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Abstract. In this paper we establish a global Carleman estimate for the

fourth order Schrödinger equation with potential posed on a 1−d finite domain.
The Carleman estimate is used to prove the Lipschitz stability for an inverse

problem consisting in recovering a stationary potential in the Schrödinger equa-

tion from boundary measurements.

1. Introduction. The fourth order Schrödinger equation arises in many scientific
fields such as quantum mechanics, nonlinear optics and plasma physics, and has been
intensively studied with fruitful references. For instance, its general nonlinear form
is given in [12, 13] to take into account the role of small fourth order dispersion terms
in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity.
The well-posedness and existence of the solutions has been shown (for instance, see
[10, 18, 20]) by means of the energy method and harmonic analysis. In this paper,
we are interested in the inverse problem for the fourth order Schrödingier equation
posed on a finite interval.

To be more precise, we consider the following fourth order Schrödinger equation
in Ω = (0, 1): iut + uxxxx + pu = 0, (t, x) ∈ (0, T )× Ω

u(t, 0) = u(t, 1) = 0, ux(t, 0) = ux(t, 1) = 0, t ∈ (0, T )
u(0, x) = u0(x), x ∈ Ω.

(1)

For any initial data u0 ∈ H3(Ω) ∩ H2
0 (Ω) and p ∈ L2(Ω), there exists a unique

solution of (1) u ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];H3(Ω) ∩ H2
0 (Ω))(see, for instance,

[19]).
The purpose of this paper is to determine the potential p = p(x), x ∈ Ω by means

of the boundary measurements. The problem we are interested can be stated as
follows: is it possible to estimate ‖q − p‖L2(Ω), or better, a stronger norm of q − p,
by a suitable norm of the derivatives of u(q) − u(p) at the end point x = 1 (or, at
x = 0) during the time interval (0, T )?
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Recently, the inverse problem of the Schrödinger equations has been intensely
studied (see [1, 2, 7, 11, 16, 17, 22] and the references therein). One of the main
techniques is the Carleman estimate ([1, 11, 14, 17, 22]), which is also a powerful
tool for the controllability and observability problems of PDEs.

However, for the higher order equations, due to the increased complexity, there
are few papers investigating the stability of the inverse problems via Carleman es-
timates. In [23], Zhang solves the exact controllability of semilinear plate equations
via a Carleman estimate of the second order Schrödinger operator. Zhou ([25]) con-
siders the observability results of the fourth order parabolic equation and Fu ([9])
derives the sharp observability inequality for the plate equation. In both papers,
they show the Carleman estimates for the corresponding fourth order operators for
1− d cases, respectively.

To our knowledge, the result of determination of a time-independent potential
for the fourth order Schrödinger equation from the boundary measurements on the
endpoint is new. Furthermore, our work in this paper is the first one dealing with
the Carleman estimate of the fourth order Schrödinger equation.

To begin with, we introduce a suitable weight function:

ψ(x) = (x− x0)2, x0 < 0. (2)

Let λ � 1 be a sufficiently large positive constant depending on Ω. For t ∈ (0, T )
and following [8], we introduce the functions

θ = el, ϕ(t, x) =
e3µψ(x)

t(T − t)
and l(t, x) = λ

e3µψ(x) − e5µ‖ψ‖∞

t(T − t)
(3)

with a positive constant µ. Denote by

Pu = iut + uxxxx, Q = (0, T )× Ω and

∫
Q

(·)dxdt =

∫ T

0

∫
Ω

(·)dxdt.

We also introduce the set

Z ={ u ∈ L2(0, T ;H3(Ω) ∩H2
0 (Ω)), Pu ∈ L2(Q),

uxx(·, 1) ∈ L2(0, T ), uxxx(·, 1) ∈ L2(0, T )}.
The first main result is the following global Carleman estimate for system (1):

Theorem 1.1. There exist two constants µ0 > 1 and C > 0 such that for all
µ ≥ µ0, one can find a λ0 such that for all λ > λ0 = λ(µ, T ),∫

Q

(
λ7µ8ϕ7θ2|u|2 + λ5µ6ϕ5θ2|ux|2 + λ3µ4ϕ3θ2|uxx|2 + λµ2ϕθ2|uxxx|2

)
dxdt

≤ C
(∫

Q

|θPu|2dxdt

+λ3µ3

∫ T

0

(ϕ3θ2|uxx|2)(t, 1)dt+ λµ

∫ T

0

(ϕθ2|uxxx|2)(t, 1)dt

) (4)

holds true for all u ∈ Z, where the constants µ0 and C only depend on x0.

Remark 1. Note that for simplicity, we give the exact form of the function ψ(x)
in (2). In fact, the statement holds true for any function satisfying

ψ ∈ C4(Ω̄), ψ > 0, ψx 6= 0 in Ω̄ with Ω̄ = [0, 1], ψx(0) > 0, ψx(1) > 0.

It is worth to mention that, by taking x0 > 1, one could switch the observation
data in (4) to the left end-point x = 0.
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Remark 2. Note that λ0 has the order of T 2 with respect to the time T , as we
will show in the proof.

Remark 3. [24] shows an observability inequality which estimates initial data
by the measurement of ∆u for a Schrödinger equation without the potential q
on Γ0 = {x ∈ ∂Ω; (x − x0) · ν(x) ≥ 0} using a multiplier identity and Holmgren’s
uniqueness theorem. Observability inequalities are technically related to our inverse
problem (see [21]). However, the approach in [24] can not be applied to our problem,
even though less observability data are considered.

Remark 4. Note that the Carleman estimate (4) also can be applied to the con-
trollability problems. In fact, one can derive the exact controllability of a controlled
fourth order semi-linear Schrödinger equations, with controls applied at the bound-
ary point x = 1 by following the standard procedure (see, for instance, [25]). Two
controls will be needed on the boundary, due to the fact that there exist two bound-
ary terms on the right hand side of (4) and each of them corresponds to a control.

In what follows, we shall denote by up the solution of the system (1) associated
with the potential p. Following the standard procedure from the Carleman estimate
to the inverse problem (see, for instance, [17]), we answer the previous question with
the following Theorem:

Theorem 1.2. Suppose that p ∈ L∞(Ω), u0 ∈ L∞(Ω) and r > 0 are such that

• u0(x) ∈ lR or iu0(x) ∈ lR a.e. in Ω,
• |u0(x)| ≥ r > 0 a.e. in Ω, and
• up ∈W 1,2(0, T ;W 3,∞(Ω)).

Then, for any m = ‖q‖L∞(Ω) ≥ 0, exists a constant C = C(m, ‖up‖H1(0,T ;L∞(Ω)) , r)

> 0 such that for any p ∈ L∞(Ω) satisfying

upxx(t, 1)− uqxx(t, 1) ∈ H1(0, T ) and upxxx(t, 1)− uqxxx(t, 1) ∈ H1(0, T ), (5)

we have that

‖p− q‖2L2(Ω) ≤C ‖u
p
xx(·, 1)− uqxx(·, 1)‖2H1(0,T )

+ C ‖upxxx(·, 1)− uqxxx(·, 1)‖2H1(0,T ) .
(6)

Remark 5. By the classical regularity results for fourth order Schrödinger equa-
tions (see [5, Chapter 2] for example), we know that the q which fulfills (5) and (6)
does exist.

The rest of the paper is organized as follows. In Section 2, we state a weighted
point wise inequality for the fourth order Schrödinger operator. In Section 3, we
establish a global Carleman estimate for a fourth order Schrödinger equation with
a potential. The proof of Theorem 1.2 is given in Section 4. Finally we list several
comments and some open problems for the future work.

2. A weighted point-wise estimate for the fourth order operator. In this
section, we shall establish a weighted identity for 1-d Schrödinger operator, which
will pay an important role in the proof of the Carleman estimate (4).
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Theorem 2.1. Assume that u is sufficiently smooth and Ψ ∈ C2(lRn; lR). Set
v = θu where θ is given by (3). Then

|θPu|2 −Ax −Bt − ã0θ(Puv̄ + Puv)− 6lxxθ(Puv̄xx + Puvxx)

=|I1|2 + |I2|2 +D(ivv̄x + ivvx) + 6iltlxx(vv̄xx − v̄vxx) + 4iltx(vxxv̄x − v̄xxvx)

+ 16lxx|vxxx|2 + (24l2xlxx − 24lxlxxx + 48l2xx − 20lxxxx)|vxx|2{
−(a1a2)x − 2(a0 −Ψ)a2 − 4C41,xx + 3C24,x

−a1,xxx −
3

2
(a3,xa1)x − 3a3,xa0 + 2a2ã0

}
|vx|2{

+2(a0 −Ψ)Ψ− (a1Ψ)x − 2a0ã0 − C24,xxx + [(a0 −Ψ)a2]xx

−(a1ã0)x + (
3

2
a3,xa0 − a2ã0)xx + C41,xxxx + ltt

}
|v|2,

(7)

where 
a0 = l4x − 6l2xlxx + 3l2xx + 4lxlxxx − lxxxx, a2 = 6(l2x − lxx),
a1 = −4(l3x − 3lxlxx + lxxx), a3 = −4lx,
ã0 = l4x −Ψ− 2lxlxxx − 3l2xx,
C24 = 4lx(l4x − 2Ψ− 2lxlxxx − 3l2xx),
C41 = −6l2xlxx + 6lxlxxx + 6l2xx − lxxxx,

(8)

and

I1 = ivt + Ψv + a2vxx + vxxxx, I2 = −iltv + (a0 −Ψ)v + a1vx + a3vxxx. (9)

Moreover, we have

A =ia3(vtv̄xx − v̄tvxx)− i

2
a3(vxtv̄x − v̄xtvx) +

i

2
a3,x(vtv̄x − v̄tvx)

+
3

2
a3,x(vxxxv̄xx + v̄xxxvxx) + a1(vxxxv̄x + v̄xxxvx) + C41(vxxxv̄ + v̄xxxv)

+ ilt(vxxxv̄ − v̄xxxv)− ilt(vxxv̄x − v̄xxvx) + (C24 − C41,x)(vxxv̄ + v̄xxv)

− iltx(vxxv̄ − v̄xxv) + i(ltxx + a2lt)(vxv̄ − v̄xv) +
i

4
(2a1 − a3,xx)(vtv̄ − v̄tv)

+ [(a0 −Ψ)a2 − C24,x − a1,x − C41,xx +
3

2
a3,xa0 − a2ã0](vxv̄ + v̄xv)

+ a3|vxxx|2 + (a2a3 −
3

2
a3,xa3 −

3

2
a3,xx − a1)|vxx|2

+ (a1a2 + a1,xx − C24 − 2C41,x +
3

2
a3,xa1)|vx|2

+

(
a1(Ψ + ã0) + [(a0 −Ψ)a2]x − (

3

2
a3,xa0 − a2ã0 − C24)xx − C41,xxx

)
|v|2,

B =− lt|v|2 −
i

2
a3(vxv̄xx − v̄xvxx) +

i

4
(2a1 − a3,xx)(vv̄x − v̄vx),

D =2(6l2xlxt + 6lxlxxlt − 6lxxlxt − 3lxlxxt − 3ltlxxx + lxxxt).

Remark 6. The key ideas of the proof is as the follows: we separate θPu into the
even-order part I1 and the odd-order part I2 as in (9) and compute the real part
of the product of I1Ī2. Identity (7) is a result by collecting those like terms in the
multiplication. Note that the extra function Ψ plays a crucial role for adjusting the
coefficient of the like terms, as we will see in Section 3.
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Proof. We may assume that u is sufficiently smooth. Since v = θu and notice the
definitions of ai, i = 0, 1, 2, 3 in (8), it is esay to get

θPu = ivt − iltv + vxxxx + a0v + a1vx + a2vxx + a3vxxx.

We divide Pu into I1 and I2 as in (9). Multiplying θPu by its conjugate we have

|θPu|2 = |I1|2 + |I2|2 + (I1Ī2 + Ī1I2) = |I1|2 + |I2|2 +

4∑
i,j=1

Iij , (10)

where Iij denotes the sum of the i-th term of I1 times the j-th term of Ī2 in I1Ī2
and its conjugate part in Ī1I2.

The computations will be treated in the following two parts.
Part I: We compute I1j , j = 1, 2, 3, 4. We first have

I11 = −lt(vtv̄ + v̄tv) = −(lt|v|2)t + ltt|v|2.

On the other hand, it is easy to get that

I13 = ia1(vtv̄x − v̄tvx) =
i

2
{−a1,x(vtv̄ − v̄tv) + [a1(vv̄x − v̄vx)]t

+ [a1(vtv̄ − v̄tv)]x − a1,t(vv̄x − v̄vx)}.
(11)

Moreover,

I14 =ia3(vtv̄xxx − v̄tvxxx)

=− 3i

2
a3,x(vtv̄xx − v̄tvxx)− i

2
a3,xx(vtv̄x − v̄tvx)

− i

2
[a3(vxv̄xx − v̄xvxx)]t +

i

2
a3,t(vxv̄xx − v̄xvxx)

+
i

2
{2a3(vtv̄xx − v̄tvxx)− a3(vxtv̄x − v̄xtvx) + a3,x(vtv̄x − v̄tvx)}x.

(12)

By replacing a1 in (11) by a3,xx, substituting it into the last term of (12), we
have

I14 =− 3i

2
a3,x(vtv̄xx − v̄tvxx) +

i

4
a3,xxx(vtv̄ − v̄tv)

− i

4
{[a3,xx(vv̄x − v̄vx)]t + [a3,xx(vtv̄ − v̄tv)]x − a3,xxt(vv̄x − v̄vx)}

− i

2
[a3(vxv̄xx − v̄xvxx)]t +

i

2
a3,t(vxv̄xx − v̄xvxx)

+
i

2
{2a3(vtv̄xx − v̄tvxx)− a3(vxtv̄x − v̄xtvx) + a3,x(vtv̄x − v̄tvx)}x.

(13)

Set

ã0 = a0 −Ψ− 1

2
a1,x −

1

4
a3,xxx.

Obviously, it is the coefficient of the term i(vtv̄ − v̄tv) in

4∑
j=1

I1j . Taking the exact

form of a0, a1, a3 in (8) into account, one can verifty that ã0 is exactly the one in
(8). Furthermore,

ã0i(vtv̄ − v̄tv) = ã0θ(Puv̄ + Puv)− 2a0ã0|v|2 − a1ã0(vxv̄ + v̄xv)

− a2ã0(vxxv̄ + v̄xxv)− a3ã0(vxxxv̄ + v̄xxxv)− ã0(vxxxxv̄ + v̄xxxxv).
(14)
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Meanwhile, for the first term of I14, recalling that a3 = −4lx, we have

− 3i

2
a3,x(vtv̄xx − v̄tvxx)

=6lxxθ(Puv̄xx + Puvxx) + 6ilxxlt(vv̄xx − v̄xx)

− 6lxxa0(vxxv̄ + v̄xxv)− 6lxxa1(vxxv̄x + v̄xxvx)− 12lxxa2|vxx|2

− 6lxxa3(vxxxv̄xx + v̄xxxvxx)− 6lxx(vxxxxv̄xx + v̄xxxxvxx).

(15)

Summing up I12 = i(a0 −Ψ)(vtv̄ − v̄tv), I13 as (11) and I14 as (13), taking (14)
and (15) into accout, we arrive at∑
j=2,3,4

I1j ={·}x + {·}t + ã0θ(Puv̄ + Puv) + 6lxxθ(Puv̄xx + Puvxx)

+
3

2
a3,x(vxxxxv̄xx + v̄xxxxvxx)− ã0(vxxxxv̄ + v̄xxxxv)

+
3

2
a3,xa3(vxxxv̄xx + v̄xxxvxx)− a3ã0(vxxxv̄ + v̄xxxv)

+
3

2
a3,xa1(vxxv̄x + v̄xxvx) + (

3

2
a3,xa0 − a2ã0)(vxxv̄ + v̄xxv)

+
i

2
a3,t(vxv̄xx − v̄xvxx) +

3

2
ilta3,x(vxxv̄ − v̄xxv) + 3a3,xa2|vxx|2

+
i

4
(a3,xxt − 2a1,t)(vv̄x − v̄vx) + a1ã0(vxv̄ + v̄xv)− 2a0ã0|v|2,

(16)

with

{·}x =

 ia3(vtv̄xx − v̄tvxx)− i

2
a3(vxtv̄x − v̄xtvx)

+
i

2
a3,x(vtv̄x − v̄tvx) +

i

4
(2a1 − a3,xx)(vtv̄ − v̄tv)


x

and

{·}t =

(
− i

2
a3(vxv̄xx − v̄xvxx) +

i

4
(2a1 − a3,xx)(vv̄x − v̄vx)

)
t

.

Part II: We compute the rest of Iij , with some extra terms coming from (16).
Set C24 = a3Ψ−a3ã0, which is the same notation as in (8). We have the following

identity:

I24 − a3ã0(vxxxv̄ + v̄xxxv) = C24(vxxxv̄ + v̄xxxv)

=

(
C24(vxxv̄ + v̄xxv)− C24|vx|2

−C24,x(vxv̄ + v̄xv) + C24,xx|v|2
)
x

+ 3C24,x|vx|2 − C24,xxx|v|2.

Consequently, it holds

4∑
j=1

I2j − a3ã0(vxxxv̄ + v̄xxxv)

=0 + 2(a0 −Ψ)Ψvv̄ + a1Ψ(vxv̄ + v̄xv) + C24(vxxxv̄ + v̄xxxv)

={C24(vxxv̄ + v̄xxv)− C24,x(vxv̄ + v̄xv)− C24|vx|2 + (a1Ψ + C24,xx)|v|2}x
+ 3C24,x|vx|2 + {2(a0 −Ψ)Ψ− (a1Ψ)x − C24,xxx}|v|2.

Now we compute I3j , j = 1, 2, 3, 4. It holds

I31 = ia2lt(vxxv̄ − v̄xxv) = {ia2lt(vxv̄ − v̄xv)}x − (ia2lt)x(vxv̄ − v̄xv),
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and∑
j=2,3,4

I3j = Cx + [(a0 −Ψ)a2]xx|v|2 − [(a1a2)x + 2(a0 −Ψ)a2]|vx|2 − (a2a3)x|vxx|2,

with

C = (a0 −Ψ)a2(vxv̄ + v̄xv) + [(a0 −Ψ)a2]x|v|2 + a1a2|vx|2 + a2a3|vxx|2.

For the term I41, it holds:

I41 =ilt(vxxxxv̄ − v̄xxxxv)

=[ilt(vxxxv̄ − v̄xxxv − vxxv̄x + v̄xxvx)− iltx(vxxv̄ − v̄xxv)

+ iltxx(vxv̄ − v̄xv)]x + 2iltx(vxxv̄x − v̄xxvx)− iltxxx(vxv̄ − v̄xv).

I42 is considered with an extra term from I14 as follows:

I42 − ã0(vxxxxv̄ + v̄xxxxv) =C41(vxxxxv̄ + v̄xxxxv)

=Ex + 2C41|vxx|2 − 4C41,xx|vx|2 + C41,xxxx|v|2,

with

E =C41(vxxxv̄ + v̄xxxv)− C41(vxxv̄x + v̄xxvx)− C41,x(vxxv̄ + v̄xxv)

+ C41,xx(vxv̄ + v̄xv)− 2C41,x|vx|2 − C41,xxx|v|2.

Note that it is not hard to verify that C41 has the form as in (8).
Finally, the last two terms I43 and I44 equal to

I43 = a1(vxxxxv̄x + v̄xxxxvx) = Fx − a1,xxx|vx|2 + 3a1,x|vxx|2,

with

F = a1(vxxxv̄x + v̄xxxvx)− a1,x(vxxv̄x + v̄xxvx) + a1,xx|vx|2 − a1|vxx|2,

and

I44 = a3(vxxxxv̄xxx + v̄xxxxvxxx) = (a3|vxxx|2)x − a3,x|vxxx|2.
By the previous computations, combining all “ ∂

∂t -terms”, all “ ∂
∂x -terms” and by

(10) we arrive at the desired inequality (7).

3. Global Carleman estimate: Proof of Theorem 1.1. In this section, we
obtain a global Carleman estimate inequality for the Schrödinger equation (1) via
the point wise inequality (7). Recalling the definitions of l and ϕ in (3), it is easy
to check that

|∂nx l| ≤ C(ψ)λµnϕ, n = 1, · · · , 8,
|∂nx lt| ≤ C(ψ)λµnTϕ2, n = 1, · · · , 3,
|lt| ≤ CλTϕ2, |ltt| ≤ CλT 2ϕ3.

We now give the proof of Theorem 1.1.

Proof. The proof is divided into several steps.

Step 1. Take

Ψ(t, x) = l4x.

Recalling the notations in (8), it is easy to check that the term {· · · }|v|2 in (7)
satisfies

{· · · }|v|2 = 16l6xlxx|v|2 −D1|v|2, |D1| ≥ −C(ψ)λ6µ8ϕ6. (17)
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Similarly, we have

{· · · }|vx|2 = 144l4xlxx|vx|2 −D2|vx|2, |D2| ≥ −C(ψ)λ4µ6ϕ4, (18)

and

{· · · }|vxx|2 = 24l2xlxx|vxx|2 −D3|vxx|2, |D3| ≥ −C(ψ)λ2µ4ϕ2. (19)

Now we consider those hybrid terms in (7). It holds

D(vv̄x − v̄vx) ≥ −C(ψ)λ3µ3Tϕ4(|v|2 + |vx|2), (20)

6iltlxx(vv̄xx − v̄vxx) ≥ −C(ψ)λ2µ2Tϕ3(|v|2 + |vxx|2), (21)

4iltx(vxxv̄x − v̄xxvx) ≥ −C(ψ)λµTϕ2(|vx|2 + |vxx|2), (22)

ã0θ(Puv̄ + Puv) ≥ −C(ψ)λ4µ8ϕ4|v|2 − C(ψ)|θPu|2, (23)

and

6lxxθ(Puv̄xx + Puvxx) ≥ −C(ψ)λ2µ4ϕ2|vxx|2 − C(ψ)|θPu|2. (24)

Taking (17)–(24) into (7), one can find a sufficiently large constant C(ψ) > 0,
only depending on ψ, such that

C(ψ)(|θPu|2 −Ax −Bt + λ6µ8ϕ6|v|2 + λ4µ6ϕ4|vx|2 + λ2µ4ϕ2|vxx|2)

≥16l6xlxx|v|2 + 144l4xlxx|vx|2 + 24l2xlxx|vxx|2 + 16lxx|vxxx|2.
(25)

Step 2. Now we integrate (25) with respect to t and x. By the definition of B and
v = θu with θ(0, x) = θ(T, x) = 0, it is obvious that

−
∫
Q

Btdxdt = 0. (26)

Hence, we have

C(ψ)

(∫
Q

|θPu|2dxdt−
∫
Q

Axdxdt

)
≥

∫
Q

(16l6xlxx − C(ψ)λ6µ8ϕ6)|v|2dxdt+

∫
Q

(144l4xlxx − C(ψ)λ4µ6ϕ4)|vx|2dxdt

+

∫
Q

(24l2xlxx − C(ψ)λ2µ4ϕ2)|vxx|2dxdt+

∫
Q

16lxx|vxxx|2dxdt.

(27)
Since

lx = λµψxϕ = λµ(x− x0)ϕ, lxx = λµ(4µ(x− x0)2 + 2)ϕ (28)

by (2) and ϕ ≤ T 2

4 ϕ
2, by choosing µ ≥ µ0 ≥ 1 and λ ≥ λ0(µ) = C(ψ)(T + T 2), it

holds that∫
Q

(16l6xlxx − C(ψ)λ6µ8ϕ6)|v|2dxdt ≥ 16

∫
Q

28(x− x0)8λ7µ8ϕ7|v|2dxdt.

Similarly,∫
Q

(144l4xlxx − C(ψ)λ4µ6ϕ4)|vx|2dxdt ≥ 144

∫
Q

26(x− x0)6λ5µ6ϕ5|vx|2dxdt,∫
Q

(24l2xlxx − C(ψ)λ2µ4ϕ2)|vxx|2dxdt ≥ 24

∫
Q

24(x− x0)4λ3µ4ϕ3|vxx|2dxdt,

and ∫
Q

16lxx|vxxx|2dxdt ≥ 16

∫
Q

22(x− x0)2λµ2ϕ|vxxx|2dxdt.
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For the term Ax, since v, vx, vt and vtx vanish as x = 0, 1 for any t ∈ (0, T ), we have

−
∫
Q

Axdxdt =−
∫ T

0

A(t, 1)dt+

∫ T

0

A(t, 0)dt

=

∫ T

0

(
(20l3x + 12lxlxx − 10lxx)|vxx|2

+4lx|vxxx|2 + 6lxx(vxxxv̄xx + v̄xxxvxx)
)
|x=1
x=0dt.

Recalling lx and lxx in (28), by taking λ sufficiently large, we have∫ T

0

A(t, 0)dt > 0,

and

−
∫ T

0

A(t, 1)dt ≤ C(ψ)

∫ T

0

(
λ3µ3ϕ3(t, 1)|vxx(t, 1)|2 + λµϕ(t, 1)|vxxx(t, 1)|2

)
dt.

Substituting the previous estimates into (27), it holds∫
Q

(λ7µ8ϕ7|v|2 + λ5µ6ϕ5|vx|2 + λ3µ4ϕ3|vxx|2 + λµ2ϕ|vxxx|2)dxdt

≤C(ψ)

(∫
Q

|θPu|2dxdt+

∫ T

0

(λ3µ3ϕ3(t, 1)|vxx(t, 1)|2 + λµϕ(t, 1)|vxxx(t, 1)|2)dt

)
.

Moreover, since v = elu, we compute

vx = θ(ux + lxu),

vxx = θ(uxx + 2lxux + (l2x + lxx)u),

vxxx = θ(uxxx + 3lxuxx + (3l2x + 3lxx)ux + (l3x + 3lxlxx + lxxx)u).

By Young’s inequality, it is not difficult to obtain∫
Q

λ7µ8ϕ7θ2|u|2dxdt+

∫
Q

λ5µ6ϕ5θ2|ux|2dxdt

+

∫
Q

λ3µ4ϕ3θ2|uxx|2dxdt+

∫
Q

λµ2ϕθ2|uxxx|2dxdt

≤C(ψ)

∫
Q

|θPu|2dxdt

+ C(ψ)

∫ T

0

(
λ3µ3ϕ3(t, 1)θ2(t, 1)|uxx(t, 1)|2 + λµϕ(t, 1)θ2(t, 1)|uxxx(t, 1)|2

)
dt,

which is exactly the statement of Theorem 1.1.

4. Boundary observations. In this section, we give the proof of Theorem 1.2,
which is a direct application of the Carleman inequality (4). The standard procedure
can be found in [1, 17].

We first state a revised Carleman estimate:

Proposition 1. Let p ∈ L∞(Ω, lR). Let I1 be defined in (9) and

Pp = ∂t + i∂4
x + ip
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and the space

Zp =
{
z ∈ L2(Q);Lpz ∈ L2(Q), z(t, 0) = z(t, 1) = zx(t, 0) = zx(t, 1) = 0,

for all t ∈ (0, T ), uxx(·, 1) ∈ L2(0, T ), uxxx(·, 1) ∈ L2(0, T )
}
.

Then for any m ≥ 0, there exist µ0 ≥ 1, λ0 ≥ 0 and C > 0 such that for each
p ∈ L∞(Ω) with ‖p‖L∞ ≤ m it holds∫

Q

(
λ7µ8ϕ7θ2|z|2 + |I1|2

)
dxdt

≤C

(∫
Q

θ2|Ppz|2dxdt+

∫ T

0

(
λ3µ3ϕ3θ2|zxx|2 + λµϕθ2|zxxx|2

)
(t, 1)dt

) (29)

for all λ ≥ λ0, µ ≥ µ0 and z ∈ Zp.

Proof. The term |I1|2 can be added by directly taking (10) into account. Moreover,
the operator P can be changed to Pp since p is assumed to be uniformly bounded
and the cost is a slight change of C with respect to the upper bound m.

Now we state the proof of Th. 1.2.

Proof. We divide the proof into two parts.

Step 1.(Model transformation) Pick any p, q as in the statement of the theorem,
and introduce the difference y := up − uq of the corresponding solutions of (1).

Then y fulfills the system iyt + yxxxx + q(x)y = f(x)R(t, x), (t, x) ∈ Q
y(t, 0) = y(t, 1) = 0, yx(t, 0) = yx(t, 1) = 0, t ∈ (0, T )
y(0, x) = 0, x ∈ Ω.

(30)

with f := q − p (real valued) and R := up.
Since f ∈ L2(Ω; lR) and R ∈ H1(0, T ;L∞(Ω)) and R(0, x) ∈ lR a.e. in Ω, we

can take the even-conjugate extensions of y and R to the interval (−T, T ); i.e.,
we set y(t, x) = −ȳ(−t, x) and R(t, x) = R̄(−t, x) for every (t, x) ∈ (−T, 0) × Ω.
Moreover, we have that R ∈ H1(−T, T ;L∞(Ω)), and y satisfies the system (30)
in (−T, T ) × Ω. In the case when R(0, x) ∈ ilR, the proof is still valid by take
odd-conjugate extensions.

Changing t into t+ T , we may assume that y and R are defined on (0, 2T )× Ω,
instead of (−T, T )× Ω.

Let z(t, x) = yt(2T − t, x). Then z satisfies the following system: zt + izxxxx + iq(x)z = if(x)Rt(t, x), (t, x) ∈ (0, 2T )× Ω
z(t, 0) = z(t, 1) = 0, zx(t, 0) = zx(t, 1) = 0, t ∈ (0, 2T )
z(T, x) = −if(x)R(T, x), x ∈ Ω.

(31)

Step 2. (Estimation on z) We will adapt the revised Carleman estimate (29) on z,
the solution of (31).

We consider the weight function in the time interval (0, 2T ), i.e.,

θ = el, ϕ(t, x) =
e3µψ(x)

t(2T − t)
and l(t, x) = λ

e3µψ(x) − e5µ‖ψ‖∞

t(2T − t)
.

Let v = θz and I1 is taken as in (9). Denote by

J =

∫ T

0

∫
Ω

I1θz̄dxdt.
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Then we have

|J | ≤

(∫ T

0

∫
Ω

|I1|2dxdt

)1/2(∫ T

0

∫
Ω

θ2|z|2dxdt

)1/2

≤λ−7/2µ−4

∫ T

0

∫
Ω

|I1|2dxdt+ λ7/2µ4

∫ T

0

∫
Ω

θ2|z|2dxdt

≤Cλ−7/2µ−4

(∫ T

0

∫
Ω

|I1|2dxdt+ λ7µ8

∫ T

0

∫
Ω

ϕ7θ2|z|2dxdt

)
.

The last inequality comes from the fact that ϕ is bounded from below.
Applying the Carleman inequality (29) (with 2T instead of T ) on z, we obtain

|J | ≤Cλ− 7
2µ−4

∫ 2T

0

(∫
Ω

θ2|fRt|2dx+
(
λ3µ3ϕ3θ2|zxx|2 + λµϕθ2|zxxx|2

)
(t, 1)

)
dt

≤Cλ− 7
2µ−4

∫
Ω

e2l(T,x)|f(x)|2dx

+ Cλ−
1
2µ−1

∫ 2T

0

|zxx(t, 1)|2dt+ Cλ−
5
2µ−3

∫ 2T

0

|zxxx(t, 1)|2dt.

(32)

The last inequality holds true due to the fact that l(T, x) ≥ l(t, x) for all (t, x) ∈
(0, 2T ) × Ω, that ϕ3θ2 and ϕθ2 are bounded from above in (0, 2T ) × Ω and that
Rt ∈ L2(0, 2T ;L∞(Ω)).

On the other hand, since v = θz, we have

J =

∫ T

0

∫
Ω

I1v̄dxdt

=

∫ T

0

∫
Ω

ivtv̄dxdt+

∫ T

0

∫
Ω

(
(Ψ +

1

2
a2,xx)|v|2 − a2|vx|2 + |vxx|2

)
dxdt,

hence,

Im(J) =
1

2

∫
Ω

|v(T, x)|2dx =
1

2

∫
Ω

e2l(T,x)|f(x)|2|R(T, x)|2dx.

Using the hypothesis on R(T, x), it follows that

Im(J) ≥ r2

2

∫
Ω

e2l(T,x)|f(x)|2dx. (33)

Combining (32) and (33), we have that∫
Ω

e2l(T,x)|f(x)|2dx ≤ C

(∫ 2T

0

|zxx(t, 1)|2 + |zxxx(t, 1)|2
)
dt (34)

for λ and µ large enough. Then (6) follows from (34) since

e2l(T,x) ≥ e2M > 0, with M =
λ

T 2
(1− e5µ‖ψ‖∞).

This completes the proof of Theorem 1.2.
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5. Further comments and open problems.

1. In this paper we derive a boundary Carleman estimate for the fourth order
Schrödinger operator. It is well known that based on (4), we can derive the
observability inequality and, consequently, prove the controllability property
of the controlled system with two boundary controls. As a direct consequence
of this methodology, it is very likely to expect that the controllability property
holds for the fourth order Schrödinger equation with nontrivial potential q.
Such result is much more general than the existing one in [24], which is for
trivial potential q, even though only one boundary control is needed. It would
be interesting to know whether two controls on the boundary are necessary
with the nontrivial potential q.

2. It is well known that the Carleman estimate is a useful tool to analyze inverse
problems. In fact, it has been studied for second order Schrödinger operator
not only in bounded domain, but also in an unbounded strip ([4]) or on a tree
([11]). One could expect similar results in different domains. Meanwhile, it is
still a challenging problem whether one can construct Carleman inequalities
for fourth order equations on higher dimensions.

3. Note that there are fruitful literatures considering the numerical approxima-
tion results for the second order Schrödinger equations. Similar to the discrete
Carleman estimate constructed by parabolic equation (see [3]), it would be
interesting to find out the discrete analogue of (4) for space semi-discretized
Schrödinger equation as the first step to solve discrete problems.

Acknowledgments. This work has been completed while the author visited BCAM
- Basque Center for Applied Mathematics and he acknowledges the hospitality and
support of the Institute.
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