
Exact controllability for the fourth order

Schrödinger equation ∗

Chuang Zheng† and Zhongcheng Zhou‡

December 5, 2011

Abstract

In this paper the boundary controllability of the fourth order Schrödinger equation

in bounded domains is studied. By means of an L
2-Neumann boundary control, we

prove that the solution is exactly controllable in H
−2(Ω) for arbitrarily small time. The

method of proof combines both the HUM (Hilbert Uniqueness Method) and multiplier

techniques.
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1 Introduction

Let Ω be a nonempty open bounded domain in lRn (n ∈ lN) with C3 boundary Γ, Γ0 be a

nonempty open subset of Γ, and T > 0 be a given time duration. Fix some x0 ∈ lRn, put

Γ0
△
=

{

x ∈ Γ
∣

∣ (x− x0) · ν(x) > 0
}

, (1.1)

where ν(x) is the unit outward normal vector of Ω at x ∈ Γ. We consider the following

controlled fourth order linear schrödinger equation with a controller acting on the subset of
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the boundary






iyt +∆2y = 0, in Ω× (0, T )

y = 0, ∂y

∂ν
= vχΓ0

, on ∂Ω × (0, T )

y(x, 0) = y0(x), in Ω.

(1.2)

Here and henceforth, χΓ0
is the characteristic function of the set Γ0 and ∆ is the Laplacian

in the space variable x ∈ Ω. In (1.2), y(·, t) can be considered as the probability amplitude

of the state and v(·, t) is the control. Both are complex valued functions. The control space

of system (1.2) is chosen to be L2((0, T )× Γ0).

As we will show later in Section 4, the well-posedness of the system is given as fol-

lows: For any initial data y0 ∈ H−2(Ω) and v ∈ L2(Ω), there exists a unique solution

y ∈ C([0, T ];H−2(Ω)) of (1.2), in the transposition sense ([13]).

In this paper, we are interested in the exact (boundary) controllability problem of (1.2),

which is stated as follows: Let y0 be a given function in H−2(Ω) and let T > 0 be given,

whether there exists a boundary function v on Γ0 × (0, T ) such that the solution of the

equation (1.2), satisfies y(0) = y0 and y(T ) = 0 in Ω? If such a control v exists, we say that

the system (1.2) is exactly controllable from y0 to the rest at time T by the boundary control

v.

The fourth order Schrödinger equation arises in many scientific fields such as quantum

mechanics, nonlinear optics and plasma physics, and has been intensively studied with fruitful

references. For instance, the well-posedness and existence of the solutions has been shown

([7, 8, 16, 17]) by means of the energy method and harmonic analysis. However, it is still

unknown for the corresponding controllability properties.

As far as we know, there are plenty of references concerning the controllability properties

of second order schrödinger equations([14]). For the higher order operators, these control

problems are mostly studied for parabolic cases, such as the approximate controllability of the

nonlinear equation ([4]), the null boundary controllability of 1−d and N−d case ([3, 10]), etc.

Recent results ([2, 15, 18]) considered the exact observability and some equivalent assertions

for the skew-adjoint operators, which can be seen as an abstract model for higher-order

schrödinger equations.

By establishing the control theory for the linear fourth-order model (1.2), we hope it

would be helpful to understand the phenomena of the high dimensional higher-order nonlin-

ear systems. In this paper, we attempt to establish the boundary controllability properties

of system (1.2) by means of the Hilbert Uniqueness Method (HUM) and the multiplier

techniques. More precisely, by classical duality arguments ([12]), the above controllability

property is equivalent to a (boundary) observability estimate of the following uncontrolled

Schrödinger equation:















iϕt +∆2ϕ = 0, in Ω× (0, T )

ϕ = 0,
∂ϕ

∂ν
= 0, on ∂Ω× (0, T )

ϕ(x, 0) = ϕ0, in Ω.

(1.3)

2



Our first result is the observability inequality of (1.3), which reads as follows:

Theorem 1.1 For equation (1.3), the solution of (1.3) satisfies

∥

∥ϕ0
∥

∥

2

H2

0
(Ω)

≤ C

∫ T

0

∫

Γ0

|∆ϕ|2dσdt, ∀ϕ0 ∈ H2
0 (Ω). (1.4)

Here and thereafter, we will use C to denote a generic positive constant (depending only on

T , Ω and Γ0) which may vary from line to line.

As a direct consequence of Theorem 1.1, the controllability property of (1.2) is stated as

follows:

Theorem 1.2 Let T > 0, Γ0 be defined by (1.1) and Σ0 = Γ0 × (0, T ). Then, for any y0 ∈

H−2(Ω), there exists v ∈ L2(Γ0× (0, T )) such that the unique solution y ∈ C([0, T ];H−2(Ω))

of (1.2) satisfies y(T ) = 0.

Remark 1.1 Without loss of generality, the final state y(T ) is driven to the rest. This is

due to the fact that system (1.2) is linear and time reversible. This phenomenon happens in

finite dimensional linear controlled systems, and the situation is completely different in the

case of the time irreversible case, such as the heat equation.

The rest of the paper is organized as follows. An identity of the fourth order Schrödinger

operator is given in Section 2 by choosing suitable multiplier and playing carefully with the

boundary terms. In Section 3, we show the observability estimate (1.4). The well-posedness

and the exact controllability of the system (1.2) are both given in Section 4. Finally we state

some open problems and further comments in the last section.

2 Identity via multipliers

This section is addressed to establish two fundamental identities by multipliers. Let f ∈

L2(0, T ;H2
0(Ω)), we consider the system















iθt +∆2θ = f, in Ω× (0, T )

θ = 0,
∂θ

∂ν
= 0, on ∂Ω × (0, T )

θ(x, 0) = θ0, in Ω.

(2.1)

First, we show the following one:

Lemma 2.1 Let q = q(x, t) ∈ C3(Q, lRn), with Q is the closed set of Q. For every solution
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of (2.1) with f ∈ D(Q) and ϕ0 ∈ D(Ω), the following identity holds:

0 =
i

2

∫

Ω

θ∇θ̄ · q
∣

∣

∣

T

0
−

i

2

∫

Q

(θ∇θ̄t + θ̄∇θt) · q −
i

2

∫

Q

θ∇θ̄ · qt

−
1

2

∫

Σ

∣

∣

∣
∆θ

∣

∣

∣

2

q · ν −
1

2

∫

Q

(

∇θH(∆θ̄)−∇θ̄H(∆θ)
)

· q

+
1

2

∫

Q

∑

i,j

(

θxixj
∆θ̄qjxi

+ θxi
∆θ̄qjxixj

+ 3∆θθ̄xixj
qjxi

+ 2∆θθ̄xj
qjxixi

)

+
1

2

∫

Q

(

∆θ∇θ̄ · ∇divx q +∆θθ̄∆divx q
)

−

∫

Q

f(∇θ̄ · q +
1

2
θ̄divx q)

(2.2)

where H(f) is the Hessian Matrix of f .

Remark 2.1 For convenience, we drop all dx, dσ, dt terms in all integrals here and there-

after. More precisely, we write
∫

Ω
(·),

∫

Q
(·),

∫

Σ
(·) and

∫

Σ0

(·) instead of
∫

Ω
(·)dx,

∫

Ω×(0,T )
(·)dxdt,

∫

Γ×(0,T )
(·)dσdt and

∫

Γ0×(0,T )
(·)dσdt, respectively.

Proof: Step 1: Multiplying (1.3) by ∇θ̄ · q+
1

2
θ̄divx q, integrating on Q of the left hand side

of (1.3) (abbreviated by ILHS), we get

ILHS =
i

2

∫

Ω

θ∇θ̄ · q
∣

∣

∣

T

0
−

i

2

∫

Q

(θ∇θ̄t + θ̄∇θt) · q −
1

2

∫

Q

∇(∆θ)θ̄ · ∇divx q

−
i

2

∫

Q

θ∇θ̄ · qt −
1

2

∫

Σ

∆θH(θ̄)q · ν −
1

2

∫

Q

(

∇θH(∆θ̄)−∇θ̄H(∆θ)
)

· q

+

∫

Q

∑

i,j

(1

2
∆θθ̄xixj

qjxi
−

1

2
θxi

∆θ̄xj
qjxi

−∆θxi
θ̄xj

qjxi

)

.

(2.3)

In fact, ILHS =

∫

Q

(iθt+∆2θ)(∇θ̄ ·q+
1

2
θ̄divx q) equals to (A+B)+C+D with the notation

A+B =
i

2

∫

Ω

θ∇θ̄ · q
∣

∣

∣

T

0
−

i

2

∫

Q

(θ∇θ̄t · q + θ̄∇θt · q)−
i

2

∫

Q

θ∇θ̄ · qt, (2.4)

C =

∫

Q

∆2θ∇θ̄ · q, D =
1

2

∫

Q

∆2θθ̄divx q. (2.5)

(2.6)

Taking into account the boundary conditions, we arrive at

C = −

∫

Q

∑

i,j

∆θxi
θ̄xj

qjxi
− I, (2.7)

D =
1

2

∫

Q

∇θ̄H(∆θ)q +
1

2
I −

1

2

∫

Q

∇(∆θ) · θ̄∇divx q, (2.8)
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with

I =

∫

Q

∇(∆θ)H(θ̄)q.

Moreover,

I =

∫

Σ

∆θH(θ̄)q · ν −

∫

Q

∆θ(∇(∆θ̄) · q +
∑

i,j

θ̄xixj
qjxi

)

=

∫

Σ

∆θH(θ̄)q · ν +

∫

Q

∇θH(∆θ̄)q +

∫

Q

∑

i,j

(θxi
∆θ̄xj

qjxi
−∆θθ̄xixj

qjxi
). (2.9)

Combining (2.7),(2.8) and (2.9) we get

C +D = −
1

2

∫

Σ

∆θH(θ̄)q · ν −

∫

Q

∑

i,j

(

∆θxi
θ̄xj

qjxi
+

1

2
θxi

∆θ̄xj
qjxi

−
1

2
∆θθ̄xixj

qjxi

)

−
1

2

∫

Q

(∇θH(∆θ̄)q −∇θ̄H(∆θ)q)−
1

2

∫

Q

∇(∆θ)θ̄ · ∇divx q. (2.10)

Finally, from (2.4) and (2.10) we obtain the desired identity (2.3).

Step 2: Integrating by parts with respect to x, we get

∫

Q

∑

i,j

θxi
∆θ̄xj

qjxi
= −

∫

Q

∑

i,j

(θxixj
∆θ̄qjxi

+ θxi
∆θ̄qjxixj

), (2.11)

∫

Q

∑

i,j

∆θxi
θ̄xj

qjxi
= −

∫

Q

∑

i,j

∆θ(θ̄xixj
qjxi

+ θ̄xj
qjxixi

), (2.12)

∫

Q

∇(∆θ)θ̄ · ∇divx q = −

∫

Q

∆θ
(

∇θ̄ · ∇divx q + θ̄∆(divx q)
)

. (2.13)

On the other side, since θ = 0 and ∂θ
∂ν

= 0 on the boundary Σ, we have θxi
= 0, i = 1, · · · , n

and θxi,xj
=

∂θxi
∂ν

νj, i, j = 1, · · · , n for any x ∈ Γ. Consequently, for any x ∈ Γ, it holds

∑

i,j

qiθxixj
νj =

∑

i,j,k

qiθxj ,xk
νkνiνj = (

∑

i

qiνi)
∑

j,k

(θxj ,xk
νkνj)

= (
∑

i

qiνi)
∑

k

∂θxk

∂ν
νk = (

∑

i

qiνi)
∑

k

θxk,xk
= ∆θ(q · ν).

Hence,
∫

Σ

∆θH(θ̄)q · ν =

∫

Σ

∆θ
∑

i,j

qiθ̄xixj
νj =

∫

Σ

∣

∣

∣
∆θ

∣

∣

∣

2

q · ν. (2.14)

Taking (2.11)-(2.14) into (2.3) and putting the right hand side of (2.1) into account, we

finish the proof of (2.2).

The conservation laws hold for the solutions of (1.3)
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Lemma 2.2 For any positive time t, the solution ϕ of (1.3) satisfies

‖ϕ(t)‖L2(Ω) = ‖ϕ(0)‖L2(Ω) ; (2.15)

‖∇ϕ(t)‖L2(Ω) = ‖∇ϕ(0)‖L2(Ω) ; (2.16)

‖∆ϕ(t)‖L2(Ω) = ‖∆ϕ(0)‖L2(Ω) . (2.17)

Remark 2.2 Note that in quantum mechanics, the conservation of the norms validates the

Born’s statistical interpretation of the probability amplitude function ϕ(x, t). More precisely,
∫

Ω
|ϕ(x, t)|2dx represents the probability of finding the particle in domain Ω at time t and the

conservation law provides the particle will not disappear in Ω.

Proof: We use multipliers ϕ̄,∆ϕ̄ and ϕ̄t on (1.3) and we achieve the above identities (2.15),

(2.16) and (2.17), respectively.

3 Observability

Proposition 3.1 For every T > 0, there exist ci = ci(T,Ω) > 0(i = 1, 2) such that

∫ T

0

∫

Γ0

|∆ϕ|2 ≤ c1
∥

∥ϕ0
∥

∥

2

H2

0
(Ω)

(3.1)

and
∥

∥ϕ0
∥

∥

2

H2

0
(Ω)

≤ c2

∫ T

0

∫

Γ0

|∆ϕ|2 (3.2)

for every solution ϕ = ϕ(x, t) of the problem (1.3) with ϕ0 ∈ H2
0 (Ω).

Proof: For the admissibility inequality (3.1) we choose q = q(x) ∈ C3(Q̄, lRn) such that

q = ν on Γ (See Lions [13] for the construction of this vector field), take the real part of the

identity (2.2) with f = 0, we obtain

1

2

∫

Σ

|∆ϕ|2q · ν = −
1

2
Im

∫

Ω

ϕ∇ϕ̄ · q
∣

∣

∣

T

0
+

1

2
Re

∫

Q

(

∆ϕ∇ϕ̄ · ∇divx q +∆ϕϕ̄∆divx q
)

+
1

2

∫

Q

∑

i,j

(

ϕxixj
∆ϕ̄qjxi

+ ϕxi
∆ϕ̄qjxixj

+ 3∆ϕϕ̄xixj
qjxi

+ 2∆ϕϕ̄xj
qjxixi

)

Consequently,

1

2

∫

Σ

|∆ϕ|2 ≤ k1 ‖q‖L∞(Ω) (‖ϕ(T )‖
2
L2(Ω) + ‖∇ϕ(T )‖2L2(Ω) + ‖ϕ(0)‖2L2(Ω) + ‖∇ϕ(0)‖2L2(Ω))

+k2 ‖q‖W 2,∞(Ω)

∫ T

0

(

(‖H(ϕ)‖L2(Ω) + ‖∇ϕ‖L2(Ω)) ‖∆ϕ‖L2(Ω) + ‖ϕ‖L2(Ω) ‖∇ϕ‖L2(Ω)

)

+k3 ‖q‖W 3,∞(Ω)

∫ T

0

(‖∆ϕ‖L2(Ω) ‖∇ϕ‖L2(Ω) + ‖∆ϕ‖L2(Ω) ‖ϕ‖L2(Ω)).
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Combining with the conservation law in Lemma 2.2, we obtain

∫ T

0

∫

Γ0

|∆ϕ|2 ≤ c1
∥

∥ϕ0
∥

∥

2

H2

0
(Ω)

, ∀ ϕ0 ∈ D(Ω).

Since D(Ω) is dense in H2
0 (Ω), the estimates (3.1) holds for every solution of the problem

(1.3) with the initial data ϕ0 ∈ H2
0 (Ω).

Now we prove (1.4). We choose q(x, t) = m(x) = x− x0, using (2.2) we obtain

∫

Σ

m · ν|∆ϕ|2 = −Im

∫

Ω

ϕ∇ϕ̄ ·m
∣

∣

∣

T

0
+ 4T

∫

Ω

|∆ϕ|2.

Furthermore, there exists a ε > 0 such that

∣

∣

∣
Im

∫

Ω

ϕ∇ϕ̄ ·m
∣

∣

∣

T

0

∣

∣

∣
≤ cε

∥

∥ϕ0
∥

∥

2

L2(Ω)
+ ε

∥

∥ϕ0
∥

∥

2

H1

0
(Ω)

.

Thus

4T
∥

∥ϕ0
∥

∥

2

H2

0
(Ω)

≤ C
(

∫

Σ0

m · ν|∆ϕ|2 + cε
∥

∥ϕ0
∥

∥

2

L2(Ω)
+ ε

∥

∥ϕ0
∥

∥

2

H1

0
(Ω)

)

. (3.3)

To conclude the proof of (1.4) it is enough to prove the following estimates:

∥

∥ϕ0
∥

∥

2

L2(Ω)
≤ C

∫

Σ0

m · ν|∆ϕ|2, (3.4)

∥

∥ϕ0
∥

∥

2

H1

0
(Ω)

≤ C

∫

Σ0

m · ν|∆ϕ|2. (3.5)

We argue by contradiction. We only state the proof of (3.5) and the one for (3.4) can be

obtained directly with the Poincaré inequality. If (3.5) is not satisfied for any C > 0, there

exists a sequence {ϕn} of solutions of (1.3) such that

‖ϕn(0)‖H1

0
(Ω) = 1, ∀ n ∈ lN (3.6)

and
∫

Σ0

m · ν|∆ϕn|
2 → 0 as n → ∞. (3.7)

Obviously, {ϕn(0)} is bounded in H1
0 (Ω) and from (3.3) it is also bounded in H2

0 (Ω).

Then

{ϕn} is bounded in L∞(0, T ;H2
0(Ω)) ∩W 1,∞(0, T ;H−2(Ω)).

Thus, by extracting a subsequence (that we will still note by {ϕn} ) we will have

• ϕn → ϕ in L∞(0, T ;H2
0(Ω)) weak*;

• (ϕn)t → ϕt weakly in L∞(0, T ;L2(Ω)) weak*.
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The function ϕ ∈ L∞(0, T ;H2
0(Ω)∩W 1,∞(0, T ;H−2(Ω)) is clearly a solution of (1.3) and,

from the compactness of the embedding (see Simon [19])

L∞(0, T ;H2
0(Ω)) ∩W 1,∞(0, T ;H−2(Ω)) → C([0, T ];H1

0(Ω))

and (3.6), we deduce

‖ϕ(0)‖H1

0
(Ω) = 1. (3.8)

On the other hand, (3.7) implies

∆ϕ = 0 on Σ0,

which, combined with (1.3), implies ϕ ≡ 0, from Holmgren’s Uniqueness Theorem (see

Hörmander [9, Chap. V, Thm. 5.3.3]). This is in contradiction with (3.8). This ends the

proof of (3.5).

Taking (3.4) and (3.5) into account, (1.4) is a direct consequence of (3.3).

4 Well-posedness and exact controllability

We say that y ∈ L∞(0, T ;H−2(Ω)) is a solution of (1.2) in the transposition sense if and

only if

∫ T

0

〈y(t), f̄(t)〉(H−2(Ω),H2

0
(Ω))dt+ i〈y(0), θ̄(0)〉(H−2(Ω),H2

0
(Ω)) +

∫

Σ

v∆θ̄dΣ = 0 (4.1)

for every f ∈ L2(0, T ;H2
0(Ω)), where θ = θ(x, t) is the solution of the problem (2.1) with

θ(T ) = 0.

The following proposition claims the existence of a unique solution of system (1.2) in the

sense of transposition:

Proposition 4.1 Let v ∈ L2(Σ). Then there exists a unique solution y ∈ C([0, T ];H−2(Ω))

in the transposition sense, of the problem (1.2) with initial data y0 ∈ H−2(Ω). Furthermore,

the map v 7→ y is linear and continuous from L2(Σ) into C([0, T ];H−2(Ω)).

Proof: Without loss of the generality, we assume that y0 = 0, which is due to the time

reversibility of system (1.2). It is not hard to prove that

‖θ(t)‖H2

0
(Ω) ≤ ‖f‖L1(0,T ;H2

0
(Ω)) , ∀ t ∈ [0, T ].

Applying the identity (2.2) with a vector field q = ν on Γ and using the above estimate we

obtain

‖∆θ‖L2(Σ) ≤ c ‖f‖L1(0,T ;H2

0
(Ω)) .

Hence, we have

∣

∣

∣
Re

∫

Σ

v∆θ̄dΣ
∣

∣

∣
≤ ‖v‖L2(Σ) ‖∆θ‖L2(Σ) ≤ c ‖v‖L2(Σ) ‖f‖L1(0,T ;H2

0
(Ω)) . (4.2)
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It means that the map from f into Re
∫

Σ
v∆θ̄dΣ is linear and continuous from L1(0, T ;H2

0(Ω))

into lR.

Hence, there exists a unique y ∈ L∞(0, T ;H−2(Ω)) that satisfies (4.1) for every f ∈

L1(0, T ;H2
0(Ω)).

From (4.1) and (4.2) we have

‖y‖L∞(0,T ;H−2(Ω)) ≤ c ‖v‖L2(Σ) . (4.3)

Thus, the map v 7→ y is continuous from L2(Σ) into L∞(0, T ;H−2(Ω)).

Moreover, y ∈ C([0, T ];H−2(Ω)). Indeed, we consider {vn}n∈N ⊂ D(0, T ;C2(Γ)) such

that

vn → v strongly in L2(Σ). (4.4)

Let yn be the solution of (1.2) with boundary condition vn. Since vn is regular, in particular,

we have yn ∈ C([0, T ];H−2(Ω)).

From (4.3) and (4.4), we have

yn → y in L∞(0, T ;H−2(Ω)).

Since C([0, T ];H−2(Ω)) is a closed subspace of L∞(0, T ;H−2(Ω)), we have y ∈ C([0, T ];H−2(Ω)).

Proof of Theorem 1.2: We consider the problem







iyt +∆2y = 0, in Ω× (0, T )

y = 0, ∂y

∂ν
= vχΓ0

, on ∂Ω × (0, T )

y(T ) = 0, in Ω.

(4.5)

It is easy to see that, by multiplying (4.5) by ϕ̄, taking the real part, and integrating it by

parts, we have the following identity:

〈−iy(0), ϕ0〉 =

∫

Σ0

|∆ϕ|2dΣ ∀ ϕ0 ∈ D(Ω),

where ϕ is the corresponding solution of system (1.3) with initial data ϕ0. Let Λ be a linear

continuous operator from H2
0 (Ω) into H−2(Ω) defined by Λϕ0 = −iy(0), where y = y(x, t) is

the solution of the problem (4.5).

From Proposition 3.1 we have 〈Λϕ0, ϕ0〉 ≥ c ‖ϕ0‖
2
H2

0
(Ω) . Hence Λ is an isomorphism from

H2
0 (Ω) to H−2(Ω) and the theorem is proved. The control v is choosing by v = ∆ϕ on Σ0

where ϕ is the solution of (1.2) with initial data ϕ0 = Λ−1(−iy(0)).

5 Further comments and open problems

1. Transmutation method. We derived Theorem 1.2 by means of multiplier techniques.

One could expect a different proof by means of the transmutation method. Roughly speaking,

9



the controllability of system (1.2) can be seen as a combination of the exact controllability

of the Schrödinger equation on a segment([14]) and a plate equation ([11]), following the

instruction in [15]. However, both methods cannot tell us whether the control domain is

sharp. It is still an open problem.

2. Internal controllability. In this paper, we have only dealt with the L2-Neumann

boundary control. On the other hand, one can expect the same result with L2 controls

supported in a neighborhood of the boundary, by following the same methodology in [14].

Furthermore, for the controlled wave equation, the sharp control domain is the one satisfying

GCC condition ([1]) instead of the one in (1.1). It is still an open problem whether same

happens for system (1.2).

3. Carleman estimate. There are several different methods to derive observability inequal-

ities. The Carleman estimate ([5, 6, 20]) is developed to derive the observability inequalities

in a bounded domain with potentials. One may expect to solve the control problem for

the fourth order schrödinger with potentials by means of the corresponding global Carleman

estimate.
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