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Introduction

These notes are a written abridged version of a course that both authors have
delivered in the last five years in a number of schools and doctoral programs.
Our main goal is to introduce some of the main results and tools of the modern
theory of controllability of Partial Differential Equations (PDE). The notes are
by no means complete. We focus the most elementary material by making a
particular choice of the problems under consideration.

Roughly speaking, the controllability problem may be formulated as follows.
Consider an evolution system (either described in terms of Partial or Ordinary
Differential Equations (PDE/ODE)). We are allowed to act on the trajectories
of the system by means of a suitable control (the right hand side of the system,
the boundary conditions, etc.). Then, given a time interval t ∈ (0, T ), and
initial and final states we have to find a control such that the solution matches
both the initial state at time t = 0 and the final one at time t = T .

This is a classical problem in Control Theory and there is a large literature
on the topic. We refer for instance to the book by Lee and Marcus [44] for an
introduction in the context of finite-dimensional systems. We also refer to the
survey paper by Russell [55] and to the book of Lions [45] for an introduction to
the controllability of PDE, also referred to as Distributed Parameter Systems.

Research in this area has been very intensive in the last two decades and
it would be impossible to report on the main progresses that have been made
within these notes. For this reason we have chosen to collect some of the most
relevant introductory material at the prize of not reaching the best results that
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2 Controllability of Partial Differential Equations

are known today. The interested reader may learn more on this topic from the
references above and those on the bibliography at the end of the article.

When dealing with controllability problems, to begin with, one has to dis-
tinguish between finite-dimensional systems modelled by ODE and infinite-
dimensional distributed systems described by means of PDE. This modelling is-
sue may be important in practice since finite-dimensional and infinite-dimensio-
nal systems may have quite different properties from a control theoretical point
of view ([74]).

Most of these notes deal with problems related to PDE. However, we start
by an introductory chapter in which we present some of the basic problems and
tools of control theory for finite-dimensional systems. The theory has evolved
tremendously in the last decades to deal with nonlinearity and uncertainty
but here we present the simplest results concerning the controllability of linear
finite-dimensional systems and focus on developing tools that will later be useful
to deal with PDE. As we shall see, in the finite-dimensional context a system
is controllable if and only if the algebraic Kalman rank condition is satisfied.
According to it, when a system is controllable for some time it is controllable
for all time. But this is not longer true in the context of PDE. In particular, in
the frame of the wave equation, a model in which propagation occurs with finite
velocity, in order for controllability properties to be true the control time needs
to be large enough so that the effect of the control may reach everywhere. In
this first chapter we shall develop a variational approach to the control problem.

As we shall see, whenever a system is controllable, the control can be built
by minimizing a suitable quadratic functional defined on the class of solutions of
the adjoint system. Suitable variants of this functional allow building different
types of controls: those of minimal L2-norm turn out to be smooth while
those of minimal L∞-norm are of bang-bang form. The main difficulty when
minimizing these functionals is to show that they are coercive. This turns out
to be equivalent to the so called observability property of the adjoint equation,
a property which is equivalent to the original control property of the state
equation.

In Chapters 2 and 3 we introduce the problems of interior and boundary
control of the linear constant coefficient wave equation. We describe the vari-
ous variants, namely, approximate, exact and null controllability, and its mu-
tual relations. Once again, the problem of exact controllability turns out to be
equivalent to the observability of the adjoint system while approximate control-
lability is equivalent to a weaker uniqueness or unique continuation property.
In Chapter 4 we analyze the 1 − d case by means of Fourier series expansions
and the classical Ingham’s inequality which is a very useful tool to solve control
problems for 1− d wave-like and beam equations.

In Chapters 5 and 6 we discuss respectively the problems of interior and
boundary control of the heat equation. We show that, as a consequence of
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Holmgren Uniqueness Theorem, the adjoint heat equation posesses the property
of unique continuation in an arbitrarily small time. Accordingly the multi-
dimensional heat equation is approximately controllable in an arbitrarily small
time and with controls supported in any open subset of the domain where the
equation holds. We also show that, in one space dimension, using Fourier series
expansions, the null control problem, can be reduced to a problem of moments
involving a sequence of real exponentials. We then build a biorthogonal family
allowing to show that the system is null controllable in any time by means of
a control acting on one extreme of the space interval where the heat equation
holds.

As we said above these notes are not complete. The interested reader may
learn more on this topic through the survey articles [70] and [72]. For the
connections between controllability and the theory of homogenization we refer
to [12]. We refer to [74] for a discussion of numerical apprximation issues in
controllability of PDE.

1 Controllability and stabilization of finite di-
mensional systems

This chapter is devoted to study some basic controllability and stabilization
properties of finite dimensional systems.

The first two sections deal with the linear case. In Section 1 it is shown
that the exact controllability property may be characterized by means of the
Kalman’s algebraic rank condition. In Section 2 a skew-adjoint system is con-
sidered. In the absence of control, the system is conservative and generates a
group of isometries. It is shown that the system may be guaranteed to be uni-
formly exponentially stable if a well chosen feedback dissipative term is added
to it. This is a particular case of the well known equivalence property between
controllability and stabilizability of finite-dimensional systems ([65]).

1.1 Controllability of finite dimensional linear systems

Let n,m ∈ N∗ and T > 0. We consider the following finite dimensional system:{
x′(t) = Ax(t) +Bu(t), t ∈ (0, T ),

x(0) = x0.
(1)

In (1), A is a real n×n matrix, B is a real n×m matrix and x0 a vector in
Rn. The function x : [0, T ] −→ Rn represents the state and u : [0, T ] −→ Rm
the control. Both are vector functions of n and m components respectively
depending exclusively on time t. Obviously, in practice m ≤ n. The most
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desirable goal is, of course, controlling the system by means of a minimum
number m of controls.

Given an initial datum x0 ∈ Rn and a vector function u ∈ L2(0, T ; Rm), sys-
tem (1) has a unique solution x ∈ H1(0, T ; Rn) characterized by the variation
of constants formula:

x(t) = eAtx0 +
∫ t

0

eA(t−s)Bu(s)ds, ∀t ∈ [0, T ]. (2)

Definition 1.1 System (1) is exactly controllable in time T > 0 if given
any initial and final one x0, x1 ∈ Rn there exists u ∈ L2(0, T,Rm) such that
the solution of (1) satisfies x(T ) = x1.

According to this definition the aim of the control process consists in driving
the solution x of (1) from the initial state x0 to the final one x1 in time T by
acting on the system through the control u.

Remark that m is the number of controls entering in the system, while
n stands for the number of components of the state to be controlled. As
we mentioned before, in applications it is desirable to make the number of
controls m to be as small as possible. But this, of course, may affect the
control properties of the system. As we shall see later on, some systems with
a large number of components n can be controlled with one control only (i.
e. m = 1). But in order for this to be true, the control mechanism, i.e. the
matrix (column vector when m = 1) B, needs to be chosen in a strategic way
depending on the matrix A. Kalman’s rank condition, that will be given in
section 1.3, provides a simple characterization of controllability allowing to
make an appropriate choice of the control matrix B.

Let us illustrate this with two examples. In the first one controllability
does not hold because one of the components of the system is insensitive to the
control. In the second one both components will be controlled by means of a
scalar control.
Example 1. Consider the case

A =

(
1 0

0 1

)
, B =

(
1

0

)
. (3)

Then the system

x′ = Ax + Bu

can be written as {
x′1 = x1 + u

x′2 = x2,

or equivalently, {
x′1 = x1 + u
x2 = x0

2e
t,
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where x0 = (x0
1, x

0
2) are the initial data.

This system is not controllable since the control u does not act on the second com-

ponent x2 of the state which is completely determined by the initial data x0
2. Hence,

the system is not controllable. Nevertheless one can control the first component x1

of the state. Consequently, the system is partially controllable. �

Example 2. Not all systems with two components and a scalar control (n = 2, m =
1) behave so badly as in the previous example. This may be seen by analyzing the
controlled harmonic oscillator

x′′ + x = u, (4)

which may be written as a system in the following way{
x′ = y

y′ = u− x.

The matrices A and B are now respectively

A =

(
0 1

−1 0

)
, B =

(
0

1

)
.

Once again, we have at our disposal only one control u for both components x and
y of the system. But, unlike in Example 1, now the control acts in the second equation
where both components are present. Therefore, we cannot conclude immediately that
the system is not controllable. In fact it is controllable. Indeed, given some arbitrary
initial and final data, (x0, y0) and (x1, y1) respectively, it is easy to construct a regular
function z = z(t) such that{

z(0) = x0,
z′(0) = y0,

z(T ) = x1,
z′(T ) = y1.

(5)

In fact, there are infinitely many ways of constructing such functions. One can,
for instance, choose a cubic polynomial function z. We can then define u = z′′ + z as
being the control since the solution x of equation (4) with this control and initial data
(x0, y0) coincides with z, i.e. x = z, and therefore satisfies the control requirements
(5).

This construction provides an example of system with two components (n = 2)

which is controllable with one control only (m = 1). Moreover, this example shows

that the control u is not unique. In fact there exist infinitely many controls and dif-

ferent controlled trajectories fulfilling the control requirements. In practice, choosing

the control which is optimal (in some sense to be made precise) is an important issue

that we shall also discuss. �

If we define the set of reachable states

R(T, x0) = {x(T ) ∈ Rn : x solution of (1) with u ∈ (L2(0, T ))m}, (6)

the exact controllability property is equivalent to the fact that R(T, x0) =
Rn for any x0 ∈ Rn.
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Remark 1.1 In the definition of exact controllability any initial datum x0 is
required to be driven to any final datum x1. Nevertheless, in the view of the
linearity of the system, without any loss of generality, we may suppose that
x1 = 0. Indeed, if x1 6= 0 we may solve{

y′ = Ay, t ∈ (0, T )
y(T ) = x1 (7)

backward in time and define the new state z = x− y which verifies{
z′ = Az +Bu
z(0) = x0 − y(0). (8)

Remark that x(T ) = x1 if and only if z(T ) = 0. Hence, driving the solution
x of (1) from x0 to x1 is equivalent to leading the solution z of (8) from the
initial data z0 = x0 − y(0) to zero. �

The previous remark motivates the following definition:

Definition 1.2 System (1) is said to be null-controllable in time T > 0 if
given any initial data x0 ∈ Rn there exists u ∈ L2(0, T,Rm) such that x(T ) = 0.

Null-controllability holds if and only if 0 ∈ R(x0, T ) for any x0 ∈ Rn.
On the other hand, Remark 1.1 shows that exact controllability and null

controllability are equivalent properties in the case of finite dimensional lin-
ear systems. But this is not necessarily the case for nonlinear systems, or,
for strongly time irreversible infinite dimensional systems, for strongly time
irreversible ones. For instance, the heat equation is a well known example of
null-controllable system that is not exactly controllable.

1.2 Observability property

The exact controllability property is closely related to an inequality for the
corresponding adjoint homogeneous system. This is the so called observation
or observability inequality. In this section we introduce this notion and show
its relation with the exact controllability property.

Let A∗ be the adjoint matrix of A, i.e. the matrix with the property that
〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ Rn. Consider the following homogeneous ad-
joint system of (1): {

−ϕ′ = A∗ϕ, t ∈ (0, T )
ϕ(T ) = ϕT .

(9)

Remark that, for each ϕT ∈ R, (9) may be solved backwards in time and
it has a unique solution ϕ ∈ Cω([0, T ],Rn) (the space of analytic functions
defined in [0, T ] and with values in Rn).
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First of all we deduce an equivalent condition for the exact controllability
property.

Lemma 1.1 An initial datum x0 ∈ Rn of (1) is driven to zero in time T by
using a control u ∈ L2(0, T ) if and only if∫ T

0

〈u,B∗ϕ〉dt+ 〈x0, ϕ(0)〉 = 0 (10)

for any ϕT ∈ Rn, ϕ being the corresponding solution of (9).

Proof: Let ϕT be arbitrary in Rn and ϕ the corresponding solution of (9).
By multiplying (1) by ϕ and (9) by x we deduce that

〈x′, ϕ〉 = 〈Ax,ϕ〉+ 〈Bu,ϕ〉; −〈x, ϕ′〉 = 〈A∗ϕ, x〉.

Hence,
d

dt
〈x, ϕ〉 = 〈Bu,ϕ〉

which, after integration in time, gives that

〈x(T ), ϕT 〉 − 〈x0, ϕ(0)〉 =
∫ T

0

〈Bu,ϕ〉dt =
∫ T

0

〈u,B∗ϕ〉dt. (11)

We obtain that x(T ) = 0 if and only if (10) is verified for any ϕT ∈ Rn. �

It is easy to see that (10) is in fact an optimality condition for the critical
points of the quadratic functional J : Rn → Rn,

J(ϕT ) =
1
2

∫ T

0

| B∗ϕ |2 dt+ 〈x0, ϕ(0)〉

where ϕ is the solution of the adjoint system (9) with initial data ϕT at time
t = T .

More precisely, we have the following result:

Lemma 1.2 Suppose that J has a minimizer ϕ̂T ∈ Rn and let ϕ̂ be the solution
of the adjoint system (9) with initial data ϕ̂T . Then

u = B∗ϕ̂ (12)

is a control of system (1) with initial data x0.
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Proof: If ϕ̂T is a point where J achieves its minimum value, then

lim
h→0

J (ϕ̂T + hϕT )− J (ϕ̂T )
h

= 0, ∀ϕT ∈ Rn.

This is equivalent to∫ T

0

〈B∗ϕ̂, B∗ϕ〉dt+ 〈x0, ϕ(0)〉 = 0, ∀ϕT ∈ Rn,

which, in view of Lemma 1.1, implies that u = B∗ϕ̂ is a control for (1). �

Remark 1.2 Lemma 1.2 gives a variational method to obtain the control as a
minimum of the functional J . This is not the unique possible functional allow-
ing to build the control. By modifying it conveniently, other types of controls
(for instance bang-bang ones) can be obtained. We shall show this in section
1.4. Remark that the controls we found are of the form B∗ϕ, ϕ being a solution
of the homogeneous adjoint problem (9). Therefore, they are analytic functions
of time. �

The following notion will play a fundamental role in solving the control
problems.

Definition 1.3 System (9) is said to be observable in time T > 0 if there
exists c > 0 such that ∫ T

0

| B∗ϕ |2 dt ≥ c | ϕ(0) |2, (13)

for all ϕT ∈ Rn, ϕ being the corresponding solution of (9).

In the sequel (13) will be called the observation or observability in-
equality. It guarantees that the solution of the adjoint problem at t = 0
is uniquely determined by the observed quantity B∗ϕ(t) for 0 < t < T . In
other words, the information contained in this term completely characterizes
the solution of (9).

Remark 1.3 The observation inequality (13) is equivalent to the following
one: there exists c > 0 such that∫ T

0

| B∗ϕ |2 dt ≥ c | ϕT |2, (14)

for all ϕT ∈ Rn, ϕ being the solution of (9).
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Indeed, the equivalence follows from the fact that the map which associates
to every ϕT ∈ Rn the vector ϕ(0) ∈ Rn, is a bounded linear transformation in
Rn with bounded inverse. We shall use the forms (13) or (14) of the observation
inequality depending of the needs of each particular problem we shall deal with.
�

The following remark is very important in the context of finite dimensional
spaces.

Proposition 1.1 Inequality (13) is equivalent to the following unique contin-
uation principle:

B∗ϕ(t) = 0, ∀t ∈ [0, T ] ⇒ ϕT = 0. (15)

Proof: One of the implications follows immediately from (14). For the
other one, let us define the semi-norm in Rn

|ϕT |∗ =

[∫ T

0

| B∗ϕ |2 dt

]1/2

.

Clearly, | · |∗ is a norm in Rn if and only if (15) holds.
Since all the norms in Rn are equivalent, it follows that (15) is equivalent

to (14). The proof ends by taking into account the previous Remark 2.3. �

Remark 1.4 Let us remark that (13) and (15) will no longer be equivalent
properties in infinite dimensional spaces. They will give rise to different no-
tions of controllability (exact and approximate, respectively). This issue will be
further developed in the following section. �

The importance of the observation inequality relies on the fact that it im-
plies exact controllability of (1). In this way the controllability property is
reduced to the study of an inequality for the homogeneous system (9) which,
at least conceptually, is a simpler problem. Let us analyze now the relation
between the controllability and observability properties.

Theorem 1.1 System (1) is exactly controllable in time T if and only if (9)
is observable in time T .

Proof: Let us prove first that observability implies controllability. According
to Lemma 1.2, the exact controllability property in time T holds if for any
x0 ∈ Rn, J has a minimum. Remark that J is continuous. Consequently, the
existence of a minimum is ensured if J is coercive too, i.e.

lim
|ϕT |→∞

J(ϕT ) = ∞. (16)
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The coercivity property (16) is a consequence of the observation property
in time T . Indeed, from (13) we obtain that

J(ϕT ) ≥ c

2
| ϕT |2 −|〈x0, ϕ(0)〉|.

The right hand side tends to infinity when |ϕT | → ∞ and J satisfies (16).
Reciprocally, suppose that system (1) is exactly controllable in time T . If

(9) is not observable in time T , there exists a sequence (ϕkT )k≥1 ⊂ Rn such
that |ϕkT | = 1 for all k ≥ 1 and

lim
k→∞

∫ T

0

|B∗ϕk|2dt = 0. (17)

It follows that there exists a subsequence of (ϕkT )k≥1, denoted in the same
way, which converges to ϕT ∈ Rn and |ϕT | = 1. Moreover, if ϕ is the solution
of (9) with initial data ϕT , from (17) it follows that∫ T

0

|B∗ϕ|2dt = 0. (18)

Since (1) is controllable, Lemma 1.1 gives that, for any initial data x0 ∈ Rn,
there exists u ∈ L2(0, T ) such that∫ T

0

〈u,B∗ϕk〉dt = −〈x0, ϕk(0)〉, ∀k ≥ 1. (19)

By passing to the limit in (19) and by taking into account (18), we obtain
that < x0, ϕ(0) >= 0. Since x0 is arbitrary in Rn, it follows that ϕ(0) = 0 and,
consequently, ϕT = 0. This is in contradiction with the fact that |ϕT | = 1.

The proof of the theorem is now complete. �

Remark 1.5 The usefulness of Theorem 1.1 consists on the fact that it reduces
the proof of the exact controllability to the study of the observation inequality.
�

1.3 Kalman’s controllability condition

The following classical result is due to R. E. Kalman and gives a complete an-
swer to the problem of exact controllability of finite dimensional linear systems.
It shows, in particular, that the time of control is irrelevant.
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Theorem 1.2 ([44]) System (1) is exactly controllable in some time T if and
only if

rank [B, AB, · · · , An−1B] = n. (20)

Consequently, if system (1) is controllable in some time T > 0 it is control-
lable in any time.

Remark 1.6 From now on we shall simply say that (A,B) is controllable if
(20) holds. The matrix [B,AB, · · · , An−1B] will be called the controllability
matrix. �

Examples: In Example 1 from section 1.1 we had

A =

(
1 0

0 1

)
, B =

(
1

0

)
. (21)

Therefore

[B, AB] =

(
1 1

0 0

)
(22)

which has rank 1. From Theorem 1.2 it follows that the system under consideration
is not controllable. Nevertheless, in Example 2,

A =

(
0 1

−1 0

)
, B =

(
0

1

)
(23)

and consequently

[B, AB] =

(
0 1

1 0

)
(24)

which has rank 2 and the system is controllable as we have already observed. �

Proof of Theorem 1.2: “ ⇒” Suppose that rank([B, AB, · · · , An−1B]) < n.
Then the rows of the controllability matrix [B,AB, · · · , An−1B] are linearly

dependent and there exists a vector v ∈ Rn, v 6= 0 such that

v∗[B, AB, · · · , An−1B] = 0,

where the coefficients of the linear combination are the components of the
vector v. Since v∗[B, AB, · · · , An−1B] = [v∗B, v∗AB, · · · , v∗An−1B], v∗B =
v∗AB = · · · = v∗An−1B = 0. ¿From Cayley-Hamilton Theorem we deduce
that there exist constants c1, · · · , cn such that, An = c1A

n−1 + · · · + cnI and
therefore v∗AnB = 0, too. In fact, it follows that v∗AkB = 0 for all k ∈ N and
consequently v∗eAtB = 0 for all t as well. But, from the variation of constants
formula, the solution x of (1) satisfies

x(t) = eAtx0 +
∫ t

0

eA(t−s)Bu(s)ds. (25)
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Therefore

〈v, x(T )〉 = 〈v, eATx0〉+
∫ T

0

〈v, eA(T−s)Bu(s)〉ds = 〈v, eATx0〉,

where 〈 , 〉 denotes the canonical inner product in Rn. Hence, 〈v, x(T )〉 =
〈v, eATx0〉. This shows that the projection of the solution x at time T on the
vector v is independent of the value of the control u. Hence, the system is not
controllable. �

Remark 1.7 The conservation property for the quantity 〈v, x〉 we have just
proved holds for any vector v for which v[B, AB, · · · , An−1B] = 0. Thus, if the
rank of the matrix [B, AB, · · · , An−1B] is n − k, the reachable set that x(T )
runs is an affine subspace of Rn of dimension n− k. �

“ ⇐” Suppose now that rank([B, AB, · · · , An−1B]) = n. According to The-
orem 1.1 it is sufficient to show that system (9) is observable. By Propo-
sition 1.1, (13) holds if and only if (15) is verified. Hence, the Theorem is
proved if (15) holds. ¿From B∗ϕ = 0 and ϕ(t) = eA

∗(T−t)ϕT , it follows that
B∗eA

∗(T−t)ϕT ≡ 0 for all 0 ≤ t ≤ T . By computing the derivatives of this
function in t = T we obtain that

B∗[A∗]kϕT = 0 ∀k ≥ 0.

But since rank(
[
B, AB, · · · , An−1B

]
) = n we deduce that

rank(
[
B∗, B∗A∗, · · · , B∗(A∗)n−1

]
) = n

and therefore ϕT = 0. Hence, (15) is verified and the proof of Theorem 1.2 is
now complete. �

Remark 1.8 The set of controllable pairs (A,B) is open and dense. Indeed,

• If (A,B) is controllable there exists ε > 0 sufficiently small such that any
(A0, B0) with | A0 − A |< ε, | B0 − B |< ε is also controllable. This
is a consequence of the fact that the determinant of a matrix depends
continuously of its entries.

• On the other hand, if (A,B) is not controllable, for any ε > 0, there
exists (A0, B0) with | A− A0 |< ε and | B − B0 |< ε such that (A0, B0)
is controllable. This is a consequence of the fact that the determinant of
a n× n matrix depends analytically of its entries and cannot vanish in a
ball of Rn. �
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The following inequality shows that the norm of the control is proportional
to the distance between eATx0 (the state freely attained by the system in the
absence of control, i. e. with u = 0) and the objective x1.

Proposition 1.2 Suppose that the pair (A,B) is controllable in time T > 0
and let u be the control obtained by minimizing the functional J . There exists
a constant C > 0, depending on T , such that the following inequality holds

‖ u ‖L2(0,T )≤ C|eATx0 − x1| (26)

for any initial data x0 and final objective x1.

Proof: Let us first prove (26) for the particular case x1 = 0.
Let u be the control for (1) obtained by minimizing the functional J . From

(10) it follows that

||u||2L2(0,T ) =
∫ T

0

|B∗ϕ̂|2dt = − < x0, ϕ̂(0) > .

If w is the solution of{
w′(t) = Aw(t), t ∈ (0, T ),
w(0) = x0 (27)

then w(t) = eAtx0 and
d

dt
< w,ϕ >= 0

for all ϕT ∈ Rn, ϕ being the corresponding solution of (9).
In particular, by taking ϕT = ϕ̂T , the minimizer of J , it follows that

< x0, ϕ̂(0) >=< w(0), ϕ̂(0) >=< w(T ), ϕ̂T >=< eATx0, ϕ̂T > .

We obtain that

||u||2L2(0,T ) = − < x0, ϕ̂(0) >= − < eATx0, ϕ̂T >≤ |eATx0| |ϕ̂T |.

On the other hand, we have that

|ϕ̂T | ≤ c||B∗ϕ̂||L2(0,T ) = c||u||L2(0,T ).

Thus, the control u verifies

||u||L2(0,T ) ≤ c|eATx0|. (28)

If x1 6= 0, Remark 1.1 implies that a control u driving the solution from x0

to x1 coincides with the one leading the solution from x0− y(0) to zero, where
y verifies (7). By using (28) we obtain that

||u||L2(0,T ) ≤ c|eTA(x0 − y(0))| = c|eTAx0 − x1|

and (26) is proved. �
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Remark 1.9 Linear scalar equations of any order provide examples of sys-
tems of arbitrarily large dimension that are controllable with only one control.
Indeed, the system of order k

x(k) + a1x
(k−1) + . . .+ ak−1x = u

is controllable. This can be easily obtained by observing that given k initial data
and k final ones one can always find a trajectory z (in fact an infinite number
of them) joining them in any time interval. This argument was already used in
Example 2 for the case k = 2.

It is an interesting exercise to write down the matrices A and B in this case
and to check that the rank condition in Theorem 1.2 is fulfilled. �

1.4 Bang-bang controls

Let us consider the particular case

B ∈Mn×1, (29)

i. e. m = 1, in which only one control u : [0, T ] → R is available. In order to
build bang-bang controls, it is convenient to consider the quadratic functional:

Jbb(ϕ0) =
1
2

[∫ T

0

| B∗ϕ | dt

]2

+ 〈x0, ϕ(0)〉 (30)

where ϕ is the solution of the adjoint system (9) with initial data ϕT .
Note that B∗ ∈M1×n and therefore B∗ϕ(t) : [0, T ] → R is a scalar function.

It is also interesting to note that Jbb differs from J in the quadratic term.
Indeed, in J we took the L2(0, T )-norm of B∗ϕ while here we consider the
L1(0, T )-norm.

The same argument used in the proof of Theorem 1.2 shows that Jbb is also
continuous and coercive. It follows that Jbb attains a minimum in some point
ϕ̂T ∈ Rn.

On the other hand, it is easy to see that

lim
h→0

1
h

(∫ T

0

| f + hg | dt

)2

−

(∫ T

0

| f |

)2
 =

= 2
∫ T

0

| f | dt
∫ T

0

sgn(f(t))g(t)dt

(31)

if the Lebesgue measure of the set {t ∈ (0, T ) : f(t) = 0} vanishes.
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The sign function “sgn” is defined as a multi-valued function in the following
way

sgn (s) =

 1 when s > 0
−1 when s < 0
[−1, 1] when s = 0

Remark that in the previous limit there is no ambiguity in the definition of
sgn(f(t)) since the set of points t ∈ [0, T ] where f = 0 is assumed to be of zero
Lebesgue measure and does not affect the value of the integral.

Identity (31) may be applied to the quadratic term of the functional Jbb
since, taking into account that ϕ is the solution of the adjoint system (9), it
is an analytic function and therefore, B∗ϕ changes sign finitely many times in
the interval [0, T ] except when ϕ̂T = 0. In view of this, the Euler-Lagrange
equation associated with the critical points of the functional Jbb is as follows:∫ T

0

| B∗ϕ̂ | dt
∫ T

0

sgn(B∗ϕ̂)B∗ψ(t)dt+ 〈x0, ϕ(0)〉 = 0

for all ϕT ∈ R, where ϕ is the solution of the adjoint system (9) with initial
data ϕT .

Consequently, the control we are looking for is u =
∫ T

0

| B∗ϕ̂ | dt sgn(B∗ϕ̂)

where ϕ̂ is the solution of (9) with initial data ϕ̂T .
Note that the control u is of bang-bang form. Indeed, u takes only two

values ±
∫ T
0
| B∗ϕ̂ | dt. The control switches from one value to the other

finitely many times when the function B∗ϕ̂ changes sign.

Remark 1.10 Other types of controls can be obtained by considering function-
als of the form

Jp(ϕ0) =
1
2

(∫ T

0

| B∗ϕ |p dt

)2/p

+ 〈x0, ϕ0〉

with 1 < p <∞. The corresponding controls are

u =

(∫ T

0

| B∗ϕ̂ |p dt

)(2−p)/p

|B∗ϕ̂|p−2B∗ϕ̂

where ϕ̂ is the solution of (9) with initial datum ϕ̂T , the minimizer of Jp.
It can be shown that, as expected, the controls obtained by minimizing this

functionals give, in the limit when p→ 1, a bang-bang control. �

The following property gives an important characterization of the controls
we have studied.
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Proposition 1.3 The control u2 = B∗ϕ̂ obtained by minimizing the functional
J has minimal L2(0, T ) norm among all possible controls. Analogously, the
control u∞ =

∫ T
0
| B∗ϕ̂ | dt sgn(B∗ϕ̂) obtained by minimizing the functional

Jbb has minimal L∞(0, T ) norm among all possible controls.

Proof: Let u be an arbitrary control for (1). Then (10) is verified both by u
and u2 for any ϕT . By taking ϕT = ϕ̂T (the minimizer of J) in (10) we obtain
that ∫ T

0

< u,B∗ϕ̂ > dt = − < x0, ϕ̂(0) >,

||u2||2L2(0,T ) =
∫ T

0

< u2, B
∗ϕ̂ > dt = − < x0, ϕ̂(0) > .

Hence,

||u2||2L2(0,T ) =
∫ T

0

< u,B∗ϕ̂ > dt ≤ ||u||L2(0,T )||B∗ϕ̂|| = ||u||L2(0,T )||u2||L2(0,T )

and the first part of the proof is complete.
For the second part a similar argument may be used. Indeed, let again u

be an arbitrary control for (1). Then (10) is verified by u and u∞ for any ϕT .
By taking ϕT = ϕ̂T (the minimizer of Jbb) in (10) we obtain that∫ T

0

B∗ϕ̂udt = − < x0, ϕ̂(0) >,

||u∞||2L∞(0,T ) =

(∫ T

0

|B∗ϕ̂|dt

)2

=
∫ T

0

B∗ϕ̂u∞dt = − < x0, ϕ̂(0) > .

Hence,

||u∞||2L∞(0,T ) =
∫ T

0

B∗ϕ̂ udt ≤

≤ ||u||L∞(0,T )

∫ T

0

|B∗ϕ̂|dt = ||u||L∞(0,T )||u∞||L∞(0,T )

and the proof finishes. �

1.5 Stabilization of finite dimensional linear systems

In this section we assume that A is a skew-adjoint matrix, i. e. A∗ = −A. In
this case, < Ax, x >= 0.

Consider the system {
x′ = Ax+Bu
x(0) = x0.

(32)
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Remark 1.11 The harmonic oscillator, mx′′ + kx = 0, provides the simplest
example of system with such properties. It will be studied with some detail at
the end of the section. �

When u ≡ 0, the energy of the solution of (32) is conserved. Indeed, by
multiplying (32) by x, if u ≡ 0, one obtains

d

dt
|x(t)|2 = 0. (33)

Hence,
|x(t)| = |x0|, ∀t ≥ 0. (34)

The problem of stabilization can be formulated in the following way. Sup-
pose that the pair (A,B) is controllable. We then look for a matrix L such
that the solution of system (32) with the feedback control

u(t) = Lx(t) (35)

has a uniform exponential decay, i.e. there exist c > 0 and ω > 0 such
that

|x(t)| ≤ ce−ωt|x0| (36)

for any solution.
Note that, according to the law (35), the control u is obtained in real time

from the state x.
In other words, we are looking for matrices L such that the solution of the

system
x′ = (A+BL)x = Dx (37)

has an uniform exponential decay rate.
Remark that we cannot expect more than (36). Indeed, the solutions of (37)

may not satisfy x(T ) = 0 in finite time T . Indeed, if it were the case, from the
uniqueness of solutions of (37) with final state 0 in t = T , it would follow that
x0 ≡ 0. On the other hand, whatever L is, the matrix D has N eigenvalues λj
with corresponding eigenvectors ej ∈ Rn. The solution x(t) = eλjtej of (37)
shows that the decay of solutions can not be faster than exponential.

Theorem 1.3 If A is skew-adjoint and the pair (A,B) is controllable then
L = −B∗ stabilizes the system, i.e. the solution of{

x′ = Ax−BB∗x
x(0) = x0 (38)

has an uniform exponential decay (36).
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Proof: With L = −B∗ we obtain that

1
2
d

dt
|x(t)|2 = − < BB∗x(t), x(t) >= − | B∗x(t) |2≤ 0.

Hence, the norm of the solution decreases in time.
Moreover,

|x(T )|2 − |x(0)|2 = −2
∫ T

0

| B∗x |2 dt. (39)

To prove the uniform exponential decay it is sufficient to show that there
exist T > 0 and c > 0 such that

|x(0)|2 ≤ c

∫ T

0

| B∗x |2 dt (40)

for any solution x of (38). Indeed, from (39) and (40) we would obtain that

|x(T )|2 − |x(0)|2 ≤ −2
c
|x(0)|2 (41)

and consequently
|x(T )|2 ≤ γ|x(0)|2 (42)

with
γ = 1− 2

c
< 1. (43)

Hence,
|x(kT )|2 ≤ γk|x0|2 = e(lnγ)k|x0|2 ∀k ∈ N. (44)

Now, given any t > 0 we write it in the form t = kT + δ, with δ ∈ [0, T )
and k ∈ N and we obtain that

|x(t)|2 ≤ |x(kT )|2 ≤ e−|ln(γ)|k|x0|2 =

= e−|ln(γ)|( t
T )e|ln(γ)| δ

T |x0|2 ≤ 1
γ e
− |ln(γ)|

T t|x0|2.

We have obtained the desired decay result (36) with

c =
1
γ
, ω =

| ln(γ) |
T

. (45)

To prove (40) we decompose the solution x of (38) as x = ϕ+ y with ϕ and
y solutions of the following systems:{

ϕ′ = Aϕ
ϕ(0) = x0,

(46)
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and {
y′ = Ay −BB∗x

y(0) = 0. (47)

Remark that, since A is skew-adjoint, (46) is exactly the adjoint system (9)
except for the fact that the initial data are taken at t = 0.

As we have seen in the proof of Theorem 1.2, the pair (A,B) being control-
lable, the following observability inequality holds for system (46):

|x0|2 ≤ C

∫ T

0

| B∗ϕ |2 dt. (48)

Since ϕ = x− y we deduce that

|x0|2 ≤ 2C

[∫ T

0

| B∗x |2 dt+
∫ T

0

| B∗y |2 dt

]
.

On the other hand, it is easy to show that the solution y of (47) satisfies:

1
2
d

dt
| y |2= −〈B∗x, B∗y〉 ≤ |B∗x| |B∗| |y| ≤ 1

2
(
|y|2 + |B∗|2|B∗x|2

)
.

From Gronwall’s inequality we deduce that

| y(t) |2≤ |B∗|2
∫ t

0

et−s | B∗x |2 ds ≤ |B∗|2eT
∫ T

0

| B∗x |2 dt (49)

and consequently∫ T

0

| B∗y |2 dt ≤ |B|2
∫ T

0

| y |2 dt ≤ T |B|4eT
∫ T

0

| B∗x |2 dt.

Finally, we obtain that

| x0 |2≤ 2C
∫ T

0

| B∗x |2 dt+ C|B∗|4eTT
∫ T

0

| B∗x |2 dt ≤ C ′
∫ T

0

| B∗x |2 dt

and the proof of Theorem 1.3 is complete. �

Example: Consider the damped harmonic oscillator:

mx′′ + Rx + kx′ = 0, (50)

where m, k and R are positive constants.
Note that (50) may be written in the equivalent form

mx′′ + Rx = −kx′
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which indicates that an applied force, proportional to the velocity of the point-mass
and of opposite sign, is acting on the oscillator.

It is easy to see that the solutions of this equation have an exponential decay
properties. Indeed, it is sufficient to remark that the two characteristic roots have
negative real part. Indeed,

mr2 + R + kr = 0⇔ r± =
−k ±

√
k2 − 4mR

2m

and therefore

Re r± =

{
− k

2m
if k2 ≤ 4mR

− k
2m
±
√

k2

4m
− R

2m
if k2 ≥ 4mR.

Let us prove the exponential decay of the solutions of (50) by using Theorem 1.3.
Firstly, we write (50) in the form (38). Setting

X =

(
x√
m
R

x′

)
,

the conservative equation mx′′ + kx = 0 corresponds to the system:

X ′ = AX, with A =

(
0
√

R
m

−
√

R
m

0

)
.

Note that A is a skew-adjoint matrix. On the other hand, if we choose

B =

(
0 0

0
√

k

)
we obtain that

BB∗ =

(
0 0

0 k

)
and the system

X ′ = AX −BB∗X (51)

is equivalent to (50).
Now, it is easy to see that the pair (A, B) is controllable since the rank of [B, AB]

is 2.

It follows that the solutions of (50) have the property of exponential decay as the

explicit computation of the spectrum indicates. �

If (A,B) is controllable, we have proved the uniform stability property of
the system (32), under the hypothesis that A is skew-adjoint. However, this
property holds even if A is an arbitrary matrix. More precisely, we have

Theorem 1.4 If (A,B) is controllable then it is also stabilizable. Moreover, it
is possible to prescribe any complex numbers λ1, λ2,...,λn as the eigenvalues of
the closed loop matrix A+BL by an appropriate choice of the feedback matrix
L so that the decay rate may be made arbitrarily fast.
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In the statement of the Theorem we use the classical term closed loop system
to refer to the system in which the control is given in feedback form.

The proof of Theorem 1.4 is obtained by reducing system (32) to the so
called control canonical form (see [44] and [55]).

2 Interior controllability of the wave equation

In this chapter the problem of interior controllability of the wave equation is
studied. The control is assumed to act on a subset of the domain where the
solutions are defined. The problem of boundary controllability, which is also
important in applications and has attracted a lot of attention, will be considered
in the following chapter. In the later case the control acts on the boundary of
the domain where the solutions are defined.

2.1 Introduction

Let Ω be a bounded open set of RN with boundary of class C2 and ω be an open
nonempty subset of Ω. Given T > 0 consider the following non-homogeneous
wave equation: u′′ −∆u = f1ω in (0, T )× Ω

u = 0 on (0, T )× ∂Ω
u(0, · ) = u0, u′(0, · ) = u1 in Ω.

(52)

By ′ we denote the time derivative.
In (52) u = u(t, x) is the state and f = f(t, x) is the interior control function

with support localized in ω. We aim at changing the dynamics of the system
by acting on the subset ω of the domain Ω.

It is well known that the wave equation models many physical phenomena
such as small vibrations of elastic bodies and the propagation of sound. For
instance (52) provides a good approximation for the small amplitude vibrations
of an elastic string or a flexible membrane occupying the region Ω at rest. The
control f represents then a localized force acting on the vibrating structure.

The importance of the wave equation relies not only in the fact that it
models a large class of vibrating phenomena but also because it is the most
relevant hyperbolic partial differential equation. As we shall see latter on,
the main properties of hyperbolic equations such as time-reversibility and the
lack of regularizing effects, have some very important consequences in control
problems too.

Therefore it is interesting to study the controllability of the wave equation as
one of the fundamental models of continuum mechanics and, at the same time,
as one of the most representative equations in the theory of partial differential
equations.
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2.2 Existence and uniqueness of solutions

The following theorem is a consequence of classical results of existence and
uniqueness of solutions of nonhomogeneous evolution equations. All the details
may be found, for instance, in [14].

Theorem 2.1 For any f ∈ L2((0, T ) × ω) and (u0, u1) ∈ H1
0 (Ω) × L2(Ω)

equation (52) has a unique weak solution

(u, u′) ∈ C([0, T ],H1
0 (Ω)× L2(Ω))

given by the variation of constants formula

(u, u′)(t) = S(t)(u0, u1) +
∫ t

0

S(t− s)(0, f(s)1ω)ds (53)

where (S(t))t∈R is the group of isometries generated by the wave operator in
H1

0 (Ω)× L2(Ω).
Moreover, if f ∈ W 1,1((0, T );L2(ω)) and (u0, u1) ∈ [H2(Ω) ∩ H1

0 (Ω)] ×
H1

0 (Ω) equation (52) has a strong solution

(u, u′) ∈ C1([0, T ],H1
0 (Ω)× L2(Ω)) ∩ C([0, T ], [H2(Ω) ∩H1

0 (Ω)]×H1
0 (Ω))

and u verifies the wave equation (52) in L2(Ω) for all t ≥ 0.

Remark 2.1 The wave equation is reversible in time. Hence, we may solve it
for t ∈ (0, T ) by considering initial data (u0, u1) in t = 0 or final data (u0

T , u
1
T )

in t = T . In the former case the solution is given by (53) and in the later one
by

(u, u′)(t) = S(T − t)(u0
T , u

1
T ) +

∫ T

T−t
S(s− T + t)(0, f(s)1ω)ds. (54)

�

2.3 Controllability problems

Let T > 0 and define, for any initial data (u0, u1) ∈ H1
0 (Ω)×L2(Ω), the set of

reachable states

R(T ; (u0, u1)) = {(u(T ), ut(T )) : u solution of (52) with f ∈ L2((0, T )× ω)}.

Remark that, for any (u0, u1) ∈ H1
0 (Ω)× L2(Ω), R(T ; (u0, u1)) is an affine

subspace of H1
0 (Ω)× L2(Ω).

There are different notions of controllability that need to be distinguished.
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Definition 2.1 System (52) is approximately controllable in time T if,
for every initial data (u0, u1) ∈ H1

0 (Ω) × L2(Ω), the set of reachable states
R(T ; (u0, u1)) is dense in H1

0 (Ω)× L2(Ω).

Definition 2.2 System (52) is exactly controllable in time T if, for every
initial data (u0, u1) ∈ H1

0 (Ω)×L2(Ω), the set of reachable states R(T ; (u0, u1))
coincides with H1

0 (Ω)× L2(Ω).

Definition 2.3 System (52) is null controllable in time T if, for every
initial data (u0, u1) ∈ H1

0 (Ω)×L2(Ω), the set of reachable states R(T ; (u0, u1))
contains the element (0, 0).

Since the only dense and convex subset of Rn is Rn, it follows that the ap-
proximate and exact controllability notions are equivalent in the finite-dimen-
sional case. Nevertheless, for infinite dimensional systems as the wave equation,
these two notions do not coincide.

Remark 2.2 In the notions of approximate and exact controllability it is suf-
ficient to consider the case (u0, u1) ≡ 0 since R(T ; (u0, u1)) = R(T ; (0, 0)) +
S(T )(u0, u1). �

In the view of the time-reversibility of the system we have:

Proposition 2.1 System (52) is exactly controllable if and only if it is null
controllable.

Proof: Evidently, exact controllability implies null controllability.
Let us suppose now that (0, 0) ∈ R(T ; (u0, u1)) for any (u0, u1) ∈ H1

0 (Ω)×
L2(Ω). Then any initial data in H1

0 (Ω)×L2(Ω) can be driven to (0, 0) in time
T . From the reversibility of the wave equation we deduce that any state in
H1

0 (Ω) × L2(Ω) can be reached in time T by starting from (0, 0). This means
that R(T, (0, 0)) = H1

0 (Ω)×L2(Ω) and the exact controllability property holds
from Remark 2.2. �

The previous Proposition guarantees that (52) is exactly controllable if and
only if, for any (u0, u1) ∈ H1

0 (Ω)× L2(Ω) there exists f ∈ L2((0, T )× ω) such
that the corresponding solution (u, u′) of (52) satisfies

u(T, · ) = ut(T, · ) = 0. (55)

This is the most common form in which the exact controllability property
for the wave equation is formulated.

Remark 2.3 The following facts indicate how the main distinguishing proper-
ties of wave equation affect its controllability properties:
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• Since the wave equation is time-reversible and does not have any regular-
izing effect, one may not exclude the exact controllability to hold. Nev-
ertheless, as we have said before, there are situations in which the exact
controllability property is not verified but the approximate controllability
holds. This depends on the geometric properties of Ω and ω.

• The wave equation is a prototype of equation with finite speed of propaga-
tion. Therefore, one cannot expect the previous controllability properties
to hold unless the control time T is sufficiently large. �

2.4 Variational approach and observability

Let us first deduce a necessary and sufficient condition for the exact control-
lability property of (52) to hold. By 〈 · , · 〉1,−1 we denote the duality product
between H1

0 (Ω) and its dual, H−1(Ω).
For (ϕ0

T , ϕ
1
T ) ∈ L2(Ω)×H−1(Ω), consider the following backward homoge-

neous equation ϕ′′ −∆ϕ = 0 in (0, T )× Ω
ϕ = 0 on (0, T )× ∂Ω
ϕ(T, · ) = ϕ0

T , ϕ
′(T, · ) = ϕ1

T in Ω.
(56)

Let (ϕ,ϕ′) ∈ C([0, T ], L2(Ω)×H−1(Ω)) be the unique weak solution of (56).

Lemma 2.1 The control f ∈ L2((0, T ) × ω) drives the initial data (u0, u1) ∈
H1

0 (Ω)× L2(Ω) of system (52) to zero in time T if and only if∫ T

0

∫
ω

ϕfdxdt =
〈
ϕ′(0), u0

〉
1,−1

−
∫

Ω

ϕ(0)u1dx, (57)

for all (ϕ0
T , ϕ

1
T ) ∈ L2(Ω) × H−1(Ω) where ϕ is the corresponding solution of

(56).

Proof: Let us first suppose that
(
u0, u1

)
,
(
ϕ0
T , ϕ

1
T

)
∈ D(Ω) × D(Ω), f ∈

D((0, T ) × ω) and let u and ϕ be the (regular) solutions of (52) and (56)
respectively.

We recall that D(M) denotes the set of C∞(M) functions with compact
support in M .

By multiplying the equation of u by ϕ and by integrating by parts one
obtains ∫ T

0

∫
ω

ϕfdxdt =
∫ T

0

∫
Ω

ϕ (u′′ −∆u) dxdt =
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=
∫

Ω

(ϕu′ − ϕ′u) dx|T0 +
∫ T

0

∫
Ω

u (ϕ′′ −∆ϕ) dxdt =

=
∫

Ω

[ϕ(T )u′(T )− ϕ′(T )u(T )] dx−
∫

Ω

[ϕ(0)u′(0)− ϕ′(0)u(0)] dx.

Hence,∫ T

0

∫
ω

ϕfdxdt =
∫

Ω

[
ϕ0
Tu

′(T )− ϕ1
Tu(T )

]
dx−

∫
Ω

[
ϕ(0)u1 − ϕ′(0)u0

]
dx. (58)

From a density argument we deduce, by passing to the limit in (58), that
for any (u0, u1) ∈ H1

0 (Ω)× L2(Ω) and (ϕ0
T , ϕ

1
T ) ∈ L2(Ω)×H−1(Ω),∫ T

0

∫
ω

ϕfdxdt =

= −
〈
ϕ1
T , u(T )

〉
1,−1

+
∫

Ω

ϕ0
Tu

′(T )dx+
〈
ϕ′(0), u0

〉
1,−1

−
∫

Ω

ϕ(0)u1dx.

(59)

Now, from (59), it follows immediately that (57) holds if and only if (u0, u1)
is controllable to zero and f is the corresponding control. This completes the
proof. �

Let us define the duality product between L2(Ω) × H−1(Ω) and H1
0 (Ω) ×

L2(Ω) by 〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
=
〈
ϕ1, u0

〉
1,−1

−
∫

Ω

ϕ0u1dx

for all
(
ϕ0, ϕ1

)
∈ L2(Ω)×H−1(Ω) and

(
u0, u1

)
∈ H1

0 (Ω)× L2(Ω).
Remark that the map

(
ϕ0, ϕ1

)
→
〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
is linear and contin-

uous and its norm is equal to ||(u0, u1)||H1
0×L2 .

For (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω), consider the following homogeneous equa-
tion  ϕ′′ −∆ϕ = 0 in (0, T )× Ω

ϕ = 0 on (0, T )× ∂Ω
ϕ(0, · ) = ϕ0, ϕ′(0, · ) = ϕ1 in Ω.

(60)

If (ϕ,ϕ′) ∈ C([0, T ], L2(Ω) ×H−1(Ω)) is the unique weak solution of (60),
then

||ϕ||2L∞(0,T ;L2(Ω)) + ||ϕ′||2L∞(0,T ;H−1(Ω)) ≤ ||(ϕ0, ϕ1)||2L2(Ω)×H−1(Ω). (61)

Since the wave equation with homogeneous Dirichlet boundary conditions
generates a group of isometries in L2(Ω)×H−1(Ω), Lemma 2.1 may be refor-
mulated in the following way:
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Lemma 2.2 The initial data (u0, u1) ∈ H1
0 (Ω)× L2(Ω) may be driven to zero

in time T if and only if there exists f ∈ L2((0, T )× ω) such that∫ T

0

∫
ω

ϕfdxdt =
〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
, (62)

for all (ϕ0, ϕ1) ∈ L2(Ω) × H−1(Ω) where ϕ is the corresponding solution of
(60).

Relation (62) may be seen as an optimality condition for the critical points
of the functional J : L2(Ω)×H−1(Ω) → R,

J (ϕ0, ϕ1) =
1
2

∫ T

0

∫
ω

|ϕ|2dxdt+
〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
, (63)

where ϕ is the solution of (60) with initial data (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω).
We have:

Theorem 2.2 Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω) and suppose that (ϕ̂0, ϕ̂1) ∈

L2(Ω) × H−1(Ω) is a minimizer of J . If ϕ̂ is the corresponding solution of
(60) with initial data (ϕ̂0, ϕ̂1) then

f = ϕ̂|ω (64)

is a control which leads (u0, u1) to zero in time T .

Proof: Since J achieves its minimum at (ϕ̂0, ϕ̂1), the following relation
holds

0 = lim
h→0

1
h

(
J ((ϕ̂0, ϕ̂1) + h(ϕ0, ϕ1))− J (ϕ̂0, ϕ̂1)

)
=

=
∫ T

0

∫
ω

ϕ̂ϕdxdt+
∫

Ω

u1ϕ0dx− < ϕ1, u0 >1,−1

for any (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω) where ϕ is the solution of (60).
Lemma 2.2 shows that f = ϕ̂|ω is a control which leads the initial data

(u0, u1) to zero in time T . �

Let us now give sufficient conditions ensuring the existence of a minimizer
for J .

Definition 2.4 Equation (60) is observable in time T if there exists a pos-
itive constant C1 > 0 such that the following inequality is verified

C1 ‖
(
ϕ0, ϕ1

)
‖2L2(Ω)×H−1(Ω)≤

∫ T

0

∫
ω

| ϕ |2 dxdt, (65)

for any
(
ϕ0, ϕ1

)
∈ L2(Ω)×H−1(Ω) where ϕ is the solution of (60) with initial

data (ϕ0, ϕ1).
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Inequality (65) is called observation or observability inequality. It
shows that the quantity

∫ T
0

∫
ω
| ϕ |2 (the observed one) which depends only on

the restriction of ϕ to the subset ω of Ω, uniquely determines the solution on
(60).

Remark 2.4 The continuous dependence (61) of solutions of (60) with respect
to its initial data guarantees that there exists a constant C2 > 0 such that∫ T

0

∫
ω

| ϕ |2 dxdt ≤ C2 ‖
(
ϕ0, ϕ1

)
‖2L2(Ω)×H−1(Ω) (66)

for all (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω) and ϕ solution of (60). �

Let us show that (65) is a sufficient condition for the exact controllability
property to hold. First of all let us recall the following fundamental result
in the Calculus of Variations which is a consequence of the so called Direct
Method of the Calculus of Variations.

Theorem 2.3 Let H be a reflexive Banach space, K a closed convex subset of
H and ϕ : K → R a function with the following properties:

1. ϕ is convex

2. ϕ is lower semi-continuous

3. If K is unbounded then ϕ is coercive, i. e.

lim
||x||→∞

ϕ(x) = ∞. (67)

Then ϕ attains its minimum in K, i. e. there exists x0 ∈ K such that

ϕ(x0) = min
x∈K

ϕ(x). (68)

For a proof of Theorem 2.3 see [10].
We have:

Theorem 2.4 Let (u0, u1) ∈ H1
0 (Ω)× L2(Ω) and suppose that (60) is observ-

able in time T . Then the functional J defined by (63) has an unique minimizer
(ϕ̂0, ϕ̂1) ∈ L2(Ω)×H−1(Ω).

Proof: It is easy to see that J is continuous and convex. Therefore, accord-
ing to Theorem 2.3, the existence of a minimum is ensured if we prove that J
is also coercive i.e.

lim
||(ϕ0,ϕ1)||L2×H−1→∞

J (ϕ0, ϕ1) = ∞. (69)
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The coercivity of functional J follows immediately from (65). Indeed,

J (ϕ0, ϕ1) ≥ 1
2

(∫ T

0

∫
ω

|ϕ|2 − ||(u0, u1)||H1
0 (Ω)×L2(Ω)||(ϕ0, ϕ1)||L2(Ω)×H−1(Ω)

)

≥ C1

2
||(ϕ0, ϕ1)||2L2(Ω)×H−1(Ω)−

1
2
||(u0, u1)||H1

0 (Ω)×L2(Ω)||(ϕ0, ϕ1)||L2(Ω)×H−1(Ω).

It follows from Theorem 2.3 that J has a minimizer (ϕ̂0, ϕ̂1) ∈ L2(Ω) ×
H−1(Ω).

To prove the uniqueness of the minimizer it is sufficient to show that J is
strictly convex. Indeed, let (ϕ0, ϕ1), (ψ0, ψ1) ∈ L2(Ω)×H−1(Ω) and λ ∈ (0, 1).
We have that

J (λ(ϕ0, ϕ1) + (1− λ)(ψ0, ψ1)) =

= λJ (ϕ0, ϕ1) + (1− λ)J (ψ0, ψ1)− λ(1− λ)
2

∫ T

0

∫
ω

|ϕ− ψ|2dxdt.

From (65) it follows that∫ T

0

∫
ω

|ϕ− ψ|2dxdt ≥ C1||(ϕ0, ϕ1)− (ψ0, ψ1)||L2(Ω)×H−1(Ω).

Consequently, for any (ϕ0, ϕ1) 6= (ψ0, ψ1),

J (λ(ϕ0, ϕ1) + (1− λ)(ψ0, ψ1)) < λJ (ϕ0, ϕ1) + (1− λ)J (ψ0, ψ1)

and J is strictly convex. �

Theorems 2.2 and 2.4 guarantee that, under hypothesis (65), system (52) is
exactly controllable. Moreover, a control may be obtained as in (64) from the
solution of the homogeneous equation (60) with the initial data minimizing the
functional J . Hence, the controllability problem is reduced to a minimization
problem that may be solved by the Direct Method of the Calculus of Variations.
This is very useful both from a theoretical and a numerical point of view.

The following proposition shows that the control obtained by this variational
method is of minimal L2((0, T )× ω)-norm.

Proposition 2.2 Let f = ϕ̂|ω be the control given by minimizing the functional
J . If g ∈ L2((0, T ) × ω) is any other control driving to zero the initial data
(u0, u1) then

||f ||L2((0,T )×ω) ≤ ||g||L2((0,T )×ω). (70)
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Proof: Let (ϕ̂0, ϕ̂1) the minimizer for the functional J . Consider now
relation (62) for the control f = ϕ̂|ω . By taking (ϕ̂0, ϕ̂1) as test function we
obtain that

||f ||2L2((0,T )×ω) =
∫ T

0

∫
ω

|ϕ̂|2dxdt =
〈
ϕ̂1, u0

〉
1,−1

−
∫

Ω

ϕ̂0u1dx.

On the other hand, relation (62) for the control g and test function (ϕ̂0, ϕ̂1)
gives ∫ T

0

∫
ω

gϕ̂dxdt =
〈
ϕ̂1, u0

〉
1,−1

−
∫

Ω

ϕ̂0u1dx.

We obtain that

||f ||2L2((0,T )×ω) =
〈
ϕ̂1, u0

〉
1,−1

−
∫

Ω

ϕ̂0u1dx =
∫ T

0

∫
ω

gϕ̂dxdt ≤

≤ ||g||L2((0,T )×ω)||ϕ̂||L2((0,T )×ω) = ||g||L2((0,T )×ω)||f ||L2((0,T )×ω)

and (70) is proved. �

2.5 Approximate controllability

Up to this point we have discussed only the exact controllability property of
(52) which turns out to be equivalent to the observability property (65). Let
us now address the approximate controllability one.

Let ε > 0 and (u0, u1), (z0, z1) ∈ H1
0 (Ω) × L2(Ω). We are looking for a

control function f ∈ L2((0, T )×ω) such that the corresponding solution (u, u′)
of (52) satisfies

||(u(T ), u′(T ))− (z0, z1)||H1
0 (Ω)×L2(Ω) ≤ ε. (71)

Recall that (52) is approximately controllable if, for any ε > 0 and (u0, u1),
(z0, z1) ∈ H1

0 (Ω) × L2(Ω), there exists f ∈ L2((0, T ) × ω) such that (71) is
verified.

By Remark 2.2, it is sufficient to study the case (u0, u1) = (0, 0). From now
on we assume that (u0, u1) = (0, 0).

The variational approach considered in the previous sections may be also
very useful for the study of the approximate controllability property. To see
this, define the functional Jε : L2(Ω)×H−1(Ω) → R,

Jε(ϕ0, ϕ1) =

=
1
2

∫ T

0

∫
ω

|ϕ|2dxdt+
〈(
ϕ0, ϕ1

)
,
(
z0, z1

)〉
+ ε||(ϕ0, ϕ1)||L2×H−1 ,

(72)
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where ϕ is the solution of (60) with initial data (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω).
As in the exact controllability case, the existence of a minimum of the

functional Jε implies the existence of an approximate control.

Theorem 2.5 Let ε > 0 and (z0, z1) ∈ H1
0 (Ω) × L2(Ω) and suppose that

(ϕ̂0, ϕ̂1) ∈ L2(Ω) × H−1(Ω) is a minimizer of Jε. If ϕ̂ is the corresponding
solution of (60) with initial data (ϕ̂0, ϕ̂1) then

f = ϕ̂|ω (73)

is an approximate control which leads the solution of (52) from the zero initial
data (u0, u1) = (0, 0) to the state (u(T ), u′(T )) such that (71) is verified.

Proof: Let (ϕ̂0, ϕ̂1) ∈ L2(Ω) × H−1(Ω) be a minimizer of Jε. It follows
that, for any h > 0 and (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω),

0 ≤ 1
h

(
Jε((ϕ̂0, ϕ̂1) + h(ϕ0, ϕ1))− Jε(ϕ̂0, ϕ̂1)

)
≤

≤
∫ T

0

∫
ω

ϕ̂ϕdxdt+
h

2

∫ T

0

∫
ω

|ϕ|2dxdt+
〈(
ϕ0, ϕ1

)
,
(
z0, z1

)〉
+ε||(ϕ0, ϕ1)||L2×H−1

being ϕ the solution of (60). By making h→ 0 we obtain that

−ε||(ϕ0, ϕ1)||L2×H−1 ≤
∫ T

0

∫
ω

ϕ̂ϕdxdt+
〈(
ϕ0, ϕ1

)
,
(
z0, z1

)〉
.

A similar argument (with h < 0) leads to∫ T

0

∫
ω

ϕ̂ϕdxdt+
〈(
ϕ0, ϕ1

)
,
(
z0, z1

)〉
≤ ε||(ϕ0, ϕ1)||L2×H−1 .

Hence, for any (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω),∣∣∣∣∣
∫ T

0

∫
ω

ϕ̂ϕdxdt+
〈(
ϕ0, ϕ1

)
,
(
z0, z1

)〉∣∣∣∣∣ ≤ ε||(ϕ0, ϕ1)||L2×H−1 . (74)

Now, from (59) and (74) we obtain that∣∣〈(ϕ0, ϕ1
)
, [(z0, z1)− (u(T ), u′(T ))]

〉∣∣ ≤ ε||(ϕ0, ϕ1)||L2×H−1 ,

for any (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω).
Consequently, (71) is verified and the proof finishes. �

As we have seen in the previous section, the exact controllability property of
(52) is equivalent to the observation property (65) of system (60). An unique
continuation principle of the solutions of (60), which is a weaker version of
the observability inequality (65), will play a similar role for the approximate
controllability property and it will give a sufficient condition for the existence
of a minimizer of Jε. More precisely, we have
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Theorem 2.6 The following properties are equivalent:

1. Equation (52) is approximately controllable.

2. The following unique continuation principle holds for the solutions of (60)

ϕ|(0,T )×ω
= 0 ⇒ (ϕ0, ϕ1) = (0, 0). (75)

Proof: Let us first suppose that (52) is approximately controllable and let
ϕ be a solution of (60) with initial data (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω) such that
ϕ|(0,T )×ω

= 0.
For any ε > 0 and (z0, z1) ∈ H1

0 (Ω) × L2(Ω) there exists an approximate
control function f ∈ L2((0, T )× ω) such that (71) is verified.

From (59) we deduce that
〈
(u(T ), u′(T )), (ϕ0, ϕ1)

〉
= 0. From the control-

lability property and the last relation we deduce that∣∣〈(z0, z1), (ϕ0, ϕ1)
〉∣∣ = ∣∣〈[(z0, z1)− (u(T ), u′(T ))], (ϕ0, ϕ1)

〉∣∣ ≤ ε||(ϕ0, ϕ1)||.

Since the last inequality is verified by any (z0, z1) ∈ H1
0 (Ω) × L2(Ω) it

follows that (ϕ0, ϕ1) = (0, 0).
Hence the unique continuation principle (75) holds.
Reciprocally, suppose now that the unique continuation principle (75) is

verified and let us show that (52) is approximately controllable.
In order to do that we use Theorem 2.5. Let ε > 0 and (z0, z1) ∈ H1

0 (Ω)×
L2(Ω) be given and consider the functional Jε. Theorem 2.5 ensures the ap-
proximate controllability property of (52) under the assumption that Jε has a
minimum. Let us show that this is true in our case.

The functional Jε is convex and continuous in L2(Ω)×H−1(Ω). Thus, the
existence of a minimum is ensured if Jε is coercive, i. e.

Jε((ϕ0, ϕ1)) →∞ when ||(ϕ0, ϕ1)||L2×H−1 →∞. (76)

In fact we shall prove that

lim inf
||(ϕ0,ϕ1)||L2×H−1→∞

Jε(ϕ0, ϕ1)/||(ϕ0, ϕ1)||L2×H−1 ≥ ε. (77)

Evidently, (77) implies (76) and the proof of the theorem is complete.
In order to prove (77) let

(
(ϕ0
j , ϕ

1
j )
)
j≥1

⊂ L2(Ω) ×H−1(Ω) be a sequence
of initial data for the adjoint system such that ‖ (ϕ0

j , ϕ
1
j ) ‖L2×H−1→ ∞. We

normalize them

(ϕ̃0
j , ϕ̃

1
j ) = (ϕ0

j , ϕ
1
j )/ ‖ (ϕ0

j , ϕ
1
j ) ‖L2×H−1 ,

so that ‖ (ϕ̃0
j , ϕ̃

1
j ) ‖L2×H−1= 1.
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On the other hand, let (ϕ̃j , ϕ̃′j) be the solution of (60) with initial data
(ϕ̃0
j , ϕ̃

1
j ). Then

Jε((ϕ0
j , ϕ

1
j ))

‖ (ϕ0
j , ϕ

1
j ) ‖

=
1
2
‖ (ϕ0

j , ϕ
1
j ) ‖

∫ T

0

∫
ω

| ϕ̃j |2 dxdt+
〈
(z0, z1), (ϕ̃0, ϕ̃1)

〉
+ ε.

The following two cases may occur:

1) lim inf
j→∞

∫ T

0

∫
ω

| ϕ̃j |2> 0. In this case we obtain immediately that

Jε((ϕ0
j , ϕ

1
j ))

‖ (ϕ0
j , ϕ

1
j ) ‖

→ ∞.

2) lim inf
j→∞

∫ T

0

∫
ω

| ϕ̃j |2= 0. In this case since
(
ϕ̃0
j , ϕ̃

1
j

)
j≥1

is bounded in

L2×H−1, by extracting a subsequence we can guarantee that (ϕ̃0
j , ϕ̃

1
j )j≥1

converges weakly to (ψ0, ψ1) in L2(Ω)×H−1(Ω).

Moreover, if (ψ,ψ′) is the solution of (60) with the initial data (ψ0, ψ1)
at t = T , then (ϕ̃j , ϕ̃′j)j≥1 converges weakly to (ψ,ψ′) in L2(0, T ;L2(Ω)×
H−1(Ω)) ∩H1(0, T ;H−1(Ω)× [H2 ∩H1

0 (Ω)]′).

By lower semi-continuity,∫ T

0

∫
ω

ψ2dxdt ≤ lim inf
j→∞

∫ T

0

∫
ω

| ϕ̃j |2 dxdt = 0

and therefore ψ = 0 en ω × (0, T ).

From the unique continuation principle we obtain that (ψ0, ψ1) = (0, 0)
and consequently,

(ϕ̃0
j , ϕ̃

1
j ) ⇀ (0, 0) weakly in L2(Ω)×H−1(Ω).

Hence

lim inf
j→∞

Jε((ϕ0
j , ϕ

1
j ))

‖ (ϕ0
j , ϕ

1
j ) ‖L2×H−1

≥ lim inf
j→∞

[ε+
〈
(z0, z1), (ϕ̃0, ϕ̃1)

〉
] = ε,

and (77) follows. �

When approximate controllability holds, then the following (apparently
stronger) statement also holds:
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Theorem 2.7 Let E be a finite-dimensional subspace of H1
0 (Ω)×L2(Ω) and let

us denote by πE the corresponding orthogonal projection. Then, if approximate
controllability holds, for any

(
u0, u1

)
,
(
z0, z1

)
∈ H1

0 (Ω) × L2(Ω) and ε > 0
there exists f ∈ L2((0, T )× ω) such that the solution of (52) satisfies∥∥(u(T )− z0, ut(T )− z1

)∥∥
H1

0 (Ω)×L2(Ω)
≤ ε; πE (u(T ), ut(T )) = πE

(
z0, z1

)
.

This property will be referred to as the finite-approximate controllabil-
ity property. Its proof may be found in [71].

2.6 Comments

In this section we have presented some facts related with the exact and approxi-
mate controllability properties. The variational methods we have used allow to
reduce these properties to an observation inequality and a unique continuation
principle for the homogeneous adjoint equation respectively. The latter will be
studied for some particular cases in Chapter 4 by using nonharmonic Fourier
analysis.

3 Boundary controllability of the wave equation

This chapter is devoted to study the boundary controllability problem for the
wave equation. The control is assumed to act on a subset of the boundary of
the domain where the solutions are defined.

3.1 Introduction

Let Ω be a bounded open set of RN with boundary Γ of class C2 and Γ0

be an open nonempty subset of Γ. Given T > 0 consider the following non-
homogeneous wave equation: u′′ −∆u = 0 in (0, T )× Ω

u = f1Γ0(x) on (0, T )× Γ
u(0, · ) = u0, u′(0, · ) = u1 in Ω.

(78)

In (78) u = u(t, x) is the state and f = f(t, x) is a control function which
acts on Γ0. We aim at changing the dynamics of the system by acting on Γ0.

3.2 Existence and uniqueness of solutions

The following theorem is a consequence of the classical results of existence and
uniqueness of solutions of nonhomogeneous evolution equations. Full details
may be found in [46] and [68].
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Theorem 3.1 For any f ∈ L2((0, T ) × Γ0) and (u0, u1) ∈ L2(Ω) × H−1(Ω)
equation (78) has a unique weak solution defined by transposition

(u, u′) ∈ C([0, T ], L2(Ω)×H−1(Ω)).

Moreover, the map {u0, u1, f} → {u, u′} is linear and there exists C =
C(T ) > 0 such that

||(u, u′)||L∞(0,T ;L2(Ω)×H−1(Ω)) ≤
≤ C

(
||(u0, u1)||L2(Ω)×H−1(Ω) + ||f ||L2((0,T )×Γ0)

)
.

(79)

Remark 3.1 The wave equation is reversible in time. Hence, we may solve
(78) for t ∈ (0, T ) by considering final data at t = T instead of initial data at
t = 0. �

3.3 Controllability problems

Let T > 0 and define, for any initial data (u0, u1) ∈ L2(Ω) ×H−1(Ω), the set
of reachable states

R(T ; (u0, u1)) = {(u(T ), u′(T )) : u solution of (78) with f ∈ L2((0, T )× Γ0)}.

Remark that, for any (u0, u1) ∈ L2(Ω) × H−1(Ω), R(T ; (u0, u1)) is a convex
subset of L2(Ω)×H−1(Ω).

As in the previous chapter, several controllability problems may be ad-
dressed.

Definition 3.1 System (78) is approximately controllable in time T if,
for every initial data (u0, u1) ∈ L2(Ω) × H−1(Ω), the set of reachable states
R(T ; (u0, u1)) is dense in L2(Ω)×H−1(Ω).

Definition 3.2 System (78) is exactly controllable in time T if, for every
initial data (u0, u1) ∈ L2(Ω)×H−1(Ω), the set of reachable states R(T ; (u0, u1))
coincides with L2(Ω)×H−1(Ω).

Definition 3.3 System (78) is null controllable in time T if, for every
initial data (u0, u1) ∈ L2(Ω)×H−1(Ω), the set of reachable states R(T ; (u0, u1))
contains the element (0, 0).

Remark 3.2 In the definitions of approximate and exact controllability it is
sufficient to consider the case (u0, u1) ≡ 0 since

R(T ; (u0, u1)) = R(T ; (0, 0)) + S(T )(u0, u1),

where (S(t))t∈R is the group of isometries generated by the wave equation in
L2(Ω)×H−1(Ω) with homogeneous Dirichlet boundary conditions. �
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Moreover, in view of the reversibility of the system we have

Proposition 3.1 System (78) is exactly controllable if and only if it is null
controllable.

Proof: Evidently, exact controllability implies null controllability.
Let us suppose now that (0, 0) ∈ R(T ; (u0, u1)) for any (u0, u1) ∈ L2(Ω) ×

H−1(Ω). It follows that any initial data in L2(Ω) ×H−1(Ω) can be driven to
(0, 0) in time T . From the reversibility of the wave equation we deduce that
any state in L2(Ω)×H−1(Ω) can be reached in time T by starting from (0, 0).
This means that R(T, (0, 0)) = L2(Ω) ×H−1(Ω) and the exact controllability
property holds as a consequence of Remark 3.2. �

The previous Proposition guarantees that (78) is exactly controllable if and
only if, for any (u0, u1) ∈ L2(Ω)×H−1(Ω) there exists f ∈ L2((0, T )×Γ0) such
that the corresponding solution (u, u′) of (78) satisfies

u(T, · ) = u′(T, · ) = 0. (80)

Remark 3.3 The following facts indicate the close connections between the
controllability properties and some of the main features of hyperbolic equations:

• Since the wave equation is time-reversible and does not have any regular-
izing effect, the exact controllability property is very likely to hold. Nev-
ertheless, as we have said before, the exact controllability property fails
and the approximate controllability one holds in some situations. This
is very closely related to the geometric properties of the subset Γ0 of the
boundary Γ where the control is applied.

• The wave equation is the prototype of partial differential equation with
finite speed of propagation. Therefore, one cannot expect the previous
controllability properties to hold unless the control time T is sufficiently
large. �

3.4 Variational approach

Let us first deduce a necessary and sufficient condition for the exact control-
lability of (78). As in the previous chapter, by 〈 · , · 〉1,−1 we shall denote the
duality product between H1

0 (Ω) and H−1(Ω).
For any (ϕ0

T , ϕ
1
T ) ∈ H1

0 (Ω)×L2(Ω) let (ϕ,ϕ′) be the solution of the following
backward wave equation ϕ′′ −∆ϕ = 0 in (0, T )× Ω

ϕ |∂Ω= 0 on (0, T )× ∂Ω
ϕ(T, · ) = ϕ0

T , ϕ
′(T, · ) = ϕ1

T . in Ω.
(81)
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Lemma 3.1 The initial data (u0, u1) ∈ L2(Ω)×H−1(Ω) is controllable to zero
if and only if there exists f ∈ L2((0, T )× Γ0) such that∫ T

0

∫
Γ0

∂ϕ

∂n
fdσdt+

∫
Ω

u0ϕ′(0)dx−
〈
u1, ϕ(0)

〉
1,−1

= 0 (82)

for all (ϕ0
T , ϕ

1
T ) ∈ H1

0 (Ω) × L2(Ω) and where (ϕ,ϕ′) is the solution of the
backward wave equation (81)

Proof: Let us first suppose that
(
u0, u1

)
,
(
ϕ0
T , ϕ

1
T

)
∈ D(Ω) × D(Ω), f ∈

D((0, T ) × Γ0) and let u and ϕ be the (regular) solutions of (78) and (81)
respectively.

Multiplying the equation of u by ϕ and integrating by parts one obtains

0 =
∫ T

0

∫
Ω

ϕ (u′′ −∆u) dxdt =
∫

Ω

(ϕu′ − ϕ′u) dx|T0 +

+
∫ T

0

∫
Γ

(
−∂u
∂n

ϕ+
∂ϕ

∂n
u

)
dσdt =

∫ T

0

∫
Γ0

∂ϕ

∂n
udσdt+

+
∫

Ω

[ϕ(T )u′(T )− ϕ′(T )u(T )] dx−
∫

Ω

[ϕ(0)u′(0)− ϕ′(0)u(0)] dx

Hence,∫ T

0

∫
Γ0

∂ϕ

∂n
udσdt+

∫
Ω

[
ϕ0
Tu

′(T )− ϕ1
Tu(T )

]
dx−

∫
Ω

[
ϕ(0)u1 − ϕ′(0)u0

]
dx = 0.

By a density argument we deduce that for any (u0, u1) ∈ L2(Ω)×H−1(Ω)
and (ϕ0

T , ϕ
1
T ) ∈ H1

0 (Ω)× L2(Ω),∫ T

0

∫
Γ0

∂ϕ

∂n
udσdt =

=
∫

Ω

u(T )ϕ1
T dx+

〈
u′(T ), ϕ0

T

〉
1,−1

+
∫

Ω

u0ϕ′(0)dx−
〈
u1, ϕ(0)

〉
1,−1

.

(83)

Now, from (83), it follows immediately that (82) holds if and only if (u0, u1)
is controllable to zero. The proof finishes. �

As in the previous chapter we introduce the duality product

〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
=
∫

Ω

u0ϕ1dx−
〈
u1, ϕ1

〉
1,−1

for all
(
ϕ0, ϕ1

)
∈ H1

0 (Ω)× L2(Ω) and
(
u0, u1

)
∈ L2(Ω)×H−1(Ω).
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For any (ϕ0, ϕ1) ∈ H1
0 (Ω) × L2(Ω) let (ϕ,ϕ′) be the finite energy solution

of the following wave equation ϕ′′ −∆ϕ = 0 in (0, T )× Ω
ϕ |∂Ω= 0 in (0, T )× ∂Ω
ϕ(0, · ) = ϕ0, ϕ′(0, · ) = ϕ1. in Ω.

(84)

Since the wave equation generates a group of isometries in H1
0 (Ω)×L2(Ω),

Lemma 3.1 may be reformulated in the following way:

Lemma 3.2 The initial data (u0, u1) ∈ L2(Ω)×H−1(Ω) is controllable to zero
if and only if there exists f ∈ L2((0, T )× Γ0) such that∫ T

0

∫
Γ0

∂ϕ

∂n
fdσdt+

〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
= 0, (85)

for all (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω) and where ϕ is the solution of (84).

Once again, (85) may be seen as an optimality condition for the critical
points of the functional J : H1

0 (Ω)× L2(Ω) −→ R, defined by

J (ϕ0, ϕ1) =
1
2

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dσdt+

〈(
ϕ0, ϕ1

)
,
(
u0, u1

)〉
, (86)

where ϕ is the solution of (84) with initial data (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω).

We have

Theorem 3.2 Let (u0, u1) ∈ L2(Ω) × H−1(Ω) and suppose that (ϕ̂0, ϕ̂1) ∈
H1

0 (Ω)×L2(Ω) is a minimizer of J . If ϕ̂ is the corresponding solution of (84)
with initial data (ϕ̂0, ϕ̂1) then f = ∂ϕ̂

∂n |Γ0
is a control which leads (u0, u1) to

zero in time T .

Proof: Since, by assumption, J achieves its minimum at (ϕ̂0, ϕ̂1), the fol-
lowing relation holds

0 = lim
h→0

1
h

(
J ((ϕ̂0, ϕ̂1) + h(ϕ0, ϕ1))− J (ϕ̂0, ϕ̂1)

)
=

=
∫ T

0

∫
Γ0

∂ϕ̂

∂n

∂ϕ

∂n
dσdt+

∫
Ω

u0ϕ1dx− < u1, ϕ0 >1,−1

for any (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω) where ϕ is the solution of (84).

From Lemma 3.2 it follows that f = ∂ϕ̂
∂n |Γ0

is a control which leads the

initial data (u0, u1) to zero in time T . �

Let us now give a general condition which ensures the existence of a mini-
mizer for J .
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Definition 3.4 Equation (84) is observable in time T if there exists a pos-
itive constant C1 > 0 such that the following inequality is verified

C1 ‖
(
ϕ0, ϕ1

)
‖2H1

0 (Ω)×L2(Ω)≤
∫ T

0

∫
Γ0

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dσdt, (87)

for any
(
ϕ0, ϕ1

)
∈ H1

0 (Ω) × L2(Ω) where ϕ is the solution of (84) with initial
data (ϕ0, ϕ1).

Inequality (87) is called observation or observability inequality. Ac-

cording to it, when it holds, the quantity
∫ T
0

∫
Γ0

∣∣∣∂ϕ∂n ∣∣∣2 dσdt (the observed quan-

tity) which depends only on the trace of ∂ϕ∂n on (0, T )×Γ0, uniquely determines
the solution of (84).

Remark 3.4 One may show that there exists a constant C2 > 0 such that∫ T

0

∫
Γ0

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dσdt ≤ C2 ‖

(
ϕ0, ϕ1

)
‖2H1

0 (Ω)×L2(Ω) (88)

for all (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω) and ϕ solution of (84).

Inequality (88) may be obtained by multiplier techniques (see [41] or [45]).
Remark that, (88) says that ∂ϕ

∂n |Γ0
∈ L2((0, T )× Γ0) which is a “hidden” regu-

larity result, that may not be obtained by classical trace results. �

Let us show that (87) is a sufficient condition for the exact controllability
property to hold.

Theorem 3.3 Suppose that (84) is observable in time T and let (u0, u1) ∈
L2(Ω) ×H−1(Ω). The functional J defined by (86) has an unique minimizer
(ϕ̂0, ϕ̂1) ∈ H1

0 (Ω)× L2(Ω).

Proof: It is easy to see that J is continuous and convex. The existence of
a minimum is ensured if we prove that J is also coercive i.e.

lim
||(ϕ0,ϕ1)||

H1
0×L2→∞

J (ϕ0, ϕ1) = ∞. (89)

The coercivity of the functional J follows immediately from (87). Indeed,

J (ϕ0, ϕ1) ≥

≥ 1
2

(∫ T

0

∫
Γ0

∣∣∣∣∂ϕ∂n
∣∣∣∣2 − ||(u0, u1)||H1

0 (Ω)×L2(Ω)||(ϕ0, ϕ1)||L2(Ω)×H−1(Ω)

)
≥
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≥ C1

2
||(ϕ0, ϕ1)||2L2(Ω)×H−1(Ω)−

1
2
||(u0, u1)||H1

0 (Ω)×L2(Ω)||(ϕ0, ϕ1)||L2(Ω)×H−1(Ω).

It follows from Theorem 2.3 that J has a minimizer (ϕ̂0, ϕ̂1) ∈ H1
0 (Ω) ×

L2(Ω).
As in the proof of Theorem 2.4, it may be shown that J is strictly convex

and therefore it achieves its minimum at a unique point. �

Theorems 3.2 and 3.3 guarantee that, under the hypothesis (87), system
(78) is exactly controllable. Moreover, a control may be obtained from the
solution of the homogeneous system (81) with the initial data minimizing the
functional J . Hence, the controllability is reduced to a minimization problem.
This is very useful both from the theoretical and numerical point of view.

As in Proposition 2.2 the control obtained by minimizing the functional J
has minimal L2-norm:

Proposition 3.2 Let f = ∂ϕ̂
∂n |Γ0

be the control given by minimizing the func-

tional J . If g ∈ L2((0, T )× Γ0) is any other control driving to zero the initial
data (u0, u1) in time T , then

||f ||L2((0,T )×Γ0) ≤ ||g||L2((0,T )×Γ0). (90)

Proof: It is similar to the proof of Property 2.2. We omit the details. �

3.5 Approximate controllability

Let us now briefly present and discuss the approximate controllability property.
Since many aspects are similar to the interior controllability case we only give
the general ideas and let the details to the interested reader.

Let ε > 0 and (u0, u1), (z0, z1) ∈ L2(Ω) × H−1(Ω). We are looking for a
control function f ∈ L2((0, T )×Γ0) such that the corresponding solution (u, u′)
of (78) satisfies

||(u(T ), u′(T ))− (z0, z1)||L2(Ω)×H−1(Ω) ≤ ε. (91)

Recall that, (78) is approximately controllable if, for any ε > 0 and (u0, u1),
(z0, z1) ∈ L2(Ω) ×H−1(Ω), there exists f ∈ L2((0, T ) × Γ0) such that (91) is
verified.

By Remark 3.2, it is sufficient to study the case (u0, u1) = (0, 0). Therefore,
in this section only zero initial data (u0, u1) will be considered.

The variational approach may be also used for the study of the approximate
controllability property.
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To see this, define the functional Jε : H1
0 (Ω)× L2(Ω) → R,

Jε(ϕ0, ϕ1) =

=
1
2

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dxdt+

〈(
ϕ0, ϕ1

)
,
(
z0, z1

)〉
+ ε||(ϕ0, ϕ1)||H1

0×L2 ,
(92)

where ϕ is the solution of (81) with initial data (ϕ0, ϕ1) ∈ H1
0 (Ω)× L2(Ω).

The following theorem shows how the functional Jε may be used to study
the approximate controllability property. In fact, as in the exact controllability
case, the existence of a minimum of the functional Jε implies the existence of
an approximate control.

Theorem 3.4 Let ε > 0, (z0, z1)∈ L2(Ω)×H−1(Ω). Suppose that (ϕ̂0, ϕ̂1) ∈
H1

0 (Ω)×L2(Ω) is a minimizer of Jε. If ϕ̂ is the corresponding solution of (81)
with initial data (ϕ̂0, ϕ̂1) then

f =
∂ϕ̂

∂n
∣∣
Γ0

(93)

is an approximate control which leads the solution of (78) from the zero initial
data (u0, u1) = (0, 0) to the state (u(T ), u′(T )) such that (91) is verified.

Proof: It is similar to the proof of Theorem 3.4. �

As we have seen, the exact controllability property of (78) is related to the
observation property (65) of system (81). An unique continuation property of
the solutions of (81) plays a similar role in the context of approximate control-
lability and guarantees the existence of a minimizer of Jε. More precisely, we
have

Theorem 3.5 The following properties are equivalent:

1. Equation (78) is approximately controllable.

2. The following unique continuation principle holds for the solutions of (81)

∂ϕ

∂n
∣∣
(0,T )×Γ0

= 0 ⇒ (ϕ0, ϕ1) = (0, 0). (94)

Proof: The proof of the fact that the approximate controllability property
implies the unique continuation principle (94) is similar to the corresponding
one in Theorem 2.6 and we omit it.

Let us prove that, if the unique continuation principle (94) is verified, (78)
is approximately controllable. By Theorem 3.4 it is sufficient to prove that Jε
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defined by (92) has a minimum. The functional Jε is convex and continuous in
H1

0 (Ω)×L2(Ω). Thus, the existence of a minimum is ensured if Jε is coercive,
i. e.

Jε((ϕ0, ϕ1)) →∞ when ||(ϕ0, ϕ1)||H1
0×L2 →∞. (95)

In fact we shall prove that

lim inf
||(ϕ0,ϕ1)||

H1
0×L2→∞

Jε(ϕ0, ϕ1)/||(ϕ0, ϕ1)||H1
0×L2 ≥ ε. (96)

Evidently, (96) implies (95) and the proof of the theorem is complete.
In order to prove (96) let

(
(ϕ0
j , ϕ

1
j )
)
j≥1

⊂ H1
0 (Ω)× L2(Ω) be a sequence of

initial data for the adjoint system with ‖ (ϕ0
j , ϕ

1
j ) ‖H1

0×L2→∞. We normalize
them

(ϕ̃0
j , ϕ̃

1
j ) = (ϕ0

j , ϕ
1
j )/ ‖ (ϕ0

j , ϕ
1
j ) ‖H1

0×L2 ,

so that
‖ (ϕ̃0

j , ϕ̃
1
j ) ‖H1

0×L2= 1.

On the other hand, let (ϕ̃j , ϕ̃′j) be the solution of (81) with initial data
(ϕ̃0
j , ϕ̃

1
j ). Then

Jε((ϕ0
j , ϕ

1
j ))

‖ (ϕ0
j , ϕ

1
j ) ‖

=
1
2
‖ (ϕ0

j , ϕ
1
j ) ‖

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ̃j∂n

∣∣∣∣2 dσdt+
〈
(z0, z1), (ϕ̃0, ϕ̃1)

〉
+ ε.

The following two cases may occur:

1) lim inf
j→∞

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ̃j∂n

∣∣∣∣2 > 0. In this case we obtain immediately that

Jε((ϕ0
j , ϕ

1
j ))

‖ (ϕ0
j , ϕ

1
j ) ‖

→ ∞.

2) lim inf
j→∞

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ̃j∂n

∣∣∣∣2 = 0. In this case, since
(
ϕ̃0
j , ϕ̃

1
j

)
j≥1

is bounded in

H1
0 ×L2, by extracting a subsequence we can guarantee that (ϕ̃0

j , ϕ̃
1
j )j≥1

converges weakly to (ψ0, ψ1) in H1
0 (Ω)× L2(Ω).

Moreover, if (ψ,ψ′) is the solution of (81) with initial data (ψ0, ψ1) at
t = T , then (ϕ̃j , ϕ̃′j)j≥1 converges weakly to (ψ,ψ′) in L2(0, T ;H1

0 (Ω) ×
L2(Ω)) ∩H1(0, T ;L2(Ω)×H−1(Ω)).

By lower semi-continuity,∫ T

0

∫
Γ0

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσdt ≤ lim inf

j→∞

∫ T

0

∫
Γ0

∣∣∣∣∂ϕ̃j∂n

∣∣∣∣2 dσdt = 0
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and therefore ∂ψ
∂n = 0 on Γ0 × (0, T ).

From the unique continuation principle we obtain that (ψ0, ψ1) = (0, 0)
and consequently,

(ϕ̃0
j , ϕ̃

1
j ) ⇀ (0, 0) weakly in H1

0 (Ω)× L2(Ω).

Hence

lim inf
j→∞

Jε((ϕ0
j , ϕ

1
j ))

‖ (ϕ0
j , ϕ

1
j ) ‖

≥ lim inf
j→∞

[ε+
〈
(z0, z1), (ϕ̃0, ϕ̃1)

〉
] = ε,

and (96) follows. �

As mentioned in the previous section, when approximate controllability
holds, the following (apparently stronger) statement also holds (see [71]):

Theorem 3.6 Let E be a finite-dimensional subspace of L2(Ω)×H−1(Ω) and
let us denote by πE the corresponding orthogonal projection. Then, if approx-
imate controllability holds, for any

(
u0, u1

)
,
(
z0, z1

)
∈ L2(Ω) × H−1(Ω) and

ε > 0 there exists f ∈ L2((0, T )× Γ0) such that the solution of (78) satisfies∥∥(u(T )− z0, ut(T )− z1
)∥∥
L2(Ω)×H−1(Ω)

≤ ε; πE (u(T ), ut(T )) = πE
(
z0, z1

)
.

3.6 Comments

In the last two sections we have presented some results concerning the exact
and approximate controllability of the wave equation. The variational methods
we have used allow to reduce these properties to an observation inequality and
a unique continuation principle for the adjoint homogeneous equation respec-
tively.

Let us briefly make some remarks concerning the proof of the unique con-
tinuation principles (75) and (94).

Holmgren’s Uniqueness Theorem (see [33]) may be used to show that (75)
and (94) hold if T is large enough. We refer to [45], chapter 1 and [13] for a
discussion of this problem. Consequently, approximate controllability holds if
T is large enough.

The same results hold for wave equations with analytic coefficients too.
However, the problem is not completely solved in the frame of the wave equation
with lower order potentials a ∈ L∞((0, T )× Ω) of the form

utt −∆u+ a(x, t)u = f1ω in (0, T )× Ω.

Once again the problem of approximate controllability of this system is equiv-
alent to the unique continuation property of its adjoint. We refer to Alinhac
[1], Tataru [62] and Robbiano-Zuilly [54] for deep results in this direction.
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In the following chapter we shall prove the observability inequalities (65)
and (87) in some simple one dimensional cases by using Fourier expansion of
solutions. Other tools have been successfully used to prove these observability
inequalities. Let us mention two of them.

1. Multipliers techniques: Ho in [32] proved that if one considers subsets
of Γ of the form

Γ0 = Γ(x0) =
{
x ∈ Γ : (x− x0) · n(x) > 0

}
for some x0 ∈ RN and if T > 0 is large enough, the boundary observability
inequality (87), that is required to solve the boundary controllability
problem, holds. The technique used consists of multiplying equation (84)
by q · ∇ϕ and integrating by parts in (0, T ) × Ω. The multiplier q is an
appropriate vector field defined in Ω. More precisely, q(x) = x − x0 for
any x ∈ Ω.

Later on inequality (87) was proved in [45] for any T > T (x0) = 2 ‖
x−x0 ‖L∞(Ω). This is the optimal observability time that one may derive
by means of multipliers. More recently Osses in [51] has introduced a new
multiplier which is basically a rotation of the previous one and he has
obtained a larger class of subsets of the boundary for which observability
holds.

Concerning the interior controllability problem, one can easily prove that
(87) implies (65) when ω is a neighborhood of Γ(x0) in Ω, i.e. ω = Ω∩Θ
where Θ is a neighborhood of Γ(x0) in Rn, with T > 2 ‖ x−x0 ‖L∞(Ω\ω)

(see in [45], vol. 1).

An extensive presentation and several applications of multiplier tech-
niques are given in [40] and [45].

2. Microlocal analysis: C. Bardos, G. Lebeau and J. Rauch [7] proved
that, in the class of C∞ domains, the observability inequality (65) holds
if and only if (ω, T ) satisfy the following geometric control condition in Ω:
Every ray of geometric optics that propagates in Ω and is reflected on its
boundary Γ enters ω in time less than T . This result was proved by means
of microlocal analysis techniques. Recently the microlocal approach has
been greatly simplified by N. Burq [11] by using the microlocal defect
measures introduced by P. Gerard [30] in the context of the homogeniza-
tion and the kinetic equations. In [11] the geometric control condition
was shown to be sufficient for exact controllability for domains Ω of class
C3 and equations with C2 coefficients.

Other methods have been developed to address the controllability problems
such as moment problems, fundamental solutions, controllability via stabiliza-



44 Controllability of Partial Differential Equations

tion, etc. We will not present them here and we refer to the survey paper by
D. L. Russell [55] for the interested reader.

4 Fourier techniques and the observability of
the 1D wave equation

In Chapters 2 and 3 we have shown that the exact controllability problem may
be reduced to the corresponding observability inequality. In this chapter we de-
velop in detail some techniques based on Fourier analysis and more particularly
on Ingham type inequalities allowing to obtain several observability results for
linear 1-D wave equations. We refer to Avdonin and Ivanov [3] for a complete
presentation of this approach.

4.1 Ingham’s inequalities

In this section we present two inequalities which have been successfully used in
the study of many 1-D control problems and, more precisely, to prove observa-
tion inequalities. They generalize the classical Parseval’s equality for orthogo-
nal sequences. Variants of these inequalities were studied in the works of Paley
and Wiener at the beginning of the past century (see [53]). The main inequality
was proved by Ingham (see [37]) who gave a beautiful and elementary proof
(see Theorems 4.1 and 4.2 below). Since then, many generalizations have been
given (see, for instance, [6], [58], [4] and [38]).

Theorem 4.1 (Ingham [37]) Let (λn)n∈Z be a sequence of real numbers and
γ > 0 be such that

λn+1 − λn ≥ γ > 0, ∀n ∈ Z. (97)

For any real T with
T > π/γ (98)

there exists a positive constant C1 = C1(T, γ) > 0 such that, for any finite
sequence (an)n∈Z,

C1

∑
n∈Z

| an |2≤
∫ T

−T

∣∣∣∣∣∑
n∈Z

ane
iλnt

∣∣∣∣∣
2

dt. (99)

Proof: We first reduce the problem to the case T = π and γ > 1. Indeed, if T
and γ are such that Tγ > π, then∫ T

−T

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt =
T

π

∫ π

−π

∣∣∣∣∣∑
n

ane
iT λn

π s

∣∣∣∣∣
2

ds =
T

π

∫ π

−π

∣∣∣∣∣∑
n

ane
iµns

∣∣∣∣∣
2

ds
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where µn = Tλn/π. It follows that µn+1 − µn = T (λn+1 − λn) /π ≥ γ1 :=
Tγ/π > 1.

We prove now that there exists C ′1 > 0 such that

C ′1
∑
n∈Z

| an |2≤
∫ π

−π

∣∣∣∣∣∑
n∈Z

ane
iµnt

∣∣∣∣∣
2

dt.

Define the function

h : R → R, h(t) =
{

cos (t/2) if | t |≤ π
0 if | t |> π

and let us compute its Fourier transform K(ϕ),

K(ϕ) =
∫ π

−π
h(t)eitϕdt =

∫ ∞

−∞
h(t)eitϕdt =

4 cosπϕ
1− 4ϕ2

.

On the other hand, since 0 ≤ h(t) ≤ 1 for any t ∈ [−π, π], we have that∫ π

−π

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≥
∫ π

−π
h(t)

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt =
∑
n,m

anāmK(µn − µm) =

= K(0)
∑
n

| an |2 +
∑
n 6=m

anāmK(µn − µm) ≥

≥ 4
∑
n

| an |2 −
1
2

∑
n 6=m

(
| an |2 + | am |2

)
| K(µn − µm) |=

= 4
∑
n

| an |2 −
∑
n

| an |2
∑
m6=n

| K(µn − µm) | .

Remark that∑
m6=n

| K(µn − µm) |≤
∑
m6=n

4
4 | µn − µm |2 −1

≤
∑
m6=n

4
4γ2

1 | n−m |2 −1
=

= 8
∑
r≥1

1
4γ2

1r
2 − 1

≤ 8
γ2
1

∑
r≥1

1
4r2 − 1

=
8
γ2
1

1
2

∑
r≥1

(
1

2r − 1
− 1

2r + 1

)
=

4
γ2
1

.

Hence, ∫ π

−π

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≥
(

4− 4
γ2
1

)∑
n

| an |2 .

If we take

C1 =
T

π

(
4− 4

γ2
1

)
=

4π
T

(
T 2 − π2

γ2

)
the proof is concluded. �
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Theorem 4.2 Let (λn)n∈Z be a sequence of real numbers and γ > 0 be such
that

λn+1 − λn ≥ γ > 0, ∀n ∈ Z. (100)

For any T > 0 there exists a positive constant C2 = C2(T, γ) > 0 such that,
for any finite sequence (an)n∈Z,

∫ T

−T

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt ≤ C2

∑
n

| an |2 . (101)

Proof: Let us first consider the case Tγ ≥ π/2. As in the proof of the previous
theorem, we can reduce the problem to T = π/2 and γ ≥ 1. Indeed,

∫ T

−T

∣∣∣∣∣∑
n

ane
iλnt

∣∣∣∣∣
2

dt =
2T
π

∫ π
2

−π
2

∣∣∣∣∣∑
n

ane
iµns

∣∣∣∣∣
2

ds

where µn = 2Tλn/π. It follows that µn+1 − µn = 2T (λn+1 − λn) /π ≥ γ1 :=
2Tγ/π ≥ 1.

Let h be the function introduced in the proof of Theorem 4.1. Since
√

2/2 ≤
h(t) ≤ 1 for any t ∈ [−π/2, π/2] we obtain that

∫ π
2

−π
2

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≤ 2
∫ π

2

−π
2

h(t)

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≤

≤ 2
∫ π

−π
h(t)

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt = 2
∑
n,m

anāmK (µn − µm) =

= 8
∑
n

| an |2 +2
∑
n 6=m

anāmK (µn − µm) ≤

≤ 8
∑
n

| an |2 +
∑
n 6=m

(
| an |2 + | am |2

)
| K (µn − µm) | .

As in the proof of Theorem 4.1 we obtain that∑
m6=n

| K(µn − µm) |≤ 4
γ2
1

.

Hence,

∫ π
2

−π
2

∣∣∣∣∣∑
n

ane
iµnt

∣∣∣∣∣
2

dt ≤ 8
∑
n

| an |2 +
8
γ2
1

∑
n

| an |2≤ 8
(

1 +
1
γ2
1

)∑
n

| an |2
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and (101) follows with C2 = 8
(
4T 2/(π2) + 1/γ2

)
.

When Tγ < π/2 we have that∫ T

−T

∣∣∣∑ ane
iλnt

∣∣∣2 dt =
1
γ

∫ Tγ

−Tγ

∣∣∣∑ ane
iλn

γ s
∣∣∣2 ds ≤ 1

γ

∫ π/2

−π/2

∣∣∣∑ ane
iλn

γ s
∣∣∣2 ds.

Since λn+1/γ − λn/γ ≥ 1 from the analysis of the previous case we obtain
that ∫ π

2

−π
2

∣∣∣∣∣∑
n

ane
iλn

γ s

∣∣∣∣∣
2

ds ≤ 16
∑
n

| an |2 .

Hence, (101) is proved with

C2 = 8max
{(

4T 2

π2
+

1
γ2

)
,

2
γ

}
and the proof concludes. �

Remark 4.1 • Inequality (101) holds for all T > 0. On the contrary,
inequality (99) requires the length T of the time interval to be sufficiently
large. Note that, when the distance between two consecutive exponents
λn, the gap, becomes small the value of T must increase proportionally.

• In the first inequality (99) T depends on the minimum γ of the distances
between every two consecutive exponents (gap). However, as we shall see
in the next theorem, only the asymptotic distance as n → ∞ between
consecutive exponents really matters to determine the minimal control
time T . Note also that the constant C1 in (99) degenerates when T goes
to π/γ.

• In the critical case T = π/γ inequality (99) may hold or not, depending
on the particular family of exponential functions. For instance, if λn = n
for all n ∈ Z, (99) is verified for T = π. This may be seen immediately by
using the orthogonality property of the complex exponentials in (−π, π).
Nevertheless, if λn = n − 1/4 and λ−n = −λn for all n > 0, (99) fails
for T = π (see, [37] or [64]). �

As we have said before, the length 2T of the time interval in (99) does not
depend on the smallest distance between two consecutive exponents but on the
asymptotic gap defined by

lim inf
|n|→∞

| λn+1 − λn |= γ∞. (102)
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An induction argument due to A. Haraux (see [31]) allows to give a result
similar to Theorem 4.1 above in which condition (97) for γ is replaced by a
similar one for γ∞.

Theorem 4.3 Let (λn)n∈Z be an increasing sequence of real numbers such that
λn+1 − λn ≥ γ > 0 for any n ∈ Z and let γ∞ > 0 be given by (102). For any
real T with

T > π/γ∞ (103)

there exist two positive constants C1, C2 > 0 such that, for any finite sequence
(an)n∈Z,

C1

∑
n∈Z

| an |2≤
∫ T

−T

∣∣∣∣∣∑
n∈Z

ane
iλnt

∣∣∣∣∣
2

dt ≤ C2

∑
n∈Z

| an |2 . (104)

Remark 4.2 When γ∞ = γ, the sequence of Theorem 4.3 satisfies λn+1−λn ≥
γ∞ > 0 for all n ∈ Z and we can then apply Theorems 4.1 and 4.2. However,
in general, γ∞ < γ and Theorem 4.3 gives a sharper bound on the minimal
time T needed for (104) to hold.

Note that the existence of C1 and C2 in (104) is a consequence of Kahane’s
theorem (see [40]). However, if our purpose were to have an explicit estimate
of C1 or C2 in terms of γ, γ∞ then we would need to use the constructive
argument below. It is important to note that these estimates depend strongly
also on the number of eigenfrequencies λ that fail to fulfill the gap condition
with the asymptotic gap γ∞.

Proof of Theorem 4.3: The second inequality from (104) follows immedi-
ately by using Theorem 4.2. To prove the first inequality (104) we follow the
induction argument due to Haraux [31].

Note that for any ε1 > 0, there exists N = N(ε1) ∈ N∗ such that

|λn+1 − λn| ≥ γ∞ − ε1 for any |n| > N. (105)

We begin with the function f0(t) =
∑
|n|>N ane

iλnt and we add the missing
exponentials one by one. From (105) we deduce that Theorems 4.1 and 4.2
may be applied to the family

(
eiλnt

)
|n|>N for any T > π/(γ∞ − ε1)

C1

∑
n>N

| an |2≤
∫ T

−T
| f0(t) |2 dt ≤ C2

∑
n>N

| an |2 . (106)

Let now f1(t) = f0 + aNe
i λN t =

∑
|n|>N ane

iλnt + aNe
i λN t. Without loss

of generality we may suppose that λN = 0 (since we can consider the function
f1(t)e−iλN t instead of f1(t)).
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Let ε > 0 be such that T ′ = T − ε > π/γ∞. We have∫ ε

0

(f1(t+ η)− f1(t)) dη =
∑
n>N

an

(
eiλnε − 1
iλn

− ε

)
eiλnt, ∀t ∈ [0, T ′].

Applying now (106) to the function h(t) =
∫ ε

0

(f1(t+ η)− f1(t)) dη we

obtain that:

C1

∑
n>N

∣∣∣∣eiλnε − 1
iλn

− ε

∣∣∣∣2 |an|2 ≤ ∫ T ′

−T ′

∣∣∣∣∫ ε

0

(f1(t+ η)− f1(t)) dη
∣∣∣∣2 dt. (107)

Moreover,:∣∣eiλnε − 1− iλnε
∣∣2 = |cos(λnε)− 1|2 + |sin(λnε)− λnε|2 =

= 4sin4

(
λnε

2

)
+ (sin(λnε)− λnε)

2 ≥

 4
(
λnε
π

)4
, if |λn|ε ≤ π

(λnε)
2
, if |λn|ε > π.

Finally, taking into account that |λn| ≥ γ, we obtain that,∣∣∣∣eiλnε − 1
iλn

− ε

∣∣∣∣2 ≥ cε2.

We return now to (107) and we get that:

ε2C1

∑
n>N

|an|2 ≤
∫ T ′

−T ′

∣∣∣∣∫ ε

0

(f1(t+ η)− f1(t)) dη
∣∣∣∣2 dt. (108)

On the other hand∫ T ′

−T ′

∣∣∣∣∫ ε

0

(f1(t+ η)− f1(t)) dη
∣∣∣∣2 dt ≤ ∫ T ′

−T ′
ε

∫ ε

0

|f1(t+ η)− f1(t)|2 dηdt ≤

≤ 2ε
∫ T ′

−T ′

∫ ε

0

(
|f1(t+ η)|2 + |f1(t)|2

)
dηdt ≤ 2ε2

∫ T

−T ′
|f1(t)|2 dt+

+2ε
∫ ε

0

∫ T ′

−T ′
|f1(t+ η)|2 dtdη = 2ε2

∫ T

−T ′
|f1(t)|2 dt+2ε

∫ ε

0

∫ T ′+η

−T ′+η
|f1(s)|2 dsdη

≤ 2ε2
∫ T

−T
|f1(t)|2 dt+ 2ε

∫ ε

0

∫ T

−T
|f1(s)|2 dsdη ≤ 4ε2

∫ T

−T
|f1(t)|2 dt.
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From (108) it follows that

C1

∑
n>N

|an|2 ≤
∫ T

−T
|f1(t)|2 dt. (109)

On the other hand

|aN |2 =

∣∣∣∣∣f1(t)− ∑
n>N

ane
iλnt

∣∣∣∣∣
2

=
1

2T

∫ T

−T

∣∣∣∣∣f1(t)− ∑
n>N

ane
iλnt

∣∣∣∣∣
2

dt ≤

≤ 1
T

∫ T

−T
|f1(t)|2 dt+

∫ T

−T

∣∣∣∣∣∑
n>N

ane
iλnt

∣∣∣∣∣
2
 dt ≤

≤ 1
T

(∫ T

−T
|f1(t)|2 dt+ C0

2

∑
n>N

|an|2
)
≤

≤ 1
T

(
1 +

C2

C1

)∫ T

−T
|f1(t)|2 dt.

From (109) we get that

C1

∑
n≥N

|an|2 ≤
∫ T

−T
|f1(t)|2 dt.

Repeating this argument we may add all the terms aneiλnt, |n| ≤ N and
we obtain the desired inequalities. �

4.2 Spectral analysis of the wave operator

The aim of this section is to give the Fourier expansion of solutions of the 1-D
linear wave equation ϕ′′ − ϕxx + αϕ = 0, x ∈ (0, 1), t ∈ (0, T )

ϕ(t, 0) = ϕ(t, 1) = 0, t ∈ (0, T )
ϕ(0) = ϕ0, ϕ′(0) = ϕ1, x ∈ (0, 1)

(110)

where α is a real nonnegative number.
To do this let us first remark that (110) may be written as

ϕ′ = z
z′ = ϕxx − αϕ
ϕ(t, 0) = ϕ(t, 1) = 0
ϕ(0) = ϕ0, z(0) = ϕ1.
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Nextly, denoting Φ = (ϕ, z), equation (110) is written in the following
abstract Cauchy form: {

Φ′ +AΦ = 0
Φ(0) = Φ0.

(111)

The differential operator A from (111) is the unbounded operator in H =
L2(0, 1)×H−1(0, 1), A : D(A) ⊂ H → H, defined by

D(A) = H1
0 (0, 1)× L2(0, 1)

A(ϕ, z) = (−z,−∂2
xϕ+ αϕ) =

(
0 − 1

−∂2
x + α 0

)(
ϕ

z

) (112)

where the Laplace operator −∂2
x is an unbounded operator defined in H−1(0, 1)

with domain H1
0 (0, 1):

−∂2
x : H1

0 (0, 1) ⊂ H−1(0, 1) → H−1(0, 1),

〈−∂2
xϕ,ψ〉 =

∫ 1

0
ϕxψxdx, ∀ϕ, ψ ∈ H1

0 (0, 1).

Remark 4.3 The operator A is an isomorphism from H1
0 (0, 1) × L2(0, 1) to

L2(0, 1)×H−1(0, 1). We shall consider the space H1
0 (0, 1) with the inner prod-

uct defined by

(u, v)H1
0 (0,1) =

∫ 1

0

(ux)(x)vx(x)dx+ α

∫ 1

0

u(x)v(x)dx (113)

which is equivalent to the usual one.

Lemma 4.1 The eigenvalues of A are λn = sgn(n)πi
√
n2 + α, n ∈ Z∗. The

corresponding eigenfunctions are given by

Φn =
( 1
λn

−1

)
sin(nπx), n ∈ Z∗,

and form an orthonormal basis in H1
0 (0, 1)× L2(0, 1).

Proof: Let us first determine the eigenvalues of A. If λ ∈ C and Φ = (ϕ, z) ∈
H1

0 (0, 1)× L2(0, 1) are such that AΦ = λΦ we obtain from the definition of A
that {

−z = λϕ
−∂2

xϕ+ αϕ = λz.
(114)

It is easy to see that  ∂2
xϕ− αϕ = λ2ϕ
ϕ(0) = ϕ(1) = 0
ϕ ∈ C2[0, 1].

(115)
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The solutions of (115) are given by

λn = sgn(n)πi
√
n2 + α, ϕn = c sin(nπx), n ∈ Z∗

where c is an arbitrary complex constant.
Hence, the eigenvalues of A are λn = sgn(n)πi

√
n2 + α, n ∈ Z∗ and the

corresponding eigenfunctions are

Φn =
( 1
λn

−1

)
sin(nπx), n ∈ Z∗.

It is easy to see that

• ‖ Φn ‖2
H1

0×L2= 1
(n2+α)π2

(∫ 1

0

(nπ cos(nπx))2 dx+ α

∫ 1

0

sin2(nπx)dx
)

+∫ 1

0

(sin(nπx))2dx = 1

• (Φn,Φm) = 1
nmπ2

∫ 1

0

(nπ cos(nπx)mπ cos(mπx)) dx+

(α+ 1)
∫ 1

0

(sin(nπx) sin(mπx)) dx = δnm.

Hence, (Φn)n∈Z∗ is an orthonormal sequence in H1
0 (0, 1)× L2(0, 1).

The completeness of (Φn)n∈Z∗ in H1
0 (0, 1)×L2(0, 1) is a consequence of the

fact that these are all the eigenfunctions of the compact skew-adjoint operator
A−1. It follows that (Φn)n∈Z∗ is an orthonormal basis in H1

0 (0, 1) × L2(0, 1).
�

Remark 4.4 Since (Φn)n∈Z∗ is an orthonormal basis in H1
0 (0, 1)×L2(0, 1) and

A is an isomorphism from H1
0 (0, 1)×L2(0, 1) to L2(0, 1)×H−1(0, 1) it follows

immediately that (A(Φn))n∈Z∗ is an orthonormal basis in L2(0, 1)×H−1(0, 1).
Moreover (λnΦn)n∈Z∗ is an orthonormal basis in L2(0, 1)×H−1(0, 1). We have
that

• Φ =
∑
n∈Z∗ an Φn ∈ H1

0 (0, 1)× L2(0, 1) if and only if
∑
n∈Z∗ |an|2 <∞.

• Φ =
∑
n∈Z∗ an Φn ∈ L2(0, 1)×H−1(0, 1) if and only if

∑
n∈Z∗

|an|2
|λn|2 <∞.

�

The Fourier expansion of the solution of (111) is given in the following
Lemma.
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Lemma 4.2 The solution of (111) with the initial data

W 0 =
∑
n∈Z∗

an Φn ∈ L2(0, 1)×H−1(0, 1) (116)

is given by

W (t) =
∑
n∈Z∗

an e
λntΦn. (117)

4.3 Observability for the interior controllability of the 1-
D wave equation

Consider an interval J ⊂ [0, 1] with | J |> 0 and a real time T > 2. We address
the following control problem discussed in 2: given (u0, u1) ∈ H1

0 (0, 1)×L2(0, 1)
to find f ∈ L2((0, T )× J) such that the solution u of the problem u′′ − uxx = f1J , x ∈ (0, 1), t ∈ (0, T )

u(t, 0) = u(t, 1) = 0, t ∈ (0, T )
u(0) = u0, u′(0) = u1, x ∈ (0, 1)

(118)

satisfies
u(T, · ) = u′(T, · ) = 0. (119)

According to the developments of Chapter 2, the control problem can be
solved if the following inequalities hold for any (ϕ0, ϕ1) ∈ L2(0, 1)×H−1(0, 1)

C1 ‖ (ϕ0, ϕ1) ‖2L2×H−1≤
∫ T

0

∫
J

| ϕ(t, x) |2 dxdt ≤ C2 ‖ (ϕ0, ϕ1) ‖2L2×H−1

(120)
where ϕ is the solution of the adjoint equation (110).

In this section we prove (120) by using the Fourier expansion of the solutions
of (110). Similar results can be proved for more general potentials depending
on x and t by multiplier methods and sidewiese energy estimates [73] and also
using Carleman inequalities [66], [67].

Remark 4.5 In the sequel when (120) holds , for brevity, we will denote it as
follows:

‖ (ϕ0, ϕ1) ‖2L2(0,1)×H−1(0,1)�
∫ T

0

∫
J

| ϕ(t, x) |2 dxdt. (121)

Theorem 4.4 Let T ≥ 2. There exist two positive constants C1 and C2 such
that (120) holds for any (ϕ0, ϕ1) ∈ L2(0, 1)×H−1(0, 1) and ϕ solution of (110).
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Proof: Firstly, we have that

‖ (ϕ0, ϕ1) ‖2L2×H−1=

∥∥∥∥∥A−1

(∑
n∈Z∗

anΦn
)∥∥∥∥∥

2

H1
0×L2

=

=

∥∥∥∥∥∑
n∈Z∗

an
1
inπ

Φn
∥∥∥∥∥

2

H1
0×L2

=
∑
n∈Z∗

| an |2
1

n2π2
.

Hence,

‖ (ϕ0, ϕ1) ‖2L2×H−1=
∑
n∈Z∗

| an |2
1

n2π2
. (122)

On the other hand, since ϕ ∈ C([0, T ], L2(0, 1)) ⊂ L2((0, T ) × (0, 1)), we
obtain from Fubini’s Theorem that∫ T

0

∫
J

| w(t, x) |2 dxdt =
∫
J

∫ T

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt 1

nπ
sin(nπx)

∣∣∣∣∣
2

dtdx.

Let first T = 2. From the orthogonality of the exponential functions in
L2(0, 2) we obtain that

∫
J

∫ T

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt 1

nπ
sin(nπx)

∣∣∣∣∣
2

dtdx =
∑
n∈Z∗

|an|2

n2π2

∫
J

sin2(nπx)dx.

If T ≥ 2, it is immediate that

∫
J

∫ T

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt

nπ
sin(nπx)

∣∣∣∣∣
2

dtdx ≥
∫
J

∫ 2

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt

nπ
sin(nπx)

∣∣∣∣∣
2

dtdx ≥

≥
∑
n∈Z∗

|an|2

n2π2

∫
J

sin2(nπx)dx.

On the other hand, by using the 2-periodicity in time of the exponentials
and the fact that there exists p > 0 such that 2(p−1) ≤ T < 2p, it follows that

∫
J

∫ T

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt

nπ
sin(nπx)

∣∣∣∣∣
2

dtdx ≤ p

∫
J

∫ 2

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt

nπ
sin(nπx)

∣∣∣∣∣
2

dtdx

= p
∑
n∈Z∗

|an|2

n2π2

∫
J

sin2(nπx)dx ≤ T + 2
2

∑
n∈Z∗

|an|2

n2π2

∫
J

sin2(nπx)dx.
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Hence, for any T ≥ 2, we have that∫
J

∫ T

0

∣∣∣∣∣∑
n∈Z∗

ane
inπt 1

nπ
sin(nπx)

∣∣∣∣∣
2

dxdt �
∑
n∈Z∗

|an|2

n2π2

∫
J

sin2(nπx)dx. (123)

If we denote bn =
∫
J

sin2(nπx)dx then

B = inf
n∈Z∗

bn > 0. (124)

Indeed,

bn =
∫
J

sin2(nπx)dx =
| J |
2

−
∫
J

cos(2nπx)
2

≥ | J |
2

− 1
2 | n | π

.

Since 1/[2 | n | π] tends to zero when n tends to infinity, there exists n0 > 0
such that

bn ≥
| J |
2

− 1
2 | n | π

>
| J |
4

> 0, ∀ | n |> n0.

It follows that
B1 = inf

|n|>n0

bn > 0 (125)

and B > 0 since bn > 0 for all n.
Moreover, since bn ≤ |J | for any n ∈ Z∗, it follows from (123) that

B
∑
n∈Z∗

| an |2

n2π2
≤
∫ T

0

∫
J

| ϕ(t, x) |2 dxdt ≤ |J |
∑
n∈Z∗

| an |2
1

n2π2
. (126)

Finally, (120) follows immediately from (122) and (126). �

As a direct consequence of Theorem 4.4 the following controllability result
holds:

Theorem 4.5 Let J ⊂ [0, 1] with | J |> 0 and a real T ≥ 2. For any (u0, u1) ∈
H1

0 (0, 1) × L2(0, 1) there exists f ∈ L2((0, T ) × J) such that the solution u of
equation (118) satisfies (119).

Remark 4.6 In order to obtain (123) for T > 2, Ingham’s Theorem 4.1 could
also be used. Indeed, the exponents are µn = nπ and they satisfy the uniform
gap condition γ = µn+1−µn = π, for all n ∈ Z∗. It then follows from Ingham’s
Theorem 4.1 that, for any T > 2π/γ = 2, we have (123).

Note that the result may not be ontained in the critical case T = 2 by using
Theorems 4.1 and 4.2. The critical time T = 2 is reached in this case because
of the orthogonality properties of the trigonometric polynomials eiπnt. �
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Consider now the equation u′′ − uxx + αu = f1J , x ∈ (0, 1), t ∈ (0, T )
u(t, 0) = u(t, 1) = 0, t ∈ (0, T )
u(0) = u0, u′(0) = u1, x ∈ (0, 1)

(127)

where α is a positive real number.
The controllability problem may be reduced once more to the proof of the

following fact:

∫
J

∫ T

0

∣∣∣∣∣∑
n∈Z∗

ane
λnt

1
nπ

sin(nπx)

∣∣∣∣∣
2

dtdx �
∑
n∈Z∗

|an|2

|λn|2

∫
J

sin2(nπx)dx (128)

where λn = sgn(n)πi
√
n2 + α are the eigenvalues of problem (127).

Remark that,

γ = inf{λn+1 − λn} = inf

{
(2n+ 1)π√

(n+ 1)2 + α+
√
n2 + α

}
>

π

2
√
α
,

γ∞ = lim infn→∞(λn+1 − λn) = π.

(129)

It follows from the generalized Ingham Theorem 4.3 that, for any T >
2π/γ∞ = 2, (128) holds. Hence, the following controllability result is obtained:

Theorem 4.6 Let J ⊂ [0, 1] with | J |> 0 and T > 2. For any (u0, u1) ∈
H1

0 (0, 1) × L2(0, 1) there exists f ∈ L2((0, T ) × J) such that the solution u of
equation (127) satisfies (119).

Remark 4.7 Note that if we had applied Theorem 4.1 the controllability time
would have been T > 2π/γ ≥ 4

√
α. But Theorem 4.3 gives a control time T

independent of α.
Note that in this case the exponential functions (eλnt)n are not orthogonal in

L2(0, T ). Thus we can not use the same argument as in the proof on Theorem
4.4 and, accordingly, Ingham’s Theorem is needed.

We have considered here the case where α is a positive constant. When α is
negative the complex exponentials entering in the Fourier expansion of solutions
may have eigenfrequencies λn which are not all purely real. In that case we can
not apply directly Theorem 4.3. However, its method of proof allows also to
deal with the situation where a finite number of eigenfrequencies are non real.
Thus,the same result holds for all real α. �
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4.4 Boundary controllability of the 1-D wave equation

In this section we study the following boundary controllability problem: given
T > 2 and (u0, u1) ∈ L2(0, 1) ×H−1(0, 1) to find a control f ∈ L2(0, T ) such
that the solution u of the problem:

u′′ − uxx = 0 x ∈ (0, 1), t ∈ [0, T ]
u(t, 0) = 0 t ∈ [0, T ]
u(t, 1) = f(t) t ∈ [0, T ]
u(0) = u0, u′(0) = u1 x ∈ (0, 1)

(130)

satisfies
u(T, ·) = u′(T, ·) = 0. (131)

From the developments in Chapter 3 it follows that the following inequalities
are a necessary and sufficient condition for the controllability of (130)

C1 ‖ (ϕ0, ϕ1) ‖2H1
0×L2≤

∫ T

0

|ϕx(t, 1)|2 dt ≤ C2 ‖ (ϕ0, ϕ1) ‖2H1
0×L2 (132)

for any (ϕ0, ϕ1) ∈ H1
0 (0, 1)× L2(0, 1) and ϕ solution of (110).

In order to prove (132) we use the Fourier decomposition of (110) given in
the first section.

Theorem 4.7 Let T ≥ 2. There exist two positive constants C1 and C2 such
that (132) holds for any (ϕ0, ϕ1) ∈ H1

0 (0, 1)×L2(0, 1) and ϕ solution of (110).

Proof: If (ϕ0, ϕ1) =
∑
n∈Z∗ anΦn we have that,

‖ (ϕ0, ϕ1) ‖2H1
0×L2=

∥∥∥∥∥∑
n∈Z∗

anΦn

∥∥∥∥∥
2

H1
0×L2

=
∑
n∈Z∗

| an |2 . (133)

On the other hand∫ T

0

|ϕx(t, 1)|2 dt =
∫ T

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt.

By using the orthogonality in L2(0, 2) of the exponentials (einπt)n, we get
that ∫ 2

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt =
∑
n∈Z∗

| an |2 .

If T > 2, it is immediate that∫ T

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt ≥
∫ 2

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt =
∑
n∈Z∗

| an |2 .
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On the other hand, by using the 2-periodicity in time of the exponentials
and the fact that there exists p > 0 such that 2(p−1) ≤ T < 2p, it follows that∫ T

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt ≥ p

∫ 2

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt =

= p
∑
n∈Z∗

| an |2≤
T + 2

2

∑
n∈Z∗

|an|2.

Hence, for any T ≥ 2, we have that∫ T

0

∣∣∣∣∣∑
n∈Z∗

(−1)naneinπt
∣∣∣∣∣
2

dt �
∑
n∈Z∗

| an |2 . (134)

Finally, from (133) and (134) we obtain that∫ 2

0

|ϕx(t, 1)|2 dt �‖ (ϕ0, ϕ1) ‖2H1
0 (0,1)×L2(0,1)

and (132) is proved. �

As a direct consequence of Theorems 4.7 the following controllability result
holds:

Theorem 4.8 Let T ≥ 2. For any (u0, u1) ∈ L2(0, 1)×H−1(0, 1) there exists
f ∈ L2(0, T ) such that the solution u of equation (130) satisfies (131).

As in the context of the interior controllability problem, one may address
the following wave equation with potential

u′′ − uxx + αu = 0, x ∈ (0, 1), t ∈ (0, T )
u(t, 0) = 0 t ∈ [0, T ]
u(t, 1) = f(t) t ∈ [0, T ]
u(0) = u0, u′(0) = u1, x ∈ (0, 1)

(135)

where α is a positive real number.
The controllability problem is then reduced to the proof of the following

inequality: ∫ T

0

∣∣∣∣∣∑
n∈Z∗

(−1)n
nπ

λn
ane

λnt

∣∣∣∣∣
2

dt �
∑
n∈Z∗

|an|2 (136)

where λn = sgn(n)πi
√
n2 + α are the eigenvalues of problem (135).

It follows from (129) and the generalized Ingham’s Theorem 4.3 that, for
any T > 2π/γ∞ = 2, (136) holds. Hence, the following controllability result is
obtained:
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Theorem 4.9 Let T > 2. For any (u0, u1) ∈ L2(0, 1)×H−1(0, 1) there exists
f ∈ L2(0, T ) such that the solution u of equation (135) satisfies (131).

Remark 4.8 As we mentioned above, the classical Ingham inequality in (4.1)
gives a suboptimal result in what concerns the time of control. �

5 Interior controllability of the heat equation

In this chapter the interior controllability problem of the heat equation is stud-
ied. The control is assumed to act on a subset of the domain where the solutions
are defined. The boundary controllability problem of the heat equation will be
considered in the following chapter.

5.1 Introduction

Let Ω ⊂ Rn be a bounded open set with boundary of class C2 and ω a
non empty open subset of Ω. Given T > 0 we consider the following non-
homogeneous heat equation: ut −∆u = f1ω in (0, T )× Ω

u = 0 on (0, T )× ∂Ω
u(x, 0) = u0(x) in Ω.

(137)

In (137) u = u(x, t) is the state and f = f(x, t) is the control function with
a support localized in ω. We aim at changing the dynamics of the system by
acting on the subset ω of the domain Ω.

The heat equation is a model for many diffusion phenomena. For instance
(137) provides a good description of the temperature distribution and evolution
in a body occupying the region Ω. Then the control f represents a localized
source of heat.

The interest on analyzing the heat equation above relies not only in the
fact that it is a model for a large class of physical phenomena but also one
of the most significant partial differential equation of parabolic type. As we
shall see latter on, the main properties of parabolic equations such as time-
irreversibility and regularizing effects have some very important consequences
in control problems.

5.2 Existence and uniqueness of solutions

The following theorem is a consequence of classical results of existence and
uniqueness of solutions of nonhomogeneous evolution equations. All the details
may be found, for instance in [14].
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Theorem 5.1 For any f ∈ L2((0, T )×ω) and u0 ∈ L2(Ω) equation (137) has
a unique weak solution u ∈ C([0, T ], L2(Ω)) given by the variation of constants
formula

u(t) = S(t)u0 +
∫ t

0

S(t− s)f(s)1ωds (138)

where (S(t))t∈R is the semigroup of contractions generated by the heat operator
in L2(Ω).

Moreover, if f ∈ W 1,1((0, T ) × L2(ω)) and u0 ∈ H2(Ω) ∩H1
0 (Ω), equation

(137) has a classical solution u ∈ C1([0, T ], L2(Ω))∩C([0, T ],H2(Ω)∩H0
1 (Ω))

and (137) is verified in L2(Ω) for all t > 0.

Let us recall the classical energy estimate for the heat equation. Multiplying
in (137) by u and integrating in Ω we obtain that

1
2
d

dt

∫
Ω

| u |2 dx+
∫

Ω

| ∇u |2 dx =
∫

Ω

fudx ≤ 1
2

∫
Ω

| f |2 dx+
1
2

∫
Ω

| u |2 dx.

Hence, the scalar function X =
∫
Ω
| u |2 dx satisfies

X ′ ≤ X +
∫

Ω

| f |2 dx

which, by Gronwall’s inequality, gives

X(t) ≤ X(0)et +
∫ t

0

∫
Ω

| f |2 dxds ≤ X(0)et +
∫ T

0

∫
Ω

| f |2 dxdt.

On the other hand, integrating in (137) with respect to t, it follows that

1
2

∫
Ω

u2dx

∣∣∣∣T
0

+
∫ T

0

∫
Ω

| ∇u |2 dxdt ≤ 1
2

∫ T

0

∫
Ω

f2dxdt+
1
2

∫ T

0

∫
Ω

u2dxdt

From the fact that u ∈ L∞(0, T ;L2(Ω)) it follows that u ∈ L2(0, T ;H1
0 (Ω)).

Consequently, whenever u0 ∈ L2(Ω) and f ∈ L2(0, T ;L2(ω)) the solution u
verifies

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

5.3 Controllability problems

Let T > 0 and define, for any initial data u0 ∈ L2(Ω), the set of reachable
states

R(T ;u0) = {u(T ) : u solution of (137) with f ∈ L2((0, T )× ω)}. (139)

By definition, any state in R(T ;u0) is reachable in time T by starting from
u0 at time t = 0 with the aid of a convenient control f .

As in the case of the wave equation several notions of controllability may
be defined.
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Definition 5.1 System (137) is approximately controllable in time T if,
for every initial data u0 ∈ L2(Ω), the set of reachable states R(T ;u0) is dense
in L2(Ω).

Definition 5.2 System (137) is exactly controllable in time T if, for every
initial data u0 ∈ L2(Ω), the set of reachable states R(T ;u0) coincides with
L2(Ω).

Definition 5.3 System (137) is null controllable in time T if, for every ini-
tial data u0 ∈ L2(Ω), the set of reachable states R(T ;u0) contains the element
0.

Remark 5.1 Let us make the following remarks:

• One of the most important properties of the heat equation is its regular-
izing effect. When Ω \ ω 6= ∅, the solutions of (137) belong to C∞(Ω \ ω)
at time t = T . Hence, the restriction of the elements of R(T, u0) to Ω \ω
are C∞ functions. Then, the trivial case ω = Ω (i. e. when the control
acts on the entire domain Ω) being excepted, exact controllability may not
hold. In this sense, the notion of exact controllability is not very relevant
for the heat equation. This is due to its strong time irreversibility of the
system under consideration.

• It is easy to see that if null controllability holds, then any initial data may
be led to any final state of the form S(T )v0 with v0 ∈ L2(Ω), i. e. to the
range of the semigroup in time t = T .

Indeed, let u0, v0 ∈ L2(Ω) and remark that R(T ;u0 − v0) = R(T ;u0) −
S(T )v0. Since 0 ∈ R(T ;u0 − v0), it follows that S(T )v0 ∈ R(T ;u0).

It is known that the null controllability holds for any time T > 0 and
open set ω on which the control acts (see, for instance, [29]). The null
controllability property holds in fact in a much more general setting of
semilinear heat equations ([23] and [24]).

• Null controllability implies approximate controllability. Indeed, we have
shown that, whenever null controllability holds, S(T )[L2(Ω)] ⊂ R(T ;u0)
for all u0 ∈ L2(Ω). Taking into account that all the eigenfunctions of the
laplacian belong to S(T )[L2(Ω)] we deduce that the set of reachable states
is dense and, consequently, that approximate controllability holds.

• The problem of approximate controllability may be reduced to the case
u0 ≡ 0. Indeed, the linearity of the system we have considered implies
that R(T, u0) = R(T, 0) + S(T )u0.
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• Approximate controllability together with uniform estimates on the ap-
proximate controls as ε → 0 may led to null controllability properties.
More precisely, given u1, we have that u1 ∈ R(T, u0) if and only if there
exists a sequence (fε)ε>0 of controls such that ||u(T )− u1||L2(Ω) ≤ ε and
(fε)ε>0 is bounded in L2(ω × (0, T )). Indeed in this case any weak limit
in L2(ω×(0, T )) of the sequence (fε)ε>0 of controls gives an exact control
which makes that u(T ) = u1. �

In this chapter we limit ourselves to study the approximate controllability
problem. The main ingredients we shall develop are of variational nature.
The problem will be reduced to prove unique continuation properties. Null-
controllability will be addressed in the following chapter.

5.4 Approximate controllability of the heat equation

Given any T > 0 and any nonempty open subset ω of Ω we analyze in this
section the approximate controllability problem for system (137).

Theorem 5.2 Let ω be an open nonempty subset of Ω and T > 0. Then (137)
is approximately controllable in time T .

Remark 5.2 The fact that the heat equation is approximately controllable in
arbitrary time T and with control in any subset of Ω is due to the infinite
velocity propagation which characterizes the heat equation.

Nevertheless, the infinite velocity of propagation by itself does not allow
to deduce quantitative estimates for the norm of the controls. Indeed, as it
was proved in [50], the heat equation in an infinite domain (0,∞) of R is
approximately controllable but, in spite of the infinite velocity of propagation,
it is not null-controllable. �

Remark 5.3 There are several possible proofs for the approximate controlla-
bility property. We shall present here two of them. The first one is presented
below and uses Hahn-Banach Theorem. The second one is constructive and uses
a variational technique similar to the one we have used for the wave equation.
We give it in the following section. �

Proof of the Theorem 5.2: As we have said before, it is sufficient to consider
only the case u0 = 0. Thus we assume that u0 = 0.

From Hahn-Banach Theorem, R(T, u0) is dense in L2(Ω) if the following

property holds: There is no ϕT ∈ L2(Ω), ϕT 6= 0 such that
∫

Ω

u(T )ϕT dx = 0

for all u solution of (137) with f ∈ L2(ω × (0, T )).
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Accordingly, the proof can be reduced to showing that, if ϕT ∈ L2(Ω) is
such that

∫
Ω
u(T )ϕT dx = 0, for all solution u of (137) then ϕT = 0.

To do this we consider the adjoint equation: ϕt + ∆ϕ = 0 in (0, T )× Ω
ϕ |∂Ω= 0 on (0, T )× ∂Ω
ϕ(T ) = ϕT in Ω.

(140)

We multiply the equation satisfied by ϕ by u and then the equation of u
by ϕ. Integrating by parts and taking into account that u0 ≡ 0 the following
identity is obtained∫ T

0

∫
ω

fϕdxdt =
∫

Ω×(0,T )

(ut −∆u)ϕdxdt = −
∫

Ω×(0,T )

(ϕt + ∆ϕ)udxdt+

+
∫

Ω

uϕdx

∣∣∣∣T
0

+
∫ T

0

∫
∂Ω

(
−∂u
∂n

ϕ+ u
∂ϕ

∂n

)
dσdt =

∫
Ω

u(T )ϕT dx.

Hence,
∫
Ω
u(T )ϕT dx = 0 if and only if

∫ T

0

∫
ω

fϕdxdt = 0. If the later

relation holds for any f ∈ L2(ω × (0, T )), we deduce that ϕ ≡ 0 in ω × (0, T ).
Let us now recall the following result whose proof may be found in [33]:

Holmgren Uniqueness Theorem: Let P be a differential operator with con-
stant coefficients in Rn. Let u be a solution of Pu = 0 in Q1 where Q1 is an
open set of Rn. Suppose that u = 0 in Q2 where Q2 is an open nonempty subset
of Q1.

Then u = 0 in Q3, where Q3 is the open subset of Q1 which contains Q2

and such that any characteristic hyperplane of the operator P which intersects
Q3 also intersects Q1.

In our particular case P = ∂t + ∆x is a differential operator in Rn+1 and
its principal part is Pp = ∆x. A hyperplane of Rn+1 is characteristic if its
normal vector (ξ, ζ) ∈ Rn+1 is a zero of Pp, i. e. of Pp(ξ, ζ) = |ξ|2. Hence,
normal vectors are of the form (0,±1) and the characteristic hyperplanes are
horizontal, parallel to the hyperplane t = 0.

Consequently, for the adjoint heat equation under consideration (140), we
can apply Holmgren’s Uniqueness Theorem with Q1 = (0, T )×Ω, Q2 = (0, T )×
ω and Q3 = (0, T ) × Ω. Then the fact that ϕ = 0 in (0, T ) × ω implies ϕ = 0
in (0, T )× Ω. Consequently ϕT ≡ 0 and the proof is finished. �

5.5 Variational approach to approximate controllability

In this section we give a new proof of the approximate controllability result
Theorem 5.2. This proof has the advantage of being constructive and it allows
to compute explicitly approximate controls.
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Let us fix the control time T > 0 and the initial datum u0 = 0. Let
u1 ∈ L2(Ω) be the final target and ε > 0 be given. Recall that we are looking
for a control f such that the solution of (137) satisfies

||u(T )− u1||L2(Ω) ≤ ε. (141)

We define the following functional:

Jε : L2(Ω) → R (142)

Jε(ϕT ) =
1
2

∫ T

0

∫
ω

ϕ2dxdt+ ε ‖ ϕT ‖L2(Ω) −
∫

Ω

u1ϕT dx (143)

where ϕ is the solution of the adjoint equation (140) with initial data ϕT .
The following Lemma ensures that the minimum of Jε gives a control for

our problem.

Lemma 5.1 If ϕ̂T is a minimum point of Jε in L2(Ω) and ϕ̂ is the solution
of (140) with initial data ϕ̂T , then f = ϕ̂|ω is a control for (137), i. e. (141)
is satisfied.

Proof: In the sequel we simply denote Jε by J .
Suppose that J attains its minimum value at ϕ̂T ∈ L2(Ω). Then for any

ψ0 ∈ L2(Ω) and h ∈ R we have J(ϕ̂T ) ≤ J (ϕ̂T + hψ0) . On the other hand,

J (ϕ̂T + hψ0) =

=
1
2

∫ T

0

∫
ω

| ϕ̂+ hψ |2 dxdt+ ε ‖ ϕ̂T + hψ0 ‖L2(Ω) −
∫

Ω

u1(ϕ̂T + hψ0)dx

=
1
2

∫ T

0

∫
ω

| ϕ̂ |2 dxdt+
h2

2

∫ T

0

∫
ω

| ψ |2 dxdt+ h

∫ T

0

∫
ω

ϕ̂ψdxdt+

+ε ‖ ϕ̂T + hψ0 ‖L2(Ω) −
∫

Ω

u1(ϕ̂T + hψ0)dx.

Thus

0 ≤ ε
[
‖ ϕ̂T + hψ0 ‖L2(Ω) − ‖ ϕ̂T ‖L2(Ω)

]
+
h2

2

∫
(0,T )×ω

ψ2dxdt

+h

[∫ T

0

∫
ω

ϕ̂ψdxdt−
∫

Ω

u1ψ0dx

]
.

Since
‖ ϕ̂T + hψ0 ‖L2(Ω) − ‖ ϕ̂T ‖L2(Ω)≤ |h| ‖ ψ0 ‖L2(Ω)
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we obtain

0 ≤ ε |h| ‖ ψ0 ‖L2(Ω) +
h2

2

∫ T

0

∫
ω

ψ2dxdt+ h

∫ T

0

∫
ω

ϕ̂ψdxdt− h

∫
Ω

u1ψ0dx

for all h ∈ R and ψ0 ∈ L2(Ω).
Dividing by h > 0 and by passing to the limit h→ 0 we obtain

0 ≤ ε ‖ ψ0 ‖L2(Ω) +
∫ T

0

∫
ω

ϕ̂ψdxdt−
∫

Ω

u1ψ0dx. (144)

The same calculations with h < 0 gives that∣∣∣∣∣
∫ T

0

∫
ω

ϕ̂ψdxdt−
∫

Ω

u1ψ0dx

∣∣∣∣∣ ≤ ε ‖ ψ0 ‖ ∀ψ0 ∈ L2(Ω). (145)

On the other hand, if we take the control f = ϕ̂ in (137), by multiplying in
(137) by ψ solution of (140) and by integrating by parts we get that∫ T

0

∫
ω

ϕ̂ψdxdt =
∫

Ω

u(T )ψ0dx. (146)

From the last two relations it follows that

‖
∫

Ω

(u(T )− u1)ψ0dx‖ ≤ ε||ψ0||L2(Ω), ∀ψ0 ∈ L2(Ω) (147)

which is equivalent to
||u(T )− u1||L2(Ω) ≤ ε.

The proof of the Lemma is now complete. �

Let us now show that J attains its minimum in L2(Ω).

Lemma 5.2 There exists ϕ̂T ∈ L2(Ω) such that

J(ϕ̂T ) = min
ϕT∈L2(Ω)

J(ϕT ). (148)

Proof: It is easy to see that J is convex and continuous in L2(Ω). By
Theorem 2.3, the existence of a minimum is ensured if J is coercive, i. e.

J(ϕT ) →∞ when ||ϕT ||L2(Ω) →∞. (149)

In fact we shall prove that

lim inf
||ϕT ||L2(Ω)→∞

J(ϕT )/||ϕT ||L2(Ω) ≥ ε. (150)
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Evidently, (150) implies (149) and the proof of the Lemma is complete.
In order to prove (150) let (ϕT,j) ⊂ L2(Ω) be a sequence of initial data for

the adjoint system with ‖ ϕT,j ‖L2(Ω)→∞. We normalize them

ϕ̃T,j = ϕT,j/ ‖ ϕT,j ‖L2(Ω),

so that ‖ ϕ̃T,j ‖L2(Ω)= 1.
On the other hand, let ϕ̃j be the solution of (140) with initial data ϕ̃T,j .

Then

J(ϕT,j)/ ‖ ϕT,j ‖L2(Ω)=
1
2
‖ ϕT,j ‖L2(Ω)

∫ T

0

∫
ω

| ϕ̃j |2 dxdt+ ε−
∫

Ω

u1ϕ̃T,jdx.

The following two cases may occur:

1) lim inf
j→∞

∫ T

0

∫
ω

| ϕ̃j |2> 0. In this case we obtain immediately that

J(ϕT,j)/ ‖ ϕT,j ‖L2(Ω)→∞.

2) lim inf
j→∞

∫ T

0

∫
ω

| ϕ̃j |2= 0. In this case since ϕ̃T,j is bounded in L2(Ω),

by extracting a subsequence we can guarantee that ϕ̃T,j ⇀ ψ0 weakly in
L2(Ω) and ϕ̃j ⇀ ψ weakly in L2(0, T ;H1

0 (Ω))∩H1(0, T ;H−1(Ω)), where
ψ is the solution of (140) with initial data ψ0 at t = T . Moreover, by
lower semi-continuity,∫ T

0

∫
ω

ψ2dxdt ≤ lim inf
j→∞

∫ T

0

∫
ω

| ϕ̃j |2 dxdt = 0

and therefore ψ = 0 en ω × (0, T ).

Holmgren Uniqueness Theorem implies that ψ ≡ 0 in Ω × (0, T ) and
consequently ψ0 = 0.

Therefore, ϕ̃T,j ⇀ 0 weakly in L2(Ω) and consequently
∫
Ω
u1ϕ̃T,jdx tends

to 0 as well.

Hence

lim inf
j→∞

J(ϕT,j)
‖ ϕT,j ‖

≥ lim inf
j→∞

[ε−
∫

Ω

u1ϕ̃T,jdx] = ε,

and (150) follows. �
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Remark 5.4 Lemmas 5.1 and 5.2 give a second proof of Theorem 5.2. This
approach does not only guarantee the existence of a control but also provides a
method to obtain the control by minimizing a convex, continuous and coercive
functional in L2(Ω).

In the proof of the coercivity, the relevance of the term ε||ϕT ||L2(Ω) is clear.
Indeed, the coercivity of J depends heavily on this term. This is not only for
technical reasons. The existence of a minimum of J with ε = 0 implies the
existence of a control which makes u(T ) = u1. But this is not true unless u1 is
very regular in Ω \ ω. Therefore, for general u1 ∈ L2(Ω), the term ε||ϕT ||L2(Ω)

is needed.
Note that both proofs are based on the unique continuation property which

guarantees that if ϕ is a solution of the adjoint system such that ϕ = 0 in
ω × (0, T ), then ϕ ≡ 0. As we have seen, this property is a consequence of
Holmgren Uniqueness Theorem. �

The second proof, based on the minimization of J , with some changes on
the definition of the functional as indicated in 1, allows proving approximate
controllability by means of other controls, for instance, of bang-bang form. We
address these variants in the following sections.

5.6 Finite-approximate control

Let E be a subspace of L2(Ω) of finite dimension and ΠE be the orthogonal
projection over E. As a consequence of the approximate controllability prop-
erty in Theorem 5.2 the following stronger result may be proved: given u0 and
u1 in L2(Ω) and ε > 0 there exists a control f such that the solution of (137)
satisfies simultaneously

ΠE(u(T )) = ΠE(u1), ‖ u(T )− u1 ‖L2(Ω)≤ ε. (151)

This property not only says that the distance between u(T ) and the target
u1 is less that ε but also that the projection of u(T ) and u1 over E coincide.

This property, introduced in [71], will be called finite-approximate con-
trollability. It may be proved easily by taking into account the following
property of Hilbert spaces: If L : E → F is linear and continuous between the
Hilbert spaces E and F and the range of L is dense in F , then, for any finite
set f1, f2, . . . , fN ∈ F , the set {Le : (Le, fj)F = 0 ∀j = 1, 2, . . . , N} is dense
in the orthogonal of Span{f1, f2, . . . , fN}.

Nevertheless, as we have said before, this result may also be proved directly,
by considering a slightly modified form of the functional J used in the second
proof of Theorem 5.2. We introduce

JE(ϕT ) =
1
2

∫ T

0

∫
ω

ϕ2dxdt+ ε ‖ (I −ΠE)ϕT ‖L2(Ω) −
∫

Ω

u1ϕT dx.
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The functional JE is again convex and continuous in L2(Ω). Moreover, it is
coercive. The proof of the coercivity of JE is similar to that of J . It is sufficient
to note that if ϕ̂T,j tends weakly to zero in L2(Ω), then ΠE(ϕ̂T,j) converges
(strongly) to zero in L2(Ω).

Therefore ‖ (I − ΠE)ϕ̂T,j ‖L2(Ω) / ‖ ϕ̂T,j ‖L2(Ω) tends to 1. According to
this, the new functional JE satisfies the coercivity property (150).

It is also easy to see that the minimum of JE gives the finite-approximate
control we were looking for.

5.7 Bang-bang control

In the study of finite dimensional systems we have seen that one may find
“bang-bang” controls which take only two values ±λ for some λ > 0.

In the case of the heat equation it is also easy to construct controls of this
type. In fact a convenient change in the functional J will ensure the existence
of “bang-bang” controls. We consider:

Jbb(ϕT ) =
1
2

(∫ T

0

∫
ω

| ϕ | dxdt

)2

+ ε ‖ ϕT ‖L2(Ω) −
∫

Ω

u1ϕT dx.

Remark that the only change in the definition of Jbb is in the first term
in which the norm of ϕ in L2(ω × (0, T )) has been replaced by its norm in
L1((0, T )× ω).

Once again we are dealing with a convex and continuous functional in L2(Ω).
The proof of the coercivity of Jbb is the same as in the case of the functional
J . We obtain that:

lim inf
‖ϕT ‖L2(Ω)→∞

Jbb(ϕT )
‖ ϕT ‖ L2(Ω)

≥ ε.

Hence, Jbb attains a minimum in some ϕ̂T of L2(Ω). It is easy to see that,
if ϕ̂ is the corresponding solution of the adjoint system with ϕ̂T as initial data,
then there exists f ∈

∫
ω

∫ T
0
|ϕ̂|dx sgn(ϕ̂) such that the solution of (137) with

this control satisfies ||u(T )− u1|| ≤ ε.
On the other hand, since ϕ̂ is a solution of the adjoint heat equation, it is

real analytic in Ω × (0, T ). Hence, the set {t : ϕ̂ = 0} is of zero measure in
Ω× (0, T ). Hence, we may consider

f =
∫
ω

∫ T

0

|ϕ̂|dxdt sgn(ϕ̂) (152)

which represents a bang-bang control. Remark that the sign of the control
changes when the sign of ϕ̂ changes. Consequently, the geometry of the sets
where the control has a given sign can be quite complex.
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Note also that the amplitude of the bang-bang control is
∫
ω

∫ T
0
|ϕ̂|dxdt

which, evidently depends of the distance from the final target u1 to the uncon-
trolled final state S(T )u0 and of the control time T .

Remark 5.5 As it was shown in [18], the bang-bang control obtained by mini-
mizing the functional Jbb is the one of minimal norm in L∞((0, T )×ω) among
all the admissible ones. The control obtained by minimizing the functional J
has the minimal norm in L2((0, T )× ω). �

Remark 5.6 The problem of finding bang-bang controls guaranteeing the fin-
ite-approximate property may also be considered. It is sufficient to take the
following combination of the functionals JE and Jbb:

Jbb,E(ϕT ) =
1
2

(∫ T

0

∫
ω

| ϕ | dxdt

)2

+ ε ‖ (I −ΠE)ϕT ‖L2(Ω) −
∫

Ω

u1ϕT dx.

�

5.8 Comments

The null controllability problem for system (137) is equivalent to the following
observability inequality for the adjoint system (140):

‖ ϕ(0) ‖2L2(Ω)≤ C

∫ T

0

∫
ω

ϕ2dxdt, ∀ϕ0 ∈ L2(Ω). (153)

Once (153) is known to hold one can obtain the control with minimal L2-
norm among the admissible ones. To do that it is sufficient to minimize the
functional

J(ϕ0) =
1
2

∫ T

0

∫
ω

ϕ2dxdt+
∫

Ω

ϕ(0)u0dx (154)

over the Hilbert space

H = {ϕ0 : the solution ϕ of (140) satisfies
∫ T

0

∫
ω

ϕ2dxdt <∞}.

To be more precise, H is the completion of L2(Ω) with respect to the norm
[
∫ T
0

∫
ω
ϕ2dxdt]1/2. In fact, H is much larger than L2(Ω). We refer to [23] for

precise estimates on the nature of this space.
Observe that J is convex and continuous in H. On the other hand (153)

guarantees the coercivity of J and the existence of its minimizer.
Due to the irreversibility of the system, (153) is not easy to prove. For

instance, multiplier methods do not apply. Let us mention two different ap-
proaches used for the proof of (153).
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1. Results based on the observation of the wave or elliptic equa-
tions: In [56] it was shown that if the wave equation is exactly control-
lable for some T > 0 with controls supported in ω, then the heat equation
(137) is null controllable for all T > 0 with controls supported in ω. As
a consequence of this result and in view of the controllability results for
the wave equation, it follows that the heat equation (137) is null control-
lable for all T > 0 provided ω satisfies the geometric control condition.
However, the geometric control condition does not seem to be natural at
all in the context of the heat equation.

Later on, Lebeau and Robbiano [42] proved that the heat equation (137)
is null controllable for every open, non-empty subset ω of Ω and T >
0. This result shows, as expected, that the geometric control condition
is unnecessary in the context of the heat equation. A simplified proof
of it was given in [43] where the linear system of thermoelasticity was
addressed. The main ingredient in the proof is the following observability
estimate for the eigenfunctions {ψj} of the Laplace operator

∫
ω

∣∣∣∣∣∣
∑
λj≤µ

ajψj(x)

∣∣∣∣∣∣
2

dx ≥ C1e
−C2

√
µ
∑
λj≤µ

| aj |2 (155)

which holds for any {aj} ∈ `2 and for all µ > 0 and where C1, C2 > 0 are
two positive constants.

This result was implicitly used in [42] and it was proved in [43] by means
of Carleman’s inequalities for elliptic equations.

2. Carleman inequalities for parabolic equations: The null control-
lability of the heat equation with variable coefficients and lower order
time-dependent terms has been studied by Fursikov and Imanuvilov (see
for instance [16], [26], [27], [28], [34] and [35]). Their approach is based
on the use of the Carleman inequalities for parabolic equations and is dif-
ferent to the one we have presented above. In [29], Carleman estimates
are systematically applied to solve observability problem for linearized
parabolic equations.

In [21] the boundary null controllability of the heat equation was proved in
one space dimension using moment problems and classical results on the linear
independence in L2(0, T ) of families of real exponentials. We shall describe this
method in the next chapter.
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6 Boundary controllability of the heat equation

In this chapter the boundary null-controllability problem of the heat equation
is studied. We do it by reducing the control problem to an equivalent problem
of moments. The latter is solved with the aid of a biorthogonal sequence to
a family of real exponential functions. This technique was used in the study
of several control problems (the heat equation being one of the most relevant
examples of application) in the late 60’s and early 70’s by R. D. Russell and
H. O. Fattorini (see, for instance, [21] and [22]).

6.1 Introduction

Given T > 0 arbitrary, u0 ∈ L2(0, 1) and f ∈ L2(0, T ) we consider the following
non-homogeneous 1-D problem: ut − uxx = 0 x ∈ (0, 1), t ∈ (0, T )

u(t, 0) = 0, u(t, 1) = f(t) t ∈ (0, T )
u(0, x) = u0(x) x ∈ (0, 1).

(156)

In (156) u = u(x, t) is the state and f = f(t) is the control function which
acts on the extreme x = 1. We aim at changing the dynamics of the system by
acting on the boundary of the domain (0, 1).

6.2 Existence and uniqueness of solutions

The following theorem is a consequence of classical results of existence and
uniqueness of solutions of nonhomogeneous evolution equations. All the details
may be found, for instance in [47].

Theorem 6.1 For any f ∈ L2(0, T ) and u0 ∈ L2(Ω) equation (156) has a
unique weak solution u ∈ C([0, T ],H−1(Ω)).

Moreover, the map {u0, f} → {u} is linear and there exists C = C(T ) > 0
such that

||u||L∞(0,T ;H−1(Ω)) ≤ C
(
||u0||L2(Ω) + ||f ||L2(0,T )

)
. (157)

6.3 Controllability and problem of moments

In this section we introduce several notions of controllability.
Let T > 0 and define, for any initial data u0 ∈ L2(Ω), the set of reachable

states

R(T ;u0) = {u(T ) : u solution of (156) with f ∈ L2(0, T )}. (158)

An element of R(T, u0) is a state of (156) reachable in time T by starting
from u0 with the aid of a control f .

As in the previous chapter, several notions of controllability may be defined.
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Definition 6.1 System (156) is approximately controllable in time T if,
for every initial data u0 ∈ L2(Ω), the set of reachable states R(T ;u0) is dense
in L2(Ω).

Definition 6.2 System (156) is exactly controllable in time T if, for every
initial data u0 ∈ L2(Ω), the set of reachable states R(T ;u0) coincides with
L2(Ω).

Definition 6.3 System (156) is null controllable in time T if, for every ini-
tial data u0 ∈ L2(Ω), the set of reachable states R(T ;u0) contains the element
0.

Remark 6.1 Note that the regularity of solutions stated above does not guaran-
tee that u(T ) belongs to L2(Ω). In view of this it could seem that the definitions
above do not make sense. Note however that, due to the regularizing effect of
the heat equation, if the control f vanishes in an arbitrarily small neighborhood
of t = T then u(T ) is in C∞ and in particular in L2(Ω). According to this,
the above definitions make sense by introducing this minor restrictions on the
controls under consideration. �

Remark 6.2 Let us make the following remarks, which are very close to those
we did in the context of interior control:

• The linearity of the system under consideration implies that R(T, u0) =
R(T, 0) + S(T )u0 and, consequently, without loss of generality one may
assume that u0 = 0.

• Due to the regularizing effect the solutions of (156) are in C∞ far away
from the boundary at time t = T . Hence, the elements of R(T, u0) are
C∞ functions in [0, 1). Then, exact controllability may not hold.

• It is easy to see that if null controllability holds, then any initial data may
be led to any final state of the form S(T )v0 with v0 ∈ L2(Ω).

Indeed, let u0, v0 ∈ L2(Ω) and remark that R(T ;u0 − v0) = R(T ;u0) −
S(T )v0. Since 0 ∈ R(T ;u0 − v0), it follows that S(T )v0 ∈ R(T ;u0).

• Null controllability implies approximate controllability. Indeed we have
that S(T )[L2(Ω)] ⊂ R(T ;u0) and S(T )[L2(Ω)] is dense in L2(Ω).

• Note that u1 ∈ R(T, u0) if and only if there exists a sequence (fε)ε>0

of controls such that ||u(T ) − u1||L2(Ω) ≤ ε and (fε)ε>0 is bounded in
L2(0, T ). Indeed, in this case, any weak limit in L2(0, T ) of the sequence
(fε)ε>0 gives an exact control which makes that u(T ) = u1. �
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Remark 6.3 As we shall see, null controllability of the heat equation holds
in an arbitrarily small time. This is due to the infinity speed of propagation.
It is important to underline, however, that, despite of the infinite speed of
propagation, the null controllability of the heat equation does not hold in an
infinite domain. We refer to [50] for a further discussion of this issue.

The techniques we shall develop in this section do not apply in unbounded
domains. Although, as shown in [50], using the similarity variables, one can
find a spectral decomposition of solutions of the heat equation on the whole or
half line, the spectrum is too dense and biorthogonal families do not exist. �

In this chapter the null-controllability problem will be considered. Let us
first give the following characterization of the null-controllability property of
(156).

Lemma 6.1 Equation (156) is null-controllable in time T > 0 if and only if,
for any u0 ∈ L2(0, 1) there exists f ∈ L2(0, T ) such that the following relation
holds ∫ T

0

f(t)ϕx(t, 1)dt =
∫ 1

0

u0(x)ϕ(0, x)dx, (159)

for any ϕT ∈ L2(0, 1), where ϕ(t, x) is the solution of the backward adjoint
problem  ϕt + ϕxx = 0 x ∈ (0, 1), t ∈ (0, T )

ϕ(t, 0) = ϕ(t, 1) = 0 t ∈ (0, T )
ϕ(T, x) = ϕT (x) x ∈ (0, 1).

(160)

Proof: Let f ∈ L2(0, T ) be arbitrary and u the solution of (156). If ϕT ∈
L2(0, 1) and ϕ is the solution of (160) then, by multiplying (156) by ϕ and by
integrating by parts we obtain that

0 =
∫ T

0

∫ 1

0

(ut − uxx)ϕdxdt =
∫ 1

0

uϕdx

∣∣∣∣T
0

+
∫ T

0

(−uxϕ+ uϕx)dt

∣∣∣∣∣
1

0

+

+
∫ T

0

∫ 1

0

u(−ϕt − ϕxx)dxdt =
∫ 1

0

uϕdx

∣∣∣∣T
0

+
∫ T

0

f(t)ϕx(t, 1)dt.

Consequently∫ T

0

f(t)ϕx(t, 1)dt =
∫ 1

0

u0(x)ϕ(0, x)dx−
∫ 1

0

u(T, x)ϕT (x)dx. (161)

Now, if (159) is verified, it follows that
∫ 1

0
u(T, x)ϕT (x)dx = 0, for all

ϕ1 ∈ L2(0, 1) and u(T ) = 0.



74 Controllability of Partial Differential Equations

Hence, the solution is controllable to zero and f is a control for (156).
Reciprocally, if f is a control for (156), we have that u(T ) = 0. From (161)

it follows that (159) holds and the proof finishes. �

From the previous Lemma we deduce the following result:

Proposition 6.1 Equation (156) is null-controllable in time T > 0 if and only
if for any u0 ∈ L2(0, 1), with Fourier expansion

u0(x) =
∑
n≥1

an sin(πnx),

there exists a function w ∈ L2(0, T ) such that,∫ T

0

w(t)e−n
2π2tdt = (−1)n

an
2nπ

e−n
2π2T , n = 1, 2, .... (162)

Remark 6.4 Problem (162) is usually refered to as problem of moments.

Proof: From the previous Lemma we know that f ∈ L2(0, T ) is a control
for (156) if and only if it satisfies (159). But, since (sin(nπx))n≥1 forms an
orthogonal basis in L2(0, 1), (159) is verified if and only if it is verified by
ϕ1
n = sin(nπx), n = 1, 2, ....

If ϕ1
n = sin(nπx) then the corresponding solution of (160) is ϕ(t, x) =

e−n
2π2(T−t) sin(nπx) and from (159) we obtain that∫ T

0

f(t)(−1)nnπe−n
2π2(T−t) =

an
2
e−n

2π2T .

The proof ends by taking w(t) = f(T − t). �

The control property has been reduced to the problem of moments (162).
The latter will be solved by using biorthogonal techniques. The main ideas are
due to R.D. Russell and H.O. Fattorini (see, for instance, [21] and [22]).

The eigenvalues of the heat equation are λn = n2π2, n ≥ 1. Let Λ =(
e−λnt

)
n≥1

be the family of the corresponding real exponential functions.

Definition 6.4 (θm)m≥1 is a biorthogonal sequence to Λ in L2(0, T ) if and
only if ∫ T

0

e−λntθm(t)dt = δnm, ∀n,m = 1, 2, ....

If there exists a biorthogonal sequence (θm)m≥1, the problem of moments
(162) may be solved immediately by setting

w(t) =
∑
m≥1

(−1)m
am

2mπ
e−m

2π2T θm(t). (163)
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As soon as the series converges in L2(0, T ), this provides the solution to
(162).

We have the following controllability result:

Theorem 6.2 Given T > 0, suppose that there exists a biorthogonal sequence
(θm)m≥1 to Λ in L2(0, T ) such that

||θm||L2(0,T ) ≤Meωm, ∀m ≥ 1 (164)

where M and ω are two positive constants.
Then (156) is null-controllable in time T .

Proof: From Proposition 6.1 it follows that it is sufficient to show that for
any u0 ∈ L2(0, 1) with Fourier expansion

u0 =
∑
n≥1

an sin(nπx),

there exists a function w ∈ L2(0, T ) which verifies (162).
Consider

w(t) =
∑
m≥1

(−1)m
am

2mπ
e−m

2π2T θm(t). (165)

Note that the series which defines w is convergent in L2(0, T ). Indeed,∑
m≥1

∣∣∣∣∣∣(−1)m
am

2mπ
e−m

2π2T θm

∣∣∣∣∣∣
L2(0,T )

=
∑
m≥1

|am|
2mπ

e−m
2π2T ||θm||L2(0,T ) ≤

≤M
∑
m≥1

|am|
2mπ

e−m
2π2T+ωm <∞

where we have used the estimates (164) of the norm of the biorthogonal se-
quence (θm).

On the other hand, (165) implies that w satisfies (162) and the proof finishes.
�

Theorem 6.2 shows that, the null-controllability problem (156) is solved if
we prove the existence of a biorthogonal sequence (θm)m≥1 to Λ in L2(0, T )
which verifies (164). The following sections are devoted to accomplish this task.

6.4 Existence of a biorthogonal sequence

The existence of a biorthogonal sequence to the family Λ is a consequence of
the following Theorem (see, for instance, [57]).
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Theorem 6.3 (Münz) Let 0 < µ1 ≤ µ2 ≤ ... ≤ µn ≤ ... be a sequence of
real numbers. The family of exponential functions (e−µnt)n≥1 is complete in
L2(0, T ) if and only if ∑

n≥1

1
µn

= ∞. (166)

Given any T > 0, from Münz’s Theorem we obtain that the space generated
by the family Λ is a proper space of L2(0, T ) since∑

n≥1

1
λn

=
∑
n≥1

1
n2π2

<∞.

Let E(Λ, T ) be the space generated by Λ in L2(0, T ) and E(m,Λ, T ) be the
subspace generated by

(
e−λnt

)
n≥1
n6=m

in L2(0, T ).

We also introduce the notation pn(t) = e−λnt.

Theorem 6.4 Given any T > 0, there exists a unique sequence (θm(T, · ))m≥1,
biorthogonal to the family Λ, such that

(θm(T, · ))m≥1 ⊂ E(Λ, T ).

Moreover, this biorthogonal sequence has minimal L2(0, T )-norm.

Proof: Since Λ is not complete in L2(0, T ), it is also minimal. Thus, pm /∈
E(m,Λ, T ), for each m ∈ I.

Let rm be the orthogonal projection pm over the space E(m,Λ, T ) and
define

θm(T, · ) =
pm − rm

||pm − rm||2L2(0,T )

. (167)

From the projection properties (see [10], pp. 79-80), it follows that

1. rm ∈ E(m,Λ, T ) verifies ||pm(t) − rm(t)||L2(0,T ) = minr∈E(m,Λ,T ) ||pm −
r||L2(0,T )

2. (pm − rm) ⊥ E(m,Λ, T )

3. (pm − rm) ⊥ pn ∈ E(m,Λ, T ), ∀n 6= m

4. (pm − rm) ⊥ rm ∈ E(m,Λ, T ).

From the previous properties and (167) we deduce that

1.
∫ T
0
θm(T, t)pn(t)dt = δm,n

2. θm(T, · ) = pm−rm

||pm−rm||2 ∈ E(Λ, T ).
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Thus, (167) gives a biorthogonal sequence (θm(T, · ))m≥1 ⊂ E(Λ, T ) to the
family Λ.

The uniqueness of the biorthogonal sequence is obtained immediately. In-
deed, if (θ′m)m≥1 ⊂ E(Λ, T ) is another biorthogonal sequence to the family Λ,
then

(θm − θ′m) ∈ E(Λ, T )
pn ⊥ (θm − θ′m), ∀n ≥ 1

}
⇒ θm − θ′m = 0

where we have taken into account that (pm)m≥1 is complete in E(Λ, T ).
To prove the minimality of the norm of (θm(T, · ))m≥1, let us consider any

other biorthogonal sequence (θ′m)m≥1 ⊂ L2(0, T ).
E(Λ, T ) being closed in L2(0, T ), its orthogonal complement, E(Λ, T )⊥, is

well defined. Thus, for any m ≥ 1, there exists a unique qm ∈ E(Λ, T )⊥ such
that θ′m = θm + qm.

Finally,

||θ′m||2 = ||θm + qm||2 = ||θm||2 + ||qm||2 ≥ ||θm||2

and the proof ends. �

Remark 6.5 The previous Theorem gives a biorthogonal sequence of minimal
norm. This property is important since the convergence of the series of (163)
depends directly of these norms. �

The existence of a biorthogonal sequence (θm)m≥1 to the family Λ being
proved, the next step is to evaluate its L2(0, T )-norm. This will be done in two
steps. First for the case T = ∞ and next for T <∞.

6.5 Estimate of the norm of the biorthogonal sequence:
T = ∞

Theorem 6.5 There exist two positive constants M and ω such that the bior-
thogonal of minimal norm (θm(∞, · )m≥1 given by Theorem 6.4 satisfies the
following estimate

||θm(∞, · )||L2(0,∞) ≤Mπeωm, ∀m ≥ 1. (168)

Proof: Let us introduce the following notations: En := En(Λ,∞) is the
subspace generated by Λn :=

(
e−λkt

)
1≤k≤n in L2(0, T ) and Enm := E2(m,Λ,∞)

is the subspace generated by
(
e−λkt

)
1≤k≤n

k 6=m

in L2(0, T ).

Remark that En and Enm are finite dimensional spaces and

E(Λ,∞) = ∪n≥1E
n, E(m,Λ,∞) = ∪n≥1E

n
m.
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We have that, for each n ≥ 1, there exists a unique biorthogonal family
(θnm)1≤m≤n ⊂ En, to the family of exponentials

(
e−λkt

)
1≤k≤n. More precisely,

θnm =
pm − rnm

||pm − rnm||2L2(0,∞)

, (169)

where rnm is the orthogonal projection of pm over Enm.
If

θnm =
n∑
k=1

cmk pk (170)

then, by multiplying (170) by pl and by integrating in (0,∞), it follows that

δm,l =
∑
k≥1

cmk

∫ T

0

pl(t)pk(t)dt, 1 ≤ m, l ≤ n. (171)

Moreover, by multiplying in (170) by θnm and by integrating in (0,∞), we
obtain that

||θnm||2L2(0,∞) = cmm. (172)

If G denotes the Gramm matrix of the family Λ, i. e. the matrix of elements

glk =
∫ ∞

0

pk(t)pl(t)dt, 1 ≤ k, l ≤ n

we deduce from (171) that cmk are the elements of the inverse of G. Cramer’s
rule implies that

cmm =
|Gm|
|G|

(173)

where |G| is the determinant of matrix G and |Gm| is the determinant of the
matrix Gm obtained by changing the m−th column of G by the m−th vector
of the canonical basis.

It follows that

||θnm||L2(0,∞) =

√
|Gm|
|G|

. (174)

The elements of G may be computed explicitly

gnk =
∫ ∞

0

pk(t)pn(t) =
∫ ∞

0

e−(n2+k2)π2tdt =
1

n2π2 + k2π2
.

Remark 6.6 A formula, similar to (174), may be obtained for any T > 0.
Nevertheless, the determinants may be estimated only in the case T = ∞. �
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To compute the determinats |G| and |Gm| we use the following lemma (see
[17]):

Lemma 6.2 If C = (cij)1≤i,j≤n is a matrix of coefficients cij = 1
ai+bj

then

|C| =
∏

1≤i<j≤n(ai − aj)(bi − bj)∏
1≤i,j≤n(ai + bj)

. (175)

It follows that

|G| =
∏

1≤i<j≤n(i
2π2 − j2π2)2∏

1≤i,j≤n(i2π2 + j2π2)
, |Gm| =

∏′
1≤i<j≤n(i

2π2 − j2π2)2∏′
1≤i,j≤n(i2π2 + j2π2)

where ′ means that the index m has been skipped in the product.
Hence,

|Gm|
|G|

= 2m2π2
n∏
k=1

′ (m
2 + k2)2

(m2 − k2)2
. (176)

From (174) and (176) we deduce that

||θnm||L2(0,∞) =
√

2mπ
n∏
k=1

′ m
2 + k2

|m2 − k2|
. (177)

Lemma 6.3 The norm of the biorthogonal sequence (θm(∞, · ))m≥1 to the
family Λ in L2(0,∞) given by Theorem 6.4, verifies

||θm(∞, · )||L2(0,∞) =
√

2mπ
∞∏
k=1

′ m
2 + k2

|m2 − k2|
. (178)

Proof: It consists in passing to the limit in (177) as n → ∞. Remark first
that, for each m ≥ 1, the product

∞∏
k=1

′ m
2 + k2

|m2 − k2|

is convergent since

1 ≤
∞∏
k=1

′ m
2 + k2

|m2 − k2|
= exp

( ∞∑
k=1

′ ln
(
m2 + k2

|m2 − k2|

))
≤

≤ exp

( ∞∑
k=1

′ ln
(

1 +
2m2

|m2 − k2|

))
≤ exp

(
2m2

∞∑
k=1

′ 1
|m2 − k2|

)
<∞.
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Consequently, the limit limn→∞ ||θnm||L2(0,∞) = L ≥ 1 exists. The proof
ends if we prove that

lim
n→∞

||θnm||L2(0,∞) = ||θm||L2(0,∞). (179)

Identity (169) implies that limn→∞ ||pm − rnm||L2(0,∞) = 1/L and (179) is
equivalent to

lim
n→∞

||pm − rnm||L2(0,∞) = ||pm − rm||L2(0,∞). (180)

Let now ε > 0 be arbitrary. Since rm ∈ E(m,Λ,∞) it follows that there
exist n(ε) ∈ N∗ and rεm ∈ En(ε)

m with

||rm − rεm||L2(0,∞) < ε.

For any n ≥ n(ε) we have that

||pm − rm|| = min
r∈E(m,Λ,∞)

||pm − r|| ≤ ||pm − rnm|| = min
r∈En

m

||pm − r|| ≤

≤ ||pm − rεm|| ≤ ||pm − rm||+ ||rm − rεm|| < ||pm − rm||+ ε.

Thus, (180) holds and Lemma 6.3 is proved. �

Finally, to evaluate θm(∞, · ) we use the following estimate

Lemma 6.4 There exist two positive constants M and ω such that for any
m ≥ 1,

∞∏
k=1

′ m
2 + k2

|m2 − k2|
≤Meωm. (181)

Proof: Remark that∏′

k

m2 + k2

|m2 − k2|
= exp

[∑′

k
ln
(
m2 + k2

|m2 − k2|

)]
≤ exp

[∑′

k
ln
(

1 +
2m2

|m2 − k2|

)]
.

Now ∑′

k
ln
(

1 +
2m2

|m2 − k2|

)
≤
∫ m

1

ln
(

1 +
2m2

m2 − x2

)
dx+

+
∫ 2m

m

ln
(

1 +
2m2

x2 −m2

)
dx+

∫ ∞

2m

ln
(

1 +
2m2

x2 −m2

)
dx =

= m

[∫ 1

0

ln
(

1 +
2

1− x2

)
dx+

∫ 2

1

ln
(

1 +
2

x2 − 1

)
dx+
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+
∫ ∞

2

ln
(

1 +
2

x2 − 1

)
dx

]
= m (I1 + I2 + I3) .

We evaluate now each one of these integrals.

I1 =
∫ 1

0

ln
(

1 +
2

1− x2

)
dx =

∫ 1

0

ln
(

1 +
2

(1− x)(1 + x)

)
dx ≤

∫ 1

0

ln
(

1 +
2

1− x

)
dx == −

∫ 1

0

(1− x)′ ln
(

1 +
2

1− x

)
dx =

== − (1− x) ln
(

1 +
2

1− x

)∣∣∣∣1
0

+
∫ 1

0

2
3− x

dx = c1 <∞,

I2 =
∫ 2

1

ln
(

1 +
2

x2 − 1

)
dx ≤

∫ 2

1

ln
(

1 +
2

(x− 1)2

)
dx =

=
∫ 2

1

(x− 1)′ ln
(

1 +
2

(x− 1)2

)
dx =

= − (x− 1) ln
(

1 +
2

(x− 1)2

)∣∣∣∣1
0

+
∫ 2

1

2
2 + (x− 1)2

dx = c2 <∞.

I3 =
∫ ∞

2

ln
(

1 +
2

x2 − 1

)
dx ≤

∫ ∞

2

ln
(

1 +
2

(x− 1)2

)
dx ≤

≤
∫ ∞

2

2
(x− 1)2

dx = c3 <∞.

The proof finishes by taking ω = c1 + c2 + c3. �

The proof of Theorem 6.5 ends by taking into account relation (178) and
Lemma 6.4. �

6.6 Estimate of the norm of the biorthogonal sequence:
T < ∞

We consider now T < ∞. To evaluate the norm of the biorthogonal sequence
(θm(T, · ))m≥1 in L2(0, T ) the following result is necessary. The first version of
this result may be found in [57] (see also [21] and [58]).

Theorem 6.6 Let Λ be the family of exponential functions
(
e−λnt

)
n≥1

and let
T be arbitrary in (0,∞). The restriction operator

RT : E(Λ,∞) → E(Λ, T ), RT (v) = v|[0,T ]
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is invertible and there exists a constant C > 0, which only depends on T , such
that

||R−1
T || ≤ C. (182)

Proof: Suppose that, on the contrary, for some T > 0 there exists a sequence
of exponential polynomials

Pk(t) =
N(k)∑
n=1

akne
−λnt ⊂ E(Λ, T )

such that
lim
k→∞

||Pk||L2(0,T ) = 0 (183)

and
||Pk||L2(0,∞) = 1, ∀k ≥ 1. (184)

By using the estimates from Theorem 6.5 we obtain that

|amn| =
∣∣∣∣∫ ∞

0

Pk(t)θm(∞, t)dt
∣∣∣∣ ≤ ||Pk||L2(0,∞)||θm(∞, · )||L2(0,∞) ≤Meωm.

Thus

|Pk(z)| ≤
N(k)∑
n=1

|akn|
∣∣e−λnz

∣∣ ≤M

∞∑
n=1

eωn−n
2π2Re(z). (185)

If r > 0 is given let ∆r = {z ∈ C : Re(z) > r}. For all z ∈ ∆r, we have
that

|Pk(z)| ≤M
∞∑
n=1

eωn−n
2π2r ≤M(ω, r). (186)

Hence, the family (Pk)k≥1 consists of uniformly bounded entire functions.
From Montel’s Theorem (see [15]) it follows that there exists a subsequence,
denoted in the same way, which converges uniformly on compact sets of ∆r to
an analytic function P .

Choose r < T . From (183) it follows that limk→∞ ||Pk||L2(r,T ) = 0 and
therefore P (t) = 0 for all t ∈ (r, T ). Since P is analytic in ∆r, P must be
identically zero in ∆r.

Hence, (Pk)k≥1 converges uniformly to zero on compact sets of ∆r.
Let us now return to (185). There exists r0 > 0 such that

|Pk(z)| ≤Me−Re(z), ∀z ∈ ∆r0 . (187)

Indeed, there exists r0 > 0 such that

ωn− n2π2Re(z) ≤ −Re(z)− n, ∀z ∈ ∆r0
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and therefore, for any z ∈ ∆r0 ,

|Pk(z)| ≤M
∑
n≥1

eωn−n
2π2Re(z) ≤Me−Re(z)

∑
n≥1

e−n =
M

e− 1
e−Re(z).

Lebesgue’s Theorem implies that

lim
k→∞

||Pk||L2(r,∞) = 0

and consequently
lim
k→∞

||Pk||L2(0,r) = 1.

If we take r < T the last relation contradicts (184) and the proof ends. �

We can now evaluate the norm of the biorthogonal sequence.

Theorem 6.7 There exist two positive constants M and ω with the property
that

||θm(T, · )||L2(0,T ) ≤Meωm, ∀m ≥ 1 (188)

where (θm(T, · ))m≥1 is the biorthogonal sequence to the family Λ in L2(0, T )
which belongs to E(Λ, T ) and it is given in Theorem 6.4.

Proof: Let (R−1
T )∗ : E(Λ,∞) → E(Λ, T ) be the adjoint of the bounded

operator R−1
T . We have that

δkj =
∫ ∞

0

pk(t)θj(∞, t)dt =
∫ ∞

0

(R−1
T RT )(pk(t))θj(∞, t)dt =

=
∫ T

0

RT (pk(t))(R−1
T )∗(θj(∞, t))dt.

Since (R−1
T )∗(θj(∞, · )) ∈ E(Λ, T ), from the uniqueness of the biorthogonal

sequence in E(Λ, T ), we finally obtain that

(R−1
T )∗(θj(∞, · )) = θj(T, · ), ∀j ≥ 1.

Hence

||θj(T, · )||L2(0,T ) =
∣∣∣∣(R−1

T )∗(θj(∞, · ))
∣∣∣∣
L2(0,T )

≤ ||R−1
T || ||θj(∞, · )||L2(0,∞),

since ||(R−1
T )∗|| = ||R−1

T ||.
The proof finishes by taking into account the estimates from Theorem 6.5.

�

Remark 6.7 From the proof of Theorem 6.7 it follows that the constant ω does
not depend of T . �
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