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1 Introduction

Many mathematicians have been attracted by image processing and computer vision in

recent years. This has been triggered by mathematically well-founded methods using e.g.

wavelets or nonlinear partial differential equations, the latter being either stationary (usually

minimization problems) or evolution equations. We are interested in the latter one, namely

methods that are based on nonlinear diffusion techniques.

The nonlinear diffusion technique has evolved in a very fruitful way. It is closely con-

nected to a specific kind of multi-scale analysis called scale-space(with respect to the time

variable of the Nonlinear PDE), and it has been used for image smoothing with simulta-

neous edge enhancement. Later on, close connections to regularization methods have been

discovered, and related nonlinear methods have also entered computer vision fields such as

motion analysis in image sequences or interactive segmentation.

In image treatment, it is generally desirable to smooth the homogenous regions of the

picture with two scopes: noise elimination and image interpretation (pattern recognition).

On the other side, we wish to keep the accurate location of the boundaries of these regions.

Those boundaries are called ”step edges” [1]. In the classical theory, these objects are defined

as the curves where the gradient of the smoothed picture has a maximum. (“Edge point”

is therefore related to the property that the Laplacian of the smooth signal at that point

changes sign.)

This theory of smoothing comes from Marr and Hildreth [2] and has been improved by

Vitkin [3], Koenderink [4] and Canny [7]. The low-pass filtering is generally made by con-

volution with Gaussian kernels of increasing variance. It is easy to understand the previous

low-pass filtering: if the signal is noisy, the gradient will have a lot of irrelevant maxima

which must be eliminated. Of course, strong oscillations can be due to different causes,

for instance, the presence of ”textures.” Konederink [4] noticed that the convolution of the

signal with Gaussians at each scale was equivalent to the solution of the heat equation with

the signal as initial datum. Denote this datum by u0; the ”scale space” analysis associated

with u0 consists in solving the problem

ut = ∆u, u(0, x, y) = u0(x, y). (1.1)

for a function u(t, x, y) where t is the smoothing parameter and not time! The solution of

this equation for an initial datum with bounded quadratic norm is u(t, x, y) = (Gt∗u0)(x, y),

where

Gσ(x, y) = Cσ−1 exp(−(x2 + y2)/4σ)

is the Gauss function.

This is not the only option based on evolution PDE’s. There are many articles considering

some other similar types of diffusion equation. The preceding idea is, as we shall see, quite

close to an important improvement of the edge detection theory proposed in the paper of

P. Perona and J. Malik ([11]). Their main idea is to introduce a part of the edge detection
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step in the filtering itself, allowing an interaction between scales from the beginning of the

algorithm. More precisely, they propose to replace the heat equation by a nonlinear equation

∂u

∂t
= div(c(x, y, t)Du), u(0, x, y) = u0(x, y), (1.2)

where u0(x, y) u(t, x, y) have the same meaning as in (2.1), with c(t, x, y) is defined as

c(t, x, y) = g(|D(t, x, y)|). (1.3)

Here g(s) is a smooth nonincreasing function with g(0) = 1, g(s) ≥ 0 and g(s) → 0 at

infinity. The idea is that the smoothing process obtained by the equation is ”conditional”:

(a) If D(x, y) is big, then the diffusion will be low and therefore the exact localization of

the ”edges” will be kept.

(b) If Du(x, y) is small , then the diffusion will tend to smooth still more around (x, y).

Thus the choice of g corresponds to a sort of thresholding which has to be compared to

the thresholding of |Du| used in the final step of the classical theory explained above.The

experimental results obtained by this equation are perceptually impressive and show that an

”edge detector” based on this theory gives edges which remain much more stable across the

scales, therefore making the backward following of edges across scales unnecessary.

The model of Malik and Perona had several serious, practical and theoretical difficulties.

(a) Assume that the signal is noisy, with the white noise for instance. Then large gradi-

ents |Du| are introduced by the noise. Moreover, Du is in theory unbounded. Thus,

the conditional smoothing introduced by the model will not give good results, since all

these noise edges will be kept.

(b) The second difficulty arose from the equation itself. The function g in (1.2) needs to

be considered carefully to obtain the available theory. Indeed, in order to obtain both

existence and uniqueness of the solutions, g must verify that sg(s) is nondecreasing.

In practice we will find out that if for some functions g with sg(s) nonincreasing, very

close pictures could produce divergent solutions and therefore different edges.

The model which has been proposed by Catté, Coll, Lions and Morel in ([9]) is a synthesis

of Malik and Perona’s ideas which avoids the above-mentioned difficulties; it is robust in the

presence of noise and consistent from the formal viewpoint mentioned above.

We shall define a new “selective smoothing of u0 at scale t1/2 based on estimate at the

scale σ” as the function u(t, x, y), verifying




∂u

∂t
= div(g(|DGσ ∗ u|)Du), in(0, T )× Ω,

u(0) = u0,

(1.4)

where

Gσ(x, y) = Cσ−1exp(−(x2 + y2)/4σ). (1.5)
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Remark 1.1 It is easily seen that G(t, x, y) = Gt(x, y) is the fundamental solution of the

heat equation. Therefore the term (|DGσ ∗ u|)(t, x, y) which appears inside the divergence

term of (1.4) is simply the gradient of the solution at time σ of the heat equation with

u(0, x, y) as initial datum. Thus the modification of the model of Malik and Perona is only

to replace the gradient |Du| by its estimate |DGσ ∗ u|. But this slight change of the model is

enough to avoid both inconsistencies of the Malik and Perona model.

This model is still not quite optimal. Indeed, it is not necessary to diffuse anisotropically

at points where the gradient is low. we do not want to enhance , or even to preserve, the edges

without contrast. Therefore , rather than (1.4), we shall prefer the following formulation,

which separates the behavior for large gradients from the behavior small gradients:

∂u

∂t
− (g(|DGσ ∗ u|)

(
(1− h(|Du|))∆u + h(|Du|)|Du|div

Du

|Du|
)

= 0, (1.6)

where h(s) is a function such that





h(s) = 0, if s ≤ e,

h(s) = 1, if s ≥ 2e,

h(s) is smooth nondecreasing, elsewhere.

(1.7)

The parameter e is not a additional parameter. It is only a refinement of our contrast model.

We know that if |Du| is large, g(|Du|) is small. Thus e must depend on the same contrast

parameter as g: it is the upper bound of the interval where u is allowed to diffuse freely.

In the next 3 sections we will study that model. In Section 5 we will study the model of

contour enhancement proposed by Sethian and Malladi /// and studied by G.I. Barenblatt

and J.L. Vázquez [8] by free boundary techniques.
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2 The ALM Mathematical Model

We propose and study a class of nonlinear parabolic differential equations for image process-

ing of the following kind(see [10]):

∂u

∂t
= g(|G ∗Du|)|Du|div(

Du

|Du|), u(0, x, y) = u0(x, y), (2.1)

where u0(x, y) is the grey level of the image to be processed, u(t, x, y) is its smoothed version

depending on the ”scale parameter” t, G is a smoothing kernel (for instance, a Gaussian),

G ∗Du is therefore a local estimate of Du for noise elimination, and g(s) is a nonincreasing

real function which tends to zero as s → ∞. Roughly speaking, the interpretation of the

terms of the equation are as follows.

(a) The term

|Du|div(
Du

|Du|) = ∆u−D2u
(Du,Du)

|Du|2 (2.2)

represents a degenerate diffusion term, which diffuse the direction orthogonal to its

gradient Du and does not diffuse at all in the direction of Du, since div( Du
|Du|) is zero at

this direction. (Here and everywhere below, D2u denotes the Hessian of u and we prove

it in Lemma (6.1).) The aim of the degenerate diffusion term is to make u smooth on

both side of an ”edge” with a minimal smoothing of the edge itself.

(b) The term g(G ∗ Du) is used for the ”enhancement” of the edges. Indeed, it controls

the speed of the diffusion: if Du has a small mean in a neighborhood of a point x,

the point x is considered the interior point of a smooth region of the image and the

diffusion is therefore strong; If Du has a large mean value on the neighborhood of x, x

is considered an edge point and the diffusion spread is lowered, since g(s) is small for

large s.

Thus, the proposed model performs a selective smoothing of the image, where the “edges”

are relatively enhanced and preserved as much as possible.
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3 Mathematical properties

For making the model in the above section useful, we have to give out some properties for

the solution u.

(a) The existence of the solution.

(b) The uniqueness of the solution.

(c) The stability of the equation.

Since we need to apply the model to computer, we need the numerical schemes and make

sure for the scale h, the numercial solutions are converge to the continuous ones.

For both of the aims, we claim that for such a class of nonlinear diffusion models the

following properties can be established.

(a) (Well-posedness and smoothness results)

There exists a unique solution u(t, x, y) in the distributional sense which belongs to

the space C∞(Ω× (0,∞)) and depends continuously on u0 with respect to the L2(Ω)

norm.

(b) (Maximum Principle) Let

a := inf
Ω

u0, b := sup
Ω

u0. (3.1)

Then,

a ≤ u(t, x, y) ≤ b on Ω× [0,∞). (3.2)

(c) (Average grey-level invariance) The average grey level

µ :=
1

|Ω|
∫

Ω

u0(x, y)dxdy (3.3)

is not affected by nonlinear diffusion filtering:

µ :=
1

|Ω|
∫

Ω

u(t, x, y)dxdy for all t > 0. (3.4)

(d) (Convergence to a constant steady state) For large scale parameter we have

lim
t→∞

u(t, x, y) = µ ∈ Lp(Ω), 1 ≤ p < ∞. (3.5)
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4 Basic Mathematical Theory of the Model

In this section, we wish to show that (2.1) is well posed. In fact, we shall know uniqueness

and existence of Lipschitz solutions (for Lipschitz initial data) for a general class of equations

which contain our model. Indeed, we first observe that (2.1) take the form

∂u

∂t
− g(u ∗DG)aij(Du)∂iju = 0in [0, +∞]× lRn, (4.1)

where we denote by ∂iu = ∂u/∂xi and use the convention on repeated indices. Mathemati-

cally we can take any n ≥ 2, although in the physical models n is no more than 3. Next we

assume that

g ∈ C1,1(lRn, lRn), g(p) > 0 for all p in lRn, (4.2)

DαG ∈ L1(lRn) for all |α| ≤ 2, (4.3)

aij(p)ξiξj ≥ 0 for all p ∈ lRn \ {0}, ξ ∈ lRn, (4.4)

aij is continuous and bounded on lRn \ {0}. (4.5)

It is trivial fact to check that (2.1) is indeed of the above form. Of course the application

of such model to image treatment requires solving (4.1) only in a subdomain Ω of lRn(in fact,

a rectangle in lRn), that we can assume to be convex and piecewise smooth to simplify the

presentation. To fix ideas we should think of Ω = [0, 1]n. In that case, we have to prescribe

boundary conditions for u and ∂Ω, and the most natural choice of for image processing is

Neumann boundary conditions, i.e.,

∂u

∂ν
= 0, on ∂Ω, (4.6)

where ν denote the unit exterior normal. Indeed, the Neumann condition corresponds to

the reflection of the picture across the boundary and has the advantage of not imposing any

value one the boundary and not creating ”edges” on it.

To simplify the presentation, we shall work with periodic boundary conditions or, in

other words, solve (4.1)with solutions satisfying u(x + h) = u(x) for all x in lRn, h in Zn.

Moreover we set u(−x, y) = u(x, y) if −1 ≤ x ≤ 0, and 0 ≥ y ≥ 1, etc. It is easy seen that

with this extension, u can be assumed to be periodic on (2Z)n.

Of course, we complement (4.1)with an initial condition

u(0, x) = u0(x) in lRn, (4.7)

where u0 is continuous on lRn and periodic, as above.

Remark 4.1 (4.1) is a second-order parabolic equation with possible high degeneracy and

two types of nonlinear terms, namely, a quasilinear term (aij(Du)∂iju) and a nonlocal term

g ∗DG. This is why it is important to work here with viscosity solutions.
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Now we give out the definition of the viscosity solution to the equation (4.1):

Definition 4.1 Let u in C([0, T ]× lRn) for some T in (0,∞). Then u is a viscosity solution

of (4.1) if u is both a subsolution and a supersolution, with the definition:

(a) u is a viscosity subsolution of(4.1), if for all φ in C2(lR × lRn), the following condition

holds at any point (t0, x0) in (0, T ]× lRn which is a local maximum of (u− φ)

∂φ
∂t

(t0, x0)− g(u ∗DG(t0, x0))aij(Dφ(t0, x0))∂ijφ(t0, x0) ≤ 0

if Dφ(t0, x0) 6= 0,
∂φ
∂t

(t0, x0)− g(u ∗DG(t0, x0)) lim supp→0 aij(p)∂ijφ(t0, x0) ≤ 0

if Dφ(t0, x0) = 0.

(4.8)

(b) u is a viscosity supersolution of (4.1), if for all φ in C2(lR× lRn), the following condition

holds at any point (t0, x0) in (0, T ]× lRn which is a local minimum of (u− φ)

∂φ
∂t

(t0, x0)− g(u ∗DG(t0, x0))aij(Dφ(t0, x0))∂ijφ(t0, x0) ≥ 0

if Dφ(t0, x0) 6= 0,
∂φ
∂t

(t0, x0)− g(u ∗DG(t0, x0)) lim infp→0 aij(p)∂ijφ(t0, x0) ≥ 0

if Dφ(t0, x0) = 0.

(4.9)

Theorem 4.1 Let u0, v0 be, respectively, Lipschitz continuous and continuous on Ω. Let

W 1,∞(lRn)) denote the space of bounded Lipschitz continuous functions in lRn.

(1) (Existence of the solution) The system (4.1)-(4.7) has a unique viscosity solution

u in C([0, +∞)× lRn) ∩L∞(0, T ; W 1,∞(lRn)) for any T < ∞. Moreover,

inf
lRn

u0 ≤ u(x, t) ≤ sup
lRn

u0.

(2) (Stability of the solution) Let v in C([0, +∞) × lRn) be a viscosity solution of

(4.1) satisfying (4.7) with u0 replaced by v0. Then for all T in [0, +∞), there exists a

constant K which depends only on ‖u0‖W 1,∞ and ‖v0‖L∞ such that

sup
0≤t≤T

‖u(t, ·)− v(t, ·)‖L∞(lRn) ≤ K ‖u0 − v0‖L∞(lRn) . (4.10)

Proof : We first prove the uniqueness and stability estimate of the solution. Following

with the arguments given in Crandall, Ishii, and Lions [6], and we consider a maximum point

(t0, x0, y0) of

u(t, x)− v(t, y)− (4ε)−1|x− y|4 − λt, t ∈ [0, T ], x, y ∈ lRn, (4.11)

where T, ε, λ ∈ (0,∞) will be determined later.
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We first assume that t0 > 0. Then we find a and b in lR, X,Y, (n×n) symmetric matrices

such that

a− b = λ,

(
X 0

0 −Y

)
≤

(
A + µA2 − A− µA2

−A− µA2 A + µA2

)
(4.12)

for each µ > 0,

a− g((u ∗DG)(t0, x0))aij(ε
−1|x0 − y0|2(x0 − y0))Xij ≤ 0,

b− g((v ∗DG)(t0, x0))aij(ε
−1|x0 − y0|2(x0 − y0))Yij ≥, 0

(4.13)

where

A = ε−1|x0 − y0|2In + 2ε−1(x0 − y0)⊗ (x0 − y0),

so that

A2 = ε−2|x0 − y0|4In + 8ε−2|x0 − y0|2(x0 − y0)⊗ (x0 − y0).

It is easy to show that x0 6= y0. Suppose it be true, we have A = 0 so that by (4.12), X ≤ 0

and Y ≥ 0. We then rewrite (4.13) as

a− g((u ∗DG)(t0, x0)) lim supp→0 aij(p)Xij ≤ 0,

b− g((v ∗DG)(t0, x0)) lim infp→0 aij(p)Yij ≥, 0
(4.14)

Hence, in particular, a ≤ 0, b ≥ 0, which comes out the contradiction of a− b = λ > 0.

Therefore, x0 6= y0 and we may write and use (4.13). We next choose µ = ε|x0 − y0|−2

and we deduce (
X 0

0 − Y

)
≤ 2

ε

(
B −B

−B B

)
, (4.15)

where B = |x0 − y0|2In + 5(x0 − y0)⊗ (x0 − y0).

We then set
g1 = g((u ∗DG)(t0, x0)), g((v ∗DG)(t0, x0)),

a = (aij(ε
−1|x0 − y0|2(x0 − y0)))1≤i,j≤n,

and we consider the matrix

Γ =

(
g1a (g1g2)

1/2a

(g1g2)
1/2a g2a

)
.

Obviously, Γ is a nonnegative symmetric matrix so that multiplying (4.15) to the left by Γ

and taking the trace we find

g1aijXij − g2aijXij ≤ 2ε−1(g
1/2
1 − g

1/2
2 )2trace(aB)

C0ε
−1(g

1/2
1 − g

1/2
2 )2|x0 − y0|2

(4.16)

for some C0 which depends only on (aij(p))1≤i,j≤n. Next if we combine (4.12), (4.13) and

(4.16) we obtain

λ ≤ C0ε
−1(g

1/2
1 − g

1/2
2 )2|x0 − y0|2. (4.17)
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We now estimate (g
1/2
1 − g

1/2
2 ). First of all, we observe that from the property of g, g1/2 is

Lipschitz on bounded sets, therefore

(g
1/2
1 − g

1/2
2 ) ≤ C1|(u ∗DG)(t0, x0)− (v ∗DG)(t0, y0)|

for some C1, depending only on g and on sup |u|, sup |v|.
But this last quantity is estimated by C2(sup[0,T ]×lRn |u−v|+ |x0−y0|), where C2 depends

only on G and on sup |u|, sup |v|. This allows us to deduce from (4.17) that

λ ≤ C





(
sup

[0,T ]×lRn
|u− v|

)2 |x0 − y0|2
ε

+
|x0 − y0|4

ε



 , (4.18)

where C = 2C0C
2
1C

2
2 .

Next , we estimate |x0 − y0|. To this aim, we observe that

u(t0, x0)− v(t0, y0)− |x0 − y0|4
4ε

− λt0 ≥ u(t0, y0)− v(t0, y0)− λt0

and thus
|x0 − y0|4

4ε
≤ L|x0 − y0|,

where L is a Lipschitz constant (in x) for u on [0, T ]× lRn. Therefore, |x0 − y0| ≤ (4εL)1/3.

This bound and (4.18) finally yield

λ ≤ M



ε1/2 + ε1/3

(
sup

[0,T ]×lRn
|u− v|

)2


 , (4.19)

where M = max((4L)2/3, (4L)4/3)C. Without loss of generality, we may assume sup[0,T ]×lRn |u−
v| > 0(otherwise, we conclude the results.) and we choose

ε1/3 = δ sup
[0,T ]×lRn

|u− v|, λ = (1 + δ + 1/δ)M sup
[0,T ]×lRn

|u− v|,

where δ > 0 will be determined later. These choices contradict (4.19). This contradiction

proves, in fact, that t0 = 0. Therefore,

u(t, x)− v(t, y)− |x− y|4
4ε

− λt ≤ sup
x,y∈lRn

{
u0(x)− v0(y)− |x− y|4

4ε

}
. (4.20)

In particular, we may choose x = y in (4.20) while the right-hand side can be estimated by

suplRn(u0 − v0) + supr≥0(Lr − r4/4ε.

We finally obtain

sup
[0,T ]×lRn

(u− v) ≤ sup
lRn

|u0 − v0|+ 3

4
L4/3δ sup

[0,T ]×lRn
|u− v|

+M(1 + δ + 1/δ)T sup
[0,T ]×lRn

|u− v|.
(4.21)
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Exchanging the role of u and v, and choosing δ = L−4/3, we deduce

sup
[0,T ]×lRn

|u− v| ≤ 4 sup
lRn

|u0 − v0|+ KT sup
[0,T ]×lRn

|u− v|, (4.22)

where K = 4M(1 + δ + 1/δ). In order to conclude, we choose T = t1 = 1/2K, and we find

sup
[0,t1]×lRn

|u− v| ≤ 8 sup
lRn

|u0 − v0|. (4.23)

Therefore, if T is an arbitrary time in [0,∞) and N ≥ 1 is such that Nt1 ≤ T , we deduce

easily by reiterating this argument that

sup
[0,t1]×lRn

|u− v| ≤ 8N sup
lRn

|u0 − v0|. (4.24)

This finish the proof of the stability and uniqueness of the solution.

We next prove the existence of claim in the first part. We begin by remarking that

definition of viscosity solutions immediately implies that if u is a solution, then

inf
lRn

u0 − δt ≤ u ≤ sup
lRn

u0 + δt on [0, +∞]× lRn for all δ > 0.

Therefore, we have

inf
lRn
≤ u ≤ sup

lRn
u0 on [0, +∞]× lRn. (4.25)

Indeed, set φ(x, t) = suplRn u0 + δt and assume that u − φ has local maximum at a point

(t0, x0) with t0 > 0. Then by the definition of subsolution, we get by the second relation of

(4.9) that ∂φ/∂t(t0, x0) ≤ 0. Thus δ ≤ 0, which yields a contradiction and therefore u − φ

attains its maximum, for t0 = 0.

Next, we prove an a priori estimate on Du. This estimate will be formal at that level

and will be justified later. In fact, we consider a smooth solution u of

∂u

∂t
− g(ω ∗DG)aij(Du)∂iju = 0 in]0, +∞[×lRn, (4.26)

where aij is now supposed to be smooth on lRn, and ω ∈ L∞(]0, +∞] × lRn). We are going

to show that

‖DU(t, ·)‖L∞(lRn) ≤ eCt ‖Du0‖L∞(lRn) , (4.27)

where C depends only on sup|p|≤R |D2g(p)| and supp |aij(p)| with lR = ‖w‖L∞(lRn) ‖DG‖L1(lRn) .

Everywhere below, C will denote a positive constants depending only on these quantities.

To prove the a priori estimate (4.27), we use the ” classical” Bernstein method and derive a

parabolic inequality for |Du|2. To this end, we differentiate (4.26) with respect to xk, and

we find

∂uk

∂t
− g(ω ∗DG)aij(Du)∂ijuk − ∂g

∂l
(ω ∗DG) · (ω ∗ ∂lkG)aij(Du)∂iju

−g(ω ∗DG)
∂aij

∂l
(Du)∂lku = 0 in ]0, +∞[×lRn,

(4.28)
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where we denote by uk = ∂ku. Hence, we obtain by multiplying by uk

∂|Du|2
∂t

− g(ω ∗DG)aij(Du)∂ij(|Du|2)− ∂g

∂l
(ω ∗DG)

∂aij

∂l
(Du)∂l(|Du|2)

= −2g(ω ∗DG)∂aij(Du)ukiukj + 2
∂g

∂l
(ω ∗DG)

·(ω ∗ ∂lkG)aij(Du)uk∂iju in ]0, +∞[×lRn,

(4.29)

Next, we observe that in terms of constants C only depending on sup |ω| and g, we have

|ω ∗ ∂lkG| ≤ C,
∣∣∣∂g

∂l
ω ∗DG

∣∣∣ ≤ C(g(ω ∗DG))1/2,

and

|aij(Du)uij| ≤ (aij(Du)ukiukj)
1/2.

(This last inequality is purely algebraic and only uses that aijxixj is nonnegative.)

Inserting these bounds in (4.29) and using the Cauchy-Schwarz inequality we get

∂|Du|2
∂t

− g(ω ∗DG)aij(Du)∂ij(|Du|2)− ∂g

∂l
(ω ∗DG)

∂aij

∂l
(Du)∂l(|Du|2)

≤ C|Du|2 in ]0, +∞[×lRn.

(4.30)

We then deduce easily (4.27) by applying the maximum principle. In order to conclude, we

only have to approximate (4.1) by a (slightly) simpler one of a similar form for which we

will be able to produce smooth solutions. Then, we will conclude using the above a priori

estimate (which will be valid on the approximated solutions). To this end, we consider uε
0 in

C∞(lRn) (periodic) such that uε
0 → u0 uniformly, ‖Duε

0‖L∞ ≤ ‖Du0‖L∞ ,‖uε
0‖L∞ ≤ ‖u0‖L∞ .

We also introduce g∞ = g + ε, aε
ij = εδij + aε

ij, where the aε
ij tends monotonically to aij,

satisfy

aij(p)ξiξj ≥ 0 for all p ∈ lRn \ {0}, ξ ∈ lRn,

and have compact support in lRn\{0}.
Using the general theory of quasilinear uniformly parabolic equations (Ladyzhenskaya,

Solonnikov and Uralt’seva [5]), it can easily be checked that there exists uε smooth on

[0, +∞[×lRn solution of

∂uε

∂t
− gε(ω ∗DG)aε

ij(Duε)∂iju
ε = 0 in]0, +∞[×lRn. (4.31)

In view of the general consistency-stability properties of viscosity solutions, there just

remains to show that uε (or a subsequence) converges uniformly on [0, T ] × lR to some

function u in C([0, T ] × lRn) ∩ L∞(0, T ; W 1,∞(lRn)) for any T < ∞. This will follow from

the Ascoli-Arzela theorem. Indeed, we may now apply the proof of estimate (4.27), and we

find for all t in [0, T ]

‖Duε(t, ·)‖L∞(lRn) ≤ eCt ‖Duε
0‖L∞(lRn) ≤ ‖Du0‖L∞(lRn) ≤ CT . (4.32)
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In other words,

|uε(t, x)− uε(t, y)| ≤ CT |x− y| for any x, y in lRn and t in [0, T ], (4.33)

where CT denotes various constants independent of ε, t, x, y. In additions, this estimate

combined with (4.31 yields, by a (somewhat) standard argument, that

|uε(t, x)− uε(s, x)| ≤ CT |s− t|1/2 for any x in lRn and s, t in [0, T ]. (4.34)

We conclude then by combining (4.33) and (4.34).

Let us sketch the proof of (4.34). It follows upon remarking that if s ≤ t ≤ T ,

‖uε(t, ·)− uε
δ‖L∞(lRn) ≤

CT (t− s)

δ
+ ‖uε(s, ·)− uε

δ‖L∞(lRn) , (4.35)

where δ is arbitrary in ]0,∞[, uε
δ ∈ W 2,∞(lRn), ‖uε(s, ·)− uε

δ‖L∞(lRn) ≤ CT (δ) and ‖D2uε
δ‖L∞(lRn) ≤

CT /δ.

Indeed, we have for s ≤ t ≤ T , x ∈ lRn,

∣∣∣∂uε
δ

∂t
− gε(u

ε ∗DG)aε
ij(Duε)∂iju

ε
δ

∣∣∣ ≤ CT

δ
, (4.36)

and (4.35) is deduced from the maximum principle. We then derive (4.34) by choosing

δ = (t− s)1/2.
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5 Model of image contour enhancement

The theory of degenerate parabolic equations of the forms

ut = (Φ(ux))x (5.1)

is used to analyze the process of contour enhancement in image processing, based on the

evolution model of Sethian and Malladi [12]:

ut =
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)uyy

1 + u2
x + u2

y

. (5.2)

This model is two-dimensional (compare with previous one). Due to the degenerate character

of the diffusivity at high gradient values, a new one-dimensional free boundary problem with

singular boundary data was introduced by G.I. Barenblatt and J.L. Vázquez [8], in order to

analyze the process of front compression.

Definition 5.1 (Basic free boundary problem)

Given an increasing function u0(x) defined in a interval (a, b) with end values u(a+) =

0, u(b−) = 1, to find a continuous function u(x, t) and continuous curves x = l(t) and

x = r(t) such that

(i) l(0) = a, r(0) = b, and l(t) < r(t) for some time interval t ∈ (0, T ).

(ii) u solves the following problem in Ω = {(x, t) : 0 < t < T, l(t) < x < r(t)}:

(PII)





ut = Φ(ux)x in Ω

u(x, 0) = u0(x) for a ≤ x ≤ b

u(l(t), t) = 0, ux(l(t), t) = +∞ for 0 < t < T,

u(r(t), t) = 1, ux(r(t), t) = +∞ for 0 < t < T.

(5.3)

The regularity required from u as a solution of the problem will depend on the gener-

ality of the data. At least u will be continuous in the closure of Ω. Furthermore, to avoid

unnecessary generality we will ask u to be smooth in the interior of Ω. Finally, the require-

ment of monotonicity is not intrinsic from the mathematical point of view, but it suits the

application and allows for the use of the powerful conjugate formulations. The result that

are proved by G.I. Barenblatt and J.L. Vázquez in [8] is as follows:

Theorem 5.1 Let Φ be a flux function that is defined, smooth and Φ′(s) > 0 for all s > 0.

Assume moreover that Φ(∞) is finite. Then for every increasing function u0(x) defined in

a interval [a, b] with u(a) = 0, u(b) = 1 and u′0 ≥ c > 0 there exists a unique continuous

function u(x, t) which is defined in a set Ω as above, is smooth and strictly monotone in x

for 0 < u < 1, and there exist continuous curves l(t) and r(t), such that the triple (u, l, r)

solves problem (PII) in ΩT . Besides, ux ≥ c > 0 whenever 0 < u < 1.
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5.1 Conjugate formulation

When dealing with smooth monotone solutions ux > 0 we can invert the variables x and u

and write x = X(u, t). Then ux · xu = 1, and after some computations we get the partial

differential equation satisfied by x as a function of u and t:

xt = (Ψ(xu))u, (5.4)

where Ψ is the conjugate flux function (conjugate to Φ), defined for s > 0 as

Ψ(s) = −Φ(1/s). (5.5)

This is due to the fact that

d

dt
x =

d

dt
(x(u(x, t), t)) = xuut + xt = 0,

which means

xt = −xuut = −xu(Φ(ux))x =
−1

ux

(Φ(ux))x =
−1

ux

(Φ(ux))uux = (−Φ(
1

xu

))u.

We now show how to use the conjugate formulations to solve the original problem. We

assume that Φ a flux function defined for all s > 0 and such that Φ(∞) is finite, say,

Φ(∞) = 0. Then Ψ(0) = 0. This is the class of flux functions for which the conjugate

problem looks simpler. Since we have assume that Φ is smooth, so is Ψ in its domain of

definition.

(i) Assume that u0 is continuous and strictly monotone in the interval I = {a < x < b},
with u0(a) = 0, u0(b) = 1, and C1 smooth inside I with du0/dx bounded below away from

zero, we define the inverse function x = h(u) = u−1
0 7→ [a, b], which satisfies the following

equation 



Xt = (Ψ(Xu))u for 0 < u < 1, t > 0

X(u, 0) = h(u) for 0 ≤ u ≤ 1

Xu(u, t) = 0 for u = 0, 1.

(5.6)

(ii) Set

ω0(u) =
1

u0,x(h(u))
, (5.7)

which is defined for 0 ≤ u ≤ 1 and is positive, bounded and smooth inside, i.e., for u ∈ (0, 1).

We then solve the conjugate problem





ωt = Ψ(ω)uu for 0 < u < 1, t > 0

ω(u, 0) = ω0(u) for 0 ≤ u ≤ 1

ω(u, t) = 0 for u = 0, 1.

(5.8)

As initial data we choose a nonnegative, bounded function ω0. Under these conditions

Problem (5.8) has a unique solution by virtue of well-known nonlinear parabolic theories.
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But note that now we are dealing with the homogeneous Dirichlet problem. The solution

can be obtained as limit of the solutions ωε(u, t) ≥ ε of the nondegenerate problem with

initial data ω0,ε(u) = ω0(u) + ε, ε > 0. In the monotone limit we get

lim
t→0

ωε(u.t) = ω(x, t)

which is nonnegative, continuous and bounded. Under the additional assumption that ω0 is

locally bounded away from zero, it is easy proved that the solution ω(u, t) is positive, hence

classical, in a strip

ST = {(u, t) : 0 < u < 1, 0 < t < T}.
(iii) Next, we pass to the integrated version using the formula

z(u, t) =

∫

Γ

ωdu + Ψ(ω)udt, (5.9)

where Γ is any piece-wise smooth curve in (u, t) space starting from a fixed point, say u = 1/2,

t = 0 and arriving at a generic point (u, t). In this way we obtain a solution of the integrated

equation zt = (Φ(zu))u, much as we did in the case of the original pair of formulations.

Moreover, thanks to the fact that ∂z/∂u = ω > 0, we can invert the dependence between

z and u to get a function u = u(z, t) that is easily shown to satisfy the equation

ut = (Φ(uz))z.

Besides, u is a monotone function of z and takes the values u = 0 and u = 1 respectively at

the left and right endpoints of the domain of definition

Ωz = {l(t) < z < r(t)}, l(t) = z(0, t), r(t) = z(1, t).

where z(·, t) is the function defined in (5.9). Therefore, u(z, t) is a candidate to solve our

original problem if we identify the independent variable z with x− c, where c is determined

by the relation u0(c) = 1/2.

In order to check that we have solved the original problem (PII) we still have to check

some particulars. It is clear that v = ux is related to the original ω by the formula

v(x, t) =
1

ω(u, t)
,

which simply states the derivative rule for the inverse function, and u in the second member

is given by u(z, t), z = x − c, as explained before. Here comes an important point: since ω

takes on zero boundary values, v(x, t) diverges at the endpoints of its domain of definition,

Ω. In other words, the solutions of the original problem u = u(x, t) enjoy the property of

infinite gradients at the endpoints of the strip where they are defined. Since Φ(∞) = 0

this also means zero flux at these points, a reasonable requirement, which explains why this

condition has to be imposed on Φ.
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As for the initial data, we have the mass formula

x =

∫ u

1/2

ω0(u)du + c, with u0(c) =
1

2
, (5.10)

so that x ranges over an interval [a, b] when u goes from 0 to 1, i.e., a = z(0, 0) + c,

b = z(1, 0) + c. This rule is accompanied by the rule u =
∫ x

l(t)
v(x, t)dx. Moreover, in the

particular case that ω0(u) is symmetric, we have c(t) = c0 = 1
2
. Now x(u, t) can be calculated

by

x =

∫ u

1/2

ω(u, t)du + c. (5.11)

5.2 Numerical analysis of problem (PII)

In the previous section we have analyzed the solution of the problem (PII). First we inverse

the variable x and u to get system (5.6), then by setting w = xu we get system (5.8), which

is a well defined parabolic partial differential equation with Dirichlet boundary condition. In

this section we will compute the solution with programs. The two programs in this section

are tested in Matlab 6.1.

The key role in the program is

X(u, t) =

∫ u

1/2

ω(u, t)du +

∫ t

0

(Ψ(w))u(1/2, s)ds + c,

with u0(c) = 1/2. When the initial data ω0(u) is symmetrical, the second term in the right

side should be zero, consequently the formula (5.11) holds.

With the operator Φ(s) = −1/s, the computation have been done with symmetrical data

ω0(u) = sin(πu) and asymmetrical data ω0(u) = 8x3− 8x5. Moreover, a extreme initial data

ω0(u) = f(u) =





0, 0 ≤ u ≤ 0.15

2× 103(x− 0.15), 0.15 ≤ u ≤ 0.2

100, 0.2 ≤ u ≤ 0.4

2× 103(0.45− x), 0.4 ≤ u ≤ 0.45

0, 0.45 ≤ u ≤ 1.

Program. The program to produce the solution of the free boundary problem by this

method is given as the follows:

clear

clc

h=0.05; % space mesh size

x=[0:h:1]; % space interval
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N=length(x); % number of space point j

k=0.0005; %time iteration size

t=[0:k:0.5]; %time interval

M=length(t); %number of time iteration s

%---initial data of the conjugate equation---

%---we can shift the initial data here-------

u0=zeros(1,N);

%u0=pi*sin(pi*x);

%u0=8*x.^3-8*x.^5;

%j=1; for j=4:8

% u0(j)=100;

%end

%---------------------------------------

%----establish matrix A----------------

e=ones(N,1); A=spdiags([e -2*e e],-1:1,N,N); u(:,1)=u0’;

%--------------------------------------

%---calculus of the solution u--------

s=1; for s=1:(M-1)

u(:,s+1)=u(:,s)+(k/(h*h))*A*u(:,s);

u(1,s+1)=0;u(N,s+1)=0;

end

%------------------------------------

%-------figure 1 u(j,s)-------------

figure(2) s=1; while s<=1000 hold on

plot(x,u(:,s));

s=s+20;

end

hold off

%------------------------------------

%--the derivative at the point x=1/2--

Du=(1/(2*h))*(u(12,:)-u(10,:));
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% figure(2)

% plot(t,Du);

%-------------------------------------

%-----time integration of Du-----------

TDu=zeros(1,M);

g=1;

TDu(1)=0;

for g=1:(M-1)

TDu(g+1)=TDu(g)+k*Du(g+1);

end

figure(3)

hold on

plot(t,Du,’green’); plot(t,TDu);

hold off

%-------------------------------------

%---space integration of u(1/2)-----------

Iu0=zeros(1,M);

Iu(1,:)=Iu0; C=zeros(1,M); j=1;

for j=1:((N-1)/2+1)

C=C+h*u(j,:);

end

figure(4)

plot(t,C);

%-------------------------------------

%---space integration of u(x)------------

j=1;

for j=1:(N-1)

Iu(j+1,:)=Iu(j,:)+h*u(j,:);

end

j=1; for j=1:N

Iu(j,:)=Iu(j,:)-C+TDu;

end

figure(5)

plot(Iu(:,1),x)

%-------------------------------------

%-------figure we needed--------------

p=1;

figure(6)

while p<=1000

hold on
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plot(Iu(:,p),x);

p=p+5;

end

hold off

%-------------------------------------

The results are given in Figures 1, 2, 3, with respect to three types of initial datum ω0(u).

Horizontal axis is x, vertical is u, and the curves are parameterized by time, evolving with

increasing t towards the sharp front.
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Figure 1: The case Φ(s) = −1/s with symmetrical data ω0(u) = sin(πu)(right side).
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Figure 2: The case Φ(s) = −1/s with asymmetrical data ω0(u) = 8x3 − 8x5(right side).
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Figure 3: The case Φ(s) = −1/s with extra initial data ω0(u) = f(u), which is in the right

side.

6 Appendix

In this section we prove the following Calculus lemma:

Lemma 6.1 Let Ω ∈ lR2 We have

ut = |Du|div Du

|Du| = ∆u− 1

|Du|2D2u(Du,Du). (6.1)

Proof: First we compute

ut =
√

u2
x + u2

y div
( ux√

u2
x + u2

y

,
uy√

u2
x + u2

y

)

=
u2

x + u2
y√

u2
x + u2

y

(uxx

√
u2

x + u2
y − uxuxx+uxuyuxy√

u2
x+u2

y√
u2

x + u2
y

+
uyy

√
u2

x + u2
y − uyuyy+uxuyuxy√

u2
x+u2

y√
u2

x + u2
y

)

=

√
u2

x + u2
y(uxx + uyy)− u2

xuxx+u2
yuyy+2uxuyuxy√

u2
x+u2

y√
u2

x + u2
y

=
u2

xuyy + u2
yuxx − 2uxuyuxy

u2
x + u2

y

.

(6.2)

Next we have

ut = uxx + uyy −
(ux uy)

(
uxx uxy

uxy uyy

)(
ux

uy

)

u2
x + u2

y

= uxx + uyy −
u2

xuxxu
2
yuyy + 2uxuyuxy

u2
x + u2

y

=
u2

xuyy + u2
yuxx − 2uxuyuxy

u2
x + u2

y

.

(6.3)
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Compare this two form we get out the conclusion.
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7 Conclusions

In this article we have examined some models in the mathematical theories of image pro-

cessing. In particular we have analyzed two models:

• The ALM mathematical model in the paper of [10]. We introduced the model and

checked the basic mathematical theories of the model in section 4.

• The model of image contour enhancement in the paper of [8]. We introduced the

mathematical model and gave out the numerical implementation. Moreover, we can

say, from the figures we have given, the black areas under both sides have the same

surface.
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