),H−1(Ω)
−

∫

Ω

ζ1 − ζ0

h
y0dx−h

K−1∑

k=1

∫

Γ0

∂

∂ν

(
ζk+1 + ζk−1

2

)
ukdΓ0,

where {ζk ∈ H1
0 (Ω)}k=0,··· ,K is the unique solution of (2.6).

We now show the following well-posedness result for system(1.7):

Theorem 2.6. Assume (y0, y1) ∈ L2(Ω) ×H−1(Ω) and {uk ∈ L2(Γ0)}k=1,··· ,K−1.
Then system (1.7) admits one and only one solution {yk}k=0,··· ,K ∈ H in the sense
of Definition 2.5. Moreover,

i) When K is odd,
(
y2`, y2`+1−y2`

h

)
∈ L2(Ω) × H−1(Ω) for ` = 0, 1, · · · , [K

2 ],
and

max`=0,1,··· ,[ K
2 ]

∥∥∥∥
(

y2`,
y2`+1 − y2`

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

≤ C

(
‖(y0, y1)‖2L2(Ω)×H−1(Ω) + h

K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)

)
.

(2.10)

ii) When K is even,
(
y2`, y2`−1−y2`−2

h

)
∈ L2(Ω) × H−1(Ω) for ` = 1, · · · , K

2 ,
and

max`=1,··· , K
2

∥∥∥∥
(

y2`,
y2`−1 − y2`−2

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

≤ C

(
‖(y0, y1)‖2L2(Ω)×H−1(Ω) + h

K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)

)
.

(2.11)

Furthermore, the constant C > 0 in the estimates (2.10) and (2.11) is independent
of the time-step h.
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3. Main Results

Let {Φj}j≥1 ⊂ H1
0 (Ω) be an orthonormal basis of L2(Ω) consisting of the eigen-

vectors (with eigenvalues {µ2
j}j≥1) of the Dirichlet Laplacian:

{ −∆xΦj = µ2
jΦj , in Ω

Φj = 0, on Γ.

For any s > 0, we set

C1,s = {f(x) | f(x) =
∑

µ2
j<s

ajΦj(x), aj ∈ lC} ⊂ H1
0 (Ω), (3.1)

C0,s = {g(x) | g(x) =
∑

µ2
j<s

bjΦj(x), bj ∈ lC} ⊂ L2(Ω), (3.2)

and
C−1,s = {z(x) | z(x) =

∑

µ2
j<s

cjΦj(x), cj ∈ lC} ⊂ H−1(Ω), (3.3)

subspaces of H1
0 (Ω), L2(Ω) and H−1(Ω), respectively, with the induced topologies.

It is clear that
∞⋃

k=1

C1,k is dense in H1
0 (Ω), and the same can be said for

∞⋃

k=1

C0,k

in L2(Ω) and
∞⋃

k=1

C−1,k in H−1(Ω). Denote by π1,s, π0,s and π−1,s the projection

operators from H1
0 (Ω), L2(Ω) and H−1(Ω) to C1,s, C0,s and C−1,s, respectively.

Our main results are stated as follows:

Theorem 3.1. Let T > 2R. Then there exist three constants h0 > 0, δ > 0 and
C > 0, depending only on T , R and the dimension d, such that for all (ϕ0, ϕ1) ∈
C1,δh−2 × C0,δh−2 , the corresponding solution {ϕk}k=0,··· ,K of (1.9) satisfies

E0
h ≤ Ch

K−1∑

k=1

∫

Γ0

∣∣∣ ∂

∂ν

(ϕk+1 + ϕk−1

2

)∣∣∣
2

dΓ0, ∀ h ∈ (0, h0]. (3.4)

Remark 3.2. We refer to (5.4) for the exact form of δ, which depends only on d, T
and R. In particular it indicates that δ decreases as T decreases. This is natural
since, as T decreases, less and less time-step iterations are involved in system
(1.9) and, consequently, less Fourier components of the solutions may be observed.
Further, δ tends to zero as T tends to 2R. This is natural too since our proof of
(3.4) is based on the method of multipliers which works at the continuous level
for all T > 2R but that, at the time-discrete level, due to the added dispersive
effects, may hardly work when T is very close to 2R, except if the filtering is strong
enough.

Remark 3.3. Note that taking a filtering parameter of the order of h−2 is optimal.
This corresponds to filtering precisely numerical solutions whose wave length is of
the order of the mesh-size h, for which resonance phenomena may arise. However,
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an analysis of the dispersion diagram for (1.9) does not exclude that, whatever
δ > 0 is, inequality (3.4) holds within the class C1,δh−2 × C0,δh−2 for T > 0 large
enough (see [15]). The multiplier method we develop here does not give such result
and we need to impose a smallness condition on δ. But it is well known, even
at the continuous level, that the method of multipliers is often unable to yield
observability results that can be obtained by other ways. We refer to [5] where
sharp observability estimates (that can not be derived by means of the method of
multipliers) are obtained by means of Carleman inequalities.

As a consequence of the partial observability result in Theorem 3.1, by duality,
we can derive the following uniform partial controllability result:

Theorem 3.4. Let T , h0 and δ be given as in Theorem 3.1, and K > 1 be an odd
integer. Then for any h ∈ (0, h0] and any (y0, y1−y0

h ) ∈ L2(Ω) × H−1(Ω), there
exists a control {uk ∈ L2(Γ0)}k=0,··· ,K such that the solution of (1.7) satisfies

i)

π0,δh−2yK−1 = π−1,δh−2

(yK − yK−1

h

)
= 0 in Ω; (3.5)

ii) There exists a constant C > 0, independent of h, y0 and y1, such that

h
K−1∑

k=1

∫

Γ0

∣∣∣u
k+1 + uk−1

2

∣∣∣
2

dΓ0 ≤ C

∥∥∥∥
(
y0,

y1 − y0

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

;

iii) When h → 0,

Uh
4
=

K−1∑

k=1

uk(x)1[kh,(k+1)h)(t) −→ u strongly in L2((0, T )× Γ0), (3.6)

where u is a control of system (1.1), fulfilling (1.3);
iv) When h → 0,

yh
4
= y01{0}(t) +

1
h

K−1∑

k=0

[
(t− kh)yk+1

−
(
t− (k + 1)h

)
yk

]
1(kh,(k+1)h](t)

−→ y strongly in C([0, T ];L2(Ω)) ∩H1([0, T ];H−1(Ω)),

(3.7)

where y is the solution of system (1.1) with the limit control u as above.

Remark 3.5. The above theorem contains two results: the uniform partial con-
trollability and the convergence of the controls and states as h → 0. The proof is
standard. Indeed, the partial controllability statement follows from Theorem 3.1
and classical duality arguments ([8]); while for the convergence result, one may
use the approach developed in [18].

It is important to note that, in the limit, one can recover the controllability
of (1.1) for all T > 2R, i.e. the same results as the multiplier method applied
directly to the time-continuous wave equation does, as we have shown in the last



Exact Controllability of Time Discrete Wave Equation 11

two properties of Theorem 3.4. Indeed, given any T > 2R, one can choose a
sufficiently small δ such that Theorem 3.4 guarantees the controllability of the
projections π0,δh−2 in time T . Since these projections involve the frequencies µ2

j

such that µ2
j < δh−2, it is clear that, as h → 0, this range of frequencies eventually

covers the whole spectrum of the time-continuous wave equation. It is however
important to underline that the filtering parameter δ has to be chosen depending
on the value of T and that δ → 0 as T approaches 2R, as indicated in Remark 3.2.

By duality, Theorem 3.4 is a consequence of Theorem 3.1. Hence, in the
sequel we shall concentrate mainly on the proof of Theorem 3.1. To show Theorem
3.1, we shall develop a multiplier approach, which is a discrete analogue of the
classical one for the time-continuous case ([7, 8]). There are two key ingredients
when doing this. One is a basic identity for the solutions of (1.9) obtained by
means of multipliers, which is a discrete version of the classical one on the time-
continuous wave equation ([8]). The other one is the construction of the filtering
operator to guarantee the uniform observability of (1.9) after filtering. We shall
explain them in more detail later in this paper.

4. A key identity via multipliers

In this section we present the first key point of the proof of Theorem 3.1, i.e., an
identity for the solutions of (1.9).

The desired identity is as follows:

Lemma 4.1. For any h > 0 and any solution {ϕk}k=0,··· ,K of (1.9), it holds

h

2

K−1∑

k=0

∫

Ω

(∣∣∣ϕ
k+1 − ϕk

h

∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx + X + Y + Z

=
h

2

K−1∑

k=1

∫

Γ

(x− x0) · ν
∣∣∣ ∂

∂ν

(ϕk+1 + ϕk−1

2

)∣∣∣
2

dΓ,

(4.1)

where

X =
∫

Ω

[
(x− x0) · ∇

(ϕK + ϕK−2

2

)
+

d− 1
2

ϕK

]
ϕK − ϕK−1

h
dx

−
∫

Ω

[
(x− x0) · ∇

(ϕ2 + ϕ0

2

)
+

d− 1
2

ϕ0

]
ϕ1 − ϕ0

h
dx,

(4.2)
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Y =
d

2

[
h2

K−1∑

k=1

∫

Ω

∆x

(ϕk+1 + ϕk−1

2
ϕk − ϕk−1

h

)
dx

−h

∫

Ω

∣∣∣ϕ
K − ϕK−1

h

∣∣∣
2

dx
]

+
∫

Ω

(x− x0) ·
[
∇

(ϕK−1 − ϕK−2

2

)ϕK − ϕK−1

h

+∇
(ϕ2 − ϕ1

2

)ϕ1 − ϕ0

h

]
dx,

(4.3)

Z =
(d− 2)h

8

K−1∑

k=1

∫

Ω

∣∣∣∇(ϕk+1 − ϕk−1)
∣∣∣
2

dx

− (d− 1)h
4

K−1∑

k=0

∫

Ω

∣∣∣∇
(
ϕk+1 − ϕk

)∣∣∣
2

dx

− (d− 1)h
4

∫

Ω

(
∇ϕK · ∇ϕK−1 +∇ϕ1 · ∇ϕ0

)
dx

+
(d− 2)h

4

∫

Ω

(
|∇ϕK−1|2 + |∇ϕ1|2

)
dx.

(4.4)

Proof. Multiplying the first equation of (1.9) by (x−x0)·∇(ϕk+1+ϕk−1)/2 (which
is a discrete version of the classical multiplier (x−x0) ·∇ϕ for the wave equation),
integrating it in Ω, summing it up from 1 to K−1 and using integration by parts,
we obtain

h
K−1∑

k=1

∫

Ω

(x− x0) · ∇
(ϕk+1 + ϕk−1

2

)ϕk+1 + ϕk−1 − 2ϕk

h2
dx

= h
K−1∑

k=1

∫

Ω

(x− x0) · ∇
(ϕk+1 + ϕk−1

2

)
∆x

(ϕk+1 + ϕk−1

2

)
dx.

(4.5)

One can check that the left hand side term of (4.5) coincides with

d

2
h

K−1∑

k=0

∫

Ω

∣∣∣ϕ
k+1 − ϕk

h

∣∣∣
2

dx + Y

+
∫

Ω

(x− x0) · ∇
[(ϕK + ϕK−2

2

)ϕK − ϕK−1

h
−

(ϕ2 + ϕ0

2

)ϕ1 − ϕ0

h

]
dx,

(4.6)

where Y is defined as in (4.3). Further, applying the classical multiplier identity
for the Laplacian

∫

Ω

(x− x0) · ∇ψ∆xψdx =
1
2

∫

Γ

(x− x0) · ν
∣∣∣∂ψ

∂ν

∣∣∣
2

dΓ− 2− d

2

∫

Ω

|∇ψ|2dx (4.7)

which holds for all ψ ∈ H2 ∩H1
0 (Ω), (see [8]). Then using the identity (a + b)2 =

2(a2 + b2) − (a − b)2 for any a, b ∈ lR, the right hand side term of (4.5) may be
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written as

h

2

K−1∑

k=1

∫

Γ

(x− x0) · ν
∣∣∣ ∂

∂ν

(ϕk+1 + ϕk−1

2

)∣∣∣
2

dΓ

+
(d− 2)h

2

{
K−1∑

k=0

∫

Ω

|∇ϕk+1|2 + |∇ϕk|2
2

dx

−
K−1∑

k=1

∫

Ω

∣∣∣∇
(ϕk+1 − ϕk−1

2

)∣∣∣
2

dx −1
2

∫

Ω

(
|∇ϕK−1|2 + |∇ϕ1|2

)
dx

}
.

(4.8)

On the other hand, multiplying the first equation of (1.9) by ϕk (which is
a discrete version of the multiplier ϕ in the time-continuous setting which allows
establishing the identity of equipartition of energy), integrating it in Ω, summing
it up for k = 1, · · · ,K − 1 and using integration by parts, similar to the above, we
obtain the following equipartition of energy identity:

h
K−1∑

k=0

∫

Ω

(∣∣∣ϕ
k+1 − ϕk

h

∣∣∣
2

− |∇ϕk+1|2 + |∇ϕk|2
2

)
dx

=−h

2

K−1∑

k=0

∫

Ω

∣∣∣∇(ϕk+1 − ϕk)
∣∣∣
2

dx−h

2

∫

Ω

(
∇ϕK· ∇ϕK−1+∇ϕ1 · ∇ϕ0

)
dx

+
∫

Ω

(ϕK − ϕK−1

h
ϕK − ϕ1 − ϕ0

h
ϕ0

)
dx.

(4.9)

By (4.5)–(4.9), recalling (4.2) and (4.4) respectively for X and Z, we arrive at the
desired identity (4.1). ¤

Remark 4.2. Identity (4.1) is a time-discrete analogue of the following well-known
identity for the wave equation (1.9) obtained by multipliers (see [8]):

1
2

∫ T

0

∫

Ω

[
|ϕt|2 + |∇ϕ|2

]
dxdt + X =

1
2

∫ T

0

∫

Γ

(x− x0) · ν
∣∣∣∂ϕ

∂ν

∣∣∣
2

dΓdt, (4.10)

where

X =
∫

Ω

[
(x− x0) · ∇ϕ +

d− 1
2

ϕ
]
ϕtdx

∣∣∣
T

t=0
.

There are clear analogies between (4.1) and (4.10). In fact the only major differ-
ences are that, in the discrete version (4.1), two extra reminder terms (Y and Z)
appear, which are due to the time discretization. It is easy to see, formally, that
Y and Z tend to zero as h → 0. But this convergence does not hold uniformly for
all solutions. Consequently, these added terms impose the need of using filtering
of the high frequencies to obtain observability inequalities out of (4.1) and modify
the observability time, as we shall see.
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5. Filtering and uniform observability

In this section, we present the second key ingredient of the proof of Theorem 3.1,
i.e., the choice of the filtering parameter which, combined with the identity in
Lemma 4.1, leads to the desired uniform observability inequality in Theorem 3.1.

For this, we first derive the following result, which provides an estimate on
the reminder term X + Y + Z in Lemma 4.1 in terms of the energy:

Lemma 5.1. Let K be an even integer, s > 0 and T > 0. Then, for any (ϕ0, ϕ1−ϕ0

h )
∈ C1,s × C0,s, for the corresponding solution {ϕk}k=0,··· ,K of (1.9), it holds

X + Y + Z ≥ −
[
2R + a1h + 3R

√
sh + T

(d

2
√

sh + a2sh
2
) ]

E0
h, (5.1)

where

a1 = 3d− 2 + max
(

d− 1
2

, 2
)

, a2 = min
(
1, (2− d)+

)
+

d− 1
2

. (5.2)

Proof. For any (ϕ0, ϕ1−ϕ0

h ) ∈ C1,s×C0,s, in view of the Fourier series decomposition
of the corresponding solution {ϕk}k=0,··· ,K of (1.9), one sees that, for any k, we
have ∫

Ω

|∇(ϕk − ϕk−1)|2dx ≤ s

∫

Ω

|ϕk − ϕk−1|2dx,

∫

Ω

∣∣∣∣∆x

(ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dx ≤ s

∫

Ω

∣∣∣∣∇
(ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dx.

(5.3)

Recalling (4.2)–(4.4) and using (5.3), and noting T = Kh and that the energy of
system (1.9) is conservative, we can show that

|X| ≤
[
2R + 2(d− 1)h + Rh

√
s
]
E0

h, |Y | ≤ h

[
d
(√sT

2
+ 1

)
+ 2R

√
s

]
E0

h,

Z ≥ −h

{[
min(1, (2− d)+) +

d− 1
2

]
shT + max

(
d− 1

2
, 2

)}
E0

h,

which gives (5.1). ¤

Finally, Theorem 3.1 follows from Lemmas 4.1 and 5.1 immediately. Indeed,
combining (4.1) and (5.1) and recalling the definition of Γ0 in (1.2) we deduce that

{
T

(
1− d

2
√

sh− a2sh
2
)
−

[
2R + a1h + 3R

√
sh

]}
E0

h

≤ R

2
h

K−1∑

k=1

∫

Γ0

∣∣∣ ∂

∂ν

(
ϕk+1 + ϕk−1

2

) ∣∣∣
2

dΓ0.

For this inequality to yield an estimate on E0
h we need to choose s = δh−2 with h

small enough such that

a2δ +
d

2

√
δ < 1,
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or, more precisely,

0 <
√

δ <
4√

d2 + 16a2 + d
. (5.4)

Once this is done, for h ∈ (0, h0), T has to be chosen such that

T >
2R + a1h0 + 3R

√
δ

1− d
2

√
δ − a2δ

≥ 2R. (5.5)

Hence, (3.4) holds for h ∈ (0, h0].
Conversely, for any T > 2R one can always choose h0 and δ small enough so

that (5.4) and (5.5) hold and guaranteeing the uniform observability inequality.

6. Further comments and open problems

1. Full discretization. The analysis in this paper can be combined with pre-
vious works (see, for instance, [18]) concerning space semi-discretizations to deal
with full discretization schemes. But a complete analysis of this issue is still to be
done.

2. Other equations. The approach and results in this paper can be extended to
other PDEs of conservative nature, as the Schrödinger, plate, Maxwell’s equations,
and so on. There is a fruitful literature on the use of multiplier techniques for these
models in the continuous setting (see, for instance, [7]). But, the analysis of the
corresponding time-discrete systems, adapting the techniques developed in this
paper, remains to be done.

3. Other techniques. The problem addressed in this paper could have been
addressed, in 1− d, using discrete Ingham inequalities as those in [9]. When doing
that, one gets the same results, i.e. when applying the results in [9], one needs
to filter the high frequencies by keeping the eigenvalues such that µ2

j ≤ Ch−2.
In [2] the problem of observability of time-discrete linear conservative systems is
addressed in an abstract context. the techniques employed in [2] are inspired in
those in [11] based on resolvent estimates, which allow to derive, in a systematic
way, observability results for time-discrete systems as consequences of those that
are by now well-known for time-continuous ones. The results in [2] can be applied
to the time-discrete wave equation considered in this article. The main drawback
of the results in [2] is that the observability time one gets seems to be far from the
expected optimal values.

A different approach, which gives weaker results, is viewing (by extension to
continuous time) the solutions of (1.9) as perturbed solutions of the continuous
conservative wave equation (1.4). Absorbing the remainder terms then requires
stronger filtering than the multipliers method we have employed (more precisely
one needs to take σ = 1). Therefore this approach is not satisfactory and, conse-
quentially, one needs to treat the time-discrete wave equation as such.
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4. Optimality. The optimality of the results in this paper is also worth study-
ing. We have chosen the filtering parameter of the order of h−2. As we indicated
in Remark 3.3, which is further explained in [15] by means of the analysis of the
dispersion relation, it can be proved that it is optimal, in the sense that uniform
observability fails when we deal with frequencies of the order of µ2

j > O(h−σ) with
any σ > 2. However, in Theorems 3.1 and 3.4 we need to assume δ to be small
enough ( by (5.4)) which does not seem to be needed. In fact the abstract results in
[2] when applied in this setting are valid for all δ > 0 without any size restriction.

5. Variable coefficients and nonlinear problems. It is well-known that, in the
continuous case, the multiplier approach can be applied to obtain the controllal-
lability/observability of the conservative PDEs with constant coefficients. As for
the problems with variable coefficients and/or the nonlinear ones, one has to use
microlocal analysis ([1]) and/or Carleman estimates ([14]) to get sharp results. In
this time-discrete setting, it would be interesting to develop these other approaches
to cover the same class of models as in the PDE setting. This is still to be done.
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IMDEA-Matemáticas & Departamento de Matemáticas,
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