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A B S T R A C T

Construction of invariant measures is a challenging problem for Markov chains with multi-exit.
In this paper, we obtain explicit representation of invariant measures for 2-death processes.
And furthermore, the criterion for ergodicity is also derived based on this formula. In addition,
several examples are demonstrated to verify the validity of our result.

1. Introduction and main result

Consider a continuous-time and homogeneous Markov chain {𝑋(𝑡) ∶ 𝑡 ⩾ 0} on a probability space (𝛺,ℱ ,P) with the transition
probability matrix 𝑃 (𝑡) = (𝑝𝑖𝑗 (𝑡)) on the countable state space Z+ ∶= {0, 1, 2,…}. In this paper we assume that the considered
transition rate 𝑄-matrix 𝑄 = (𝑞𝑖𝑗 ) is totally stable and conservative, which means 𝑞𝑖 ∶= −𝑞𝑖𝑖 =

∑

𝑗≠𝑖 𝑞𝑖𝑗 < ∞ for all 𝑖 ∈ Z+.
Given a 𝑄-matrix, if there exists such a positive integer 𝑚 that for all 𝑖 ⩾ 0,

𝑞𝑖,𝑖+𝑚 > 0, 𝑞𝑖𝑗 = 0, 𝑗 > 𝑖 + 𝑚,

we call it a 𝑄-matrix with uniformly finite range upward; symmetrically, if for all 𝑖 ⩾ 𝑚,

𝑞𝑖,𝑖−𝑚 > 0, 𝑞𝑖𝑗 = 0, 0 ⩽ 𝑗 < 𝑖 − 𝑚,

it is called a 𝑄-matrix with uniformly finite range downward. In particular, in the case of 𝑚 = 1, the 𝑄-matrix is also called single
birth 𝑄-matrix and single death one, or skip-free upwardly one and skip-free downwardly one, respectively. For simplicity, we call
them 𝑚-birth 𝑄-matrix and 𝑚-death one respectively. For the systematic results of single birth processes and single death ones, refer
to Chen (2004, 1999), Chen and Zhang (2014), Mao and Zhang (2004), Zhang (2001, 2018), Zhang and Zhou (2019), Mao et al.
(2022). In this paper, we focus on the 𝑚 = 2 case, namely 2-death processes. Until now, there is still a big gap except the criteria
for recurrence and uniqueness of 2-death processes. One can see Zhang (2023) for reference. In Li and Li (2021) they consider the
down/up crossing property of weighted Markov collision processes which are of 2-death in fact.

In the past decade years, due to the advantage of single exit, single birth processes are always regarded as the largest class of
Markov chains which are expected to obtain explicit criteria in various aspects. Besides, although 𝑚-death processes maybe of infinite
exit and the existence of invariant measures (𝜇𝑛)𝑛⩾0 and stationary distributions are difficult to deal with, but the answer for single
death processes has been obtained. In Wang and Zhang (2014) and Zhang (2016), the recursive formula and direct representation for
(𝜇𝑛)𝑛⩾0 are obtained respectively. However, for 2-death processes, this question has been unsolved for a long time since the dimension
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of the solutions to the equation 𝜇𝑄 = 0 is larger than one, which is different for single death processes which could determine (𝜇𝑛)𝑛⩾0
xplicitly together with the positive property for (𝜇𝑛)𝑛⩾0. Fortunately, we obtain the answer recently by investigating the coefficients
f formal representation for (𝜇𝑛)𝑛⩾0.

Now consider a 2-death 𝑄-matrix 𝑄 = (𝑞𝑖𝑗 ) which means that for all 𝑖 ⩾ 2,

𝑞𝑖,𝑖−2 > 0, 𝑞𝑖𝑗 = 0, 0 ⩽ 𝑗 < 𝑖 − 2.

et

𝑞(𝓁)𝑖 =
∑

𝑘⩾𝓁
𝑞𝑖𝑘, 𝓁 ⩾ 𝑖 ⩾ 0.

y the conservativeness of the 𝑄-matrix, 𝑞(0)0 = 0.
Let

𝐺(𝑛)
𝑛 = 1, 𝑛 ⩾ 1; 𝐺(𝑛)

𝑖 = 1
𝑞𝑖,𝑖−2

𝑛
∑

𝑘=𝑖+1
𝑞(𝑘−1)𝑖 𝐺(𝑛)

𝑘 , 2 ⩽ 𝑖 < 𝑛.

efine

𝐺(𝑛)
0 =

𝑛
∑

𝓁=2
𝑞(𝓁−1)0 𝐺(𝑛)

𝓁 , 𝐺(𝑛)
1 =

𝑛
∑

𝓁=2
𝑞(𝓁−1)1 𝐺(𝑛)

𝓁 , 𝑛 ⩾ 2. (1.1)

n convention that 𝑞1,−1 = 𝑞0,−2 = 1. Note that 𝑞(0)0 = 0. Then we can extend the definitions of {𝐺(𝑛)
𝑖 } for all 0 ⩽ 𝑖 ⩽ 𝑛 as

𝐺(𝑛)
𝑛 = 1, 𝑛 ⩾ 0; 𝐺(𝑛)

𝑘 = 1
𝑞𝑘,𝑘−2

∑

𝑘+1⩽𝓁⩽𝑛
𝑞(𝓁−1)𝑘 𝐺(𝑛)

𝓁 , 0 ⩽ 𝑘 < 𝑛.

quivalently, it is not difficult to check by Lemma 2.1 that

𝐺(𝑛)
𝑘 =

𝑛−1
∑

𝑖=𝑘

𝐺(𝑖)
𝑘 𝑞(𝑛−1)𝑖

𝑞𝑖,𝑖−2
, 0 ⩽ 𝑘 < 𝑛.

Now we first state our main result.

Theorem 1.1. For an irreducible and regular 2-death 𝑄-matrix, the invariant measures of the corresponding process can be represented
as 𝜇0 = 1 and

𝜇𝑛 =
1

𝑞𝑛,𝑛−2

(

𝐺(𝑛)
0 + 𝜇1𝐺

(𝑛)
1

)

, 𝑛 ⩾ 2,

here

𝜇1 ∈

[

− inf
𝑚⩾1

(

𝐺(2𝑚+1)
0

𝐺(2𝑚+1)
1

)

,− sup
𝑚⩾1

(

𝐺(2 𝑚)
0

𝐺(2 𝑚)
1

1{𝐺(2 𝑚)
1 ≠0}

)]

. (1.2)

Here the constant multiple factor is not counted. Moreover, assume that the process is recurrent. Then it is ergodic if and only if

inf
𝑚⩾1

(

𝐺(2𝑚+1)
0

𝐺(2𝑚+1)
1

)

= sup
𝑚⩾1

(

𝐺(2 𝑚)
0

𝐺(2 𝑚)
1

1{𝐺(2 𝑚)
1 ≠0}

)

and 𝜇 ∶=
∞
∑

𝑛=0
𝜇𝑛 < +∞.

Meanwhile the stationary distribution of the process is 𝜋𝑛 =
𝜇𝑛
𝜇 for all 𝑛 ⩾ 0.

The paper is organized as follows. Section 2 contains some preliminaries which are key technical tools used throughout the rest
f the article. Sections 3 is devoted to the proof of our main result. In addition, several examples are given to illustrate the validity
f our result.

. Preliminaries

In this section we prove two lemmas. The first lemma is presented as follows, in which some notations are partly modified
rom Zhang (2023).

emma 2.1. Define

𝑔(𝑛)𝑛 = 1, 𝑛 ⩾ 1; 𝑔(𝑛)𝑖−1 =
1

𝑞𝑖,𝑖−2

𝑛
∑

𝑘=𝑖
𝑞(𝑘)𝑖 𝑔(𝑛)𝑘 , 2 ⩽ 𝑖 ⩽ 𝑛.

he following relation holds:

𝑔(𝑛)𝓁 =
𝑛
∑ 𝑔(𝑖−1)𝓁 𝑞(𝑛)𝑖 , 1 ⩽ 𝓁 < 𝑛, (2.1)
2

𝑖=𝓁+1 𝑞𝑖,𝑖−2
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and

𝑔(𝑛)𝑖−1 = 𝐺(𝑛+1)
𝑖 , 2 ⩽ 𝑖 ⩽ 𝑛 + 1, (2.2)

.e.,

𝐺(𝑛)
𝓁 =

𝑛−1
∑

𝑖=𝓁

𝐺(𝑖)
𝓁 𝑞(𝑛−1)𝑖

𝑞𝑖,𝑖−2
, 2 ⩽ 𝓁 < 𝑛.

Proof. In fact,

𝑔(𝑛)𝑛−1 =
1

𝑞𝑛,𝑛−2

𝑛
∑

𝑘=𝑛
𝑞(𝑘)𝑛 𝑔(𝑛)𝑘 =

𝑞(𝑛)𝑛
𝑞𝑛,𝑛−2

=
𝑛
∑

𝑖=𝑛

𝑔(𝑖−1)𝑛−1 𝑞(𝑛)𝑖

𝑞𝑖,𝑖−2
.

ssume that Eq. (2.1) holds up to 𝑖. Now

𝑔(𝑛)𝑖−1 =
1

𝑞𝑖,𝑖−2

∑

𝑖⩽𝑘⩽𝑛
𝑞(𝑘)𝑖 𝑔(𝑛)𝑘 = 1

𝑞𝑖,𝑖−2

(

𝑞(𝑛)𝑖 +
∑

𝑖⩽𝑘⩽𝑛−1
𝑞(𝑘)𝑖 𝑔(𝑛)𝑘

)

=
𝑞(𝑛)𝑖
𝑞𝑖,𝑖−2

+ 1
𝑞𝑖,𝑖−2

𝑛−1
∑

𝑘=𝑖
𝑞(𝑘)𝑖

𝑛
∑

𝓁=𝑘+1

𝑔(𝓁−1)𝑘 𝑞(𝑛)𝓁

𝑞𝓁,𝓁−2

=
𝑞(𝑛)𝑖
𝑞𝑖,𝑖−2

+
𝑛
∑

𝓁=𝑖+1

𝑞(𝑛)𝓁

𝑞𝓁,𝓁−2
⋅

1
𝑞𝑖,𝑖−2

𝓁−1
∑

𝑘=𝑖
𝑞(𝑘)𝑖 𝑔(𝓁−1)𝑘

=
𝑞(𝑛)𝑖
𝑞𝑖,𝑖−2

+
𝑛
∑

𝓁=𝑖+1

𝑔(𝓁−1)𝑖−1 𝑞(𝑛)𝓁

𝑞𝓁,𝓁−2

=
𝑛
∑

𝓁=𝑖

𝑔(𝓁−1)𝑖−1 𝑞(𝑛)𝓁

𝑞𝓁,𝓁−2
,

hich means that Eq. (2.1) holds in the case of 𝓁 = 𝑖 − 1. So the first assertion is checked. Then we turn to the second assertion to
show that

𝑔(𝑛)𝑖−1 = 𝐺(𝑛+1)
𝑖 , 2 ⩽ 𝑖 ⩽ 𝑛 + 1.

he proof is also by induction on 𝑖 with 𝑖 ⩽ 𝑛. Indeed, 𝑔(𝑛)𝑛 = 1 = 𝐺(𝑛+1)
𝑛+1 . Assume that the relation (2.2) holds until 𝑖+1 ⩽ 𝑛+1. Then

it follows that

𝑔(𝑛)𝑖−1 =
1

𝑞𝑖,𝑖−2

𝑛
∑

𝑘=𝑖
𝑞(𝑘)𝑖 𝑔(𝑛)𝑘 = 1

𝑞𝑖,𝑖−2

𝑛
∑

𝑘=𝑖
𝑞(𝑘)𝑖 𝐺(𝑛+1)

𝑘+1

= 1
𝑞𝑖,𝑖−2

𝑛+1
∑

𝑘=𝑖+1
𝑞(𝑘−1)𝑖 𝐺(𝑛+1)

𝑘 = 𝐺(𝑛+1)
𝑖 .

o, by induction, the relation holds for all 2 ⩽ 𝑖 ⩽ 𝑛 + 1.
Now the proof of Lemma 2.1 is finished. □

The second lemma is a key one.

Lemma 2.2. Assume that the 2-death 𝑄-matrix 𝑄 = (𝑞𝑖𝑗 ) is irreducible, then for all 𝑘 ⩾ 0 and 𝑛 ⩾ 0, it holds that

𝐺(𝑘+2𝑛)
𝑘 > 0 and 𝐺(𝑘+2𝑛+1)

𝑘 ⩽ 0.

roof. It is obvious that for 𝑘 ⩾ 1, 𝐺(𝑘)
𝑘 = 1 > 0 and

𝐺(𝑘+1)
𝑘 =

𝑞(𝑘)𝑘
𝑞𝑘,𝑘−2

=

⎧

⎪

⎨

⎪

⎩

0, if 𝑘 = 0,
𝑞(1)1 = −𝑞10, if 𝑘 = 1,
−1 − 𝑞𝑘,𝑘−1

𝑞𝑘,𝑘−2
, if 𝑘 ⩾ 2.

So 𝐺(𝑘+1)
𝑘 ⩽ 0, ∀𝑘 ⩾ 0. Note that 𝐺(1)

0 = 0. Then, for 𝑚 ⩾ 2 and 𝑘 ⩾ 0,

𝐺(𝑘+𝑚)
𝑘 =

𝐺(𝑘+𝑚−1)
𝑘 𝑞(𝑘+𝑚−1)𝑘+𝑚−1
𝑞𝑘+𝑚−1,𝑘+𝑚−3

+
𝑘+𝑚−2
∑

𝑖=𝑘

𝐺(𝑖)
𝑘 𝑞(𝑘+𝑚−2)𝑖

𝑞𝑖,𝑖−2
−

𝑘+𝑚−2
∑

𝑖=𝑘

𝐺(𝑖)
𝑘 𝑞𝑖,𝑘+𝑚−2
𝑞𝑖,𝑖−2

=
𝐺(𝑘+𝑚−1)
𝑘 𝑞(𝑘+𝑚−1)𝑘+𝑚−1 + 𝐺(𝑘+𝑚−1)

𝑘 −
𝑘+𝑚−2
∑ 𝐺(𝑖)

𝑘 𝑞𝑖,𝑘+𝑚−2
3

𝑞𝑘+𝑚−1,𝑘+𝑚−3 𝑖=𝑘 𝑞𝑖,𝑖−2
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{

= −
𝐺(𝑘+𝑚−1)
𝑘 𝑞𝑘+𝑚−1,𝑘+𝑚−2

𝑞𝑘+𝑚−1,𝑘+𝑚−3
−

𝑘+𝑚−2
∑

𝑖=𝑘

𝐺𝑘𝑞𝑖,𝑘+𝑚−2
𝑞𝑖,𝑖−2

= −
𝑘+𝑚−1
∑

𝑖=𝑘

𝐺(𝑖)
𝑘 𝑞𝑖,𝑘+𝑚−2
𝑞𝑖,𝑖−2

.

Assume that these assertions hold until 𝑛 = 𝑚. Now by the assumption we get

𝐺(𝑘+2𝑚+2)
𝑘 = −

𝑘+2𝑚+1
∑

𝑖=𝑘

𝐺(𝑖)
𝑘 𝑞𝑖,𝑘+2𝑚
𝑞𝑖,𝑖−2

= −
𝑚
∑

𝓁=0

𝐺(𝑘+2𝓁)
𝑘 𝑞𝑘+2𝓁,𝑘+2𝑚
𝑞𝑘+2𝓁,𝑘+2𝓁−2

−
𝑚
∑

𝓁=0

𝐺(𝑘+2𝓁+1)
𝑘 𝑞𝑘+2𝓁+1,𝑘+2𝑚
𝑞𝑘+2𝓁+1,𝑘+2𝓁−1

⩾ −
𝑚
∑

𝓁=0

𝐺(𝑘+2𝓁)
𝑘 𝑞𝑘+2𝓁,𝑘+2𝑚
𝑞𝑘+2𝓁,𝑘+2𝓁−2

=∶ −𝑐𝑘,𝑚.

Further,

𝑐𝑘,𝑚 =
∑

0⩽𝓁⩽𝑚−1

𝐺(𝑘+2𝓁)
𝑘 𝑞𝑘+2𝓁,𝑘+2𝑚
𝑞𝑘+2𝓁,𝑘+2𝓁−2

+
𝐺(𝑘+2𝑚)
𝑘 𝑞𝑘+2𝑚,𝑘+2𝑚
𝑞𝑘+2𝑚,𝑘+2𝑚−2

⩽
∑

0⩽𝓁⩽𝑚−1

𝐺(𝑘+2𝓁)
𝑘 𝑞𝑘+2𝓁,𝑘+2𝑚
𝑞𝑘+2𝓁,𝑘+2𝓁−2

− 𝐺(𝑘+2𝑚)
𝑘

⩽
𝑞𝑘,𝑘+2𝑚
𝑞𝑘,𝑘−2

+
∑

1⩽𝓁⩽𝑚−1

𝐺(𝑘+2𝓁)
𝑘 𝑞𝑘+2𝓁,𝑘+2𝑚
𝑞𝑘+2𝓁,𝑘+2𝓁−2

+ 𝑐𝑘,𝑚−1

= 1
𝑞𝑘,𝑘−2

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 +

∑

1⩽𝓁⩽𝑚−2

𝐺(𝑘+2𝓁)
𝑘

𝑞𝑘+2𝓁,𝑘+2𝓁−2

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+2𝓁,𝑘+2𝑠

+
𝐺(𝑘+2𝑚−2)
𝑘

𝑞𝑘+2𝑚−2,𝑘+2𝑚−4

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+2𝑚−2,𝑘+2𝑠

⩽ 1
𝑞𝑘,𝑘−2

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 +

∑

1⩽𝓁⩽𝑚−2

𝐺(𝑘+2𝓁)
𝑘

𝑞𝑘+2𝓁,𝑘+2𝓁−2

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+2𝓁,𝑘+2𝑠 − 𝐺(𝑘+2𝑚−2)

𝑘

⩽ 1
𝑞𝑘,𝑘−2

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 +

∑

1⩽𝓁⩽𝑚−2

𝐺(𝑘+2𝓁)
𝑘

𝑞𝑘+2𝓁,𝑘+2𝓁−2

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+2𝓁,𝑘+2𝑠 + 𝑐𝑘,𝑚−2.

Eventually, we recursively obtain

𝑐𝑘,𝑚 ⩽ 1
𝑞𝑘,𝑘−2

∑

2⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 +

𝐺(𝑘+2)
𝑘

𝑞𝑘+2,𝑘

∑

2⩽𝑠⩽𝑚
𝑞𝑘+2,𝑘+2𝑠 + 𝑐𝑘,1

= 1
𝑞𝑘,𝑘−2

∑

1⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 +

𝐺(𝑘+2)
𝑘

𝑞𝑘+2,𝑘

∑

1⩽𝑠⩽𝑚
𝑞𝑘+2,𝑘+2𝑠

⩽ 1
𝑞𝑘,𝑘−2

∑

1⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 − 𝐺(𝑘+2)

𝑘

⩽ 1
𝑞𝑘,𝑘−2

∑

1⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠 + 𝑐𝑘,0

= 1
𝑞𝑘,𝑘−2

∑

0⩽𝑠⩽𝑚
𝑞𝑘,𝑘+2𝑠

⩽
⎧

⎪

⎨

⎪

⎩

0, if 𝑘 = 0;
−𝑞10, if 𝑘 = 1;
−1, if 𝑘 ⩾ 2.

In the cases of 𝑘 = 0 or 𝑘 = 1 and 𝑞10 = 0, then the equalities in these inequalities above do not hold simultaneously, otherwise
𝑘, 𝑘 + 2,… , 𝑘 + 2𝑚} is closed which is a contradiction with the irreducibility. Hence whatever 𝑘 is, it always holds that 𝑐𝑘,𝑚 < 0,

further

𝐺(𝑘+2𝑚+2) ⩾ −𝑐 > 0.
4

𝑘 𝑘,𝑚
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Similarly, by the assumption we get

𝐺(𝑘+2𝑚+3)
𝑘 = −

𝑚+1
∑

𝓁=0

𝐺(𝑘+2𝓁)
𝑘 𝑞𝑘+2𝓁,𝑘+2𝑚+1
𝑞𝑘+2𝓁,𝑘+2𝓁−2

−
𝑚
∑

𝓁=0

𝐺(𝑘+2𝓁+1)
𝑘 𝑞𝑘+2𝓁+1,𝑘+2𝑚+1

𝑞𝑘+2𝓁+1,𝑘+2𝓁−1

⩽ −
𝑚
∑

𝓁=0

𝐺(𝑘+2𝓁+1)
𝑘 𝑞𝑘+2𝓁+1,𝑘+2𝑚+1

𝑞𝑘+2𝓁+1,𝑘+2𝓁−1
=∶ −𝑑𝑘,𝑚+1.

urther,

𝑑𝑘,𝑚+1 ⩾
∑

0⩽𝓁⩽𝑚−1

𝐺(𝑘+2𝓁+1)
𝑘 𝑞𝑘+2𝓁+1,𝑘+2𝑚+1

𝑞𝑘+2𝓁+1,𝑘+2𝓁−1
− 𝐺(𝑘+2𝑚+1)

𝑘

⩾
𝐺(𝑘+1)
𝑘 𝑞𝑘+1,𝑘+2𝑚+1

𝑞𝑘+1,𝑘−1
+

∑

1⩽𝓁⩽𝑚−1

𝐺(𝑘+2𝓁+1)
𝑘 𝑞𝑘+2𝓁+1,𝑘+2𝑚+1

𝑞𝑘+2𝓁+1,𝑘+2𝓁−1
+ 𝑑𝑘,𝑚

⩾
𝐺(𝑘+1)
𝑘

𝑞𝑘+1,𝑘−1

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+1,𝑘+2𝑠+1 +

∑

1⩽𝓁⩽𝑚−2

𝐺(𝑘+2𝓁+1)
𝑘

𝑞𝑘+2𝓁+1,𝑘+2𝓁−1

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+2𝓁+1,𝑘+2𝑠+1 − 𝐺(𝑘+2𝑚−1)

𝑘

⩾
𝐺(𝑘+1)
𝑘

𝑞𝑘+1,𝑘−1

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+1,𝑘+2𝑠+1 +

∑

1⩽𝓁⩽𝑚−2

𝐺(𝑘+2𝓁+1)
𝑘

𝑞𝑘+2𝓁+1,𝑘+2𝓁−1

∑

𝑚−1⩽𝑠⩽𝑚
𝑞𝑘+2𝓁+1,𝑘+2𝑠+1 + 𝑑𝑘,𝑚−1.

Then by the same recursive procedure, we thus have

𝑑𝑘,𝑚+1 ⩾
𝐺(𝑘+1)
𝑘

𝑞𝑘+1,𝑘−1

∑

2⩽𝑠⩽𝑚
𝑞𝑘+1,𝑘+2𝑠+1 +

𝐺(𝑘+3)
𝑘

𝑞𝑘+3,𝑘+1

∑

2⩽𝑠⩽𝑚
𝑞𝑘+3,𝑘+2𝑠+1 + 𝑑𝑘,2

⩾
𝐺(𝑘+1)
𝑘

𝑞𝑘+1,𝑘−1

∑

1⩽𝑠⩽𝑚
𝑞𝑘+1,𝑘+2𝑠+1 − 𝐺(𝑘+3)

𝑘

⩾
𝐺(𝑘+1)
𝑘

𝑞𝑘+1,𝑘−1

∑

1⩽𝑠⩽𝑚
𝑞𝑘+1,𝑘+2𝑠+1 + 𝑑𝑘,1

=
𝐺(𝑘+1)
𝑘

𝑞𝑘+1,𝑘−1

∑

0⩽𝑠⩽𝑚
𝑞𝑘+1,𝑘+2𝑠+1

⩾
⎧

⎪

⎨

⎪

⎩

0, if 𝑘 = 0;
𝑞10, if 𝑘 = 1;
1 + 𝑞𝑘,𝑘−1

𝑞𝑘,𝑘−2
, if 𝑘 ⩾ 2.

So 𝑑𝑘,𝑚+1 ⩾ 0. Further 𝐺(𝑘+2𝑚+3)
𝑘 ⩽ −𝑑𝑘,𝑚+1 ⩽ 0. Hence the assertions hold when 𝑛 = 𝑚 + 1. From induction the conclusions are

followed. The proof is finished. □

. Proof of Theorem 1.1

By the equation of 𝜇𝑄 = 0 we obtain that

𝜇𝑖𝑞𝑖 =
∑

0⩽𝑗<𝑖
𝜇𝑗𝑞𝑗𝑖 + 𝜇𝑖+1𝑞𝑖+1,𝑖 + 𝜇𝑖+2𝑞𝑖+2,𝑖, 𝑖 ⩾ 0.

umming up from 0 to 𝑛, then
𝑛
∑

𝑖=0
𝜇𝑖𝑞𝑖 =

∑

0<𝑗<𝑛
𝜇𝑗

(

𝑞(𝑗+1)𝑗 − 𝑞(𝑛+1)𝑗

)

+
𝑛+1
∑

𝑖=2
𝜇𝑖(𝑞𝑖,𝑖−1 + 𝑞𝑖,𝑖−2) + 𝜇1𝑞10 + 𝜇𝑛+2𝑞𝑛+2,𝑛

=
𝑛
∑

𝑖=0
𝜇𝑖

(

𝑞(𝑖+1)𝑖 − 𝑞(𝑛+1)𝑖

)

+
𝑛+1
∑

𝑖=2
𝜇𝑖(𝑞𝑖,𝑖−1 + 𝑞𝑖,𝑖−2) + 𝜇1𝑞10 + 𝜇𝑛+2𝑞𝑛+2,𝑛

=
𝑛
∑

𝑖=0
𝜇𝑖𝑞𝑖 −

𝑛+1
∑

𝑖=0
𝜇𝑖𝑞

(𝑛+1)
𝑖 + 𝜇𝑛+2𝑞𝑛+2,𝑛, 𝑛 ⩾ 0.

urther,

𝜇𝑛+2 =
1

𝑛+1
∑

𝜇𝑖𝑞
(𝑛+1)
𝑖 , 𝑛 ⩾ 0.
5

𝑞𝑛+2,𝑛 𝑖=0
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We will check that

𝜇𝑛 =
1

𝑞𝑛,𝑛−2

𝑛−1
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝑔(𝑛−1)𝓁 , 𝑛 ⩾ 2.

irstly,

𝜇2 =
1
𝑞20

1
∑

𝑖=0
𝜇𝑖𝑞

(1)
𝑖 = 1

𝑞20

(

𝜇0𝑞
(1)
0 + 𝜇1𝑞

(1)
1

)

= 1
𝑞20

1
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝑔(1)𝓁 .

ssume that the assertion holds up to 𝑛 + 1. Using Lemma 2.1 now we have

𝜇𝑛+2 =
1

𝑞𝑛+2,𝑛

(

𝜇0𝑞
(𝑛+1)
0 + 𝜇1𝑞

(𝑛+1)
1 +

𝑛+1
∑

𝑖=2
𝜇𝑖𝑞

(𝑛+1)
𝑖

)

= 1
𝑞𝑛+2,𝑛

(

𝜇0𝑞
(𝑛+1)
0 + 𝜇1𝑞

(𝑛+1)
1 +

𝑛+1
∑

𝑖=2

1
𝑞𝑖,𝑖−2

𝑖−1
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝑔(𝑖−1)𝓁 𝑞(𝑛+1)𝑖

)

= 1
𝑞𝑛+2,𝑛

(

𝜇0𝑞
(𝑛+1)
0 + 𝜇1𝑞

(𝑛+1)
1 +

𝑛
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝑛+1
∑

𝑖=𝓁+1

𝑔(𝑖−1)𝓁 𝑞(𝑛+1)𝑖

𝑞𝑖,𝑖−2

)

= 1
𝑞𝑛+2,𝑛

(

𝜇0𝑞
(𝑛+1)
0 + 𝜇1𝑞

(𝑛+1)
1 +

𝑛
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝑔(𝑛+1)𝓁

)

= 1
𝑞𝑛+2,𝑛

𝑛+1
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝑔(𝑛+1)𝓁

= 1
𝑞𝑛+2,𝑛

𝑛+1
∑

𝓁=1

(

𝜇0𝑞
(𝓁)
0 + 𝜇1𝑞

(𝓁)
1

)

𝐺(𝑛+2)
𝓁+1 = 1

𝑞𝑛+2,𝑛

(

𝜇0𝐺
(𝑛)
0 + 𝜇1𝐺

(𝑛)
1

)

, 𝑛 ⩾ 0,

where the last identity is due to (1.1). Besides, via Lemma 2.2, (1.2) could be naturally derived by the positive property of the
invariant measures. For the second assertion, if the process is ergodic, then

𝜇1 = inf
𝑚⩾1

(

𝐺(2𝑚+1)
0

𝐺(2𝑚+1)
1

)

= sup
𝑚⩾1

(

𝐺(2 𝑚)
0

𝐺(2 𝑚)
1

)

and ∑

𝑛⩾0 𝜇𝑛 < ∞. On the other hand,
(𝜋𝑛)𝑛⩾0 ∶= (𝜇𝑛∕

∑

𝑛 𝜇𝑛)𝑛⩾0 is the unique stationary distribution for the process, therefore it is ergodic. □

4. Applications

In this section we demonstrate the validity of our results by showing three concrete examples as follows, which are taken
from Zhang (2023).

Example 4.1. Let 𝑞𝑖,𝑖−2 = 1 for all 𝑖 ⩾ 2, 𝑞10 = 1, 𝑞𝑖,𝑖+1 = 1 for all 𝑖 ⩾ 0 and 𝑞𝑖𝑗 = 0 for other 𝑗 ≠ 𝑖. Then 𝑞(𝑖)𝑖 = −1 for all 𝑖 ⩾ 1, 𝑞(𝑖+1)𝑖 = 1
and 𝑞(𝑘)𝑖 = 0 for all 𝑘 ⩾ 𝑖 + 2 ⩾ 2. Hence

𝑔(𝑛)𝑛 = 1(𝑛 ⩾ 1), 𝑔(𝑛)𝑛−1 = −1, 𝑔(𝑛)𝑖−1 = 𝑔(𝑛)𝑖+1 − 𝑔(𝑛)𝑖 , 2 ⩽ 𝑖 < 𝑛.

Further

𝑔(𝑛)𝑖 = (−1)𝑛−𝑖𝐹𝑛−𝑖, 1 ⩽ 𝑖 ⩽ 𝑛,

where
{

𝐹𝑛
}

is the Fibonacci sequence:

𝐹𝑛 =
1
√

5

⎛

⎜

⎜

⎝

(

1 +
√

5
2

)𝑛+1

−

(

1 −
√

5
2

)𝑛+1
⎞

⎟

⎟

⎠

=∶ 1
√

5

(

𝐴𝑛+1 − (−𝐵)𝑛+1
)

, 𝑛 ⩾ 0.

Then

𝜇2 = 𝜇0 − 𝜇1, 𝜇𝑛 = 𝜇2𝑔
(𝑛−1)
1 + 𝜇1𝑔

(𝑛−1)
2 , 𝑛 ⩾ 3.

So

𝜇𝑛 = 𝜇2(−1)𝑛−2𝐹𝑛−2 + 𝜇1(−1)𝑛−3𝐹𝑛−3 = 𝜇0(−1)𝑛−2𝐹𝑛−2 + 𝜇1(−1)𝑛−3𝐹𝑛−1, 𝑛 ⩾ 3.

Let 𝜇0 = 1. For the positive property of 𝜇𝑛, on the one hand, for all 𝑛 = 2𝑘,

𝜇1 <
𝐴2𝑘−1 − (−𝐵)2𝑘−1

= −𝐴 + 𝐴 + 𝐵 ⏐⏐
↓ 𝐵.
6

𝐴2𝑘 − (−𝐵)2𝑘 1 − (−𝐵∕𝐴)2𝑘
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On the other hand for all 𝑛 = 2𝑘 + 1,

𝜇1 >
𝐴2𝑘 − (−𝐵)2𝑘

𝐴2𝑘+1 − (−𝐵)2𝑘+1
= 1 + 𝐴2

𝐴 + 𝐵(−𝐵∕𝐴)2𝑘
− 𝐴 ↑⏐⏐ 𝐵.

Hence, 𝜇1 = 𝐵 and further 𝜇2 = 1 − 𝐵 = 𝐵2 and

𝜇𝑛 = (−1)𝑛−2
(

𝐹𝑛−2 − 𝐵𝐹𝑛−1
)

= 𝐵𝑛, 𝑛 ⩾ 3.

So 𝜇𝑛 = 𝐵𝑛 for all 𝑛 ⩾ 0 and 𝜇 ∶=
∑

𝑛⩾0 𝜇𝑛 = 𝐴2. Then the stationary distribution is followed by 𝜋𝑛 = 𝜇𝑛∕𝜇 = 𝐵𝑛+2 for any 𝑛 ⩾ 0.

Example 4.2. Let 𝑄 =
(

𝑞𝑖𝑗
)

be a regular and irreducible 𝑄-matrix satisfying

𝑞𝑖,𝑖−2 = 𝑐 > 0, 𝑞𝑖,𝑖−1 = 𝑎 ⩾ 0, 𝑖 ⩾ 2; 𝑞10 = 𝑑 ⩾ 0; 𝑞𝑖,𝑖+1 = 𝑏 > 0, 𝑖 ⩾ 0,

and 𝑞𝑖𝑗 = 0 for other 𝑖, 𝑗 ⩾ 1 with 𝑖 ≠ 𝑗. Assume that the process is recurrent, i.e., 𝑎 + 2𝑐 ⩾ 𝑏. Then 𝑞(1)1 = −𝑑, 𝑞(𝑖)𝑖 = −(𝑎 + 𝑐) for all
𝑖 ⩾ 2, 𝑞(𝑖+1)𝑖 = 𝑏 and 𝑞(𝑘)𝑖 = 0 for all 𝑘 > 𝑖 + 1 ⩾ 1. Hence

𝑔(𝑛)𝑛 = 1(𝑛 ⩾ 1), 𝑔(𝑛)𝑛−1 = −𝑎 + 𝑐
𝑐

(𝑛 ⩾ 2),

and

𝑔(𝑛)𝑖−1 = −𝑎 + 𝑐
𝑐

𝑔(𝑛)𝑖 + 𝑏
𝑐
𝑔(𝑛)𝑖+1, 2 ⩽ 𝑖 ⩽ 𝑛 − 1.

y the theory of difference equations, we obtain

𝑔(𝑛)𝑖 =
(−1)𝑛−𝑖

𝜆1 − 𝜆2

(

𝜆𝑛−𝑖+11 − 𝜆𝑛−𝑖+12
)

, 1 ⩽ 𝑖 ⩽ 𝑛,

here

𝜆1 =
𝑎 + 𝑐 +

√

(𝑎 + 𝑐)2 + 4𝑏𝑐
2𝑐

, 𝜆2 =
𝑎 + 𝑐 −

√

(𝑎 + 𝑐)2 + 4𝑏𝑐
2𝑐

.

hen we have

𝜇2 =
1
𝑐
(

𝑏𝜇0 − 𝑑𝜇1
)

, 𝜇𝑛 = 𝜇2𝑔
(𝑛−1)
1 + 𝑏

𝑐
𝜇1𝑔

(𝑛−1)
2 , 𝑛 ⩾ 3.

So for 𝑛 ⩾ 2,

𝜇𝑛 = 𝜇0
𝑏
𝑐
(−1)𝑛−2

𝜆1 − 𝜆2

(

𝜆𝑛−11 − 𝜆𝑛−12
)

+ 𝜇1
(−1)𝑛−1

𝜆1 − 𝜆2

(

𝜆𝑛−11

(𝑑
𝑐
− 𝜆2

)

− 𝜆𝑛−12

(𝑑
𝑐
− 𝜆1

))

.

et 𝜇0 = 1. For the positive property of 𝜇𝑛, on the one hand, for all 𝑛 = 2𝑘,

𝜇1 <
𝑏

𝑑 − 𝑐𝜆2

(

1 +
𝜆1 − 𝜆2

(

𝑑∕𝑐 − 𝜆1
)

+
(

𝜆1∕
(

−𝜆2
))2𝑘−1 (𝑑∕𝑐 − 𝜆2

)

)

⏐⏐
↓

𝑏
𝑑 − 𝑐𝜆2

.

On the other hand for all 𝑛 = 2𝑘 + 1,

𝜇1 >
𝑏

𝑑 − 𝑐𝜆2

(

1 +
𝜆1 − 𝜆2

(

𝑑∕𝑐 − 𝜆1
)

−
(

𝜆1∕𝜆2
)2𝑘 (𝑑∕𝑐 − 𝜆2

)

)

↑⏐⏐
𝑏

𝑑 − 𝑐𝜆2
.

Hence,

𝜇1 =
𝑏

𝑑 − 𝑐𝜆2
= 2𝑏

2𝑑 +
√

(𝑎 + 𝑐)2 + 4𝑏𝑐 − (𝑎 + 𝑐)
.

urther it is derived that

𝜇𝑛 = 𝜇1
(

−𝜆2
)𝑛−1 , 𝑛 ⩾ 1.

o

𝜇 ∶=
∑

𝑛⩾0
𝜇𝑛 = 1 + 𝜇1

∑

𝑛⩾1

(

−𝜆2
)𝑛−1 = 1 + 𝜇1

∑

𝑛⩾0

(

−𝜆2
)𝑛 < +∞

f and only if −𝜆2 < 1, equivalently, 𝑎 + 2𝑐 > 𝑏. Hence, the process is ergodic if and only if 𝑎 + 2𝑐 > 𝑏. Now in the ergodic case,
= 1 + 𝜇1∕

(

1 + 𝜆2
)

and the stationary distribution is followed by

𝜋0 =
1 + 𝜆2

1 + 𝜆2 + 𝜇1
, 𝜋𝑛 =

(

1 + 𝜆2
)

𝜇1
1 + 𝜆2 + 𝜇1

⋅
(

−𝜆2
)𝑛−1 , 𝑛 ⩾ 1.

Example 4.3. Let 𝑞𝑖,𝑖−2 = 1 for all 𝑖 ⩾ 2, 𝑞𝑖,𝑖+2 = 1 for all 𝑖 ⩾ 0, 𝑞01 = 𝑞10 = 1 and 𝑞𝑖𝑗 = 0 for other 𝑖, 𝑗 ⩾ 1 with 𝑗 ≠ 𝑖. Then 𝑞(𝑖)𝑖 = −1
or all 𝑖 ⩾ 1, 𝑞(𝑖+1)𝑖 = 𝑞(𝑖+2)𝑖 = 1 and 𝑞(𝑘)𝑖 = 0 for all 𝑘 > 𝑖 + 2 > 2. Meanwhile 𝑞(1)0 = 2, 𝑞(2)0 = 1 and 𝑞(𝓁)0 = 0 for any 𝓁 > 2. Hence

(𝑛) (𝑛) (𝑛) (𝑛) (𝑛)
7

𝑔𝑛 = 1(𝑛 ⩾ 1), 𝑔𝑛−1 = −1, 𝑔𝑛−2 = −𝑔𝑛−1 + 𝑔𝑛 = 2,
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F

and

𝑔(𝑛)𝑖−1 = −𝑔(𝑛)𝑖 + 𝑔(𝑛)𝑖+1 + 𝑔(𝑛)𝑖+2, 2 ⩽ 𝑖 < 𝑛 − 1.

urther

𝑔(𝑛)𝑖 = (−1)𝑛−𝑖
([ 𝑛 − 𝑖

2

]

+ 1
)

, 1 ⩽ 𝑖 ⩽ 𝑛,

where [𝑛] represents the largest integer less than or equal to 𝑛. Hence

𝜇2 =
(

2 − 𝜇1
)

𝑔(1)1 = 2 − 𝜇1, 𝜇3 =
(

2 − 𝜇1
)

𝑔(2)1 +
(

1 + 𝜇1
)

𝑔(2)2 = −1 + 2𝜇1,

and for 𝑛 ⩾ 4,

𝜇𝑛 =
(

2 − 𝜇1
)

𝑔(𝑛−1)1 +
(

1 + 𝜇1
)

𝑔(𝑛−1)2 + 𝜇1𝑔
(𝑛−1)
3

= 2(−1)𝑛−2
([ 𝑛 − 2

2

]

+ 1
)

+ (−1)𝑛−3
([ 𝑛 − 3

2

]

+ 1
)

+ 𝜇1(−1)𝑛−1
([ 𝑛 − 1

2

]

+ 1
)

.

In the case of 𝑛 = 2𝑘 + 1, then

𝜇2𝑘+1 = −2𝑘 + 𝑘 + (𝑘 + 1)𝜇1 = −𝑘 + (𝑘 + 1)𝜇1.

Further, for all 𝑘 > 0, 𝜇2𝑘+1 > 0 if and only if 𝜇1 > 𝑘∕(𝑘 + 1), which implies that 𝜇1 ⩾ 1. In the case of 𝑛 = 2𝑘 + 2, then

𝜇2𝑘+2 = 2(𝑘 + 1) − 𝑘 − (𝑘 + 1)𝜇1 = 𝑘 + 2 − (𝑘 + 1)𝜇1.

Therefore, for all 𝑘 ⩾ 0, 𝜇2𝑘+2 > 0 if and only if 𝜇1 < (𝑘 + 2)∕(𝑘 + 1), which implies that 𝜇1 ⩽ 1. Hence 𝜇1 = 1 and further 𝜇𝑛 ≡ 1 is
the unique invariant measure of the process. Then the process is recurrent but not ergodic. In fact, by rearranging the states, it can
be regarded as a simple random walk or a symmetric birth–death process on Z.
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