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Abstract

In this paper we study the exact boundary controllability of a trapezoidal time
discrete wave equation in a bounded domain. We prove that the projection of the
solution in an appropriate filtered space is exactly controllable with uniformly bounded
cost with respect to the time-step. In this way, the well-known exact-controllability
property of the wave equation can be reproduced as the limit, as the time step h → 0, of
the controllability of projections of the time-discrete one. By duality these results are
equivalent to deriving uniform observability estimates (with respect to h → 0) within a
class of solutions of the time-discrete problem in which the high frequency components
have been filtered. The later is established by means of a time-discrete version of the
classical multiplier technique. The optimality of the order of the filtering parameter is
also established, although a careful analysis of the expected velocity of propagation of
time-discrete waves indicates that its actual value could be improved.
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1 Introduction

Let Ω be a nonempty open bounded domain in lRd (d ∈ lN) with C2 boundary Γ, Γ0 be a

nonempty open subset of Γ, and T > 0 be a given time duration.

We consider the following controlled (time continuous) wave equation with a controller

acting on the subset Γ0 of the boundary:





ytt −∆y = 0 in (0, T )× Ω

y = uχΓ0 on (0, T )× Γ

y(0) = y0, yt(0) = y1 in Ω.

(1.1)

Here and henceforth, χΓ0 is the characteristic function of the set Γ0 and ∆ is the Laplacian in

the space variable x ∈ Ω. In (1.1), (y(t, ·), yt(t, ·)) is the state and u(t, ·) is the control. The

state and control spaces of system (1.1) are chosen to be L2(Ω)×H−1(Ω) and L2((0, T )×Γ0),

respectively.

The property of exact (boundary) controllability of (1.1) is defined as follows: For any

(y0, y1) ∈ L2(Ω)×H−1(Ω), there exists a control u ∈ L2((0, T )×Γ0) such that the solution y ∈
C([0, T ]; L2(Ω)) ∩ C1([0, T ]; H−1(Ω)) of (1.1), defined by the classical transposition method

([8]), satisfies:

y(T ) = yt(T ) = 0 in Ω. (1.2)

This controllability property holds under suitable geometric restrictions on the subset Γ0 of

the boundary where the control acts and provided that the controllability time T is large

enough.

By classical duality arguments ([8]), the above controllability property is equivalent to a

(boundary) observability estimate of the following uncontrolled wave equation:





ϕtt −∆ϕ = 0, in (0, T )× Ω

ϕ = 0 on (0, T )× Γ

ϕ(T ) = ϕ0, ϕt(T ) = ϕ1, in Ω.

(1.3)

The observability inequality reads as follows:

E(0) ≤ C

∫ T

0

∫

Γ0

∣∣∣∂ϕ

∂ν

∣∣∣
2

dΓ0dt, ∀ (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω). (1.4)

Here and thereafter, we will use C to denote a generic positive constant (depending only on

T , Ω and Γ0) which may vary from line to line. On the other hand, E(0) stands for the

energy E(t) of (1.3) at t = 0, with

E(t) =
1

2

∫

Ω

[
|ϕt(t, x)|2 + |∇ϕ(t, x)|2

]
dx, (1.5)
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which remains constant in time, i.e.

E(t) = E(0), ∀ t ∈ [0, T ]. (1.6)

Inequality (1.4) asserts that the total energy of any solution of (1.3) can be observed in

terms of the energy concentrated on Γ0 in the time interval (0, T ). It is well-known that

there are typically two classes of conditions on (T, Ω, Γ0) guaranteeing (1.4).

i) The first one is given by the classical multiplier condition. Fix some x0 ∈ lRd, put

Γ0
4
=

{
x ∈ Γ

∣∣ (x− x0) · ν(x) > 0
}
, R

4
= max

x∈Ω
|x− x0|, (1.7)

where ν(x) is the unit outward normal vector of Ω at x ∈ Γ. Then (1.4) holds for Γ0 as

in (1.7) provided T > 2R. This is the typical situation one encounters when applying

the multiplier technique ([8]), and Carleman inequalities (e.g. [13]) to deduce (1.4),

which can also be applied to many other models.

ii) The second one is when (T, Ω, Γ0) satisfy the Geometric Control Condition (GCC, for

short) introduced in [1], which asserts that all rays of geometric optics in Ω intersect

the subset of the boundary Γ0 in a uniform time T . In this case, (1.4) is established

by means of tools from micro-local analysis ([1]). This condition is optimal.

In this paper, we are interested in the time semi-discretization of systems (1.1) and (1.3).

We are thus replacing the continuous dynamics (1.1) and (1.3) by time-discrete ones and

analyze their controllability/observability properties. Here we take the point of view of

numerical analysis and, therefore, we analyze the limit behavior as the time-step tends to

zero.

For this purpose, we set the time step h by h = T/K, where K > 1 is a given integer.

Denote by yk and uk respectively the approximations of the solution y and the control u of

(1.1) at time tk = kh for any k = 0, · · · , K. We then introduce the following trapezoidal

time semi-discretization of (1.1):





yk+1 + yk−1 − 2yk

h2
−∆

(
yk+1 + yk−1

2

)
= 0,

in Ω, k = 1, · · · , K − 1

yk+1 + yk−1

2
= ukχΓ0 , on Γ, k = 1, · · · , K − 1

y0 = y0, y1 = y0 + hy1, in Ω.

(1.8)

Here (y0, y1) ∈ L2(Ω) × H−1(Ω) are the data given in system (1.1) that allow determining

the initial data for the time-discrete system too. We refer to Theorem 4.2 below for the

well-posedness of system (1.8) by means of the transposition method.
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The controllability problem for system (1.8) may be formulated as follows: For any

(y0, y1) ∈ L2(Ω) ×H−1(Ω), to find a control {uk ∈ L2(Γ0)}k=1,··· ,K−1 such that the solution

{yk}k=0,··· ,K of (1.8) satisfies:

yK−1 = yK = 0 in Ω. (1.9)

Note that (1.9) is equivalent to the condition yK−1 = (yK − yK−1)/h = 0 that is a natural

discrete version of (1.2).

As in the context of the above continuous wave equation, we also consider the uncontrolled

system 



ϕk+1 + ϕk−1 − 2ϕk

h2
−∆

(
ϕk+1 + ϕk−1

2

)
= 0,

in Ω, k = 1, · · · , K − 1

ϕk = 0, on Γ, k = 0, · · · , K

ϕK = ϕh
0 + hϕh

1 , ϕK−1 = ϕh
0 , in Ω,

(1.10)

where (ϕh
0 , ϕ

h
1) ∈ (H1

0 (Ω))2. In particular, to guarantee the convergence of the solutions of

(1.10) towards those of (1.3) one considers convergent data such that

{
ϕh

0 → ϕ0 strongly in H1
0 (Ω),

ϕh
1 → ϕ1 strongly in L2(Ω).

as K →∞ (or h → 0), (1.11)

with hϕh
1 being bounded in H1

0 (Ω). Obviously because of the density of H1
0 (Ω) in L2(Ω) this

choice is always possible.

Remark 1.1 Note that the choice of the values of ϕK and ϕK−1 in (1.10) is motivated

by the transposition arguments that are needed to define the solution of the time-discrete

non-homogenous problem (1.8), as we will see in Section 8.

The energy of system (1.10) is given by

Ek
h

4
=

1

2

∫

Ω

(∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx, k = 0, · · · , K − 1, (1.12)

which is a discrete counterpart of the continuous energy E(t) in (1.5). Multiplying the first

equation of system (1.10) by (ϕk+1 − ϕk−1)/2 and integrating it in Ω, using integration by

parts, it is easy to show the following property of conservation of energy:

Ek
h = E0

h, k = 0, · · · , K − 1. (1.13)

Consequently the scheme under consideration is stable and its convergence (in the classical

sense of numerical analysis) is guaranteed in an appropriate functional setting (in particular

in the finite-energy space H1
0 (Ω)× L2(Ω), under the condition (1.11)).
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By means of classical duality arguments, it is easy to show that the above controllability

property (1.9) is equivalent to the following boundary observability property for solutions

{ϕk}k=0,··· ,K of (1.10):

E0
h ≤ Ch

K−1∑

k=1

∫

Γ0

∣∣∣∣
∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ0, ∀ (ϕh
0 , ϕ

h
1) ∈ (H1

0 (Ω))2. (1.14)

The analysis of controllability and/or observability properties of numerical approxima-

tion schemes for the wave equation has been the object of intensive studies. However most

analytical results concern the case of space semi-discretizations (see [16] and the references

cited therein). In practical applications, fully discrete schemes need to be used. The most

typical example is the classical central scheme which converges under a suitable CFL condi-

tion ([4, 5, 11]). However, in the present setting in which the Laplacian ∆ is kept continuous,

without discretizing it, this scheme is unsuitable since it is unstable. To see this, we choose

{µ2
j}j≥1 to be eigenvalues of the Dirichlet Laplacian and {Φj}∞j=1 ⊂ H1

0 (Ω) the corresponding

eigenvectors (constituting an orthonormal basis of L2(Ω)), i.e.,

{ −∆Φj = µ2
jΦj, in Ω

Φj = 0, on Γ.
(1.15)

Since {µ2
j}j≥1 tends to infinity, it is easy to check that the central scheme

ϕk+1 + ϕk−1 − 2ϕk

h2
−∆ϕk = 0 (1.16)

is unstable. Indeed, the stability of (1.16) would be equivalent to the stability of the scheme

ϕk+1 + ϕk−1 − 2ϕk

h2
+ µ2

jϕ
k = 0

for all values of µ2
j , j ≥ 1. But this stability property fails clearly, regardless how small

h is, when µ2
j is large enough. Hence, we choose the trapezoidal scheme (1.10) for the

time-discrete problem, which is stable (due to the property of conservation of energy), as

mentioned before.

The first result of this paper is of negative nature. Indeed, as we shall see in Theorem 5.1,

the observability inequality (1.14) (resp. the controllability property (1.9)) fails for system

(1.10) (resp. (1.8)) without filtering. From the proof of Theorem 5.1 below, it will be obvious

that these negative results of observability and controllability are related to the fact that the

spaces in which the solutions evolve are infinite dimensional; while the number of time-steps is

finite. Accordingly, to make the observability inequality possible one has to restrict the class

of solutions of the adjoint system (1.10) under consideration by filtering the high frequency

components. Similarly, since the property of exact controllability of system (1.8) fails, the

final requirement (1.9) has to be relaxed by considering only low frequency projections of the

solutions. Controlling such a projection can be viewed as a partial controllability problem.
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This filtering method has been applied successfully in the context of controllability of time

discrete heat equations ([14]) and space semi-discrete schemes for wave equations ([2, 7, 15,

16]).

As far as we know, the subject of control and observation of the time-discrete wave

equation under consideration has not been addressed before. In this paper we shall develop

a discrete version of the classical multiplier approach which allows to view the time discrete

wave equation as an evolution process with its own dynamics.

As in the continuous case, the multiplier technique we use here applies mainly to the case

when the controller/observer Γ0 is given in (1.7) and some variants ([10]), but does not work

when (T, Ω, Γ0) is assumed to satisfy the GCC. As we shall see, the main advantage of our

multiplier approach is that the filtering parameter we use has the optimal scaling in what

concerns the frequency of observed/controlled solutions with respect to h.

It is important to note that this kind of results can not be obtained by standard per-

turbation arguments that rely simply on measuring the distance between solutions of the

time-discrete and continuous wave equations. Indeed, when proceeding that way, one needs

much stronger filtering requirements. In other words, the optimal filtering can only be ob-

tained by a careful analysis of the time evolution of the system under consideration. This is

already well-known in the context of space semi-discretizations (see [16]). Our discrete mul-

tiplier approach can also be extended to other PDEs of conservative nature, and in particular

to the Schrödinger, plate, Maxwell’s equations, among others.

The rest of the paper is organized as follows. In Section 2, we collect some preliminary

results which are useful in what follows. In Section 3, we present two fundamental identi-

ties by means of discrete multipliers, which will play an important role in the sequel. In

Section 4 we discuss the hidden regularity property of solutions of (1.10) and the uniform

well-posedness property of system (1.8). Section 5 is devoted to show the lack of controlla-

bility/observability of systems (1.8) and (1.10) without filtering. The uniform observability

result for (1.10) is presented in Section 6. In Section 7 we show the optimality of the filtering

parameter in the uniform observability result. Moreover, we give a heuristic explanation of

the necessity of the filtering in terms of the group velocity of propagation of waves. Section 8

is devoted to the uniform controllability of system (1.8) and the convergence of the controls

and solutions.

2 Preliminaries

In this section, we collect some preliminary results that will be used in the sequel.

First of all, for any given {fk ∈ L2(Ω)}k=1,··· ,K−1 and {gk ∈ H1
0 (Ω)}k=1,··· ,K with g1 =
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gK = 0, suppose {θk ∈ H1
0 (Ω)}k=0,··· ,K solves the system





θk+1 + θk−1 − 2θk

h2
−∆

(
θk+1 + θk−1

2

)
= fk +

gk+1 − gk

h
,

in Ω, k = 1, · · · , K − 1

θk = 0, on Γ, k = 0, · · · , K.

(2.1)

We define the energy of system (2.1) by

Ek
h

4
=

1

2

∫

Ω

(∣∣∣∣
θk+1 − θk

h

∣∣∣∣
2

+
|∇θk+1|2 + |∇θk|2

2

)
dx. (2.2)

We establish the following discrete version of the energy estimate:

Lemma 2.1 For any h > 0, it holds

max
0≤k≤K−1

Ek
h ≤ C



min

(E0
h, EK−1

h

)
+

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+h
K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx

}
.

(2.3)

Proof of Lemma 2.1: Fix any ` ∈ {1, · · ·K − 1}. Multiplying both sides of (2.1) by

(θk+1 − θk−1)/2h, integrating it in Ω and summing it for k = 1, · · · , `, we obtain:

h
∑̀

k=1

∫

Ω

[
θk+1 + θk−1 − 2θk

h2
−∆

(
θk+1 + θk−1

2

)]
θk+1 − θk−1

2h
dx

= h
∑̀

k=1

∫

Ω

(
fk +

gk+1 − gk

h

)
θk+1 − θk−1

2h
dx.

(2.4)

From the definition of the energy Ek
h in (2.2), the left hand side term of (2.4) can be written

as

LHS of (2.4) =
∑̀

k=1

(Ek
h − Ek−1

h

)
= E `

h − E0
h. (2.5)

We now analyze the right hand side (2.4). It is clear that

∣∣∣∣∣h
∑̀

k=1

∫

Ω

fk θk+1 − θk−1

2h
dx

∣∣∣∣∣ ≤ Ch
∑̀

k=1

|fk|L2(Ω)

(√
Ek

h +

√
Ek−1

h

)
. (2.6)

7



On the other hand, since g1 = 0, it follows

h
∑̀

k=1

∫

Ω

gk+1 − gk

h

θk+1 − θk−1

2h
dx =

∑̀

k=1

∫

Ω

(gk+1 − gk)

(
θk+1 − θk

2h
+

θk − θk−1

2h

)
dx

=
∑̀

k=1

∫

Ω

gk+1 θk+1 − θk

2h
dx−

∑̀

k=1

∫

Ω

gk θk − θk−1

2h
dx

+
∑̀

k=1

∫

Ω

gk+1 θk − θk−1

2h
dx−

∑̀

k=1

∫

Ω

gk θk+1 − θk

2h
dx

=

∫

Ω

g`+1 θ`+1 − θ`

2h
dx +

∑̀

k=2

∫

Ω

gk θk − θk−1

2h
dx−

`−1∑

k=0

∫

Ω

gk+1 θk+1 − θk

2h
dx

+

∫

Ω

g`+1 θ` − θ`−1

2h
dx +

`−1∑

k=1

∫

Ω

gk+1 θk − θk−1

2h
dx−

∑̀

k=1

∫

Ω

gk θk+1 − θk

2h
dx

=

∫

Ω

g`+1 θ`+1 − θ`

h
dx− h

∑̀

k=1

∫

Ω

gk+1 + gk

2

θk+1 + θk−1 − 2θk

h2
dx.

(2.7)

It is obvious that∣∣∣∣
∫

Ω

g`+1 θ`+1 − θ`

h
dx

∣∣∣∣ ≤ C|g`+1|L2(Ω)

√
E `

h ≤ C|g`+1|H1
0 (Ω)

√
E `

h. (2.8)

In view of (2.1) and noting again g1 = 0, it holds

−h
∑̀

k=1

∫

Ω

gk+1 + gk

2

θk+1 + θk−1 − 2θk

h2
dx

= −h
∑̀

k=1

∫

Ω

gk+1 + gk

2

[
∆

(
θk+1 + θk−1

2

)
+ fk +

gk+1 − gk

h

]
dx

= h
∑̀

k=1

∫

Ω

[
∇

(
gk+1 + gk

2

)
· ∇

(
θk+1 + θk−1

2

)
+ fk gk+1 + gk

2

]
dx−

∫

Ω

∣∣g`+1
∣∣2 − |g1|2
2

dx

≤ Ch
∑̀

k=1

(
|gk+1|H1

0 (Ω) + |gk|H1
0 (Ω)

)(
|θk+1|H1

0 (Ω) + |θk−1|H1
0 (Ω)

)
+ h

∑̀

k=1

∫

Ω

fk gk+1 + gk

2
dx

≤ Ch
∑̀

k=1

(
|gk+1|H1

0 (Ω) + |gk|H1
0 (Ω)

) (√
Ek

h +

√
Ek−1

h

)
+ h

∑̀

k=1

∫

Ω

fk gk+1 + gk

2
dx.

(2.9)

Combining (2.4)–(2.9) , we conclude that

E `
h ≤ Ch

∑̀

k=1

(
|fk|L2(Ω) + |gk+1|H1

0 (Ω) + |gk|H1
0 (Ω)

) (√
Ek

h +

√
Ek−1

h

)

+h
∑̀

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx + E0
h.

(2.10)
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Put

F `
h

4
= max

0≤k≤`
Ek

h . (2.11)

Since (2.10) holds for all ` = 1, · · · , K−1, it is still true if E `
h is replaced by F `

h. Hence, from

(2.10) and recalling g1 = gK = 0, we obtain

F `
h ≤ Ch

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

) √
F `

h + h
∑̀

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx + E0
h

≤ C

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+
F `

h

2
+ h

K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx + E0
h.

(2.12)

Now, combining (2.11) and (2.12), it follows

max
1≤k≤K−1

Ek
h ≤ C



E

0
h +

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+ h
K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx



 .

(2.13)

Noting the “time reversibility” of system (2.1), similar to (2.13), we have

max
1≤k≤K−1

Ek
h ≤ C



E

K−1
h +

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+ h
K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx



 .

(2.14)

Finally, combining (2.13) and (2.14), we end up with the desired estimate (2.3).

Next, we claim that the solution of system (1.10) can be expressed explicitly by means

of Fourier series. Indeed, we have

Lemma 2.2 Assume ϕK =
∞∑

j=1

(aj + hbj)Φj and ϕK−1 =
∞∑

j=1

ajΦj (or, equivalently, ϕh
0 =

∞∑
j=1

ajΦj and ϕh
1 =

∞∑
j=1

bjΦj). Then the solution of system (1.10) is given by

ϕk =
∞∑

j=1

{
eiωj(K−k−1) (e

iωj − 1)aj − hbj

2i sin ωj

+ e−iωj(K−k−1) (1− e−iωj)aj + hbj

2i sin ωj

}
Φj, (2.15)

where

ωj = arccos
1

1 + h2µ2
j/2

. (2.16)

Remark 2.1 i) From (2.15), it is easy to see that, if for some j0 ∈ lN, the data ϕK and

ϕK−1 belong to span{Φj | j ≤ j0}, then the same is true for ϕk for all 1 ≤ k ≤ K.

ii) From (2.15), one deduces also that, if aj and bj are chosen so that (e−iωj − 1)aj = hbj

(resp. (eiωj − 1)aj = hbj) for j = 1, 2, · · · , then

ϕk =
∞∑

j=1

aje
iωj(K−k−1)Φj (resp. ϕk =

∞∑
j=1

aje
−iωj(K−k−1)Φj).
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Proof of Lemma 2.2: By Lemma 2.1, it suffices to find a solution ϕk of the form

ϕk =
∞∑

j=1

rk
j Φj (2.17)

such that, for j = 1, 2, · · · ,

rk+1
j + rk−1

j − 2rk
j

h2
+ µ2

j

rk+1
j + rk−1

j

2
= 0, k = 1, 2, · · · , K − 1, (2.18)

and

rK
j = aj + hbj, rK−1

j = aj. (2.19)

The characteristic polynomial of (2.18) (which is a difference equation) reads

p(λ)
4
=

λ2 + 1− 2λ

h2
+ µ2

j

λ2 + 1

2
.

The roots nj and mj of p(λ) are as follows

nj =
1 + ihµj

√
1 + h2µ2

j/4

1 + h2µ2
j/2

, mj =
1− ihµj

√
1 + h2µ2

j/4

1 + h2µ2
j/2

. (2.20)

Therefore, the rk
j ’s satisfy

rk+1
j − njr

k
j = mj(r

k
j − njr

k−1
j ).

By induction, the unique rk
j satisfying (2.18)–(2.19) is given by (recalling (2.19))

rk
j =

(nj)
K−k − (mj)

K−k

nj −mj

rK−1
j − (nj)

K−k−1 − (mj)
K−k−1

nj −mj

rK
j

=
1

nj −mj

{
(nj)

K−k−1 [(nj − 1)aj − hbj]− (mj)
K−k−1 [(mj − 1)aj − hbj]

}
.

(2.21)

Noting the definition of ωj in (2.16), by (2.20), it follows

nj = eiωj , mj = e−iωj .

Therefore, the rk
j ’s given by (2.21) can be re-written as

rk
j = eiωj(K−k−1) (e

iωj − 1)aj − hbj

2i sin ωj

+ e−iωj(K−k−1) (1− e−iωj)aj + hbj

2i sin ωj

. (2.22)

Finally, combining (2.17) and (2.22), we conclude the desired formula (2.15).

The third one is a classical multiplier identity for the Dirichlet Laplacian:
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Lemma 2.3 Let % = (%1, · · · , %d) ∈ C1(Ω; lRd). Then, for any ψ ∈ H2(Ω)∩H1
0 (Ω), it holds

∫

Ω

% · ∇ψ∆ψdx =
1

2

[∫

Γ

% · ν
∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2

dΓ +

∫

Ω

div%|∇ψ|2dx

]
−

d∑
i,j=1

∫

Ω

%i
xj

ψxi
ψxj

dx. (2.23)

Identity (2.23) can be easily proved multiplying ∆ψ by % · ∇ψ where · stands for the

scalar product in lRd. We refer to [8, identity (1.25)] or to [13, Lemma 3.3] for the details.

Finally, following [8, pp. 8–9], one has

Lemma 2.4 For any f ∈ L2(Ω) and g ∈ H1
0 (Ω), it holds

∣∣∣∣
∫

Ω

f

[
(x− x0) · ∇g +

d− 1

2
g

]
dx

∣∣∣∣ ≤
R

2

∫

Ω

(
f 2 + |∇g|2) dx, (2.24)

where R is as in (1.7).

3 Identities via multipliers

This section is addressed to establish two fundamental identities by means of discrete mul-

tipliers. First, we show the following one:

Lemma 3.1 Let % = (%1, · · · , %d) ∈ C1(Ω; lRd). Then, for any h > 0, any {fk ∈
L2(Ω)}k=1,··· ,K−1, any {gk ∈ H1

0 (Ω)}k=1,··· ,K with g1 = gK = 0, and any {θk ∈ H2(Ω) ∩
H1

0 (Ω)}k=0,··· ,K satisfying (2.1), it holds

h

2

K−1∑

k=1

∫

Γ

% · ν
∣∣∣∣

∂

∂ν

(
θk+1 + θk−1

2

)∣∣∣∣
2

dΓ = U + V1 − V2 −W, (3.1)

where

U =

∫

Ω

% ·
[
∇

(
θK + θK−2

2

)
θK − θK−1

h
−∇

(
θ2 + θ0

2

)
θ1 − θ0

h

]
dx

+

∫

Ω

% ·
[
∇

(
θK−1 − θK−2

2

)
θK − θK−1

h
+∇

(
θ2 − θ1

2

)
θ1 − θ0

h

]
dx,

(3.2)

V1 = h
K−1∑

k=1

∫

Ω

div%
(θk+1 − θk)(θk − θk−1)

2h2
dx, (3.3)

V2 =
h

2

K−1∑

k=1

∫

Ω

[
div%

∣∣∣∣∇
(

θk+1 + θk−1

2

)∣∣∣∣
2

−2
d∑

i,j=1

%i
xj

(
θk+1 + θk−1

2

)

xi

(
θk+1 + θk−1

2

)

xj

]
dx,

(3.4)
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W = h
K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
fkdx

+
h

2

K−1∑

k=2

∫

Ω

(
θk+1 − θk

h
+

θk−1 − θk−2

h

) (
% · ∇gk + div%gk

)
dx.

(3.5)

Proof of Lemma 3.1: Multiplying (2.1) by % · ∇(θk+1 + θk−1)/2 (which is a discrete

version of the multiplier % · ∇θ for the wave equation), integrating it in Ω, summing it for

k = 1, · · · , K − 1, it follows

h

K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
θk+1 + θk−1 − 2θk

h2
dx

−h

K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
∆

(
θk+1 + θk−1

2

)
dx

= h
K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)(
fk +

gk+1 − gk

h

)
dx.

(3.6)

First, we analyze the first term in the left hand side of (3.6):

h
K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
θk+1 + θk−1 − 2θk

h2
dx

=
K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)(
θk+1 − θk

h
− θk − θk−1

h

)
dx

=

∫

Ω

% ·
[

K∑

k=2

∇
(

θk + θk−2

2

)
θk − θk−1

h
−

K−1∑

k=1

∇
(

θk+1 + θk−1

2

)
θk − θk−1

h

]
dx

= −
K−1∑

k=2

∫

Ω

% · ∇
(

θk+1 − θk + θk−1 − θk−2

2

)
θk − θk−1

h
dx

+

∫

Ω

% ·
[
∇

(
θK + θK−2

2

)
θK − θK−1

h
−∇

(
θ2 + θ0

2

)
θ1 − θ0

h

]
dx.

(3.7)

However,

−
K−1∑

k=2

∫

Ω

% · ∇
(

θk+1 − θk + θk−1 − θk−2

2

)
θk − θk−1

h
dx

= −
∫

Ω

% ·
[

K−1∑

k=2

∇
(

θk+1 − θk

2

)
θk − θk−1

h
+

K−2∑

k=1

∇
(

θk − θk−1

2

)
θk+1 − θk

h

]
dx

=

∫

Ω

% ·
[
∇

(
θK−1 − θK−2

2

)
θK − θK−1

h
+∇

(
θ2 − θ1

2

)
θ1 − θ0

h

]
dx

−
K−1∑

k=1

∫

Ω

% · ∇
[
(θk+1 − θk)(θk − θk−1)

2h

]
dx.

(3.8)
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Noting that

−
K−1∑

k=1

∫

Ω

% · ∇
[
(θk+1 − θk)(θk − θk−1)

2h

]
dx =

K−1∑

k=1

∫

Ω

div%
(θk+1 − θk)(θk − θk−1)

2h
dx,

from (3.7)–(3.8), it follows

h

K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
θk+1 + θk−1 − 2θk

h2
dx = U + V1, (3.9)

where U and V1 are defined respectively by (3.2) and (3.3).

Next, we analyze the second term in the left hand side of (3.6). Applying Lemma 2.3

(with ψ replaced by (θk+1 + θk−1)/2), we find

h

K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
∆

(
θk+1 + θk−1

2

)
dx

=
h

2

K−1∑

k=1

∫

Γ

% · ν
∣∣∣∣

∂

∂ν

(
θk+1 + θk−1

2

)∣∣∣∣
2

dΓ + V2,

(3.10)

where V2 is defined by (3.4).

Further, using integration by parts and noting g1 = gK = 0, it follows

h
K−1∑

k=1

∫

Ω

% · ∇
(

θk+1 + θk−1

2

)
gk+1 − gk

h
dx

= −h
K−1∑

k=1

∫

Ω

θk+1 + θk−1

2

[
% · ∇

(
gk+1 − gk

h

)
+ div%

gk+1 − gk

h

]
dx

= −
K∑

k=2

∫

Ω

θk + θk−2

2

(
% · ∇gk + div% gk

)
dx

+
K−1∑

k=1

∫

Ω

θk+1 + θk−1

2

(
% · ∇gk + div% gk

)
dx

=
h

2

K−1∑

k=2

∫

Ω

(
θk+1 − θk

h
+

θk−1 − θk−2

h

) (
% · ∇gk + div%gk

)
dx.

(3.11)

Finally, by (3.6), (3.9)–(3.11) and recalling the definition of W in (3.5), we conclude the

desired identity (3.1).

As we shall see in the next section, Lemma 3.1 is the basis to provide an important

hidden regularity property of solutions of system (2.1), and via which the well-posedness of

system (1.8) follows. Meanwhile, as a consequence of Lemma 3.1, we now show the following

identity for the solutions of (1.10), which will play a crucial role in the proof of Theorem 6.1:
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Lemma 3.2 For any h > 0 and any solution {ϕk}k=0,··· ,K of (1.10), it holds

h

2

K−1∑

k=0

∫

Ω

(∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx + X + Y + Z

=
h

2

K−1∑

k=1

∫

Γ

(x− x0) · ν
∣∣∣∣

∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ,

(3.12)

where

X =

∫

Ω

[
(x− x0) · ∇

(
ϕK + ϕK−2

2

)
+

d− 1

2
ϕK

]
ϕK − ϕK−1

h
dx

−
∫

Ω

[
(x− x0) · ∇

(
ϕ2 + ϕ0

2

)
+

d− 1

2
ϕ0

]
ϕ1 − ϕ0

h
dx,

(3.13)

Y =
d

2

[
h2

K−1∑

k=1

∫

Ω

∆

(
ϕk+1 + ϕk−1

2

)
ϕk − ϕk−1

h
dx− h

∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

]

+

∫

Ω

(x− x0)·
[
∇

(
ϕK−1 − ϕK−2

2

)
ϕK − ϕK−1

h
+∇

(
ϕ2 − ϕ1

2

)
ϕ1 − ϕ0

h

]
dx,

(3.14)

Z =
(d− 2)h

8

K−1∑

k=1

∫

Ω

∣∣∇(ϕk+1 − ϕk−1)
∣∣2 dx− (d− 1)h

4

K−1∑

k=0

∫

Ω

∣∣∇ (
ϕk+1 − ϕk

)∣∣2 dx

−(d− 1)h

4

∫

Ω

(∇ϕK · ∇ϕK−1 +∇ϕ1 · ∇ϕ0
)
dx

+
(d− 2)h

4

∫

Ω

(|∇ϕK−1|2 + |∇ϕ1|2) dx.

(3.15)

Remark 3.1 Identity (3.12) is a time discrete analogue of the well known identity for the

wave equation (1.10) obtained by multipliers, which reads (see [8]):

1

2

∫ T

0

∫

Ω

[
|ϕt|2 + |∇ϕ|2

]
dxdt + X =

1

2

∫ T

0

∫

Γ

(x− x0) · ν
∣∣∣∂ϕ

∂ν

∣∣∣
2

dΓdt. (3.16)

Here,

X =

∫

Ω

[
(x− x0) · ∇ϕ +

d− 1

2
ϕ

]
ϕtdx

∣∣∣
T

t=0
. (3.17)

There are clear analogies between (3.12) and (3.16). In fact the only major differences are

that, in the discrete version (3.12), two extra reminder terms (Y and Z) appear, which are

due to the time discretization. It is easy to see, formally, that Y and Z tend to zero as

h → 0. But this convergence does not hold uniformly for all solutions. Consequently, these

added terms impose the need of using filtering of the high frequencies to obtain observability

inequalities and also modify the observability time, as we shall see.
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Proof of Lemma 3.2: We use Lemma 3.1 with % = x− x0, fk = 0 (k = 1, · · · , K − 1),

gk = 0 (k = 1, · · · , K) and θk = ϕk (k = 0, · · · , K). Clearly, in this case W = 0 (recall (3.5)

for W ).

For V1 defined in (3.3) (with θk replaced by ϕk), noting div% = d and using the first

equation in (1.10), one has

V1 = d
K−1∑

k=1

∫

Ω

(ϕk+1 − ϕk)(ϕk − ϕk−1)

2h
dx

= d
K−1∑

k=1

∫

Ω

[
(ϕk+1 + ϕk−1 − 2ϕk) + (ϕk − ϕk−1)

]ϕk − ϕk−1

2h
dx

=
dh

2

K−1∑

k=1

∫

Ω

∣∣∣∣
ϕk − ϕk−1

h

∣∣∣∣
2

dx +
dh2

2

K−1∑

k=1

∫

Ω

(
ϕk+1 + ϕk−1 − 2ϕk

h2

)
ϕk − ϕk−1

h
dx

=
dh

2

[
K−1∑

k=0

∫

Ω

∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

dx−
∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

]

+
dh2

2

K−1∑

k=1

∫

Ω

∆

(
ϕk+1 + ϕk−1

2

)
ϕk − ϕk−1

h
dx.

(3.18)

For V2 defined in (3.4), noting %i
xj

= δi
j (the Kronecker delta) and using the elementary

identity (a + b)2 = 2(a2 + b2)− (a− b)2 for any a, b ∈ lR, it follows

V2 =
(d− 2)h

2

K−1∑

k=1

∫

Ω

∣∣∣∣∇
(

ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dx

=
(d− 2)h

2

K−1∑

k=1

∫

Ω

[
|∇ϕk+1|2 + |∇ϕk−1|2

2
−

∣∣∣∣∇
(

ϕk+1 − ϕk−1

2

)∣∣∣∣
2
]

dx

=
(d− 2)h

2

{
K−1∑

k=1

∫

Ω

|∇ϕk+1|2
2

dx +
K−2∑

k=0

∫

Ω

|∇ϕk|2
2

dx

−
K−1∑

k=1

∫

Ω

∣∣∣∣∇
(

ϕk+1 − ϕk−1

2

)∣∣∣∣
2

dx

}

=
(d− 2)h

2

{
K−1∑

k=0

∫

Ω

|∇ϕk+1|2 + |∇ϕk|2
2

dx−
∫

Ω

|∇ϕK−1|2 + |∇ϕ1|2
2

dx

−
K−1∑

k=1

∫

Ω

∣∣∣∣∇
(

ϕk+1 − ϕk−1

2

)∣∣∣∣
2

dx

}
.

(3.19)
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Now, by (3.1) in Lemma 3.1, recalling the definition of U in (3.2) (with θk replaced by

ϕk), noting W = 0 and (3.19), we conclude that

h

2

K−1∑

k=0

∫

Ω

(∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

+
|∇ϕk+1|2 + |∇ϕk|2

2

)
dx

+

∫

Ω

(x− x0) ·
[
∇

(
ϕK + ϕK−2

2

)
ϕK − ϕK−1

h
−∇

(
ϕ2 + ϕ0

2

)
ϕ1 − ϕ0

h

]
dx

+
(d− 1)h

2

K−1∑

k=0

∫

Ω

(∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

− |∇ϕk+1|2 + |∇ϕk|2
2

)
dx + Y

=
h

2

K−1∑

k=1

∫

Γ

(x− x0) · ν
∣∣∣ ∂

∂ν

(
ϕk+1 + ϕk−1

2

) ∣∣∣
2

dΓ

−(d− 2)h

2

[∫

Ω

|∇ϕK−1|2 + |∇ϕ1|2
2

dx +
K−1∑

k=1

∫

Ω

∣∣∣∇
(

ϕk+1 − ϕk−1

2

) ∣∣∣
2

dx

]
,

(3.20)

where Y is defined in (3.14).

On the other hand, multiplying the first equation of (1.10) by ϕk (which is a discrete

version of the multiplier ϕ in the time-continuous setting, that leads to the identity of

equipartition of energy), integrating it in Ω, summing it for k = 1, · · · , K − 1 and using

integration by parts, we obtain:

0 = h
K−1∑

k=1

∫

Ω

[
ϕk+1 + ϕk−1 − 2ϕk

h2
−∆

(
ϕk+1 + ϕk−1

2

)]
ϕkdx

=
K−1∑

k=1

∫

Ω

[
(ϕk+1 − ϕk)ϕk

h
− (ϕk − ϕk−1)ϕk

h

]
dx

−h
K−1∑

k=1

∫

Ω

∆

(
ϕk+1 + ϕk−1

2

)
ϕkdx

=
K−1∑

k=1

∫

Ω

(ϕk+1 − ϕk)ϕk

h
dx−

K−2∑

k=0

∫

Ω

(ϕk+1 − ϕk)ϕk+1

h
dx

−h

K−1∑

k=1

∫

Ω

∆

(
ϕk+1 + ϕk−1

2

)
ϕkdx

= −h
K−1∑

k=0

∫

Ω

∣∣∣ϕ
k+1 − ϕk

h

∣∣∣
2

dx +

∫

Ω

[
(ϕK − ϕK−1)ϕK

h
− (ϕ1 − ϕ0)ϕ0

h

]
dx

+h

K−1∑

k=1

∫

Ω

∇
(

ϕk+1 + ϕk−1

2

)
· ∇ϕkdx.

(3.21)
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However

h
K−1∑

k=1

∫

Ω

∇
(

ϕk+1 + ϕk−1

2

)
· ∇ϕkdx

= h
K−1∑

k=1

∫

Ω

|∇ϕk|2dx + h
K−1∑

k=1

∫

Ω

[
∇

(
ϕk+1 − ϕk

2

)
−∇

(
ϕk − ϕk−1

2

)]
· ∇ϕkdx

= h

K−1∑

k=0

∫

Ω

|∇ϕk+1|2 + |∇ϕk|2
2

dx− h

2

K−1∑

k=0

∫

Ω

∣∣∇(ϕk+1 − ϕk)
∣∣2 dx

−h

2

∫

Ω

(∇ϕK · ∇ϕK−1 +∇ϕ1 · ∇ϕ0
)
dx.

(3.22)

Combining (3.21) and (3.22), we end up with the following equipartition of energy identity

for the time semi-discrete system (1.10):

h

K−1∑

k=0

∫

Ω

(∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

− |∇ϕk+1|2 + |∇ϕk|2
2

)
dx

=

∫

Ω

[
(ϕK − ϕK−1)ϕK

h
− (ϕ1 − ϕ0)ϕ0

h

]
dx

−h

2

K−1∑

k=0

∫

Ω

∣∣∣∇(ϕk+1 − ϕk)
∣∣∣
2

dx− h

2

∫

Ω

(∇ϕK · ∇ϕK−1 +∇ϕ1 · ∇ϕ0
)
dx.

(3.23)

Finally, substituting (3.23) into (3.20) and recalling (3.13) and (3.15) respectively for the

definition of X and Z, we conclude the desired identity (3.12).

4 Hidden regularity and well-posedness

This section is devoted to show a hidden regularity property of solutions of system (2.1) and

to establish the well-posedness of system (1.8).

We begin with the following hidden regularity property of solutions of system (2.1) (recall

(2.2) for the definition of Ek
h):

Theorem 4.1 For any h > 0, any {fk ∈ L2(Ω)}k=1,··· ,K−1, any {gk ∈ H1
0 (Ω)}k=1,··· ,K with

g1 = gK = 0 in Ω, and any {θk ∈ H1
0 (Ω)}k=0,··· ,K satisfying (2.1), it holds

h
K−1∑

k=1

∫

Γ

∣∣∣∣
∂

∂ν

(
θk+1 + θk−1

2

)∣∣∣∣
2

dΓ

≤ C



min

(E0
h, EK−1

h

)
+

[
h

K−1∑

k=1

(
|fk|L2(Ω) + |gk|H1

0 (Ω)

)]2

+ h
K−1∑

k=1

∫

Ω

∣∣∣∣fk gk+1 + gk

2

∣∣∣∣ dx



 .

(4.1)
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Remark 4.1 When h tends to zero, the limit of the system (2.1) is

{
θtt −∆θ = f + gt, in (0, T )× Ω

θ = 0, in (0, T )× Γ.
(4.2)

Inequality (4.1) is a time discrete analogue of the following boundary estimate of (4.2):

∫ T

0

∫

Γ

∣∣∣∣
∂ϕ

∂ν

∣∣∣∣
2

dΓdt ≤ C

{
min

(∫

Ω

[
|∇θ(0)|2 + |θt(0)|2

]
dx,

∫

Ω

[
|∇θ(T )|2 + |θt(T )|2

]
dx

)

+
[
|f |L1(0,T ;L2(Ω)) + |g|L1(0,T ;H1

0 (Ω))

]2

+

∫ T

0

∫

Ω

|fg|dxdt

}
.

Proof of Theorem 4.1: As in [8], we choose a vector % ∈ C1(Ω; lRd) so that % = ν on

the boundary Γ. Then, the desired estimate (4.1) follows immediately from Lemma 3.1 and

Lemma 2.1.

We now establish the well-posedness of system (1.8) by means of a discrete version of the

classical transposition approach ([8]). For this purpose, for any {fk ∈ L2(Ω)}k=1,··· ,K−1, and

any {gk ∈ H1
0 (Ω)}k=1,··· ,K with g1 = gK = 0, we consider the following adjoint problem of

system (1.8):





ζk+1 + ζk−1 − 2ζk

h2
−∆

(
ζk+1 + ζk−1

2

)
= fk +

gk+1 − gk

h
,

in Ω, k = 1, · · · , K − 1

ζk = 0, on Γ, k = 0, · · · , K

ζK = ζK−1 = 0, in Ω.

(4.3)

It is easy to see that (4.3) admits a unique solution {ζk ∈ H1
0 (Ω)}k=0,··· ,K . By Theorem 4.1,

this solution has the regularity property ∂
∂ν

(
ζk+1+ζk−1

2

)
∈ L2(Γ), for k = 1, · · · , K − 1.

In order to give a reasonable definition for the solution of the non-homogenous boundary

problem (1.8) in terms of the transposition method, we consider first the case when the

control {uk}k=0,··· ,K and the initial data (y0, y1) are sufficiently smooth. The following result

holds:

Lemma 4.1 Assume that {yk ∈ H2(Ω)}k=0,··· ,Ksatisfies (1.8). Then

h
K−1∑

k=1

∫

Ω

fk yk+1 + yk−1

2
dx− h

2

K−1∑

k=2

∫

Ω

gk

(
yk+1 − yk

h
+

yk−1 − yk−2

h

)
dx

=

∫

Ω

ζ0y1 − y0

h
dx−

∫

Ω

ζ1 − ζ0

h
y0dx− h

K−1∑

k=1

∫

Γ0

∂

∂ν

(
ζk+1 + ζk−1

2

)
ukdΓ0.

(4.4)
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Proof of Lemma 4.1: Multiplying both sides of (2.1) by (yk+1 + yk−1)/2, integrating

the resulting identity in Ω, summing it for k = 1, · · · , K − 1, one obtains:

h
K−1∑

k=1

[∫

Ω

ζk+1 + ζk−1 − 2ζk

h2

yk+1 + yk−1

2
dx− ζk+1 + ζk−1

2
∆

(
yk+1 + yk−1

2

)

−
∫

Γ0

∂

∂ν

(
ζk+1 + ζk−1

2

)
ukdΓ0

]

= h

K−1∑

k=1

∫

Ω

(
fk +

gk+1 − gk

h

)
yk+1 + yk−1

2
dx.

(4.5)

Recalling ζK = ζK−1 = 0 in Ω, it is clear that

h
K−1∑

k=1

∫

Ω

ζk+1 + ζk−1 − 2ζk

h2

yk+1 + yk−1

2
dx

= h

K−1∑

k=1

∫

Ω

ζk+1 + ζk−1

2

yk+1 + yk−1

h2
dx− h

K−1∑

k=1

∫

Ω

ζkyk+1 + ζkyk−1

h2
dx

=

∫

Ω

ζ0y1 − y0

h
dx−

∫

Ω

ζ1 − ζ0

h
y0dx + h

K−1∑

k=1

∫

Ω

ζk+1 + ζk−1

2

yk+1 + yk−1 − 2yk

h2
dx.

(4.6)

Also, noting g1 = gK = 0 in Ω, it holds

h
K−1∑

k=1

∫

Ω

gk+1 − gk

h

yk+1 + yk−1

2
dx = −h

2

K−1∑

k=2

∫

Ω

gk

(
yk+1 − yk

h
+

yk−1 − yk−2

h

)
dx. (4.7)

Finally, from (4.5)–(4.7) and noting that {yk ∈ H2(Ω)}k=0,··· ,K satisfy the first equation

in (1.8), the desired identity (4.4) follows.

Note that (4.4) still makes sense even if the regularity of {yk}k=0,··· ,K is relaxed as follows





yk+1 + yk−1 ∈ L2(Ω), k = 1, · · · , K − 1,

yk+1 − yk

h
+

yk−1 − yk−2

h
∈ H−1(Ω), k = 2, · · · , K − 1.

(4.8)

This is consistent with the existence result for (1.1) (in terms of the transposition method).

Indeed, under the condition u ∈ L2(Γ × (0, T )) it is well-known that the solution of (1.1)

satisfies y ∈ C([0, T ]; L2(Ω)) ∩ C1([0, T ]; H−1(Ω)). Note that formally, letting h → 0, (4.8)

leads to y(t, ·) ∈ L2(Ω) and yt(t, ·) ∈ H−1(Ω). This observation motivates the definition of

solution for system (1.8).

More precisely, set

H =
{
{yk}k=0,··· ,K

∣∣∣ y0, · · · , yK satisfy (4.8)
}

. (4.9)

We introduce the following
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Definition 4.1 We say {yk}k=0,··· ,K ∈ H to be a solution of (1.8), in the sense of transposi-

tion, if y0 = y0, y1 = y0+hy1, and for any {fk ∈ L2(Ω)}k=1,··· ,K−1, and {gk ∈ H1
0 (Ω)}k=1,··· ,K

with g1 = gK = 0, it holds

h
K−1∑

k=1

∫

Ω

fk yk+1 + yk−1

2
dx− h

2

K−1∑

k=2

〈
gk,

yk+1 − yk

h
+

yk−1 − yk−2

h

〉

H1
0 (Ω),H−1(Ω)

=
〈
ζ0, y1

〉
H1

0 (Ω),H−1(Ω)
−

∫

Ω

ζ1 − ζ0

h
y0dx− h

K−1∑

k=1

∫

Γ0

∂

∂ν

(
ζk+1 + ζk−1

2

)
ukdΓ0,

(4.10)

where {ζk ∈ H1
0 (Ω)}k=0,··· ,K is the unique solution of (4.3).

We now show the following well-posedness result for this system:

Theorem 4.2 Assume (y0, y1) ∈ L2(Ω)×H−1(Ω) and {uk ∈ L2(Γ0)}k=1,··· ,K−1. Then system

(1.8) admits one and only one solution {yk}k=0,··· ,K ∈ H in the sense of Definition 4.1.

Moreover,

i) When K is odd,
(
y2`, y2`+1−y2`

h

)
∈ L2(Ω)×H−1(Ω) for ` = 0, 1, · · · , [K

2
], and

max
`=0,1,··· ,[K

2
]

∥∥∥∥
(

y2`,
y2`+1 − y2`

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

≤ C

(
‖(y0, y1)‖2

L2(Ω)×H−1(Ω) + h
K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)

)
.

(4.11)

ii) When K is even,
(
y2`, y2`−1−y2`−2

h

)
∈ L2(Ω)×H−1(Ω) for ` = 1, · · · , K

2
, and

max
`=1,··· , K

2

∥∥∥∥
(

y2`,
y2`−1 − y2`−2

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

≤ C

(
‖(y0, y1)‖2

L2(Ω)×H−1(Ω) + h
K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)

)
.

(4.12)

Furthermore, the constant C > 0 in the estimates (4.11) and (4.12) is independent of the

time-step h.

Proof of Theorem 4.2: The proof is standard, and hence we give only a sketch. First of

all, by Lemma 2.1, Theorem 4.1 and using the usual duality argument (e.g. [8]), we conclude

that system (1.8) admits a solution {yk}k=0,··· ,K ∈ H in the sense of Definition 4.1, which

verifies

max
k=1,··· ,K−1

∥∥yk+1 + yk−1
∥∥2

L2(Ω)
+ max

k=2,··· ,K−1

∥∥∥∥
yk+1 − yk

h
+

yk−1 − yk−2

h

∥∥∥∥
2

H−1(Ω)

≤ C

(
‖(y0, y1)‖2

L2(Ω)×H−1(Ω) + h

K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)

)
.

(4.13)
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Inequality (4.1) implies the uniqueness of the solution of system (1.8). On the other hand,

the constant C in this estimate is independent of h.

Next, we show the “regularity” properties (4.11)–(4.12) for solution {yk}k=0,··· ,K . For

this purpose, for any ` ∈ {0, 1, · · · , [K
2
]}, we choose the test functions fk and gk in (4.10) as

follows:

fk =

{
(−1)(k+3)/2f 1, for k = 1, 3, · · · , 2`− 1

0, for k = 2, 4, · · · , 2`, 2` + 1, 2` + 2, · · · , K − 1,

where f 1 is arbitrary, and gk ≡ 0 for all k = 1, · · · , K. Now, by Lemma 2.1, Theorem 4.1 and

using the usual duality argument again, similar to (4.13), one deduces that y2`−y0 ∈ L2(Ω),

and
∥∥y2` − y0

∥∥2

L2(Ω)
≤ Ch

K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)
,

via which (and noting y0 ∈ L2(Ω)) the boundedness of each of y2,y4,...y2` in L2(Ω) follows

(with a bound which is independent of the time step h). Similarly, noting y1 ∈ H−1(Ω), one

obtains the rest results in (4.11)–(4.12).

5 Lack of controllability/observability without filter-

ing

This section is devoted to prove the following negative controllability/observability result:

Theorem 5.1 For any given h > 0 and any nonempty open subset Γ0 of Γ, system (1.10)

is not observable, and therefore, system (1.8) is not null controllable.

Proof of Theorem 5.1: We emphasize that, in this proof, h is fixed so that the system

under consideration involves only a finite number of time-steps while it is a distributed

parameter system (infinite-dimensional one) in space. This is precisely the main reason for

the lack of observability results. The proof is divided into two steps.

Step 1. We first show that inequality (1.14) fails for system (1.10) when Γ0 = Γ. For

this, put

fn =
n∑

j=1

|µj|−d/2Φj.

(Recall that d is the dimensions of Ω). By Weyl’s formula ([6]), µk ∼ C(Ω)k1/d as k → ∞.

Therefore,

||fn||2L2(Ω) =
n∑

j=1

|µj|−d →∞, as n →∞; (5.1)

while, {fn}n≥1 is bounded in H−s(Ω) for all s > 0.
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It is obvious that fn ∈ H2(Ω) ∩ H1
0 (Ω) for any n. We choose the final data of (1.10)

to be (ϕK
n , ϕK−1

n ) = (fn, 0) and denote the corresponding solution by {ϕk
n}K

K=0. Note that

ϕK−2
n , · · · , ϕ0

n are inductively determined by the following iterative elliptic systems

ϕk−1
n − 1

2
h2∆ϕk−1

n = 2ϕk
n − ϕk+1

n +
1

2
h2∆ϕk+1

n , k = K − 1, · · · 1. (5.2)

By standard elliptic regularity theory, it is easy to see that ϕk
n ∈ H2(Ω) ∩ H1

0 (Ω) for any

n ∈ lN.

On the other hand, (5.2) can be rewritten as

ϕk+1
n + ϕk−1

n − 1

2
h2∆

(
ϕk+1

n + ϕk−1
n

)
= 2ϕk

n, k = K − 1, · · · 1.

This, combined with the standard regularity theory for elliptic equations of second order,

gives
K−1∑

k=1

∥∥ϕk+1
n + ϕk−1

n

∥∥
H1

0 (Ω)
≤ C(h)

K−1∑

k=1

∥∥ϕk
n

∥∥
H−1(Ω)

≤ C(h) ‖fn‖H−1(Ω) . (5.3)

One can also re-write (5.2) as

ϕk+1
n + ϕk−1

n =
2

h2
(−∆)−1

(
2ϕk

n −
(
ϕk+1

n + ϕk−1
n

) )
, k = K − 1, · · · 1.

Therefore, using again the standard elliptic regularity theory, we conclude that for any τ ≤ 2,

it holds
K−1∑

k=1

||ϕk+1
n + ϕk−1

n ||Hτ (Ω) ≤ C(h)||2ϕk
n −

(
ϕk+1

n + ϕk−1
n

) ||Hτ−2(Ω)

≤ C(h)(||fn||Hτ−2(Ω) + ||fn||H−1(Ω)).

(5.4)

Hence, for any given h > 0 and 3/2 < τ < 2, using trace theorem, it follows from (5.4) that

h
K−1∑

k=1

∫

Γ

∣∣∣∣
∂

∂ν

(
ϕk+1

n + ϕk−1
n

2

)∣∣∣∣
2

dΓ ≤ C(h)
K−1∑

k=1

||ϕk+1
n + ϕk−1

n ||2Hτ (Ω)

≤ C(h)||fn||2Hτ−2(Ω).

(5.5)

The energy E0
h of (1.10) with data (ϕK

n , ϕK−1
n ) = (fn, 0) reads

E0
h = EK−1

h =
1

2

∫

Ω

(∣∣∣fn

h

∣∣∣
2

+
|∇fn|2

2

)
dx ≥ 1

2h2
‖fn‖2

L2(Ω) . (5.6)

Now, recalling that {fn}n≥1 is bounded in H−s(Ω) for all s > 0, taking (5.1), (5.5) and (5.6)

into account, we obtain that

lim
n→∞

E0
h

h

K−1∑

k=1

∫

Γ

∣∣∣∣
∂

∂ν

(
ϕk+1

n + ϕk−1
n

2

)∣∣∣∣
2

dΓ

= ∞. (5.7)
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Thus, (1.14) fails. Consequently, system (1.10) is not observable (even when Γ0 = Γ).

Step 2. We now show that system (1.8) is not null controllable by means of a con-

tradiction argument. Assume that for any (y0, y1) ∈ L2(Ω) × H−1(Ω), there is a control

{uk ∈ L2(Γ0)}k=1,··· ,K−1 such that the solution {yk}k=0,··· ,K of (1.8) satisfies the null con-

trollability property (1.9). The control is not unique, and therefore, we choose the one of

minimal norm. By the closed graph theorem, we deduce that

K−1∑

k=1

|uk|L2(Γ0) ≤ C|(y0, y1)|L2(Ω)×H−1(Ω). (5.8)

Multiplying the first equation of system (1.8) by (ϕk+1 + ϕk−1)/2, integrating it in Ω,

summing it for k = 1, · · · , K − 1 and noting Theorem 4.2, it follows

〈
ϕ0, y1

〉
H1

0 (Ω),H−1(Ω)
−

∫

Ω

ϕ1 − ϕ0

h
y0dx = h

K−1∑

k=1

∫

Γ0

∂

∂ν

(
ϕk+1 + ϕk−1

2

)
ukdΓ0. (5.9)

Combining (5.8) and (5.9), one deduces easily that inequality (1.14) holds. From Step 1,

this is a contradiction.

6 Uniform observability under filtering

In this section, we shall establish uniform observability estimates for system (1.10) (with

respect to the time step h) after filtering the spurious high frequency components.

6.1 Statement of the uniform observability result

As mentioned in Introduction, due to the negative results stated in Theorem 5.1, we need to

introduce suitable filtering spaces in which the solutions of system (1.10) evolve. Recalling

the definition of Φj and µj, for any s > 0, define

C1,s = {f(x) | f(x) =
∑

µ2
j<s

ajΦj(x), aj ∈ lC} ⊂ H1
0 (Ω), (6.1)

C0,s = {g(x) | g(x) =
∑

µ2
j<s

bjΦj(x), bj ∈ lC} ⊂ L2(Ω), (6.2)

and

C−1,s = {z(x) | z(x) =
∑

µ2
j<s

cjΦj(x), cj ∈ lC} ⊂ H−1(Ω), (6.3)

subspaces of H1
0 (Ω), L2(Ω) and H−1(Ω), respectively, with the induced topologies. It is clear

that
∞⋃

k=1

C1,k is dense in H1
0 (Ω), and the same can be said for

∞⋃

k=1

C0,k in L2(Ω) and
∞⋃

k=1

C−1,k
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in H−1(Ω). Denote by π1,s, π0,s and π−1,s the projection operators from H1
0 (Ω), L2(Ω) and

H−1(Ω) to C1,s, C0,s and C−1,s, respectively. The space C−1,s and the projector π−1,s will not

be used in this section but we will need them later.

Our uniform observability result for system (1.10) is stated as follows:

Theorem 6.1 Let T > 2R. Then there exist two constants h0 > 0 and δ > 0, depending

only on d, T and R, such that for all (ϕh
0 , ϕ

h
1) ∈ C1,δh−2 × C0,δh−2, the corresponding solution

{ϕk}k=0,··· ,K of (1.10) satisfies

E0
h ≤ Ch

K−1∑

k=1

∫

Γ0

∣∣∣∣
∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ0, (6.4)

for all h ∈ (0, h0].

Remark 6.1 In the proof we see that δ depends only on d, T and R. In particular it indicates

that δ decreases as T decreases. This is natural since, as T decreases, less and less time-step

iterations are involved in system (1.10) and, consequently, less Fourier components of the

solutions may be observed. Further, δ tends to zero as T tends to 2R. This is natural too

since our proof of (6.4) is based on the method of multipliers which works at the continuous

level for all T > 2R but that, at the time-discrete level, due to the added dispersive effects,

may hardly work when T is very close to 2R, except if the filtering is strong enough.

Remark 6.2 In view of the hidden regularity result of Theorem 4.1, the right hand side

term of (6.4) is finite.

Remark 6.3 In the observability result of Theorem 6.1, the filtering parameter has been

taken to be of the order of h−2. This is the optimal order for the filtering parameter since

for higher frequencies there are solutions for which the observability constant blows-up, as

Theorem 7.1 in the next section shows. However, as we shall see, the necessity of the filtering

parameter δ to be small is not completely justified. In fact, our analysis of the velocity of

propagation of solutions in section 7 supports that, whatever δ > 0 is, observability could be

expected to hold for large enough values of time T .

6.2 A technical result

As mentioned before, the key point in the proof of Theorem 6.1 is Lemma 3.2. We need to

estimate first the term X and the error terms Y and Z in (3.12).

The following lemma provides an estimate on the term X + Y + Z:

Lemma 6.1 Let K be an integer, s > 0 and T > 0. Then for any (ϕh
0 , ϕ

h
1) ∈ C1,s×C0,s, the

corresponding solution {ϕk}k=0,··· ,K of (1.10) satisfies

X + Z + Y ≥ −
[
2R + a1h + 3R

√
sh + T

(d

2

√
sh + a2sh

2
) ]

E0
h, (6.5)
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where

a1 = 3d− 2 + max

(
d− 1

2
, 2

)
, a2 = min

(
1, (2− d)+

)
+

d− 1

2
. (6.6)

Proof: The proof is divided in three steps, in which we estimate X,Y and Z, separately.

Note that, in view of the Fourier decomposition of solutions (see (2.15) in Remark 2.1),

the filtering introduced in the initial data is kept for all discrete time-steps k so that∫

Ω

|∇ϕk|2dx ≤ s

∫

Ω

|ϕk|2dx

for all k = 0, · · · , K and all solutions under consideration. This inequality will be used

throughout the proof.

Step 1. First, let us consider X. We have∣∣∣∣
d− 1

2

∫

Ω

ϕK − ϕK−2

2

ϕK − ϕK−1

h
dx

∣∣∣∣

≤ (d− 1)h

2

(∫

Ω

∣∣∣∣
ϕK − ϕK−2

2h

∣∣∣∣
2

dx

∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

)1/2

≤ (d− 1)h

2

(∫

Ω

∣∣ϕK − ϕK−1
∣∣2 +

∣∣ϕK−1 − ϕK−2
∣∣2

2h2
dx

)1/2 (∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

)1/2

≤ (d− 1)hE0
h.

(6.7)

Further, applying Lemma 2.4 (with f and g replaced by (ϕK−ϕK−1)/h and (ϕK +ϕK−2)/2),

recalling (1.12) for the definition of Ek
h and using (1.13), it follows∣∣∣∣

∫

Ω

[
(x− x0) · ∇

(
ϕK + ϕK−2

2

)
+

d− 1

2

(
ϕK + ϕK−2

2

)]
ϕK − ϕK−1

h
dx

∣∣∣∣

≤ R

2

∫

Ω

[∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

+

∣∣∣∣∇
(

ϕK + ϕK−2

2

)∣∣∣∣
2
]

dx

≤ R

2

∫

Ω

(∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

+
|∇ϕK |2 + |∇ϕK−1|2

2
+
|∇ϕK−2|2 − |∇ϕK−1|2

2

)
dx

= RE0
h + M,

(6.8)

where

M =
Rh

4

∫

Ω

∇ (
ϕK−2 + ϕK−1

) · ∇
(

ϕK−2 − ϕK−1

h

)
dx.

Further, we estimate

M ≤ Rh

4

{∫

Ω

∣∣∇ (
ϕK−2 + ϕK−1

)∣∣2 dx

∫

Ω

∣∣∣∣∇
(

ϕK−2 − ϕK−1

h

)∣∣∣∣
2

dx

}1/2

≤ Rh

2

√
s

{∫

Ω

∣∣∇ϕK−2
∣∣2 +

∣∣∇ϕK−1
∣∣2

2
dx

}1/2 {∫

Ω

∣∣∣∣
ϕK−2 − ϕK−1

h

∣∣∣∣
2

dx

}1/2

≤ h

2

√
sRE0

h.

(6.9)
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Combining (6.7), (6.8) and (6.9) we obtain
∣∣∣∣
∫

Ω

[
(x− x0) · ∇

(
ϕK + ϕK−2

2

)
+

d− 1

2
ϕK

]
ϕK − ϕK−1

h
dx

∣∣∣∣

=

∣∣∣∣
∫

Ω

[
(x− x0) · ∇

(
ϕK + ϕK−2

2

)
+

d− 1

2

(
ϕK + ϕK−2

2

)]
ϕK − ϕK−1

h
dx

+
d− 1

2

∫

Ω

ϕK − ϕK−2

2

ϕK − ϕK−1

h
dx

∣∣∣∣

≤
[
R + (d− 1)h +

hR

2

√
s

]
E0

h.

(6.10)

Similarly, ∣∣∣∣−
∫

Ω

[
(x− x0) · ∇

(
ϕ2 + ϕ0

2

)
+

d− 1

2
ϕ0

]
ϕ1 − ϕ0

h
dx

∣∣∣∣

≤
[
R + (d− 1)h +

hR

2

√
s

]
E0

h.

(6.11)

Therefore, by (6.10)–(6.11) and recalling the definition of X in (3.13), we conclude that

|X| ≤ [
2R + 2(d− 1)h + Rh

√
s
]
E0

h. (6.12)

Step 2. Next, let us consider Y . Using (1.13) and noting (2.15) in Remark 2.1, we obtain
∣∣∣∣
∫

Ω

(x− x0) · ∇
(

ϕK−1 − ϕK−2

2

)
ϕK − ϕK−1

h
dx

∣∣∣∣

≤ Rh

2

[∫

Ω

∣∣∣∣∇
(

ϕK−1 − ϕK−2

h

)∣∣∣∣
2

dx

∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

]1/2

≤ Rh
√

s

2

(∫

Ω

∣∣∣∣
ϕK−1 − ϕK−2

h

∣∣∣∣
2

dx

)1/2 (∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

)1/2

≤ Rh
√

sE0
h.

(6.13)

Similarly, ∣∣∣∣
∫

Ω

(x− x0) · ∇
(

ϕ2 − ϕ1

2

)
ϕ1 − ϕ0

h
dx

∣∣∣∣ ≤ Rh
√

sE0
h. (6.14)

Further, ∣∣∣∣∣
dh2

2

K−1∑

k=1

∫

Ω

∆

(
ϕk+1 + ϕk−1

2

)
ϕk − ϕk−1

h
dx

∣∣∣∣∣

=

∣∣∣∣∣
dh2

2

K−1∑

k=1

∫

Ω

∇
(

ϕk+1 + ϕk−1

2

)
· ∇

(
ϕk − ϕk−1

h

)
dx

∣∣∣∣∣

≤ dh2

2

K−1∑

k=1

[∫

Ω

∣∣∣∣∇
(

ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dx

∫

Ω

∣∣∣∣∇
(

ϕk − ϕk−1

h

)∣∣∣∣
2

dx

]1/2

≤ dh
√

s T

2
E0

h.

(6.15)
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Also, ∣∣∣∣∣−
dh

2

∫

Ω

∣∣∣∣
ϕK − ϕK−1

h

∣∣∣∣
2

dx

∣∣∣∣∣ ≤ dhE0
h. (6.16)

By (6.13)–(6.16) and recalling the definition of Y in (3.14), we conclude that

|Y | ≤ h

[
d

(√
s T

2
+ 1

)
+ 2R

√
s

]
E0

h. (6.17)

Step 3. Finally, we consider Z. It follows

h
K−1∑

k=1

∫

Ω

∣∣∇(ϕk+1 − ϕk−1)
∣∣2 dx ≤ sh3

K−1∑

k=1

∫

Ω

∣∣∣∣
ϕk+1 − ϕk−1

h

∣∣∣∣
2

dx

≤ 2sh3

K−1∑

k=1

∫

Ω

(∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

+

∣∣∣∣
ϕk − ϕk−1

h

∣∣∣∣
2
)

dx ≤ 8sh2TE0
h.

(6.18)

Since the first term in Z is nonnegative whenever d ≥ 2, we get from (6.18) that

(d− 2)h

8

K−1∑

k=1

∫

Ω

∣∣∇(ϕk+1 − ϕk−1)
∣∣2 dx ≥

{ −sh2TE0
h, d = 1

0, d ≥ 2.
(6.19)

Similarly,

h
K−1∑

k=0

∫

Ω

∣∣∇(ϕk+1 − ϕk)
∣∣2 dx ≤ sh3

K−1∑

k=0

∫

Ω

∣∣∣∣
ϕk+1 − ϕk

h

∣∣∣∣
2

dx ≤ 2sh2TE0
h. (6.20)

Further,

−(d− 1)h

4

∫

Ω

∇ϕK · ∇ϕK−1dx +
(d− 2)h

4

∫

Ω

|∇ϕK−1|2dx

≥ −(d− 1)h

16

∫

Ω

|∇ϕK |2dx +
[(d− 2)h

4
− (d− 1)h

4

] ∫

Ω

|∇ϕK−1|2dx

≥ −h max

(
d− 1

4
, 1

)
E0

h.

(6.21)

Similarly,

− (d− 1)h

4

∫

Ω

∇ϕ1 · ∇ϕ0dx +
(d− 2)h

4

∫

Ω

|∇ϕ1|2dx ≥ −h max

(
d− 1

4
, 1

)
E0

h. (6.22)

By (6.19)–(6.22), recalling the definition of Z in (3.15), we conclude that

Z ≥ −h

{[
min(1, (2− d)+) +

d− 1

2

]
shT + max

(
d− 1

2
, 2

)}
E0

h. (6.23)

Now, combining (6.12), (6.17) and (6.23), we arrive at the desired estimate (6.5).
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6.3 Proof of the uniform observability result

We are now in a position to prove the uniform observability result, i.e., Theorem 6.1.

Proof of Theorem 6.1: Combining (3.12) in Lemma 3.2 and (6.5) in Lemma 6.1,

recalling the definition of Γ0 in (1.7), we deduce that
{

T
(
1− d

2

√
sh− a2sh

2
)
−

[
2R + a1h + 3R

√
sh

]}
E0

h

≤ R

2
h

K−1∑

k=1

∫

Γ0

∣∣∣ ∂

∂ν

(
ϕk+1 + ϕk−1

2

) ∣∣∣
2

dΓ0.

For this inequality to yield an estimate on E0
h we need to choose s = δh−2 with h small

enough such that

a2δ +
d

2

√
δ < 1,

or, more precisely,

0 <
√

δ <
4√

d2 + 16a2 + d
. (6.24)

Once this is done, for h ∈ (0, h0), T has to be chosen such that

T >
2R + a1h0 + 3R

√
δ

1− d
2

√
δ − a2δ

≥ 2R. (6.25)

Hence, (6.4) holds for h ∈ (0, h0].

Conversely, for any T > 2R one can always choose h0 and δ small enough so that (6.24)

and (6.25) hold and guaranteeing the uniform observability inequality.

7 Optimality of the filtering parameter

This section is addressed to analyze the optimality of the filtering mechanism introduced in

Theorem 6.1.

7.1 Optimality of the order of the filtering parameter

We first show the following result, which indicates that the order h−2 of the filtering param-

eter that we have chosen in Theorem 6.1 is optimal.

Theorem 7.1 Assume Γ∗ is any nonempty open subset of Γ. Then, for any given a > 2, it

follows that

lim
h→0

sup
(ϕh

0 ,ϕh
1 )∈C1,h−a×C0,h−a

E0
h

h
K−1∑

k=1

∫

Γ∗

∣∣∣∣
∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ∗

= ∞. (7.1)
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Proof of Theorem 7.1: Recall that {Φj}∞j=1 ⊂ H1
0 (Ω) denotes the orthonormal basis

of L2(Ω) constituted by the eigenvectors of the Dirichlet Laplacian and {µ2
j}j≥1 the corre-

sponding eigenvalues. Since µj → +∞ as j → ∞, one can choose a j0 = j0(h) so that

h−a/2/2 ≤ µj0 ≤ h−a/2. In view of the fact that a > 2, this leads to

µj0h →∞, as h → 0. (7.2)

Further, choose

ϕh
0 =

1

µj0

Φj0 , ϕh
1 =

e−iωj0 − 1

µj0h
Φj0 , (7.3)

where ωj0 is defined by (2.16). One deduces that (ϕh
0 , ϕ

h
1) ∈ C1,h−a×C0,h−a . Noting the special

choice of initial data in (7.3), by Lemma 2.2 (see also Remark 2.1 ii)), the corresponding

solution {ϕk}k=0,··· ,K of (1.10) is given by

ϕk =
1

µj0

eiωj0
(K−k−1)Φj0 , k = 0, · · · , K. (7.4)

Using (2.16), it follows

cos(ωj0) =
2

2 + (µj0h)2
, sin(ωj0) =

µj0h
√

4 + (µj0h)2

2 + (µj0h)2
. (7.5)

Recalling the exact form of E0
h in (1.12), combining (7.4) and (7.5), we compute

E0
h = EK−1

h =
1

2

∫

Ω

( |∇ϕK |2 + |∇ϕK−1|2
2

+
∣∣∣ϕ

K − ϕK−1

h

∣∣∣
2
)

dx

=
1

2

(
1 +

∣∣∣e
−iωj0 − 1

µj0h

∣∣∣
2
)

=
1

2

(
1 +

∣∣∣cos(ωj0)− 1− i sin(ωj0)

µj0h

∣∣∣
2
)

=
4 + (µj0h)2

2[2 + (µj0h)2]
.

(7.6)

On the other hand, via (7.4) and (7.5), one has

∫

Γ∗

∣∣∣ ∂

∂ν

(ϕk+1 + ϕk−1

2

)∣∣∣
2

dΓ∗

≤
∣∣∣e

iωj0 + e−iωj0

2µj0

∣∣∣
2
∫

Γ∗

∣∣∣∂Φj0

∂ν

∣∣∣
2

dΓ∗ ≤ cos2(ωj0)

µ2
j0

∫

Γ

∣∣∣∂Φj0

∂ν

∣∣∣
2

dΓ.

(7.7)

We claim that ∫

Γ

∣∣∣∂Φj0

∂ν

∣∣∣
2

dΓ ≤ Cµ2
j0

. (7.8)

Indeed, since Γ ∈ C2, one can find a %0 = (%1
0, · · · , %d

0) ∈ C1(Ω; lRd) such that %0 = ν on Γ

([8]). Applying Lemma 2.3 with % = %0 and ψ = Φj0 , we get

∫

Ω

%0 · ∇Φj0∆Φj0dx =
1

2

[∫

Γ

∣∣∣∂Φj0

∂ν

∣∣∣
2

dΓ +

∫

Ω

div%0|∇Φj0 |2dx

]
−

d∑
i,j=1

∫

Ω

∂xj
%i

0∂xi
Φj0∂xi

Φj0dx.
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Recall that ∆Φj0 = −µ2
j0

Φj0 in Ω. Hence, (7.8) follows from

∫

Ω

%0 · ∇Φj0∆Φj0dx = −µ2
j0

∫

Ω

Φj0%0 · ∇Φj0dx =
1

2
µ2

j0

∫

Ω

div%0|Φj0|2dx ≤ Cµ2
j0

,

and

d∑
i,j=1

∫

Ω

∂xj
%i

0∂xi
Φj0∂xi

Φj0dx− 1

2

∫

Ω

div%0|∇Φj0|2dx ≤ C

∫

Ω

|∇Φj0|2dx ≤ Cµ2
j0

.

Combining (7.7) and (7.8), we find

h
K−1∑

k=1

∫

Γ∗

∣∣∣∣
∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ∗ ≤ C cos2(ωj0). (7.9)

Finally, combining (7.6) and (7.9), and noting (7.2) and (7.5), it follows

sup
(ϕh

0 ,ϕh
1 )∈C1,h−a×C0,h−a

E0
h

h
K−1∑

k=1

∫

Γ∗

∣∣∣∣
∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ∗

≥ 4 + (µj0h)2

2[2 + (µj0h)2]

[2 + (µj0h)2]2

4C
=

[4 + (µj0h)2][2 + (µj0h)2]

8C
→∞ as h → 0,

which gives (7.1).

Some remarks are in order.

Remark 7.1 The argument above, based on the use of separated variables monochromatic

solutions, shows that the order of filtering µ2 ≤ Ch−2 is sharp, in the sense that the ob-

servability inequality fails to be uniform when we take into account eigenvalues µ2 such that

µ2 À h−2. Note however that our observability results require to restrict the class of eigen-

values under consideration to µ2 ≤ δh−2 with δ > 0 small. The discussion above does not

justify the optimality of this smallness condition on the filtering constant. Actually, as we

shall show in the next section, one may expect that uniform observability and controllability

properties hold within classes of filtered solutions of the form µ2 ≤ Ch−2 with arbitrary C > 0

for a sufficiently large time.

Remark 7.2 In a first look to this problem it might seem to be surprising that the negative

result in Theorem 7.1 is related to monochromatic waves. Nevertheless, the lack of uniform

observability is related to the fact that the quantity in the right hand side of (7.9) is of the

order of cos2(ωj0) which tends to zero as h → 0. Of course this does not happen for the

continuous wave equation. Indeed, if one computes for the solution for the continuous-time

wave equation (1.3) with initial data

ϕ0 =
1

µj0

Φj0 , ϕ1 =
e−iωj0 − 1

µj0h
Φj0 ,
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the same as that in (7.3), one gets

ϕ =

[
cos(µj0(T − t)) +

e−iωj0 − 1

µj0h
sin(µj0(T − t))

]
Φj0 .

It is easy to check that the dominant corresponding term in the continuous-time boundary

observation
∫ T

0

∫
Γ0
|∂ϕ/∂ν|2 dΓ0dt reads

∫ T

0

cos2(µj0(T − t))dt.

Clearly, this term is bounded below (and therefore does not tend to zero) when h → 0,

contrarily to what happens for the corresponding discrete term cos2(ωj0).

7.2 A heuristic explanation

We now give a heuristic explanation of the necessity of filtering in terms of the group velocity

of propagation of the solutions of the time-discrete system (see [12, 16]). For doing that we

consider the time-discrete wave equation (1.10) in the whole space. Applying the Fourier

transform (the continuous one in space and the discrete one in time), we deduce that the

symbol of the time semi-discrete system (1.10) is

ph(τ, ξ) = −4 sin2 τh
2

h2
+ |ξ|2 cos(τh), (τ, ξ) ∈

[
− π

2h
,

π

2h

]
× lRd.

It is easy to see that, for all τ ∈ [−π(2h)−1, π(2h)−1], ph(τ, ξ) has two nontrivial roots

ξ± ∈ lRd. The bicharacteristic rays are defined as the solutions of the following Hamiltonian

system: 



dx(s)

ds
= 2ξ cos(τh),

dt(s)

ds
= −2 sin(τh)

h
− |ξ|2h sin(τh),

dξ(s)

ds
= 0,

dτ(s)

ds
= 0.

As in the continuous case, the rays are straight lines. However, both the direction and the

velocity of propagation of the rays in this time-discrete setting case are different from the

time-continuous one.

Let us now illustrate the existence of bicharacteristic rays whose projection on lRd prop-

agates at a very low velocity or even does not move at all. For this, we fix any x0 =

(x0,1, · · · , x0,d) ∈ Ω and choose the initial time t0 = 0. Also, we choose the initial microlocal

direction (τ0, ξ0) = (τ0, ξ0,1, · · · , ξ0,d), as a root of Ph. Thus

|ξ0|2 =
4 sin2 τ0h

2

h2 cos(τ0h)
, τ0 ∈

[
− π

2h
,

π

2h

]
.

Note that the above condition is satisfied for ξ0,1 = 2(h)−1 sin τ0h
2

cos−1/2(τ0h) and ξ0,2 =

· · · = ξ0,d = 0, for instance. In this case we get

dx

dt
=

dx/ds

dt/ds
= −cos3/2(τ0h)

cos τ0h
2

31



Figure 1: The diagram of C(ξ). h = 0.1 (solid line) vs. h = 0.01 (dashed line). The thick

horizontal segment corresponds to the theoretical group velocity C(ξ) = 1 (in the continuous

case, i.e. h = 0).

and x′2(t) = · · · = x′d(t) = 0. Thus, xj(t) for j = 2, · · · , d remain constant and

x1(t) = x0,1 − t cos3/2(τ0h) cos−1 τ0h

2

evolves with speed − cos3/2(τ0h) cos−1 τ0h
2

, which tends to 0 when τ0h → π
2
−, or τ0h → −π

2
+.

This allows us to show that, as h → 0, there exist rays that remain trapped on a neighborhood

of x0 for time intervals of arbitrarily large length. In order to guarantee the boundary

observability these rays have to be cut-off by filtering. This can be done by restricting the

Fourier spectrum of the solution to the range |τ | ≤ ρπ/2h with 0 < ρ < 1. This corresponds

to

|ξ|2 ≤ 4 sin2(ρπ/2)

h2 cos(ρπ/2)
, (7.10)

for the root of the symbol Ph.

This is the same scaling of the filtering operators we imposed on Theorems 6.1 and 8.1,

namely, µ2
j ≤ δ/h2. Note however that, in (7.10), as ρ → 1, the filtering parameter

δ =
4 sin2(ρπ/2)

cos(ρπ/2)
→∞.

Thus, in principle, as mentioned above, the analysis of the velocity of propagation of bichar-

acteristic rays does not seem to justify the need of letting the filtering parameter δ small

enough as in Theorems 6.1 and 8.1. Thus, this last restriction seems to be imposed by

the rigidity of the method of multipliers rather than by the underlying wave propagation

phenomena.
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We can reach similar conclusions by analyzing the behavior of the so-called group velocity.

Indeed, following [12], in 1− d the group velocity has the form

C(ξ) =
4

(2 + h2ξ2)
√

4 + h2ξ2
,

with the graphs as in Figure 1. Obviously, it tends to zero when h2ξ2 tends to infinity. This

corresponds precisely to the high frequency bicharacteristic rays constructed above for which

the velocity of propagation vanishes. Based on this analysis one can show that, whatever

the filtering parameter δ is, uniform observability requires the observation time to be large

enough with T (δ) ↗ ∞ as δ ↗ ∞. This may be done using an explicit construction of

solutions concentrated along rays (see, for instance, [9]). The positive counterpart of this

result guaranteeing that, for any value of the filtering parameter δ > 0, uniform observ-

ability/controllability holds for large enough values of time, is an interesting open problem

whose complete solution will require the application of microlocal analysis tools.

8 Uniform controllability and convergence of the con-

trols

In this section, we present the following uniform partial controllability result for system (1.8)

and the convergence result for the controls :

Theorem 8.1 Let T , h0 and δ be given as in Theorem 6.1, and K > 1 be an odd integer.

Then for any h ∈ (0, h0] and any (y0, y1) ∈ L2(Ω) × H−1(Ω), there exists a control {uk ∈
L2(Γ0)}k=1,··· ,K−1 such that the solution of (1.8) satisfies

i)

π0,δh−2yK−1 = π−1,δh−2

(yK − yK−1

h

)
= 0 in Ω; (8.1)

ii) There exists a constant C > 0, independent of h, y0 and y1, such that

h
K−1∑

k=1

∥∥uk
∥∥2

L2(Γ0)
≤ C

∥∥∥∥
(

y0,
y1 − y0

h

)∥∥∥∥
2

L2(Ω)×H−1(Ω)

; (8.2)

iii) When h → 0,

Uh
4
=

K−1∑

k=1

uk(x)χ[kh,(k+1)h)(t) −→ u strongly in L2((0, T )× Γ0), (8.3)

where u is a control of system (1.1), fulfilling (1.2);

iv) When h → 0,

yh
4
= y0χ{0}(t) +

1

h

K−1∑

k=0

[
(t− kh)yk+1 −

(
t− (k + 1)h

)
yk

]
χ(kh,(k+1)h](t)

−→ y strongly in C([0, T ]; L2(Ω)) ∩H1([0, T ]; H−1(Ω)),

(8.4)
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where y is the solution of system (1.1) with the limit control u as above.

The above theorem contains two results: the uniform partial controllability and the

convergence of the controls and states as h → 0. The proof is standard. Indeed, the partial

controllability statement follows from Theorem 6.1 and classical duality arguments ([8]);

while for the convergence result, one may use the approach developed in [16]. However, for

readers’ convenience, we give below a sketch of the proof of Theorem 8.1.

Proof of Theorem 8.1: For any given T > 2R, choose a sufficiently small δ such that

Theorem 6.1 guarantees the uniform observability for (1.10). Recall that for any given initial

state (y0, y1) ∈ L2(Ω)×H−1(Ω) of the continuous system (1.1), the initial data of (1.8) are

chosen to be (y0, y1−y0

h
) = (y0, y1).

For any (ϕh
0 , ϕ

h
1) ∈ C1,δh−2 × C0,δh−2 , consider the functional

Jh(ϕ
h
0 , ϕ

h
1)

4
= h

K−1∑

k=1

∫

Γ0

∣∣∣∣
∂

∂ν

(
ϕk+1 + ϕk−1

2

)∣∣∣∣
2

dΓ0

− 〈
y1, ϕ

0
〉

H−1(Ω),H1
0 (Ω)

+

∫

Ω

y0
ϕ1 − ϕ0

h
dx,

where {ϕk}k=0,··· ,K is the solution of (1.10) with data (ϕh
0 , ϕ

h
1). By Theorem 4.1, Jh(ϕ

h
0 , ϕ

h
1)

is well-defined. Moreover Jh is convex, continuous and coercive in C1,δh−2×C0,δh−2 , uniformly

on h > 0. In view of Theorem 6.1, Jh(ϕ
h
0 , ϕ

h
1) admits one and only one minimizer (ϕ̂h

0 , ϕ̂
h
1) ∈

C1,δh−2 × C0,δh−2 .

Let (ϕ̂h
0 , ϕ̂

h
1) be the minimizer of Jh(ϕ

h
0 , ϕ

h
1) in C1,δh−2 × C0,δh−2 . It is easy to check that

h
K−1∑

k=1

∫

Γ0

∂

∂ν

(
ϕ̂k+1 + ϕ̂k−1

2

)
∂

∂ν

(
ϕk+1 + ϕk−1

2

)
dΓ0

=
〈
y1, ϕ

0
〉

H−1(Ω),H1
0 (Ω)

−
∫

Ω

y0
ϕ1 − ϕ0

h
dx, ∀ (ϕh

0 , ϕ
h
1) ∈ C1,δh−2 × C0,δh−2 ,

(8.5)

where {ϕ̂k}k=0,··· ,K is the solution of system (1.10) with data (ϕ̂h
0 , ϕ̂

h
1).

Multiplying the first equation of system (1.8) by (ϕk+1 + ϕk−1)/2, integrating it in Ω,

summing it for k = 1, · · · , K − 1 and noting Theorem 4.2, it follows

〈
ϕK−1,

yK − yK−1

h

〉

H1
0 (Ω),H−1(Ω)

−
∫

Ω

ϕk − ϕK−1

h
yK−1dx

=
〈
ϕ0, y1

〉
H1

0 (Ω),H−1(Ω)
−

∫

Ω

ϕ1 − ϕ0

h
y0dx− h

K−1∑

k=1

∫

Γ0

∂

∂ν

(
ϕk+1 + ϕk−1

2

)
ukdΓ0.

(8.6)

We now choose the control function {uk}k=1,··· ,K−1 in system (1.8) as follows

uk =
∂

∂ν

(
ϕ̂k+1 + ϕ̂k−1

2

)∣∣∣∣
Γ0

, k = 1, · · · , K − 1. (8.7)
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Then, (8.5), (8.6),(8.7) together with form of the initial data in (1.3) yield

〈
ϕh

0 ,
yK − yK−1

h

〉

H1
0 (Ω),H−1(Ω)

−
∫

Ω

ϕh
1y

K−1dx = 0, ∀ (ϕh
0 , ϕ

h
1) ∈ C1,δh−2 × C0,δh−2 .

This gives the controllability property (8.1). The desired estimate (8.2) follows immediately

from (8.7), (8.5) and Theorem 6.1.

Next, we prove the convergence of the controls. For this, recalling the exact form of Uh

in (8.3) and noting its uniform boundedness with K = 3, 5, · · · (which follows from (8.2)),

we conclude that, extracting subsequences, for some u ∈ L2((0, T ) × Γ0) and (ϕ̂0, ϕ̂1) ∈
H1

0 (Ω)× L2(Ω),

Uh −→ u weakly in L2((0, T )× Γ0),

(ϕ̂h
0 , ϕ̂

h
1) −→ (ϕ̂0, ϕ̂1) weakly in H1

0 (Ω)× L2(Ω).
as h → 0. (8.8)

Moreover, one can show by standard arguments, that

u =
∂ϕ̂

∂ν

∣∣∣∣
(0,T )×Γ0

, (8.9)

where ϕ̂ is the solution of (1.3) with data (ϕ̂0, ϕ̂1).

One can also use a classical Γ-convergence argument to show that the limit (ϕ̂0, ϕ̂1) is

the minimizer in H1
0 (Ω) × L2(Ω) of the functional J corresponding to the controllability of

the continuous wave equation.

Letting K →∞ in (8.5), we deduce that ϕ̂ satisfies

∫ T

0

∫

Γ0

∂ϕ̂

∂ν

∂ϕ

∂ν
dΓ0dt = 〈y1, ϕ(0)〉H−1(Ω),H1

0 (Ω) −
∫

Ω

y0ϕt(0)dx,

∀ (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω),

(8.10)

where ϕ is the solution of (1.3) with data (ϕ0, ϕ1). Similar to the above, (8.10) implies that

the solution of system (1.1) with control u given by (8.9) satisfies (1.2).

On the other hand, by the weak convergence of (ϕ̂h
0 , ϕ̂

h
1) in H1

0 (Ω)× L2(Ω), recalling the

definition of Uh in (8.3), noting (8.7) and (8.9), we conclude from (8.5) and (8.10) that

∫ T

0

∫

Γ0

|Uh|2dΓ0dt →
∫ T

0

∫

Γ0

|u|2dΓ0dt as h → 0. (8.11)

Combining (8.11) and the first convergence in (8.8), the desired strong convergence result

(8.3) follows.

Once the strong convergence of the controls is known, the estimates of Theorem 4.2 allow

getting a uniform bound of {yh}h>0 (defined in (8.4)) in C([0, T ]; L2(Ω))∩H1([0, T ]; H−1(Ω)),

which yields the desired strong convergence result for the extension {yh}h>0 of the time-

discrete solution {yk}k=0,··· ,K of (1.8) to continuous time, as indicated by (8.4). This com-

pletes the proof of Theorem 8.1.

35



References

[1] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation,

control and stabilization of waves from the boundary, SIAM J. Cont. Optim., 30 (1992),

1024–1065.

[2] C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1 − D wave

equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413–

462.

[3] C. Castro, S. Micu and A. Münch, Numerical approximation of the boundary control

for the wave equation in a square with mixed finite elements, IMA J. Numer. Anal., to

appear.

[4] G. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control

for the wave equation, J. Comput. Phys., 103 (1992), 189–221.

[5] R. Glowinski, C.H. Li and J.L. Lions, A numerical approach to the exact boundary

controllability of the wave equation. I. Dirichlet controls: description of the numerical

methods, Japan J. Appl. Math., 7 (1990), 1–76.

[6] V. Guillemin, Some classical theorems in spectral theory revisited, Seminar on Singular-

ities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton,

N.J., 1977/78), 219–259, Ann. of Math. Stud., 91, Princeton Univ. Press, Princeton,

N.J., 1979.

[7] J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretization of

the 1-D wave equation, M2AN Math. Model. Numer. Anal., 33 (1999), 407–438.

[8] J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems,

SIAM Rev., 30 (1988), 1–68.
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