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Abstract—In this work we consider the controllability of
a coupled PDE-ODE system, which is a simplified model of
the multi-state reparable system. We establish an observability
inequality of its adjoint system and show that any initial condition
of the device can be steered into any quasi steady state by a
distributed control, except for a small interval of elapsed repair
time near zero.
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I. INTRODUCTION

Reparable systems occur naturally in problems of product

design, inventory systems, computer networking and complex

manufacturing processes. A reparable system receives mainte-

nance actions that restore/renew system components when they

fail. These actions revise the overall function of the system. It

is often of considerable interest to improve or optimize system

reliability. Reliability is defined as the probability that the

system, subsystem or component will operate successfully by a

given time t. The mathematical model of coupled transport and

integro-differential equations is employed in order to address

the reliability characteristics of reparable systems (see [1]–[5]).

The application of Markov chain and supplementary variable

techniques are used to derive the general mathematical models.

In order to operate and maintain the system efficiently, it

is natural to ask if it is possible to manipulate the system

through, say, the renewal/replacement policy or incoming

quality control so that it achieves the desired reliability in a

given time. This question can be formulated as the problems

of distributed or boundary controllability. In this paper, we

are interested in the controllability of the reparable systems in

terms of achieving a given reliability distribution by applying

the internal controls. In particular, we consider a simple case

of the mathematical model of a reparable multi-state device

introduced in [1] with only one failure mode, which is a hybrid

system of coupled transport and integral equations (PDE-ODE

system): ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt
p0 = −αp0 +

∫ L

0

(μp + χ0u)dx,

pt + px + μp + χ0u = 0,
p(0, t) = αp0(t),
p(x, 0) = p1(x), p0(0) = p0,

(1)

where p0 = p0(t), p = p(x, t), u = u(x, t), (x, t) ∈ Q =
(0, L) × (0, T ) with 0 < L < ∞, χ0(x) is the characteristic

function of the interval (0, a0), 0 < a0 ≤ L, and u(x, t) is

the control input. System (1) describes a simple device which

transfer its state between good state 0 and failure mode 1.

Here α represents the constant failure rate of the device for

failure mode; μ(x) represents the time-dependent repair rate

when the device is in state 1 and has an elapsed repair time of

x ∈ [0, L]; p0(t) represents the probability that the device is

in state 0, i.e., the good state, at time t; p(x, t) represents the

probability density (with respect to repair time) that the failed

device is in state 1 and has an elapsed repair time of x at

time t. The control input χ0(x)u represents the maintenance

action exerted on a given domain (0, a0) for the failed mode.

Note that, while receiving maintenance, the failed mode can

transit into the good state. Consequently, p0(t) satisfies the

first equation of (1) and is also influenced by u.

Furthermore, we assume that the repair rate has the follow-

ing properties∫ l′

0

μj(x)dx <∞, ∀l′ < L,

∫ L

0

μ(x)dx = ∞. (2)

The well-posedness and asymptotic properties of system (1)

have been thoroughly studied in [6]–[8]. In the current work,

we are interested in the controllability of (1) steered by internal

controls to a quasi steady state, i.e. a time-independent pair(
p̄0, p̄(x)

)
satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩
αp̄0 =

∫ L

0

(
p̄(x)μ(x) + χ0(x)ω(x)

)
dx,

p̄x(x) = −μ(x)p̄(x)− χ0(x)ω(x),

p̄(0) = αp̄0,

(3)

for some control input function ω. It is known that there

are many rich results on the controllability of coupled PDE

systems (see, for instance, [9]) as well as on the stability

and control design of cascaded PDE-ODE systems ( [10]–

[12] and the references therein). To our best knowledge, the

controllability of (1) has not been addressed.

In this paper, we consider the controllability of the system

(1) in Hilbert space X defined by X = R
+ × L2(0, L), with

| · |X = | · |+ | · |L2[0,L]. Our main Theorem is stated as follows:

Theorem 1: Let 0 < δ ≤ a0 and L ≤ T < L + δ. Then

for any P 0 = (p0, p1(x)), PT = (p̄0, p̄(x)) given in X , one

can find uδ ∈ L2(Q) such that the solution of (1) satisfies

pu
δ

(x, T ) = p̄(x), ∀x ∈ [δ, L]. (4)



Moreover, we have∫ T

0

∫ a0

0

(
uδ(x, t)− ω(x)

)2
dxdt

≤ C

δ2

(∫ L

0

∣∣∣p1(x)− p̄(x)
∣∣∣2dx +

∣∣p0 − p̄0
∣∣). (5)

where C is a constant, independent of δ.

The rest of the pager is organized as follows. In Section II,

we present the adjoint system of (1) and give an observability

estimate of the corresponding solutions, which plays the most

important role in the proof of Theorem 1. In Section III, a

variational approach is given and we obtain the controllability

result of (1). Finally, we conclude the paper by Section IV.

II. ADJOINT SYSTEM AND THE OBSERVABILITY

In this section we will focus on the observability inequality

of the adjoint system associated with the original controlled

system (1), which is of the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩
− d

dt
q0 = −αq0 + αq(0, t),

−qt − qx + μq − μq0 = 0,
q(L, t) = 0,
Q(x, T ) := (q0(T ), q(x, T )) = (qT , q1(x)),

(6)

where q0 = q0(t), q = q(x, t), μ = μ(x), (x, t) ∈ Q.
Our first result is based on the observability inequality of

(6) for the case t = L:

Lemma 2.1: Assume that T = L. Let 0 < δ ≤ a0 be

sufficiently small. Then there is a constant C > 0, independent

of δ, such that∫ L

0

q2(x, 0)dx + q20(0)

≤ C

δ2

(∫ T

0

∫ δ

0

(q0(t)− q(x, t))2dxdt + q20(T )
)

+ C

∫ δ

0

q2(x, T )dx

(7)

holds for any solution (q0(t), q(x, t)) of the system (6).

Remark 2.1: Compared to the observability estimate of

the first order hyperbolic equation in [13], an extra term q20(·)
appears in the both side of the inequality (7). It is reasonable

since the solution of the coupled system lives in the functional

space Xc with an appropriate norm, instead of the natural

L2(0, L) space in [13].

Proof: The proof will be divided in several steps.

Step 1: Expression of the solutions.

We prefer to solve the problem forwards rather than back-

wards. Hence, we use the change of variable as follows: Set

q(x, t) = ϕ(L−x, T−t), q0(t) = ϕ0(T−t). Then (6) reduces

to ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dϕ0

dt
= −αϕ0 + αϕ(L, t),

ϕt + ϕx + μ0ϕ− μ0ϕ0 = 0,

ϕ(0, t) = 0,

ϕ0(0) = ϕ0, ϕ(x, 0) = ϕ1(x),

(8)

where ϕ0 = ϕ0(t), ϕ = ϕ(x, t), μ0 = μ(L−x), (ϕ0, ϕ1(x)) =(
q0(T ), q(L−x, T )

)
. Moreover, the domain of observer Qδ =

(0, δ)× (0, T ) now has the form Q1 = (L− δ, L)× (0, T ).
Set ϕ1(x−t) = 0 for x < t, π(x, y) = exp(− ∫ y

x
μ0(τ)dτ),

for x ≤ y, y ∈ (0, L). The solution of (8) can be expressed as

ϕ(x, t) = π(x− t, x)ϕ1(x− t)

+

∫ x∧t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds,
(9)

and

ϕ0(t) = ϕ0(0) exp(−αt) +

∫ t

0

αϕ(L, s) exp(−α(t− s))ds.

(10)

where x ∧ t denote the smaller number between x and t.

Step 2: We know that

∣∣ ∫ t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds
∣∣ ≤ |ϕ0(t)|

+ |ϕ0(0)|+ C

∫ t

0

(|ϕ0(s)|+ |ϕ(L, s)|)ds.
(11)

Indeed, (11) can be obtained from the definition of π(x, y) as

follows. ∫ t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds

=

∫ t

0

μ0(x− s)e− ∫ s
0
μ0(x−τ)dτϕ0(t− s)ds

=− exp(−
∫ s

0

μ0(x− τ)dτ)ϕ0(t− s)|t0

+

∫ t

0

dϕ0(t− s)

ds
e− ∫ s

0
μ0(x−τ)dτds.

(12)

Since

dϕ0(t− s)

ds
= αϕ0(t− s)− αϕ(L, t− s),

using (12) and the above equation, we obtain∫ t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds

=ϕ0(t)− exp(−
∫ s

0

μ0(x− τ)dτ)ϕ0(0)

+

∫ t

0

αϕ0(t− s) exp(−
∫ s

0

μ0(x− τ)dτ)ds

−
∫ t

0

αϕ(L, t− s) exp(−
∫ s

0

μ0(x− τ)dτ)ds.

(13)

Taking the absolute value on both sides of (13) gives (11).

Step 3: We now simplify the right hand side of (11).

By the integration of (9) and (10) in Q, using Gronwall’s

inequality if it is necessary, one can derive that

|ϕ0(t)| ≤ C
(|ϕ0|+

∫ t

0

|π0(s)ϕ1(L− s)|ds), (14)



and∫ t

0

|ϕ(L, s)|ds ≤ C
(|ϕ0|+

∫ t

0

|π0(s)ϕ1(L− s)|ds), (15)

whereπ0(s) = π2(L− s, L) = exp(− ∫ s
0
μ(τ)dτ).

Integrating (14) on s ∈ (0, t) yields∫ t

0

|ϕ0(s)|ds

≤ C
(
t|ϕ0(0)|+

∫ t

0

∫ s

0

|π0(τ)ϕ1(L− τ)|dτds
)

≤ C
(
t|ϕ0(0)|+

∫ t

0

∫ t

0

|π0(τ)ϕ1(L− τ)|dτds
)

≤ C
(
|ϕ0(0)|+

∫ t

0

|π0(s)ϕ1(L− s)|ds
)
.

(16)

Taking (14)−(16) into (11), we derive

∣∣ ∫ t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds
∣∣

≤C(|ϕ0(0)|+
∫ t

0

|π0(s)ϕ1(L− s)|ds). (17)

Step 4: Estimate on the term π(x− t, x)ϕ1(x− t).

In this step we will prove the following estimate:

π2(x− t, x)ϕ2
1(x− t) ≤ C

(
(ϕ(x, t)− ϕ0(t))2

+ |ϕ0|2 +

∫ t

0

π20(s)ϕ2
1(L− s)ds

)
,

(18)

where C is a constant independent of δ.

In fact, by (9) and (10), since ϕ1(x − t) = 0 for x < t, it

holds

π(x− t, x)ϕ1(x− t)

= ϕ(x, t) + e−αtϕ0 +

∫ t

0

αϕ(L, s)e−α(t−s)ds

− ϕ0(t)−
∫ t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds

(19)

for x > t. Using (17) and Hölder inequality, we get

∣∣ ∫ t

0

μ0(x− s)π(x− s, x)ϕ0(t− s)ds
∣∣2

≤C(ϕ2
0(0) +

∫ t

0

π20(s)ϕ2
1(L− s)ds

)
.

(20)

According to (15) and Hölder inequality, we have

(∫ t

0

|ϕ(L, s)|ds)2 ≤ C
(
ϕ2
0(0) +

∫ t

0

π20(s)ϕ2
1(L− s)ds

)
.

(21)

Using (19)− (21), by Hölder inequality yields (18).

Step 5: Now we show the estimate on ϕ(x, T ) and ϕ0(T ).

We first prove that for ϕ(x, T ) it holds∫ L

0

ϕ2(x, T )dx

≤C

δ2

∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ C

∫ L

L−ε
π2(s, L)ϕ2

1(s)ds.

(22)

Indeed, following the same procedure as in [13], we get∫ L

0

π2(s, L)ϕ2
1(s)ds

≤C

ε2

(∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ ε2
∫ L

L−ε
π2(s, L)ϕ2

1(s)ds
)
,

(23)

where C here is a new constant independent of δ, δ2 < ε ≤ δ.
From (23), we derive∫ L

0

π20(s)ϕ2
1(L− s)ds

=

∫ L

0

π2(s, L)ϕ2
1(s)ds

≤C

ε2

(∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ ε2
∫ L

L−ε
π2(s, L)ϕ2

1(s)ds
)
.

(24)

On the other hand, the solution of (8) satisfies∫ L

0

ϕ2(x, T )dx ≤ C
(
ϕ2
0(0) +

∫ T

0

π20(s)ϕ2
1(L− s)ds

)
(25)

From (24) and (25), we have∫ L

0

ϕ2(x, T )dx

≤C
(
ϕ2
0(0) +

C

ε2
( ∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2

+ ϕ2
0(0)

)
dxdt + ε2

∫ L

L−ε
π2(s, L)ϕ2

1(s)ds
))

≤C

ε2

∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ C

∫ L

L−δ
π2(s, L)ϕ2

1(s)ds.

(26)

Moreover, since δ
2 < ε ≤ δ, we have∫ L

0

ϕ2(x, T )dx

≤C

δ2

∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ C

∫ L

L−δ
π2(s, L)ϕ2

1(s)ds,

(27)



which obviously equals to (22).

Estimate of ϕ2
0(T ) : From the estimate of ϕ0(t) in (14), we

derive

ϕ2
0(t) ≤ C

(
ϕ2
0(0) +

∫ t

0

π20(s)ϕ2
1(L− s)ds

)
,

Hence,

ϕ2
0(T ) ≤ C

(
ϕ2
0(0) +

∫ T

0

π20(s)ϕ2
1(L− s)ds

)
. (28)

Since (28), and T = L, we get

ϕ2
0(T ) ≤ C

(
ϕ2
0(0) +

∫ L

0

π20(s)ϕ2
1(L− s)ds

)
. (29)

Combining (24) and (29), we obtain

ϕ2
0(T ) ≤C

ε2

∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ C

∫ L

L−δ
π2(s, L)ϕ2

1(s)ds + Cϕ2
0(0)

≤C

ε2

∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ C

∫ L

L−δ
π2(s, L)ϕ2

1(s)ds.

(30)

Since δ
2 < ε ≤ δ, then

ϕ2
0(T ) ≤C

δ2

∫ T

0

∫ L

L−δ

(
(ϕ(x, t)− ϕ0(t))2 + ϕ2

0(0)
)
dxdt

+ C

∫ L

L−δ
π2(s, L)ϕ2

1(s)ds.

(31)

Step 6: Finally, by the change of variables, we obtain∫ L

0

q2(x, 0)dx ≤C

δ2

(∫ T

0

∫ δ

0

(
q(x, t)− q0(t)

)2
dxdt

+ q20(T )
)

+ C

∫ δ

0

q2(x, T )dx,

(32)

and

q20(0) ≤C

δ2

(∫ T

0

∫ δ

0

(
q(x, t)− q0(t)

)2
dxdt + q20(T )

)

+ C

∫ δ

0

q2(x, T )dx,

(33)

where C is a constant independent of δ.

Summarizing (32) and (33), we get the desired inequality

(7) and completes the proof of Lemma 2.1.

III. INTERNAL CONTROL

This section is devoted to the proof of Theorem 1. Thus, let

0 < δ ≤ a0 be arbitrary but fixed and let PT (x) =
(
p̄0, p̄(x)

)
be any pair satisfying (3). We first prove the result for T =

L. To this purpose we consider the optimal control problem:

Minimize

Jλ(u) =

∫ T

0

∫ a0

0

(u− ω)2dxdt +
1

λ

∫ L

δ

(p(x, T )

− p̄(x))2dx +

∫ δ

0

(p(x, T )− p̄(x))2dx

+ (p0(T )− p̄0)2

(34)

subjected to the state system (1). For each λ > 0, problem

(34) has a unique solution uλ ∈ L2(Q) satisfying

uλ(x, t)− ω(x) = −(q0λ(t)− qλ(x, t)), (35)

where q0λ(t), qλ(x, t) are the solution to the dual system (6)

with the Cauchy final condition

qλ(x, T ) =
( 1

λ
χ(x) + 1− χ(x)

)(
pλ(x, T )− p̄(x)

)
,

q0λ(T ) = p0λ(T )− p̄0,
(36)

where χ(x) is the characteristic function of the interval (δ, L)
and

(
p0λ(t), pλ(x, t)

)
denotes the solutions of (1) correspond-

ing to the control uλ(x, t).
By subtracting (3) into (1) with p0(t) = p0λ(t), p(x, t) =

pλ(x, t) and letting lλ(x, t) = pλ(x, t) − p̄(x), l0λ(t) =
p0λ(t)− p̄0, we have that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d

dt
l0λ = −αl0λ +

∫ L

0

(
μlλ + χ0(uλ − ω)

)
dx,

lλ,t + lλ,x = −μlλ − χ0

(
uλ − ω

)
,

lλ(0, t) = αl0λ,

l0λ(0) = p0 − p̄0, lλ(x, 0) = p1(x)− p̄(x).

(37)

Multiplying (q0(t), q(x, t)) the solutions of the adjoint

system (6) on (37), integrating on (0, T ) and (0, L) × (0, T )
respectively, taking into accounts those boundary conditions,

we finally get∫ L

0

lλ(x, 0)q(x, 0)dx + l0λ(0)q0(0)

=−
∫ T

0

∫ L

0

χ0(uλ − ω)
(
q0 − q

)
dxdt

+

∫ L

0

lλ(x, T )q(x, T )dx + l0λ(T )q0(T ).

(38)

We choose the initial data of (6) as the form of (36) and denote

the corresponding solution by (q0λ, qλ). Then we have∫ L

0

lλ(x, 0)qλ(x, 0)dx + l0λ(0)q0λ(0)

=

∫ T

0

∫ L

0

χ0(x)
(
q0λ(t)− qλ(x, t)

)2
dxdt

+

∫ L

0

lλ(x, T )qλ(x, T )dx + l0λ(T )q0λ(T ).

(39)



The above inequality implies that∫ L

0

(p1(x)− p̄(x))qλ(x, 0)dx + (p0 − p̄0)q0λ(0)

=

∫ T

0

∫ L

0

χ0(x)
(
q0λ(t)− qλ(x, t)

)2
dxdt

+
1

λ

∫ L

δ

(
pλ(x, T )− p̄(x)

)2
dx

+

∫ δ

0

(
pλ(x, T )− p̄(x)

)2
dx +

(
p0λ(T )− p̄0

)2
.

(40)

By the observability inequality of Lemma 2.1 and Schwartz

inequality, we have

LHS of (40)

≤
(∫ L

0

(p1(x)− p̄(x))2dx
) 1

2
(∫ L

0

(qλ(x, 0))2dx
) 1

2

+ |p0 − p̄0|
(
q20λ(0)

) 1
2

≤C

δ

(∣∣∣p1 − p̄
∣∣∣
L2(0,L)

+ |p0 − p̄0|
)(( ∫ T

0

∫ δ

0

(q0λ(t)

− qλ(x, t))2dxdt + q20λ(T )
)

+

∫ δ

0

q2λ(x, T )dx
) 1

2

.

Consequently,

LHS of (40)

≤ C2

2δ2

(∣∣∣p1 − p̄
∣∣∣
L2(0,L)

+ |p0 − p̄0|
)2

+
1

2

∫ T

0

∫ δ

0

(q0λ(t)− qλ(x, t))2dxdt

+
1

2

(
p0λ(T )− p̄0

)2
+

1

2

∫ δ

0

(
pλ(x, T )− p̄(x)

)2
dx.

Since δ ≤ a0, above inequality and (40) means that∫ T

0

∫ a0

0

(
q0λ(t)− qλ(x, t)

)2
dxdt

+
1

λ

∫ L

δ

(
pλ(x, T )− p̄(x)

)2
dx

+

∫ δ

0

(
pλ(x, T )− p̄(x)

)2
dx +

(
p0λ(T )− p̄0

)2
≤ C

δ2

(∣∣∣p1 − p̄
∣∣∣
L2(0,L)

+ |p0 − p̄0|
)2

,

(41)

where C is a constant independent of δ and λ.

The First consequence of (41) is that the sequence {χ0uλ}
is bounded in L2(Q). Moreover,

lim
λ �→0

∫ L

δ

(
pλ(x, T )− p̄(x)

)2
dx = 0. (42)

On the other hand, we can get the following estimate:

‖ p0λ ‖L2(0,T )≤ C0, ‖ pλ ‖L2(Q)≤ C0, (43)

where C0 is a constant. By (42) and (43) we may conclude

that there exists a subsequence such that

p0λ �→ pδ0 weakly in L2(0, T )

pλ �→ pδ, weakly in L2(Q)

χ0uλ �→ χ0u
δ weakly in L2(Q)

pλ(x, T ) �→ pδ(x, T ),with pδ(x, T ) = p̄(x), ∀x ≥ δ.

By the weak formulation of the problem (1), it is easy to show

that pδ0 = pu
δ

0 , pδ = pu
δ

. This completes the proof for the case

T = L.
Next we extend the result for any time L < T < L + δ. In

fact, if u∗ is the control such that

pu
∗
(x, L) = p̄(x), ∀x ∈ (δ̄, L),

for some δ̄ ∈ (0, δ). Define

u(x, t) =

{
u∗(x, t), x ∈ (0, L), t ∈ (0, L),

ω(x), x ∈ (0, L), t ∈ (L, T ),
(44)

where L < T < L + δ. It is easy to see that for x ∈ (0, L),

pu0 (t) = pu
∗

0 (t), pu(x, t) = pu
∗
(x, t), t ∈ (0, L)

pu(x, t)− p̄(x) = v(x, t− L), t ∈ (L, T ),
(45)

where v(x, t) is the solution of the problem{
vt + vx = −μv, (x, t) ∈ (0, L)× (0, δ).

v(x, 0) = pu
∗
(x, T )− p̄(x), x ∈ (0, L).

(46)

Integrating along the characteristic lines, we obtain the solu-

tion of (46):

v(x, t) =
(
pu

∗
(x− t, L)− p̄(x− t)

)
exp(−

∫ t

0

μ(x− τ)dτ),

with (x, t) ∈ (0, L)× (0, δ), and

v(x, t− L) =
(
pu

∗
(x− t + L,L)− p̄(x− t + L)

)
× exp(−

∫ t−L

0

μ(x− τ)dτ),
(47)

with (x, t) ∈ (0, L)× (L,L + δ).
If x− T + L > δ̄, then

pu
∗
(x− T + L,L)− p̄(x− T + L) = 0. (48)

From (45), (47), and (48), we obtain

pu(x, T )− p̄(x) = 0, x− T + L > δ̄,

or even more so for x > δ. Therefore, with the control u
defined in (44), we have pu(x, T ) = p̄(x) for x ∈ [δ, L] if

δ̄ ≤ δ − T + L.
We note that from estimate (41) and equality (35), we see

that the estimate∫ T

0

∫ a0

0

(
uλ(x, t)− ω(x)

)2
dxdt

≤C

δ2

(∣∣∣p1 − p̄
∣∣∣
L2(0,L)

+ |p0 − p̄0|
)2 (49)



is valid, so that, letting λ → 0, we get the estimate for the

control uδ, ∫ T

0

∫ a0

0

(
uδ(x, t)− ω(x)

)2
dxdt

≤C

δ2

(∣∣∣p1 − p̄
∣∣∣
L2(0,L)

+ |p0 − p̄0|
)2

,

where C is a constant, independent of δ, P 0(x) =
(
p0, p1(x)

)
and PT (x) =

(
p̄0, p̄(x)

)
.

Thus, the proof of Theorem 1 is complete.

IV. CONCLUSION

In this paper, we consider the controllability of a simplified

multi-state reparable system. We prove that the whole energy

of the solution of its adjoint system can be observed from the

partial measurements of the solution. Following the standard

procedure in [14], we address the observability of the adjoint

system in order to obtain the controllability of its original

system. Finally, we show that for any given initial condition,

the device can be steered into any quasi steady state by a

distributed control, except for a small interval of elapsed repair

time near zero. A L2-bound of the control is also given.
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