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Abstract We present an explicit and recursive representation for high order
moments of the first hitting times of single death processes. Based on that,
some necessary or sufficient conditions of exponential ergodicity as well as a
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1 Introduction

Consider a continuous-time homogeneous Markov chain {X(¢): ¢ > 0} on a
probability space (€2,.%,P), with transition probability matrix P(t) = (p;;(t))
on a countable state space Z4 := {0,1,2,...}. We call {X(¢): ¢ > 0} a single
death process if its transition rate matrix Q = (g;j: 4,j € Z4) is irreducible
and satisfies that ¢;;_1 > 0 for all : > 1 and ¢;;—; = 0 for all i > j > 2. Such a
matrix @ = (gi;) is called a single death @-matrix. In the literature, the single
death process is also called downwardly skip-free process.

Usually, single death processes are non-symmetric and hence can be
regarded as the representative ones of non-symmetric processes. For general
single death process, we only have some limited knowledge on stationary
distribution and criterion on zero-entrance of them; refer to [3,7]. But as a
special kind of single death process, the branching processes are fruitful and
applicable intensively, on which one of the main tools used is the generation
functions; see [1,2]. Note that the generation function is not valid for general
single death process. Recently, in [9], we obtained an explicit representation of
the first moments of hitting times for single death processes; further, presented
a criterion on ergodicity and strong ergodicity. Meanwhile, some sufficient
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or necessary conditions for recurrence and exponential ergodicity as well as
extinction probability for the single death processes were also derived in [9].
This paper is a continuous work of [9]. We focus on obtaining some
recursive representations of high order moments of hitting times for single death
processes.

Define the first hitting time

7i:=1inf{t > 0: Xy =i}, Vi>0,
the first jumping time
m = 1inf{t > 0: X; # Xo}, (1.1)
and the first returning time
o :=inf{t >m: Xy =1}, Vi=0.
For birth-death process, define

a; = qii—1, 1 =1, b =qiit1, 1 20,

By [8], it is well known that

% 00
1 _ .
Eimg =n E — g By~ iin > 1.
j=1 1% =

The tool they used is the functional with integral type downward and
approximation approach. In [10], we obtained a similar representation for birth-
death processes on trees, using a different way. Although in [10], we used the
symmetrizable property in our proof, we are conscious of the fact that the
key property is the single death rather than the symmetrization. This is the
motivation of this paper and the ideas or approaches are originated from [10].

Throughout the paper, we consider only totally stable and conservative
single death @)-matrix:

Qi ‘= —qii = qu’j <oo, VieZy.
ji

The following sequences are used throughout this paper:
o0
¢ = qnj, k>n>0,
j=k

and

i , 1 : i :
a1, Gl = S e, 1<n <
=1 2
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It is easily known that

i—1 ~(k) (i)
¢ =1, =% 1<n<i
p— qk,k—1

The main result of this paper is as follows.

Theorem 1.1 Assume that the single death Q-matriz Q = (g;5) is irreducible
and the corresponding process is recurrent. Give ig € Z and a positive integer
n = 1 arbitrarily. Then

Z)Eﬁ'n 1

Z Z i > g+ 1.

i0+1<k<i 0>k qe.e-1

This paper is organized as follows. Some relations between moments from
different starting states and another explicit representation of hitting times are
given in the next section. Then Section 3 is devoted to the proof of Theorem
1.1. In Section 4, some explicit necessary or sufficient conditions of exponential
ergodicity as well as a criterion on f-ergodicity are obtained for single death
processes, respectively.

2 Another representation of hitting times

First, we consider the relation between the n-th moments from different starting
states. Define
mgn) =E;7', i>1,n2>0;

in particular,

We denote m,gl) by m; simply. Recall that the Polynomial Theorem for the

polynomial with ¢ variables and power n is described as follows:

n! n n n
(T1+22+ - +m)" = E o Ay
Ny mot---Ny!
(n1,n2,...,n0)EA

where

Analogously, we define the ‘polynomial” with parentheses-power (n):
|
(m; +mip1+ -+ mz)(n) = Z S L m(ni) e mém&).

nz'nlJrl'ng' !
(MM 150 5M00) EFp_ i1

Then we obtain the following relation between the n-th moments from different
starting states.
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Theorem 2.1 Under the conditions of Theorem 1.1, for any ig € Z4, we have
Ei7jy = (Mig41 + migya + -+ + mi)(n), 1>149,n > 1.

Proof It follows from the definition above that

i i
1
(Mig41 + Migg2 + -+ + mi)(l) = E m,(f ) = g Exti—1 = EiTi,
k=ip+1 k=io+1

in which the last equality holds by the single death and strong Markov property.
So the assertion holds in the case of n = 1.

Assume that the assertion holds until n — 1. By the single death and strong
Markov property, it is seen that for all ¢ > 79 + 1,

n n
Eiy = Ei(ti-1 + iy — Ti—1)

= B 1+Z< > ((Tig — 7i=1)°7"3°) + Ei(7ip — 7i1)"

=B’y + Z ( ) ((Tig = 7i=1)°73° | Frilh))

+Ei(Ei(Tio —7i-1)" | Fr_y)

n—1
n
n n—s S
= EiTi,1 + E (s)EiTi_l Ei—lTio + Ei—lTZ
s=1

Note that E;, 77 = 0. Hence, the equality above is true for all i > 4.

10 10
Furthermore,

n—1
n -
Eﬂ’{é = EiTﬁl + Z <S>EiTZL_ISEZ‘_1TZ% + Ei—lTiTiQ
+ Z( ) i—17; ) Biomyy + EioT,
ionolo.
- 3 Bt 3 5 (O et + B

l=i—1 {=i—1 s=1

Hence, we can obtain recursively that

i i n—1
n _
E7)y = Z Eer | + Z Z (S)Eng_lsEg_lTZ%.

£:i0+1 f=i0+2 s=1

By the assumption, we know that

Z my+ > Z( ) 57 (mig 1+ Mg ot - +me_1)®. (2.1)

{=ig+1 l=ig+2 s=1
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If
(Mig41 + Mig42 + -+ + mz’)(n) = 00,

then there exist p € [ip + 1,4] and k € [1,n] such that m}(,k) = oo; furthermore,
mén) = 00. By (2.1), we know that
Ei7j; = 00 = (Mig41 + Mig2 + -+ + m;)™.

If
(Mig41+ Migya + -+ +m;) ™ < oo,

then
(Mig 41 + Migr2+ - +mg)™ < oo, mgn) < oo, VLlelig+1,1].

Furthermore, it follows that
7 n—1 n
> 2 <S>m§ns)(mio+l +mig o+ mp))

= > ((migsr + migpz + - +mg) ™
l=ig+2

_ (mio+l + Mig42 + -+ mg_l)(n) . mén))
i
= (Mig41 + migsa + - +my)™ — 3 i,
l=ig+1

Hence, by the arguments above and (2.1), it holds that
E;mjp = (Mmig41 + Mig2 + - + mi)(n)~

That is, the assertion holds in the case of n. By induction, the assertion holds
for all n > 1. The proof is finished. ([l
By Theorem 2.1, for representing E;7;", it suffices to get the explicit formular

(s)

of Ey7,”. To do this, we need some notations as follows. Define
-1 n _ . .
Mi(g = . Z Z <8>E€T;13E€—1Tis—1a kzi+112>21,
i+1<U<k 1<s<n—1

and M = 0ifi >k > 1. Define

_ - 1 -
M = ST Y i 1 (2:2)
k>it1

First, we introduce some properties about the definitions above.
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Proposition 2.2 Under the conditions of Theorem 1.1, the following
assertions hold:

1 L
Z m(n) 0n+1 2, i =19, n =1, (2.3)
i0+1<l<a

and
MO =M MO S CﬁMﬁSET

1<i<j<kn>1 (2.4)

Proof Obviously, (2.3) is obtained by (2.1) directly.
To prove (2.4), using the strong Markov property and single death property,
for all 7 < j < k, we derive that

A45?71) zf 1)_% j{: j{: < >IE[Q 1]E€ 17,

JH1<l<k 1<s<n—1

= Mn 1 Z < > j+17-]n7$Ej7-¢8_1

1<s<n—1

DD

jH2<e<k 1<s<n—1

¢
S UAREEY <> T T
(

)IEgTz llEg 17,

1<s<n—1

DD

JH2<U<k 1<s<n—1

+Z<)Em i )

1<u<s
_M(" 1)+M+1k Z < ) 17 BT
1<s<n—1
LYY B Y (”)(”‘U)Ee T
j2<i<k 1<s<n—1 l<uss N/ NS U
= MUY+ M L

7+1,k
Note that

1= Z < )E]Tl 1 Z Z <n_u>EgTZ__18EZ_1T;_u

I<usn—1 jH2<l<k uss<n—1

n _
D DN (AL o

I<usn—1
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2 Qe 5 T (e

I<usn—1 JH2<U<k 0<vsn—u—1

+ ]E]'+1’T]nu>

- ¥ ( >Eﬂl 1< 3 3y (”;“)MU ) R

I<usn—1 jH2<l<k 1<v<n—u—1
+ Z EZTZ 1>
JH1<U<k
n n—u u
- ¥ (Dmgm
I<usn—1

in which the last equality holds in virtue of (2.1). Hence, by the argument
above, the proof of (2.4) is finished. O

Our result on the representation of més) by the above notations is presented
as follows.

Theorem 2.3 Assume that the single death Q-matriz Q = (g;5) is irreducible
and the corresponding process is recurrent. Then
o M}gnq)

qk,k—1

i,n = 1.

Hence, combining Theorems 2.1 and 2.3, we obtain another representation
of EZ'TZ% for i > ig.

To prove Theorem 2.3, we need three lemmas. The first lemma is presented
as follows.

Lemma 2.4 Assume that the single death Q-matriz Q = (g;j) is irreducible
and the corresponding process is recurrent. Then, for alln > 1, (E;7/" 4,1 > 1)
satisfies the following equation:
(i+1) 0)
4 T; + Z qu Ty ﬁ Mi(n_l), 1> 1. (2.5)
i b i

Proof To prove the assertion, we use the induction. By [9, Remark 2.8], we
know that (E;7;,—1, i > 1) satisfies the following equation:

LD O
T = i + E x4+ —, =1
qi 51 qi Qz
>i+1

Hence, the assertion holds when n = 1.
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Assume that the assertion holds until n — 1. Define the first jumping time
7 as in (1.1). By the strong Markov and the single death properties, we derive
that

E;ry = ﬂh+2() (Tic1 —m)® %)) + Ei(ricr — m)"”

’I’L' n—1 n 0
=+ <S> > Bl Lix,, =nEx,, 70)

= k=i+1
+ Z Ei(1(x,, =1 Ex,, 7it1)
k=it+1
S () e (9! g qin
S NP R o
E— h—it1 i i fmip1 1
It follows from (2.3) that
n| n—1 )
= B 5 3 (o)
i s= 1 k=i+1
£y (z )
k=i+1 qi =
n! — n! (i+1) (s—1)
:T@"‘ ns+1<i +Zqzmé+zq’ﬁkMzk )
4 ql {=i+1 k=i+1
1 1 1)
+— (qf’” (”)+Zq +quM” )
qi (=i+1 k=i+1
1
=1+ — (qf’“)m + Z ¢Im{™ + Z G My~ 1)>
di (=i+1 k=i+1
By the assumption, we get that
nl (), (1), N O, (1)
. KA
I:n(qi m; +Zqz- my, +1>
e (=i+1
o0 E oo
1 -1
+Z 7 s+1 ( z’H )mz(‘S) + Z qz( )mf) + Z QikMz‘(/: )>
(=i+1 k=i+1
nl ) (i+1),( (s—1)
= —m, +Z'ns+1<qzl mS+Zqzm€+Zqszzks .
% 9 r=it1 k=it1

Furthermore, by the assumption, it is derived that
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n!
= g (404 3 Pl 2+ 3 )

{=i+1 k=i+1
S W+, 5, N O, )
. i+ S s—
+Z prp—— <qi m; -+ Z q; 9+ Z szMzk )
slq; 0=i+1 k=i+1
n(a, @, N O, (2 M
= e <in m;” + Z q; 'm; " +2M;
"4 l=i+1
oo e o
1 —1
e (S s 3 )
(=i+1 k=i+1
! (2)
S22 i
oo e oo
1 —1
P8t (0 5 0l s 5 et )
(=i+1 k=i+1
Recursively, it follows that
n! (n—1)
I=— " ;!
(n—Dlg "
Furthermore,
nl (n—1)
Biritn = o) i’
1 (oo} Z [ee)
+1 -1
Y (AR o RTAR oYty
i f=i+1 k=i+1
(i+1) < (0)
RO )
qi r=it1 qi qi

Hence, the assertion holds for n. By the induction, we know that (mgn)7 i>1)
satisfies equation (2.5) for all n > 1. O

The following lemma is the second one.

Lemma 2.5 Assume that the single death Q-matriz Q@ = (q;;) is irreducible
and the corresponding process is recurrent. Fiz a positive integer n > 1. Define
(k) 3 r(n—1)
G, M,

hi=n) ——E —  i>1. (2.6)
>i qk,k—1

\

Then (h;, © > 1) is the minimal nonnegative solution of equation (2.5) and

satisfies

1 .

hi = — (qu)thMf ”)- (2.7)
QZ,z—l (>it1
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Proof Fix a positive integer N > 2, and define a Q-matrix QV) = (g;) on
{0,1,..., N} as follows:

'Qijv i7j<N7
a", i<N,j=N,

G =19 (avnVN)A+nGMay), i=N,j=N-1,
—(gv VN)(1+nGWMay), i=j=N,

0, i=N,j<N-1.
where (n—1) (n—1)
GN) = max G( ) anN = My = My =0
ISisN 1, MUY = o
Define
N
D=2 Gy 0Sn<k<N,
and
GY -1, @ GPGY 1< n<i<N.
‘ qTLTL 1 Z K

It is easy to check that

G
—nz 1<i<N, (2.8)

l Qkk 1

is a unique solution (the minimal non-negative solution) to the following
equation:
Z0D N0
xr; = z~' Xy +
i f=i+1

cae+ =M™V 1<i<N. (2.9)
Qi Ch

Note that

Gi=—Gi=—aqi=q, 0<i<N, " =¢" 0<i<k<N.

Furthermore,
A1) _ () o
G,'=G;", 1<j<is<N
Hence, we can rewrite (2.9) as
2D N0 .
Tt g MY 1<K N -,
v — q; (Z:i1+)1 qi qi (2.10)
My~
NN 1=N

(qN V N)(l + nG(N)aN)7
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On the one hand, from (2.5) and (2.10), by [5, Theorem 2.7], we know that

(hZ(N)) is increasing to the minimal non-negative solution of (2.5) as N — oo.

On the other hand, it follows from (2.8) that

N—=1 (k) 5 ;(n—1) (N) 2 p(n—1)
[ CAD—. Z Gy My i nGy "My '
’ — Qrk1 (g VN)(14+nGWMay)

Combining the equality with the definition of ap, it is not difficult to check

that
&) ar (n 1)

MY N>2
hmh TLZ Qkkl N <OO7\V/ -
N—oo k=1

o0, otherwise,

ie.,

lim WY =h;, Vi1

N—oo

So it has proven that (h;, ¢ > 1) is the minimal non-negative solution of
(2.8). Finially, it is not difficult to check that (h;, i > 1) satisfies the equality
(2.7). The proof of the assertions are finished. O

The third lemma is presented as follows.

Lemma 2.6 Assume that the single death Q-matriz QQ = (gs5) is irreducible
and the corresponding process is recurrent. Give ig € E arbitrarily. Then

1)

TL
n—1) . .
Eirjy <n g g —l—M(OHZ, 1= 1.
i0+1<k<i 2k QZ£ 1

Proof 1t is well known that (E;7;’, i > 0) is the minimal non-negative solution
to the following equation:

i, =0, z; = qu]'3+ ET” 1 i £ 4.
i

From [5, Theorem 2.13] (Localization Theorem) and the single death property,
it follows directly that (E;7]’, i > ip) is the minimal non-negative solution to
the following equation:

iy = = Y q”- 7+ IE 2=l g, (2.11)
J#w>m
Define

wen Y G

i0+1<k<i £k

(n 1)
(n—1) . .
zo+1 z Z hk’ + MzoJrl iv t > %0,

qzé 1 io+1<k<t
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where h; is defined in (2.6). Note that

Qig+1,5 n -1
20y + —— BTy
j>iot1 Qip+1 Qip+1

i j n n n—
= X (S hernn) - )

jrior2 ot N\ Uik Qio+1
1 i0+2 k 1
T Gt <q’(;g“1 )hiOH + Z qz(oJ)rlhk +”Mz(:+1 )> (by (2.2))
o

k>i0+2

1 i0-+2
= —— (@ P higs1 + Gigt1ishigr1)  (by (2.7))
Q’Lo-i-l

= hig+1
= Yig+1-

For all i > ig+ 2, by the strong Markov property and the single death property,
we can check easily that

20

E;rt = Br ) + Z ( )]EZ T T (2.12)
Then it is derived that

> qZ.J'JJF E

Z

JF#i,5>10
(H-l) 0
- Y =3 Pher Ml
i0+1<k<i—1 k>z+1
+Z%w”ﬂw“wz%2<)ﬂmﬂs
j>itl qi q; j>itl qi =

n—1
n n—1 nel—s .
+ E Z ( . )]Eni_ll B8 (by (2.4), (2.12))

]. —S n—s—

j=itl
+ Z th&fZl (by (2:2), (2.7))

0+1<k<t
n—1 n
= > merMIL 1+Z< )Ei_nfoEﬂﬁ—f (by (2.3), Lemma 2.4)
io4 1<k<i s=1 \°
1
= S merMI) (by (24)
i0+1<k<i

= Y-



High order moments of first hitting times for single death processes 1049

Hence, we have checked that (y;, ¢ > ip) is a non-negative solution to (2.11).
Furthermore, it is followed that En[(‘) < y; for all ¢ > ip from the minimal
property of (E;7[, i > i) immediately. So the assertion is proven. O

Now, we prove the main result presented previously.

Proof of Theorem 2.3 On the one hand, by Lemmas 2.4, 2.5, and the minimal
property, we obtain that h; < mgn) for all i > 1, where h; is defined in (2.6).
On the other hand, by Lemma 2.6, it is seen that m( RIS < h; for all ¢ > 1. Hence,
it holds that h; = ( ) for all i > 1. The assertion is proven. ]

3 Proof of Theorem 1.1

To prove Theorem 1.1, we still need some lemmas. The first lemma is taken
from [9, Proposition 2.4] directly.

Lemma 3.1 For all 1 < i < v < wu, the following relation holds:
6= ¥ O S
ick<o Tb=1 0200

The second lemma, is presented as follows.

Lemma 3.2 Assume that the single death Q-matriz is reqular and the process
is recurrent. Then, for any nonnegative sequence {a,,} andn > 1, the following
equality holds:

>

k>i

41—-1

Z q Zl)IEnggl 1 Z ag, =n Z

l1>2k+1 u>i+1

S5

Quu 1 lo—i

Qkk 1

Proof Denote the left-hand side of the equality above by I. By Theorem 2.3
and Lemma 3.1, it is seen that

(k) G(”)M(” 1) £1-1
T=n) —t— 3 qfﬁZ > a,
> Tek=1 ) 53 u>el Tuu-1 o=
M(n—l) u—1 (00) ()
=n ) ar Z >
w>itl Qu,u—1 lo—i (Jk‘k: 1 t=la+1
= Y G Z%
u>it1 QU u—1 lo—i
The assertion is proven. O

The third lemma is an important relation formula.
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Lemma 3.3 Assume that the single death Q-matriz is reqular and the process
is recurrent. Then, for any 1 < i < k < {1 and n > 2, the following assertion
holds:

t—1n—1
k€1 1 i Z ( )Eél_lTlgL—fEk_l -1 Z Z < >E£2TZ_SIE52—1T?—1

=k s=1

Proof When k = 1, it is obvious that both sides of the above formula are equal
to M ,g”g:)l So the assertion holds.

Assume that ¢ < k < £1. Denote the right-hand side of the equality above
by I. Note that

l1—1n—1
I= ZZ( )E@Q% :

<S )Egg 1Tk 1 Ek 17’ 1
=k s=1 1

s1=1
l1i—1n—

1
n _
—k s=1
n— s (n—1)
<81>Ek 17 Z( — 51 >E£2% 1By My,

5=
l1—1 n—1
1
l1—1n—s1—1 n s
— 21 n—si—s s
1+z( Jmern 03 (7" R Bt
s1=1

=k s1=

If By, 17~ 1 < 00, then E@Tk 1 < oo forall k </l < /41— 1. In fact, by
the strong Markov property and the single death property, we see that

n—2

n—1
Eh lTk 1_2( . )Ef1 1T€1 2 Egl QTk 1—|—Eg1 QTk (31)
s=0

so g o1~ 11 < o0. Recursively, it is derived that Eg, 7'~ 11 < oo (b <ty <
¢, — 1). Hence,

l1—1
=M kél 1+Z< >Ek 17 12 (Ee, 7.7t — Egp17 1)

s1=1

n—1
]g )1+Z< 1)E51 1TklEk 17’

s1=1

If Ep,17{""} = oo, then, by (3.1), either there exists such s € [1,n — 1] that
E¢, 17/, _9 = o0, 0r ]Egl_ngjll = oo. For the former case, both sides of the above
formulae are oo and hence the assertion holds. For the latter case, then either

there exists such s € [1,n — 1] that Ey, 7] 3 = o0, or Ey,—37{"} = co. The
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argument goes on. Recursively, in the end either there exists such s € [1,n — 1]

that K417, = oo, or EkT,’: 11 = 00. Now, both sides of the above formula are
oo, which implies that the assertion holds. The proof is finished. O

By Theorem 2.3, Lemmas 3.2 and 3.3, we can obtain the following result
immediately.

Lemma 3.4 Assume that the single death Q-matriz is reqular and the process
is recurrent. Then, for all 1 < s1 < n, the following equality holds:

s1—1
(¢ 1) _
Z Z le)E o Sf( ksell 1t Z < )Eel_lTillsQEk_lff_21>

k> Qkk Ly Skt so—1
oW _
e 3 O ey

uzi+1
Now, we prove the main result.

Proof of Theorem 1.1 At first, we will prove

EkT

h—nz , 1

k>i qk,k—1

WV
-

where h; is defined in Lemma 2.5 (see (2.6)).
By [9, Remark 2.8], we know that the assertion holds for n = 1. For all
> 2, we obtain that

Z Z reo M keo
k>i lo>k+1
n n—si S1
Z Kty Z Z <81>Eg17'€11E£1—1T,€1

Qk:k: 1

Z

Qkk 1

% >k+1 —kt1l1<s <n—1
'lL
-y ZEMZ |
u>itl Quu 1 lo—i
—s1—1) u—1
n—1 G,EU)M’lg,n sl % 51
oy, ) ) Eumy,
1<s <n—2 1 u>i+1 Ju,u—1 lo—i
n (41) n—si (51 1)
F Y (S EL S
2<s1<n—1 1 k>1 kk—1 l1>2k+1

From Lemma 3.2, it follows that

n—1
ZE[27—£2 1
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n—1 G(u)M(n—sl—l) u—1
+n Z ( S ) Z : - EZ?T;;—l
1<s1<n—2 L/ uzitt Ju,u—1 lo—i
n G’(k (01) E - slM(sl 1)
SEED D O D DPc ) W o i .ty
2<oian—1 NV = k=1, 57
= I+ V+IV.
Note that
(u) n— 31 1 u—1
n—1 G E Tu
ven 3 (M1) 2 S S
1<s1<n—2 L/ uzitt Ju,u—1 lo—i
n G§U) n s1—1)
+ 2 ) 2 > wiM ZE&% !
l<oian—2 VU Sy Que—1 507 lo—i
n—1 1— n
oy S (s S 2 ()
u>i+l qu“ L csi<n—2 1 lo—i 2<sian—1 \1
G(k: ) s1—1 st
1 n—s S S S
Z q Z q E Tel 11 (3 >E€1 1Tk1 1 ’ Z EKQTK;—I
k>i 1Rk=L o S sa—1 \72 i<lr<k—1
=: IT + III.

Then, by Lemma 3.4, it is derived that

M +1V = 1,9 (g) vy &

Z ay Elegl 1 (2Bg, 171 Bp 17

k>i q’“ k=1 Skt
(k)
(1 n G n—s
M)+ Y Z > o VBT
1 S1 Qkk—1 -
3<s1<n—1 l1>k+1
s1—1 s
1 §1—82 S92 (51 1)
X <Z (32>E€1 1T Z B, 7oy 1 + My, i
so=1 i<lo<k—1

(u) g (n—3)
n Gz u 1
—(5) -2 X S,
u>i+1

Qu,u—1
s <:1>ZQkk 1 > aVEnT Y

3<s1<n—1 l1>2k+1
s1—1 s k—1
1 $1—82 s2 (s1-1)
X <Z (S )Eh 1T 1 ZEfz%q +Mk,el—1
so=1 2 lo=1

n—1 G
u>i+1 Ju,u—1
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(u)
+1{n>4} <Z> Z G Z qU] Z(L) 1

u>i+1 Juu—1 ]>u+1

"L <>Zq > o BTy

3<s1<n—1 k>i l1>k+1

s1—1 k—1
S1 —1
X (Z <82>E£1 T BT +M;§,se111)>

so=1 lo=1i

-1 G(.“)
::n<n2 > Z —r K, 3 f’MZ(u) 1+
usiq1 Tl

furthermore,

(w) n-3
n Gl ¢ n—2 2
J = 1{n24} <2> § E &1) 8151 < st )EQTZ 1 .

usip1 Twu=1 p S

(k)
s n Gz n—s
X g 17,1 M( ) 1+ E < ) E —r E q,(fl)Engerll

S _
3<51<n 1 \51 .Qk,k 1 05kl

s1—1
51 1
X <Z ($2>Eél 170 ZH‘%T@ a1t Mlgszll 1)>

so=1 lo=i

n (£1) S1 1
- S (D s e (()pe e,
qk,k—1

S
3<s1<n—1 1 01 >k+1

s1—1 k—1
1
+ 3 () X B, + 570).

S2 =1 5227;

It follows from Lemma 3.4 that

n N8 S1 —25 ,(1)
= E E E E 1 E SIS0
! <51> Qkk 1 q “7e -1 <<2> a1 Th-1 Hik-1

4<s1<n—1 l1>2k+1
s1—1 k—1 . n G(k)
+ Z < )E[l 177:1 152 Z ]Eg27';22_1 + Mk(;;sfll_—l)> + 1{n24} <3> Z :
—~ " Gk, k—1
so=1 lo=1 k>i
2. /3
3— 2
x 3 g VBT 1< > (S >Eel—17k_f2Ek—1Tff1 +M/§,z)1_1>
0 >k+1 so=1 \72
n (41) 1
- 2 (5 s me () Eemral,
d<oran—1 U 0= ek—1, 57

s1—1 k-1
_ 1
+ Z < )Eh 17—]?1 1 ZEEQTZS Mlgséll 1)>

so=1 lo=1
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n—1 GEU) n—4 (2)
+n< 5 > > T MY M,
u>i+1

U i,u—1*
Qu,u—1

Hence, we obtain that

I+ 1V
3
- Z G(u Z (n - 1) n— 1 s1pp(s1-1)
- ,u—1
u>i+1 QU u—1 s1=2
n a® 27 7(1)
F X ()X R ()R
d4<sian—1 N1/ 0= Qkk=1, 50
s1—1 —
-1
+ Z < >E51 1T Z E52T;22—1 + M,Sgl_1)>
so=1 lo=1
1 n G 2= 72
+ Lin>5) 3 qu 1 Z Akj M ik—1
k=i j=k+1

(u) 3
—n Yy o Z<n_1>Eu3% )

_ S
u>it1 Qu,u 1 51=2 1

n 27 r(1)
+ q E@ - Sl(( )Ee 7'Sl M.
KgthQngl e ()R
s1—1 — n
1
+ Z < >E£1 1T ZEEQT;; 1 Mlgsell 1)> + Linzs) <3>
so=1 Zz—i
X Z Z (&) Z ( >EZ1T€1 1E€1 1Tk1 3Mz(k) 1
k>i qkk Ly sk s1=4
So, by Lemma 3.4, we get that
I +1v
G(u) 3 n—1 . (51-1) n G(k)
=n 3 S (MmN
u>i+1 Tuu—1 51=2 51 4<s1<n—1 51 k>t Uk k—1
_ 1 S1 _3
x Z qk Eél Z 311<( >E€1 17511 Mz'(,k)q"‘ <3>E€1 1Tk1 Mz(k) 1
0 >k+1
s1—1 k-1
1
DMLV SR SR )
so=1 lo=1

Ggu) 5. /n—1 nel—si 1 r(s1—1 n ng)
=n Z B Z ( s1 >Eu7—u 11 1Ml(u1 1 ) —+ 1{n25} <4> Z
1

K> qk,k—1
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3
4 n— 4 —s s d
X Z ql(c 1)Ef1741—%< Z < )Efl—ng—IQEk—lTi—Ql + Mig?z)l—1>

52
l12k+1 so=1

n (1) 270
+ 2 <S>Z > G Bam 811(<2>E“ i M
s<sian—1 U G Qek=1,

E—1
S1 _3 -1
+ <3 >E 01— 1751 1 MZ k 1 + Z < >E£1 17-]‘:1 132 Z EbTES;,l + Mlgysfl11)>
so=1 lo=1
W 3 /-1 n—l-si p(s1-1) n—1 Ggu)
=n Z Z u u—1 Mz ,au—1 +n 4 Z
Quu 1 u>i+1

u>i+1 s1=2 Guu—1

(€1) n—si
Z @ Eeyy 5
01>k+1

S S
X <(21>E41 lTkl 2M(1) (;)Ezl lTkl 3Mz(k) 1

s1—1 k—1
_ 1
+ Z ( >Eé1 17'1617182 ZE&T; Mlgsfll 1)>

S2= 1 62 =1

SLEOTHINEDS (;j) S

5<si<n—1 Qk k—1

(u) n=3 n—1 n—1—sq 7 p(s1—1) n—1 Gz(u)
—n Y Gy Eury "M +n .
u>i+1

u>itl Gu,u—1 s1=2 S1 n—2 Qu,u—1
Z Qk Eflel 1

XM( 7,u1+2

k>i q’“ k=1 p Skt1
n—3 n 1 ( )
- —1— so—1
) <2 ( s )Eel 1Tk 52M1k2 1
32—1 2
« (n—2)
1— 2
+ Z ( )]E€1 17 ZE&TE Mkrjzl 1)
so=1 lo=1

where the last equality is derived recursively. Hence, by Lemma 3.4, it is seen
that

I+ 1V
G(u) n—2 1
-0 3 o (M e
usiq1 Twu=1 55 1
n—1\1 G(k (1) 5 r(n=3)
M M:
+n<n—2>22%k1 qu] k-1

j=zk+1
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n—3
n—l n— S S
+nz Z Qk; Eelm 1<Z< 5 >Eel Ty 1 gMZ(kz 11)

k>i Qk k=1 l1>k+1 s9—1
k—1
n—1 1 )
+ Z ( )Eel 17y ZEZQT;; 1 M,?Z,l )1>
s2=1 lo—i
u n—2 n—1 ( |
=n E n— 1 SlM s1—1
Z Quu 1 Z < S1 > uT tau—1
uzit+l 51=2
n—1 G(k)
* n<n = 2) Z P Z qk: E&Tel 1Ep, — 17— 1Ml(k 1)
gk, k— 1y St
n—3 n 1
o 1
—I—TLZ Z qk Eelm 1(2 < ] >E£1 il SZM;? 1)
k>i qk =1 sk i\ s
n—2 n 1 k—1 ( )
_ ~ B
* Z < s )Eﬁl 1Ty Z]EbT;gz—l + Mk%—l)
s2=1 2 lo=i
u n—2 n 1
- 1)
- n Z Z < )EUTS 11 SlMij ) Z
uzi+1 Quu 1 s1=2 51 ki Qk k—1
n—2 n 1
! B 2
X Z q](g 1)E£17_f1—1(z < s >E(1 17—]4: QEk ]_7'821+M’§721 )1>
Z1>k+1 52:1 2
(u) mn—2 n—1 ( | G(u) ( |
o 1- 1 . L
=n Z Z( s >EUT§1 slMlill +n Z #Mizil_
uzitl qu u=l s1=1 1 u>i+1 Qu,u—1
So we have

V4+IV=II4+11I+1V

u n—2 _1 L
=n E Z (nSI )Eu _1

u—1
N < Z Ee, 701 Mz(sul 11)>

uzi+tl Quu ! s1=1 lo=1
G D,
+ n Z - z,u—l )
u>it1 Qu,u—1
furthermore,
G(u) n—2 n—1
V4+IV=n Z QU; 1 (Z ( s1 >Eu7'17 11 TR, — 1Tl§i1+MZ(u 1))
usir1 dwu=1 \ 7

(u)

uzip1 w1
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So

h_I+V+IV_n§:

uz>t

<ZEW 1y )_nz

ly—=i u>i Quu 1

Quu 1

Summing up the arguments above, we obtain that

EkT
Eiri" 1 = h; fnz i,n > 1.
k>i qk,k—1

For any 0 < k < ¢, we see that

7

n—1
n n n S n—s
EiTk = Z <EJT]1 + Z <S>Ej7-j1 . ]Ej—lTk )
s=1

j=k+1

Furthermore, we obtain that
G( )EET n—1 n E)E[rs 1
R (nz SN WE By
0>4

EH1<i<i N £
n—1 n 1
n—1 - 1 _
=n Z Z < 1 —I-Z (s— 1>Eg7';_1 .Ej_lT]:L s>

k4+1<j<i €25

QM 1

So the assertion holds for all n > 1. The proof of Theorem 1.1 is finished. [
In the end of this section, let us consider the following example, which comes
from [9].

Example 3.5 Given a constant b > 2 (for regularity, we only need that
b > 1). Define a totally stable, conservative, and irreducible single death Q-
matrix @ = (gi;) as follows:

b—1 . b—1 —-b+1
%ij = it Jzit+1; Gii1 =3 G =i = i> 1,

b—1 1
Q0j =37 J2L q0=—490=7.
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By [9], we know that the corresponding process is exponentially ergodic but
not strongly ergodic. Here,

1 1
k) _ (k) _
qg)—bk_n+1,1<n<k‘, 40 bk,l{:}l,
(4) M___ L i
=1 = . 1< ,
G, , Gy b 1) n<i

and
.o b=1
EiTiO = (Z*Zo)b % 1> 10.

For 1 < k < ¢, we know that

b* —3b+3

M) = (0~ k)¢~ k+1) =

M =

furthermore, for ¢ > 1,

G(k M(l) o 2 (k)E i

qk,k—1 (5—2)3

qk,k—1

k>i k>i

From here, we have checked Theorems 2.3 and 1.1 in the case of n = 2, by the
last part in the proof of Theorem 1.1. By the way, we have

(=K —k+1)(b—1)2 20 —k)(b—1)

<k</.
27 G_op o VSkS

EgT]? =

4 Exponential ergodicity and £-ergodicity
By Theorem 1.1, we can get one necessary condition for the exponential ergodicy
of the single death processes as follows.

Corollary 4.1 Assume that the single death Q-matriz is regular, irreducible,
and the corresponding process is exponentially ergodic. Then

a0
d :=sup Z k< 0.

21 5t s dee-1

Proof By the exponential ergodicy of the process, we see that the process is
recurrent. Then

e) Eer?

ETo—nZZ i>0,n>1.

\<hei ok 61
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By the fact that Eirg_l < Eng_l for all £ > ¢ and Theorem 1.1, one gets that

(0)
P20y Y OB

1<k<i 024 qe,0-1
G
>n < > )EZ o
1<k<i 0214 de.e-1
> -
s S Sar) o

1<k<i 021

From the exponential ergodicity, by [5, Theorem 4.44 (2)], there exists some A
with 0 < A < ¢; for all i such that Ege*® < co. Then, by [5, p. 148], it holds
that E;e’° < oo, i.e., E;e?0 < oo for all i > 1. The Taylor expansion

ATL
00 > E;eM :Z—E 70
n!

n=>0

leads us to

Z(ZZW)7

n>0 1<k<i €21
which implies that
DD DI
A
1<k<i 21 qe.e-1

Taking the supremum over ¢ > 1, we obtain

aW
0 = sup Z k< o0.

i>1 \<h<i (>0 qe0—1

The proof is finished. U

Given a positive integer £. Another application of Theorem 1.1 is a criterion
on f-ergodicity of single death processes. A recurrent ()-process is called to be
f-ergodic provided that Ejaf < oo for some (equivalently, all) j € Z,; refer to
[6]. Then we obtain the following result.

Corollary 4.2 Assume that the single death Q-matriz is regular, irreducible,
and the corresponding process is recurrent. Then the process is £-ergodic if and

only if
a) .
E q E G Ejry < oo.

k>1 sk 10971
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Proof By the strong Markov and the single death properties, we derive that
Eoog = Eo(m + oo —m)"

= Eony' + En: (Z)Eo((go =)’ ni"%))

n! "L
= B3 (1) S Bl 2,
o =\ o
"'_i_i(n)i(”—s)! 9k g
= — — . kT
@ S\s)= @ w °
! = (1) w= (n—s)! Qok IR, rst
| ) oy s G
n n—s
o SN\ D 1<isk i 2641
R GOBrs!
= 4 % —
T P Z Z =

By the argument above, it is easy to check that an(’} is finite if and only if

I PRI

=1 > dee—1
Hence, the assertion holds. ]

By the way, we can get a sufficient condition of exponential ergodicity for
singled death processes as follows.

Proposition 4.3 Let the single death Q-matriz be reqular and irreducible.
Assume that

If

n

: S )(s
q := inf ¢, > 0, M:zsup( )( ><oo,
=0 1\t G\ 2

qee—1
n

then the process is exponentially ergodic.

The condition above is a little different from the one in [9] but the proof of
them are similar. The main construction idea of test functions comes from [4].
So we omit the detailed proof here.

By Lemma 3.1, it is easy to check that ng)G,(f) < Ggg) forall 1 <k <¥ So
it is obvious that M > 6.

Come back to Example 3.5. Now, we know that

b(b— 1)
(b—2)*

M =
_9)2 7
=Gl (b=2)
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So the process is exponentially ergodic. Obviously, M > § because b > 2 here.
Note that for this example, the quantity of M is equal to the corresponding one
in [9].
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