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Abstract We present an explicit and recursive representation for high order
moments of the first hitting times of single death processes. Based on that,
some necessary or sufficient conditions of exponential ergodicity as well as a
criterion on `-ergodicity are obtained for single death processes, respectively.
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1 Introduction

Consider a continuous-time homogeneous Markov chain {X(t) : t > 0} on a
probability space (Ω,F ,P), with transition probability matrix P (t) = (pij(t))
on a countable state space Z+ := {0, 1, 2, . . . }. We call {X(t) : t > 0} a single
death process if its transition rate matrix Q = (qij : i, j ∈ Z+) is irreducible
and satisfies that qi,i−1 > 0 for all i > 1 and qi,i−j = 0 for all i > j > 2. Such a
matrix Q = (qij) is called a single death Q-matrix. In the literature, the single
death process is also called downwardly skip-free process.

Usually, single death processes are non-symmetric and hence can be
regarded as the representative ones of non-symmetric processes. For general
single death process, we only have some limited knowledge on stationary
distribution and criterion on zero-entrance of them; refer to [3,7]. But as a
special kind of single death process, the branching processes are fruitful and
applicable intensively, on which one of the main tools used is the generation
functions; see [1,2]. Note that the generation function is not valid for general
single death process. Recently, in [9], we obtained an explicit representation of
the first moments of hitting times for single death processes; further, presented
a criterion on ergodicity and strong ergodicity. Meanwhile, some sufficient
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or necessary conditions for recurrence and exponential ergodicity as well as
extinction probability for the single death processes were also derived in [9].
This paper is a continuous work of [9]. We focus on obtaining some
recursive representations of high order moments of hitting times for single death
processes.

Define the first hitting time

τi := inf{t > 0: Xt = i}, ∀ i > 0,

the first jumping time

η1 := inf{t > 0: Xt 6= X0}, (1.1)

and the first returning time

σi := inf{t > η1 : Xt = i}, ∀ i > 0.

For birth-death process, define

ai = qi,i−1, i > 1, bi = qi,i+1, i > 0,

µ0 = 1, µi =
b0b1 · · · bi−1
a1a2 · · · ai

, i > 1.

By [8], it is well known that

Eiτn0 = n
i∑

j=1

1

µjaj

∞∑
k=j

µkEkτn−10 , i, n > 1.

The tool they used is the functional with integral type downward and
approximation approach. In [10], we obtained a similar representation for birth-
death processes on trees, using a different way. Although in [10], we used the
symmetrizable property in our proof, we are conscious of the fact that the
key property is the single death rather than the symmetrization. This is the
motivation of this paper and the ideas or approaches are originated from [10].

Throughout the paper, we consider only totally stable and conservative
single death Q-matrix:

qi := −qii =
∑
j 6=i

qij <∞, ∀ i ∈ Z+.

The following sequences are used throughout this paper:

q(k)n =

∞∑
j=k

qnj , k > n > 0,

and

G
(i)
i = 1, G(i)

n =
1

qn,n−1

i∑
k=n+1

q(k)n G
(i)
k , 1 6 n < i.
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It is easily known that

G
(i)
i = 1, G(i)

n =
i−1∑
k=n

G
(k)
n q

(i)
k

qk,k−1
, 1 6 n < i.

The main result of this paper is as follows.

Theorem 1.1 Assume that the single death Q-matrix Q = (qij) is irreducible
and the corresponding process is recurrent. Give i0 ∈ Z+ and a positive integer
n > 1 arbitrarily. Then

Eiτni0 = n
∑

i0+16k6i

∑
`>k

G
(`)
k E`τn−1i0

q`,`−1
, i > i0 + 1.

This paper is organized as follows. Some relations between moments from
different starting states and another explicit representation of hitting times are
given in the next section. Then Section 3 is devoted to the proof of Theorem
1.1. In Section 4, some explicit necessary or sufficient conditions of exponential
ergodicity as well as a criterion on `-ergodicity are obtained for single death
processes, respectively.

2 Another representation of hitting times

First, we consider the relation between the n-th moments from different starting
states. Define

m
(n)
i := Eiτni−1, i > 1, n > 0;

in particular,

m
(0)
i = 1.

We denote m
(1)
i by mi simply. Recall that the Polynomial Theorem for the

polynomial with ` variables and power n is described as follows:

(x1 + x2 + · · ·+ x`)
n =

∑
(n1,n2,...,n`)∈A`

n!

n1!n2! · · ·n`!
xn1
1 x

n2
2 · · ·x

n`
` ,

where
A` = {(k1, k2, . . . , k`) ∈ Z`+ | k1 + k2 + · · ·+ k` = n}.

Analogously, we define the ‘polynomial’ with parentheses-power (n) :

(mi +mi+1 + · · ·+m`)
(n) :=

∑
(ni,ni+1,...,n`)∈A`−i+1

n!

ni!ni+1! · · ·n`!
m

(ni)
i · · ·m(n`)

` .

Then we obtain the following relation between the n-th moments from different
starting states.
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Theorem 2.1 Under the conditions of Theorem 1.1, for any i0 ∈ Z+, we have

Eiτni0 = (mi0+1 +mi0+2 + · · ·+mi)
(n), i > i0, n > 1.

Proof It follows from the definition above that

(mi0+1 +mi0+2 + · · ·+mi)
(1) =

i∑
k=i0+1

m
(1)
k =

i∑
k=i0+1

Ekτk−1 = Eiτi0 ,

in which the last equality holds by the single death and strong Markov property.
So the assertion holds in the case of n = 1.

Assume that the assertion holds until n− 1. By the single death and strong
Markov property, it is seen that for all i > i0 + 1,

Eiτni0 = Ei(τi−1 + τi0 − τi−1)n

= Eiτni−1 +
n−1∑
s=1

(
n

s

)
Ei((τi0 − τi−1)sτn−si−1 ) + Ei(τi0 − τi−1)n

= Eiτni−1 +
n−1∑
s=1

(
n

s

)
Ei(Ei((τi0 − τi−1)sτn−si−1 | Fτi−1))

+ Ei(Ei(τi0 − τi−1)n | Fτi−1)

= Eiτni−1 +
n−1∑
s=1

(
n

s

)
Eiτn−si−1 Ei−1τ si0 + Ei−1τni0 .

Note that Ei0τ si0 = 0. Hence, the equality above is true for all i > i0.
Furthermore,

Eiτni0 = Eiτni−1 +
n−1∑
s=1

(
n

s

)
Eiτn−si−1 Ei−1τ si0 + Ei−1τni−2

+

n−1∑
s=1

(
n

s

)
Ei−1τn−si−2 Ei−2τ si0 + Ei−2τni0

=

i∑
`=i−1

E`τn`−1 +

i∑
`=i−1

n−1∑
s=1

(
n

s

)
E`τn−s`−1 E`−1τ

s
i0 + Ei−2τni0 .

Hence, we can obtain recursively that

Eiτni0 =
i∑

`=i0+1

E`τn`−1 +
i∑

`=i0+2

n−1∑
s=1

(
n

s

)
E`τn−s`−1 E`−1τ

s
i0 .

By the assumption, we know that

Eiτni0 =

i∑
`=i0+1

m
(n)
` +

i∑
`=i0+2

n−1∑
s=1

(
n

s

)
m

(n−s)
` (mi0+1+mi0+2+· · ·+m`−1)

(s). (2.1)
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If
(mi0+1 +mi0+2 + · · ·+mi)

(n) =∞,

then there exist p ∈ [i0 + 1, i] and k ∈ [1, n] such that m
(k)
p =∞; furthermore,

m
(n)
p =∞. By (2.1), we know that

Eiτni0 =∞ = (mi0+1 +mi0+2 + · · ·+mi)
(n).

If
(mi0+1 +mi0+2 + · · ·+mi)

(n) <∞,

then

(mi0+1 +mi0+2 + · · ·+m`)
(n) <∞, m

(n)
` <∞, ∀ ` ∈ [i0 + 1, i].

Furthermore, it follows that

i∑
`=i0+2

n−1∑
s=1

(
n

s

)
m

(n−s)
` (mi0+1 +mi0+2 + · · ·+m`−1)

(s)

=
i∑

`=i0+2

((mi0+1 +mi0+2 + · · ·+m`)
(n)

− (mi0+1 +mi0+2 + · · ·+m`−1)
(n) −m(n)

` )

= (mi0+1 +mi0+2 + · · ·+mi)
(n) −

i∑
`=i0+1

m
(n)
` .

Hence, by the arguments above and (2.1), it holds that

Eiτni0 = (mi0+1 +mi0+2 + · · ·+mi)
(n).

That is, the assertion holds in the case of n. By induction, the assertion holds
for all n > 1. The proof is finished. �

By Theorem 2.1, for representing Eiτni0 , it suffices to get the explicit formular

of E`τ
(s)
`−1. To do this, we need some notations as follows. Define

M
(n−1)
ik =

∑
i+16`6k

∑
16s6n−1

(
n

s

)
E`τn−s`−1 E`−1τ

s
i−1, k > i+ 1, i > 1,

and M
(n−1)
ik = 0 if i > k > 1. Define

M
(n−1)
i = m

(n−1)
i +

1

n

∑
k>i+1

qikM
(n−1)
ik , n, i > 1. (2.2)

First, we introduce some properties about the definitions above.
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Proposition 2.2 Under the conditions of Theorem 1.1, the following
assertions hold:

Eiτni0 =
∑

i0+16`6i

m
(n)
` +M

(n−1)
i0+1,i , i > i0, n > 1, (2.3)

and

M
(n−1)
ik = M

(n−1)
ij +M

(n−1)
j+1,k +

∑
16s6n−1

(
n

s

)
Ekτn−sj Ejτ si−1,

1 6 i 6 j 6 k, n > 1. (2.4)

Proof Obviously, (2.3) is obtained by (2.1) directly.
To prove (2.4), using the strong Markov property and single death property,

for all i 6 j 6 k, we derive that

M
(n−1)
ik = M

(n−1)
ij +

∑
j+16`6k

∑
16s6n−1

(
n

s

)
E`τn−s`−1 E`−1τ

s
i−1

= M
(n−1)
ij +

∑
16s6n−1

(
n

s

)
Ej+1τ

n−s
j Ejτ si−1

+
∑

j+26`6k

∑
16s6n−1

(
n

s

)
E`τn−s`−1 E`−1τ

s
i−1

= M
(n−1)
ij +

∑
16s6n−1

(
n

s

)
Ej+1τ

n−s
j Ejτ si−1

+
∑

j+26`6k

∑
16s6n−1

(
n

s

)
E`τn−s`−1

(
E`−1τ sj

+
∑

16u6s

(
s

u

)
E`−1τ s−uj Ejτui−1

)
= M

(n−1)
ij +M

(n−1)
j+1,k +

∑
16s6n−1

(
n

s

)
Ej+1τ

n−s
j Ejτ si−1

+
∑

j+26`6k

∑
16s6n−1

E`τn−s`−1

∑
16u6s

(
n

u

)(
n− u
s− u

)
E`−1τ s−uj Ejτui−1

=: M
(n−1)
ij +M

(n−1)
j+1,k + I.

Note that

I =
∑

16u6n−1

(
n

u

)
Ejτui−1

∑
j+26`6k

∑
u6s6n−1

(
n− u
s− u

)
E`τn−s`−1 E`−1τ

s−u
j

+
∑

16u6n−1

(
n

u

)
Ej+1τ

n−u
j Ejτui−1
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=
∑

16u6n−1

(
n

u

)
Ejτui−1

( ∑
j+26`6k

∑
06v6n−u−1

(
n− u
v

)
E`τn−u−v`−1 E`−1τvj

+ Ej+1τ
n−u
j

)
=

∑
16u6n−1

(
n

u

)
Ejτui−1

( ∑
j+26`6k

∑
16v6n−u−1

(
n− u
v

)
E`τn−u−v`−1 E`−1τvj

+
∑

j+16`6k

E`τn−u`−1

)

=
∑

16u6n−1

(
n

u

)
Ekτn−uj Ejτui−1,

in which the last equality holds in virtue of (2.1). Hence, by the argument
above, the proof of (2.4) is finished. �

Our result on the representation of m
(s)
` by the above notations is presented

as follows.

Theorem 2.3 Assume that the single death Q-matrix Q = (qij) is irreducible
and the corresponding process is recurrent. Then

Eiτni−1 = n
∑
k>i

G
(k)
i M

(n−1)
k

qk,k−1
, i, n > 1.

Hence, combining Theorems 2.1 and 2.3, we obtain another representation
of Eiτni0 for i > i0.

To prove Theorem 2.3, we need three lemmas. The first lemma is presented
as follows.

Lemma 2.4 Assume that the single death Q-matrix Q = (qij) is irreducible
and the corresponding process is recurrent. Then, for all n > 1, (Eiτni−1, i > 1)
satisfies the following equation:

xi =
q
(i+1)
i

qi
xi +

∑
`>i+1

q
(`)
i

qi
x` +

n

qi
M

(n−1)
i , i > 1. (2.5)

Proof To prove the assertion, we use the induction. By [9, Remark 2.8], we
know that (Eiτi−1, i > 1) satisfies the following equation:

xi =
q
(i+1)
i

qi
xi +

∑
`>i+1

q
(`)
i

qi
x` +

1

qi
, i > 1.

Hence, the assertion holds when n = 1.
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Assume that the assertion holds until n − 1. Define the first jumping time
η1 as in (1.1). By the strong Markov and the single death properties, we derive
that

Eiτni−1 = Eiηn1 +

n−1∑
s=1

(
n

s

)
Ei((τi−1 − η1)sηn−s1 )) + Ei(τi−1 − η1)n

=
n!

qni
+

n−1∑
s=1

(
n

s

) ∞∑
k=i+1

Ei(ηn−s1 1{Xη1=k}EXη1 τ
s
i−1)

+

∞∑
k=i+1

Ei(1{Xη1=k}EXη1 τ
n
i−1)

=
n!

qni
+

n−1∑
s=1

(
n

s

) ∞∑
k=i+1

(n− s)!
qn−si

· qik
qi

Ekτ si−1 +

∞∑
k=i+1

qik
qi

Ekτni−1.

It follows from (2.3) that

Eiτni−1 =
n!

qni
+
n−1∑
s=1

n!

s! qn−s+1
i

∞∑
k=i+1

qik

( k∑
`=i

m
(s)
` +M

(s−1)
ik

)

+

∞∑
k=i+1

qik
qi

( k∑
`=i

m
(n)
` +M

(n−1)
ik

)

=
n!

qni
+
n−1∑
s=1

n!

s! qn−s+1
i

(
q
(i+1)
i m

(s)
i +

∞∑
`=i+1

q
(`)
i m

(s)
` +

∞∑
k=i+1

qikM
(s−1)
ik

)

+
1

qi

(
q
(i+1)
i m

(n)
i +

∞∑
`=i+1

q
(`)
i m

(n)
` +

∞∑
k=i+1

qikM
(n−1)
ik

)

=: I +
1

qi

(
q
(i+1)
i m

(n)
i +

∞∑
`=i+1

q
(`)
i m

(n)
` +

∞∑
k=i+1

qikM
(n−1)
ik

)
.

By the assumption, we get that

I =
n!

qni

(
q
(i+1)
i m

(1)
i +

∞∑
`=i+1

q
(`)
i m

(1)
` + 1

)

+

n−1∑
s=2

n!

s! qn−s+1
i

(
q
(i+1)
i m

(s)
i +

∞∑
`=i+1

q
(`)
i m

(s)
` +

∞∑
k=i+1

qikM
(s−1)
ik

)

=
n!

qn−1i

m
(1)
i +

n−1∑
s=2

n!

s! qn−s+1
i

(
q
(i+1)
i m

(s)
i +

∞∑
`=i+1

q
(`)
i m

(s)
` +

∞∑
k=i+1

qikM
(s−1)
ik

)
.

Furthermore, by the assumption, it is derived that
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I =
n!

2! qn−1i

(
q
(i+1)
i m

(2)
i +

∞∑
`=i+1

q
(`)
i m

(2)
` + 2m

(1)
i +

∞∑
k=i+1

qikM
(1)
ik

)

+

n−1∑
s=3

n!

s! qn−s+1
i

(
q
(i+1)
i m

(s)
i +

∞∑
`=i+1

q
(`)
i m

(s)
` +

∞∑
k=i+1

qikM
(s−1)
ik

)

=
n!

2! qn−1i

(
q
(i+1)
i m

(2)
i +

∞∑
`=i+1

q
(`)
i m

(2)
` + 2M

(1)
i

)

+

n−1∑
s=3

n!

s! qn−s+1
i

(
q
(i+1)
i m

(s)
i +

∞∑
`=i+1

q
(`)
i m

(s)
` +

∞∑
k=i+1

qikM
(s−1)
ik

)
=

n!

2! qn−2i

m
(2)
i

+
n−1∑
s=3

n!

s! qn−s+1
i

(
q
(i+1)
i m

(s)
i +

∞∑
`=i+1

q
(`)
i m

(s)
` +

∞∑
k=i+1

qikM
(s−1)
ik

)
.

Recursively, it follows that

I =
n!

(n− 1)! qi
m

(n−1)
i .

Furthermore,

Eiτni−1 =
n!

(n− 1)! qi
m

(n−1)
i

+
1

qi

(
q
(i+1)
i m

(n)
i +

∞∑
`=i+1

q
(`)
i m

(n)
` +

∞∑
k=i+1

qikM
(n−1)
ik

)

=
q
(i+1)
i

qi
m

(n)
i +

∞∑
`=i+1

q
(`)
i

qi
m

(n)
` +

n

qi
M

(n−1)
i .

Hence, the assertion holds for n. By the induction, we know that (m
(n)
i , i > 1)

satisfies equation (2.5) for all n > 1. �

The following lemma is the second one.

Lemma 2.5 Assume that the single death Q-matrix Q = (qij) is irreducible
and the corresponding process is recurrent. Fix a positive integer n > 1. Define

hi = n
∑
k>i

G
(k)
i M

(n−1)
k

qk,k−1
, i > 1. (2.6)

Then (hi, i > 1) is the minimal nonnegative solution of equation (2.5) and
satisfies

hi =
1

qi,i−1

( ∑
`>i+1

q
(`)
i h` + nM

(n−1)
i

)
. (2.7)
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Proof Fix a positive integer N > 2, and define a Q-matrix Q(N) = (q̃ij) on
{0, 1, . . . , N} as follows:

q̃ij =



qij , i, j < N,

q
(N)
i , i < N, j = N,

(qN ∨N)(1 + nG(N)aN ), i = N, j = N − 1,

−(qN ∨N)(1 + nG(N)aN ), i = j = N,

0, i = N, j < N − 1.

where

G(N) = max
16i6N

G
(N)
i , aN =

{
M

(n−1)
N , M

(n−1)
N <∞,

1, M
(n−1)
N =∞.

Define

q̃(k)n =
N∑
j=k

q̃nj , 0 6 n < k 6 N,

and

G̃
(i)
i = 1, G̃(i)

n =
1

q̃n,n−1

i∑
k=n+1

q̃(k)n G̃
(i)
k , 1 6 n < i 6 N.

It is easy to check that

h
(N)
i := n

N∑
k=i

G̃
(k)
i M

(n−1)
k

q̃k,k−1
, 1 6 i 6 N, (2.8)

is a unique solution (the minimal non-negative solution) to the following
equation:

xi =
q̃
(i+1)
i

q̃i
· xi +

N∑
`=i+1

q̃
(`)
i

q̃i
· x` +

n

q̃i
M

(n−1)
i , 1 6 i 6 N. (2.9)

Note that

q̃i := −q̃ii = −qii = qi, 0 6 i < N, q̃
(k)
i = q

(k)
i , 0 6 i < k 6 N.

Furthermore,

G̃
(i)
j = G

(i)
j , 1 6 j 6 i 6 N.

Hence, we can rewrite (2.9) as

xi =


q
(i+1)
i

qi
· xi +

N∑
`=i+1

q
(`)
i

qi
· x` +

n

qi
M

(n−1)
i , 1 6 i 6 N − 1,

nM
(n−1)
N

(qN ∨N)(1 + nG(N)aN )
, i = N.

(2.10)
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On the one hand, from (2.5) and (2.10), by [5, Theorem 2.7], we know that

(h
(N)
i ) is increasing to the minimal non-negative solution of (2.5) as N → ∞.

On the other hand, it follows from (2.8) that

h
(N)
i = n

N−1∑
k=i

G
(k)
i M

(n−1)
k

qk,k−1
+

nG
(N)
i M

(n−1)
N

(qN ∨N)(1 + nG(N)aN )
.

Combining the equality with the definition of aN , it is not difficult to check
that

lim
N→∞

h
(N)
i =

n

∞∑
k=i

G
(k)
i M

(n−1)
k

qk,k−1
, M

(n−1)
N <∞, ∀N > 2,

∞, otherwise,

i.e.,

lim
N→∞

h
(N)
i = hi, ∀ i > 1.

So it has proven that (hi, i > 1) is the minimal non-negative solution of
(2.8). Finially, it is not difficult to check that (hi, i > 1) satisfies the equality
(2.7). The proof of the assertions are finished. �

The third lemma is presented as follows.

Lemma 2.6 Assume that the single death Q-matrix Q = (qij) is irreducible
and the corresponding process is recurrent. Give i0 ∈ E arbitrarily. Then

Eiτni0 6 n
∑

i0+16k6i

∑
`>k

G
(`)
k M

(n−1)
`

q`,`−1
+M

(n−1)
i0+1,i , i > i0.

Proof It is well known that (Eiτni0 , i > 0) is the minimal non-negative solution
to the following equation:

xi0 = 0, xi =
∑
j 6=i

qij
qi
· xj +

n

qi
Eiτn−1i0

, i 6= i0.

From [5, Theorem 2.13] (Localization Theorem) and the single death property,
it follows directly that (Eiτni0 , i > i0) is the minimal non-negative solution to
the following equation:

xi0 = 0, xi =
∑

j 6=i,j>i0

qij
qi
· xj +

n

qi
Eiτn−1i0

, i > i0. (2.11)

Define

yi = n
∑

i0+16k6i

∑
`>k

G
(`)
k M

(n−1)
`

q`,`−1
+M

(n−1)
i0+1,i =

∑
i0+16k6i

hk +M
(n−1)
i0+1,i , i > i0,
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where hi is defined in (2.6). Note that∑
j>i0+1

qi0+1,j

qi0+1
· yj +

n

qi0+1
Ei0+1τ

n−1
i0

=
∑

j>i0+2

qi0+1,j

qi0+1

( ∑
i0+16k6j

hk +M
(n−1)
i0+1,j

)
+

n

qi0+1
m

(n−1)
i0+1

=
1

qi0+1

(
q
(i0+2)
i0+1 hi0+1 +

∑
k>i0+2

q
(k)
i0+1hk + nM

(n−1)
i0+1

)
(by (2.2))

=
1

qi0+1
(q

(i0+2)
i0+1 hi0+1 + qi0+1,i0hi0+1) (by (2.7))

= hi0+1

= yi0+1.

For all i > i0 +2, by the strong Markov property and the single death property,
we can check easily that

Eiτn−1i0
= Eiτn−1i−1 +

n−1∑
s=1

(
n− 1

s

)
Eiτn−1−si−1 Ei−1τ si0 . (2.12)

Then it is derived that∑
j 6=i, j>i0

qij
qi
· yj +

n

qi
Eiτn−1i0

=
∑

i0+16k6i−1
hk +

q
(i+1)
i

qi
hi +

1

qi

∑
k>i+1

q
(k)
i hk +M

(n−1)
i0+1,i−1

+
∑
j>i+1

qij
qi
M

(n−1)
ij +

n

qi
m

(n−1)
i +

∑
j>i+1

qij
qi

n−1∑
s=1

(
n

s

)
Ei−1τ si0Ejτ

n−s
i−1

+
n

qi

n−1∑
s=1

(
n− 1

s

)
Eiτn−1−si−1 Ei−1τ si0 (by (2.4), (2.12))

=
1

qi

n−1∑
s=1

(
n

s

)
Ei−1τ si0

( ∑
j>i+1

qijEjτn−si−1 + (n− s)Eiτn−s−1i−1

)
+

∑
i0+16k6i

hk +M
(n−1)
i0+1,i−1 (by (2.2), (2.7))

=
∑

i0+16k6i

hk +M
(n−1)
i0+1,i−1 +

n−1∑
s=1

(
n

s

)
Ei−1τ si0Eiτ

n−s
i−1 (by (2.3), Lemma 2.4)

=
∑

i0+16k6i

hk +M
(n−1)
i0+1,i (by (2.4))

= yi.
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Hence, we have checked that (yi, i > i0) is a non-negative solution to (2.11).
Furthermore, it is followed that Eiτni0 6 yi for all i > i0 from the minimal
property of (Eiτni0 , i > i0) immediately. So the assertion is proven. �

Now, we prove the main result presented previously.

Proof of Theorem 2.3 On the one hand, by Lemmas 2.4, 2.5, and the minimal

property, we obtain that hi 6 m
(n)
i for all i > 1, where hi is defined in (2.6).

On the other hand, by Lemma 2.6, it is seen that m
(n)
i 6 hi for all i > 1. Hence,

it holds that hi = m
(n)
i for all i > 1. The assertion is proven. �

3 Proof of Theorem 1.1

To prove Theorem 1.1, we still need some lemmas. The first lemma is taken
from [9, Proposition 2.4] directly.

Lemma 3.1 For all 1 6 i 6 v < u, the following relation holds:

G
(u)
i =

∑
i6k6v

G
(k)
i

qk,k−1

u∑
`=v+1

q
(`)
k G

(u)
` .

The second lemma is presented as follows.

Lemma 3.2 Assume that the single death Q-matrix is regular and the process
is recurrent. Then, for any nonnegative sequence {am} and n > 1, the following
equality holds:

∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n
`1−1

`1−1∑
`2=k

a`2 = n
∑
u>i+1

G
(u)
i M

(n−1)
u

qu,u−1

u−1∑
`2=i

a`2 .

Proof Denote the left-hand side of the equality above by I. By Theorem 2.3
and Lemma 3.1, it is seen that

I = n
∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k

∑
u>`1

G
(u)
`1
M

(n−1)
u

qu,u−1

`1−1∑
`2=k

a`2

= n
∑
u>i+1

M
(n−1)
u

qu,u−1

u−1∑
`2=i

a`2

`2∑
k=i

G
(k)
i

qk,k−1

u∑
`1=`2+1

q
(`1)
k G

(u)
`1

= n
∑
u>i+1

G
(u)
i M

(n−1)
u

qu,u−1

u−1∑
`2=i

a`2 .

The assertion is proven. �

The third lemma is an important relation formula.
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Lemma 3.3 Assume that the single death Q-matrix is regular and the process
is recurrent. Then, for any 1 6 i 6 k < `1 and n > 2, the following assertion
holds:

M
(n−1)
k,`1−1 +

n−1∑
s=1

(
n

s

)
E`1−1τ

n−s
k−1Ek−1τ

s
i−1 =

`1−1∑
`2=k

n−1∑
s=1

(
n

s

)
E`2τ

n−s
`2−1E`2−1τ

s
i−1.

Proof When k = i, it is obvious that both sides of the above formula are equal

to M
(n−1)
k,`1−1. So the assertion holds.

Assume that i < k < `1. Denote the right-hand side of the equality above
by I. Note that

I =

`1−1∑
`2=k

n−1∑
s=1

(
n

s

)
E`2τ

n−s
`2−1

s∑
s1=1

(
s

s1

)
E`2−1τ

s−s1
k−1 Ek−1τ s1i−1

+

`1−1∑
`2=k

n−1∑
s=1

(
n

s

)
E`2τ

n−s
`2−1E`2−1τ

s
k−1

=

`1−1∑
`2=k

n−1∑
s1=1

(
n

s1

)
Ek−1τ s1i−1

n−1∑
s=s1

(
n− s1
s− s1

)
E`2τ

n−s
`2−1E`2−1τ

s−s1
k−1 +M

(n−1)
k,`1−1

= M
(n−1)
k,`1−1 +

n−1∑
s1=1

(
n

s1

)
Ek−1τ s1i−1

`1−1∑
`2=k

n−s1−1∑
s=0

(
n− s1
s

)
E`2τ

n−s1−s
`2−1 E`2−1τ

s
k−1.

If E`1−1τ
n−1
k−1 < ∞, then E`2τ

n−1
k−1 < ∞ for all k 6 `2 6 `1 − 1. In fact, by

the strong Markov property and the single death property, we see that

E`1−1τ
n−1
k−1 =

n−2∑
s=0

(
n− 1

s

)
E`1−1τ

n−1−s
`1−2 E`1−2τ

s
k−1 + E`1−2τ

n−1
k−1 ; (3.1)

so E`1−2τ
n−1
k−1 < ∞. Recursively, it is derived that E`2τ

n−1
k−1 < ∞ (k 6 `2 6

`1 − 1). Hence,

I = M
(n−1)
k,`1−1 +

n−1∑
s1=1

(
n

s1

)
Ek−1τ s1i−1

`1−1∑
`2=k

(E`2τ
n−s1
k−1 − E`2−1τ

n−s1
k−1 )

= M
(n−1)
k,`1−1 +

n−1∑
s1=1

(
n− 1

s1

)
E`1−1τ

n−s1
k−1 Ek−1τ s1i−1.

If E`1−1τ
n−1
k−1 =∞, then, by (3.1), either there exists such s ∈ [1, n− 1] that

E`1−1τ s`1−2 =∞, or E`1−2τ
n−1
k−1 =∞. For the former case, both sides of the above

formulae are ∞ and hence the assertion holds. For the latter case, then either
there exists such s ∈ [1, n − 1] that E`1−2τ s`1−3 = ∞, or E`1−3τ

n−1
k−1 = ∞. The
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argument goes on. Recursively, in the end either there exists such s ∈ [1, n− 1]
that Ek+1τ

s
k = ∞, or Ekτn−1k−1 = ∞. Now, both sides of the above formula are

∞, which implies that the assertion holds. The proof is finished. �

By Theorem 2.3, Lemmas 3.2 and 3.3, we can obtain the following result
immediately.

Lemma 3.4 Assume that the single death Q-matrix is regular and the process
is recurrent. Then, for all 1 6 s1 < n, the following equality holds:

∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

(
M

(s1−1)
k,`1−1 +

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1 Ek−1τ s2i−1

)

= (n− s1)
∑
u>i+1

G
(u)
i

qu,u−1
M (n−s1−1)
u M

(s1−1)
i,u−1 .

Now, we prove the main result.

Proof of Theorem 1.1 At first, we will prove

hi = n
∑
k>i

G
(k)
i Ekτn−1i−1
qk,k−1

, i > 1,

where hi is defined in Lemma 2.5 (see (2.6)).
By [9, Remark 2.8], we know that the assertion holds for n = 1. For all

n > 2, we obtain that

∑
k>i

G
(k)
i

qk,k−1

∑
`0>k+1

qk`0M
(n−1)
k`0

=
∑
k>i

G
(k)
i

qk,k−1

∑
`0>k+1

qk`0

`0∑
`1=k+1

∑
16s16n−1

(
n

s1

)
E`1τ

n−s1
`1−1 E`1−1τ

s1
k−1

=n
∑
u>i+1

G
(u)
i

qu,u−1

u−1∑
`2=i

E`2τ
n−1
`2−1

+ n
∑

16s16n−2

(
n− 1

s1

) ∑
u>i+1

G
(u)
i M

(n−s1−1)
u

qu,u−1

u−1∑
`2=i

E`2τ
s1
`2−1

+
∑

26s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1 M

(s1−1)
k,`1−1 .

From Lemma 3.2, it follows that

hi = n
∑
u>i

G
(u)
i

qu,u−1

u∑
`2=i

E`2τ
n−1
`2−1
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+ n
∑

16s16n−2

(
n− 1

s1

) ∑
u>i+1

G
(u)
i M

(n−s1−1)
u

qu,u−1

u−1∑
`2=i

E`2τ
s1
`2−1

+
∑

26s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1 M

(s1−1)
k,`1−1 .

=: I + V + IV.

Note that

V = n
∑

16s16n−2

(
n− 1

s1

) ∑
u>i+1

G
(u)
i Euτn−s1−1u−1
qu,u−1

u−1∑
`2=i

E`2τ
s1
`2−1

+
∑

16s16n−2

(
n

s1

) ∑
u>i+1

G
(u)
i

qu,u−1

∑
j>u+1

qujM
(n−s1−1)
uj

u−1∑
`2=i

E`2τ
s1
`2−1

= n
∑
u>i+1

G
(u)
i

qu,u−1

∑
16s16n−2

(
n− 1

s1

)
Euτn−1−s1u−1

u−1∑
`2=i

E`2τ
s1
`2−1 +

∑
26s16n−1

(
n

s1

)

×
∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

∑
i6`26k−1

E`2τ
s2
`2−1

=: II + III.

Then, by Lemma 3.4, it is derived that

III + IV = 1{n>3}

(
n

2

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−2
`1−1

(
2E`1−1τk−1Ek−1τi−1

+M
(1)
k,`1−1

)
+

∑
36s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

×
( s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

∑
i6`26k−1

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

=

(
n

2

)
(n− 2)

∑
u>i+1

G
(u)
i M

(n−3)
u

qu,u−1
M

(1)
i,u−1

+
∑

36s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

×
( s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

= n

(
n− 1

2

) ∑
u>i+1

G
(u)
i

qu,u−1
Euτn−3u−1M

(1)
i,u−1
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+ 1{n>4}

(
n

2

) ∑
u>i+1

G
(u)
i

qu,u−1

∑
j>u+1

qujM
(n−3)
uj M

(1)
i,u−1

+
∑

36s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

×
( s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

=: n

(
n− 1

2

) ∑
u>i+1

G
(u)
i

qu,u−1
Euτn−3u−1M

(1)
i,u−1 + J;

furthermore,

J = 1{n>4}

(
n

2

) ∑
u>i+1

G
(u)
i

qu,u−1

∑
`1>u+1

q(`1)u

n−3∑
s1=1

(
n− 2

s1

)
E`1τ

n−2−s1
`1−1

× E`1−1τ
s1
u−1M

(1)
i,u−1 +

∑
36s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

×
( s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

=
∑

36s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)
.

It follows from Lemma 3.4 that

J =
∑

46s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)
+ 1{n>4}

(
n

3

)∑
k>i

G
(k)
i

qk,k−1

×
∑

`1>k+1

q
(`1)
k E`1τ

n−3
`1−1

( 2∑
s2=1

(
3

s2

)
E`1−1τ

3−s2
k−1 Ek−1τ s2i−1 +M

(2)
k,`1−1

)

=
∑

46s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)
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+n

(
n− 1

3

) ∑
u>i+1

G
(u)
i

qu,u−1
M (n−4)
u M

(2)
i,u−1.

Hence, we obtain that

III + IV

= n
∑
u>i+1

G
(u)
i

qu,u−1

3∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1

+
∑

46s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

+ 1{n>5}

(
n

3

)∑
k>i

G
(k)
i

qk,k−1

∑
j>k+1

qkjM
(n−4)
kj M

(2)
i,k−1

= n
∑
u>i+1

G
(u)
i

qu,u−1

3∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1

+
∑

46s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)
+ 1{n>5}

(
n

3

)

×
∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k

n−1∑
s1=4

(
n− 3

s1 − 3

)
E`1τ

n−s1
`1−1 E`1−1τ

s1−3
k−1 M

(2)
i,k−1.

So, by Lemma 3.4, we get that

III + IV

= n
∑
u>i+1

G
(u)
i

qu,u−1

3∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1 +

∑
46s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

×
∑

`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1 +

(
s1
3

)
E`1−1τ

s1−3
k−1 M

(2)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

= n
∑
u>i+1

G
(u)
i

qu,u−1

3∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1 + 1{n>5}

(
n

4

)∑
k>i

G
(k)
i

qk,k−1
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×
∑

`1>k+1

q
(`1)
k E`1τ

n−4
`1−1

( 3∑
s2=1

(
4

s2

)
E`1−1τ

4−s2
k−1 Ek−1τ s2i−1 +M

(3)
k,`1−1

)

+
∑

56s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

((
s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1

+

(
s1
3

)
E`1−1τ

s1−3
k−1 M

(2)
i,k−1 +

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)

= n
∑
u>i+1

G
(u)
i

qu,u−1

3∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1 + n

(
n− 1

4

) ∑
u>i+1

G
(u)
i

qu,u−1

×M (n−5)
u M

(3)
i,u−1 +

∑
56s16n−1

(
n

s1

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ

n−s1
`1−1

×
((

s1
2

)
E`1−1τ

s1−2
k−1 M

(1)
i,k−1 +

(
s1
3

)
E`1−1τ

s1−3
k−1 M

(2)
i,k−1

+

s1−1∑
s2=1

(
s1
s2

)
E`1−1τ

s1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(s1−1)
k,`1−1

)
= · · ·

= n
∑
u>i+1

G
(u)
i

qu,u−1

n−3∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1 + n

(
n− 1

n− 2

) ∑
u>i+1

G
(u)
i

qu,u−1

×M (1)
u M

(n−3)
i,u−1 + n

∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ`1−1

×
( n−3∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1 M

(s2−1)
i,k−1

+

n−2∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(n−2)
k,`1−1

)
,

where the last equality is derived recursively. Hence, by Lemma 3.4, it is seen
that

III + IV

= n
∑
u>i+1

G
(u)
i

qu,u−1

n−2∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1

+ n

(
n− 1

n− 2

)
1

2

∑
k>i

G
(k)
i

qk,k−1

∑
j>k+1

qkjM
(1)
kj M

(n−3)
i,k−1
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+ n
∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ`1−1

( n−3∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1 M

(s2−1)
i,k−1

+
n−2∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(n−2)
k,`1−1

)

= n
∑
u>i+1

G
(u)
i

qu,u−1

n−2∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1

+ n

(
n− 1

n− 2

)∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ`1−1E`1−1τk−1M

(n−3)
i,k−1

+ n
∑
k>i

G
(k)
i

qk,k−1

∑
`1>k+1

q
(`1)
k E`1τ`1−1

( n−3∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1 M

(s2−1)
i,k−1

+
n−2∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1

k−1∑
`2=i

E`2τ
s2
`2−1 +M

(n−2)
k,`1−1

)

= n
∑
u>i+1

G
(u)
i

qu,u−1

n−2∑
s1=2

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1 + n

∑
k>i

G
(k)
i

qk,k−1

×
∑

`1>k+1

q
(`1)
k E`1τ`1−1

( n−2∑
s2=1

(
n− 1

s2

)
E`1−1τ

n−1−s2
k−1 Ek−1τ s2i−1 +M

(n−2)
k,`1−1

)

= n
∑
u>i+1

G
(u)
i

qu,u−1

n−2∑
s1=1

(
n− 1

s1

)
Euτn−1−s1u−1 M

(s1−1)
i,u−1 + n

∑
u>i+1

G
(u)
i

qu,u−1
M

(n−2)
i,u−1 .

So we have

V + IV = II + III + IV

= n
∑
u>i+1

G
(u)
i

qu,u−1

n−2∑
s1=1

(
n− 1

s1

)
Euτn−1−s1u−1

( u−1∑
`2=i

E`2τ
s1
`2−1 +M

(s1−1)
i,u−1

)

+ n
∑
u>i+1

G
(u)
i

qu,u−1
M

(n−2)
i,u−1 ;

furthermore,

V + IV = n
∑
u>i+1

G
(u)
i

qu,u−1

( n−2∑
s1=1

(
n− 1

s1

)
Euτn−1−s1u−1 Eu−1τ s1i−1 +M

(n−2)
i,u−1

)

= n
∑
u>i+1

G
(u)
i

qu,u−1
M

(n−2)
iu .
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So

hi = I + V + IV = n
∑
u>i

G
(u)
i

qu,u−1

( u∑
`2=i

E`2τ
n−1
`2−1 +M

(n−2)
iu

)
= n

∑
u>i

G
(u)
i Euτn−1i−1
qu,u−1

.

Summing up the arguments above, we obtain that

Eiτni−1 = hi = n
∑
k>i

G
(k)
i Ekτn−1i−1
qk,k−1

, i, n > 1.

For any 0 6 k < i, we see that

Eiτnk =
i∑

j=k+1

(
Ejτnj−1 +

n−1∑
s=1

(
n

s

)
Ejτ sj−1 · Ej−1τn−sk

)
.

Furthermore, we obtain that

Eiτnk =
∑

k+16j6i

(
n
∑
`>j

G
(`)
j E`τn−1j−1
q`,`−1

+

n−1∑
s=1

(
n

s

)
· s
∑
`>j

G
(`)
j E`τ s−1j−1
q`,`−1

· Ej−1τn−sk

)

= n
∑

k+16j6i

∑
`>j

G
(`)
j

q`,`−1

(
E`τn−1j−1 +

n−1∑
s=1

(
n− 1

s− 1

)
E`τ s−1j−1 · Ej−1τ

n−s
k

)

= n
∑

k+16j6i

∑
`>j

G
(`)
j

q`,`−1

(
E`τn−1j−1 +

n−2∑
s=0

(
n− 1

s

)
E`τ sj−1 · Ej−1τn−1−sk

)

= n
∑

k+16j6i

∑
`>j

G
(`)
j

q`,`−1

n−1∑
`=0

(
n− 1

`

)
E`τ `j−1 · Ej−1τn−1−`k

= n
∑

k+16j6i

∑
`>j

G
(`)
j E`τn−1k

q`,`−1
, 0 6 k < i, n > 1.

So the assertion holds for all n > 1. The proof of Theorem 1.1 is finished. �

In the end of this section, let us consider the following example, which comes
from [9].

Example 3.5 Given a constant b > 2 (for regularity, we only need that
b > 1). Define a totally stable, conservative, and irreducible single death Q-
matrix Q = (qij) as follows:

qij =
b− 1

bj−i+2
, j > i+ 1; qi,i−1 =

b− 1

b
, qi = −qii =

b2 − b+ 1

b2
, i > 1;

q0j =
b− 1

bj+1
, j > 1; q0 = −q00 =

1

b
.
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By [9], we know that the corresponding process is exponentially ergodic but
not strongly ergodic. Here,

q(k)n =
1

bk−n+1
, 1 6 n < k, q

(k)
0 =

1

bk
, k > 1,

G
(i)
i = 1, G(i)

n =
1

b(b− 1)i−n
, 1 6 n < i,

and

Eiτi0 = (i− i0)
b− 1

b− 2
, i > i0.

For 1 6 k < `, we know that

M
(1)
k` = (`− k)(`− k + 1)

(b− 1)2

(b− 2)2
, M

(1)
k =

b2 − 3b+ 3

(b− 2)2
;

furthermore, for i > 1,

Eiτ2i−1 = 2
∑
k>i

G
(k)
i M

(1)
k

qk,k−1
=

2(b− 1)(b2 − 3b+ 3)

(b− 2)3
= 2

∑
k>i

G
(k)
i Ekτi−1
qk,k−1

.

From here, we have checked Theorems 2.3 and 1.1 in the case of n = 2, by the
last part in the proof of Theorem 1.1. By the way, we have

E`τ2k =
(`− k)(`− k + 1)(b− 1)2

(b− 2)2
+

2(`− k)(b− 1)

(b− 2)3
, 0 6 k < `.

4 Exponential ergodicity and `-ergodicity

By Theorem 1.1, we can get one necessary condition for the exponential ergodicy
of the single death processes as follows.

Corollary 4.1 Assume that the single death Q-matrix is regular, irreducible,
and the corresponding process is exponentially ergodic. Then

δ := sup
i>1

∑
16k6i

∑
`>i

G
(`)
k

q`,`−1
<∞.

Proof By the exponential ergodicy of the process, we see that the process is
recurrent. Then

Eiτn0 = n
∑

16k6i

∑
`>k

G
(`)
k E`τn−10

q`,`−1
, i > 0, n > 1.
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By the fact that Eiτn−10 6 E`τn−10 for all ` > i and Theorem 1.1, one gets that

Eiτn0 > n
∑

16k6i

∑
`>i

G
(`)
k E`τn−10

q`,`−1

> n

( ∑
16k6i

∑
`>i

G
(`)
k

q`,`−1

)
Eiτn−10

> · · ·

> n!

( ∑
16k6i

∑
`>i

G
(`)
k

q`,`−1

)n
, n > 1.

From the exponential ergodicity, by [5, Theorem 4.44 (2)], there exists some λ
with 0 < λ < qi for all i such that E0e

λσ0 < ∞. Then, by [5, p. 148], it holds
that Eieλσ0 <∞, i.e., Eieλτ0 <∞ for all i > 1. The Taylor expansion

∞ > Eieλτ0 =
∑
n>0

λn

n!
Eiτn0

leads us to

∞ >
∑
n>0

(
λ
∑

16k6i

∑
`>i

G
(`)
k

q`,`−1

)n
,

which implies that

λ
∑

16k6i

∑
`>i

G
(`)
k

q`,`−1
< 1.

Taking the supremum over i > 1, we obtain

δ = sup
i>1

∑
16k6i

∑
`>i

G
(`)
k

q`,`−1
<∞.

The proof is finished. �

Given a positive integer `. Another application of Theorem 1.1 is a criterion
on `-ergodicity of single death processes. A recurrent Q-process is called to be
`-ergodic provided that Ejσ`j < ∞ for some (equivalently, all) j ∈ Z+; refer to
[6]. Then we obtain the following result.

Corollary 4.2 Assume that the single death Q-matrix is regular, irreducible,
and the corresponding process is recurrent. Then the process is `-ergodic if and
only if

d(`) :=
∑
k>1

q
(k)
0

∑
j>k

G
(j)
k

qj,j−1
Ejτ `−10 <∞.
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Proof By the strong Markov and the single death properties, we derive that

E0σ
n
0 = E0(η1 + σ0 − η1)n

= E0η
n
1 +

n∑
s=1

(
n

s

)
E0((σ0 − η1)sηn−s1 ))

=
n!

qn0
+

n∑
s=1

(
n

s

) ∞∑
k=1

E0(η
n−s
1 1{Xη1=k}EXη1 τ

s
0 )

=
n!

qn0
+

n∑
s=1

(
n

s

) ∞∑
k=1

(n− s)!
qn−s0

· q0k
q0

Ekτ s0

=
n!

qn0
+

n∑
s=1

(
n

s

) ∞∑
k=1

(n− s)!
qn−s0

· q0k
q0
· s
∑

16i6k

∑
`>i

G
(`)
i E`τ s−10

q`,`−1

=
n!

qn0
+

n∑
s=1

n!

(s− 1)! qn−s+1
0

∑
i>1

q
(i)
0

∑
`>i

G
(`)
i E`τ s−10

q`,`−1
.

By the argument above, it is easy to check that E0σ
n
0 is finite if and only if∑

i>1

q
(i)
0

∑
`>i

G
(`)
i E`τn−10

q`,`−1
<∞.

Hence, the assertion holds. �

By the way, we can get a sufficient condition of exponential ergodicity for
singled death processes as follows.

Proposition 4.3 Let the single death Q-matrix be regular and irreducible.
Assume that ∑

k>1

q
(k)
0

G
(k)
1

<∞.

If

q := inf
n>0

qn > 0, M := sup
n>1

( n∑
k=1

1

G
(k)
1

)( ∞∑
`=n

G
(`)
1

q`,`−1

)
<∞,

then the process is exponentially ergodic.

The condition above is a little different from the one in [9] but the proof of
them are similar. The main construction idea of test functions comes from [4].
So we omit the detailed proof here.

By Lemma 3.1, it is easy to check that G
(k)
1 G

(`)
k 6 G

(`)
1 for all 1 6 k 6 `. So

it is obvious that M > δ.
Come back to Example 3.5. Now, we know that∑

k>1

q
(k)
0

G
(k)
1

=
b2 − b+ 1

b
, δ =

b2 − 3b+ 3

(b− 2)2
, M =

b(b− 1)

(b− 2)2
.
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So the process is exponentially ergodic. Obviously, M > δ because b > 2 here.
Note that for this example, the quantity of M is equal to the corresponding one
in [9].
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