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Abstract An explicit and recursive representation is presented for moments
of the first hitting times of birth-death processes on trees. Based on that, the
criteria on ergodicity, strong ergodicity, and `-ergodicity of the processes as well
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Keywords Birth-death process on trees, ergodicity, hitting time, returning
time
MSC 60J60

1 Introduction

The tree T we considered in this paper is a connected graph without cycles.
We fix a point on T as the root, denoted by o. For any vertex i ∈ T \ {o}, there
is a unique simple path from i to the root o. Denote P(i) the set of all the
vertices on this path (the root o is excluded). The number of segments of this
path is the length of i, denoted by |i| and set |o| = 0. Define

En = {i ∈ T : |i| = n}, ∀n > 0.

Two vertices i and j are called adjacent if they are joined by a segment, denoted
by i ∼ j. When |j| = |i| + 1 and i ∼ j, j is called one offspring of i and the
set of all the offsprings of i is denoted by J(i). When |j| = |i| − 1 and i ∼ j, j
is called the father of i and denoted by i∗. Denote Ti the subtree with i as its
root, including all the descendants of i. Thereafter, we assume that any vertex
has finite offsprings.

We consider a birth-death process on this tree whose Q-matrix satisfies
qij > 0 if and only if i ∼ j, i.e., j = i∗, or j ∈ J(i). In this paper, assume that
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the Q-matrix is totally stable and conservative, that is,

qi := −qii = qii∗ +
∑

j∈J(i)

qij < ∞, ∀ i ∈ T.

Define a measure µ on T as follows:

µo = 1, µi =
∏

j∈P(i)

qj∗j

qjj∗
, i ∈ T \ {o},

which is invariant with respect to Q. In fact, µ satisfies the so-called detailed
balance equation:

µiqij = µjqji, i ∼ j. (1.1)

For estimation of the spectral gap λ1 on trees, Miclo [7] proposed a more
explicit quantity defined in a recursive way to bound λ1 by a factor 16. Note
that Miclo’s quantity is still quite difficult to be identified. Shao and Mao [9]
obtained a variational formula for the Dirichlet eigenvalue. Ma [4] gave some
explicit upper and lower bounds for the Dirichlet eigenvalue. Wang and Zhang
[10] obtained three kinds of variational formulas for the Dirichlet eigenvalue.
For finite trees, Liu et al. [3] obtained a two-sided variational estimate of λ1 by
a factor 2, with the method of Lyapunov test functions, and identified explicitly
the Lipschitzian norm of the operator in appropriate functional space, which
led to the identification of the best constant in the generalized Cheeger
isoperimetric inequality and to the best constant of the transportation-
information inequalities on the tree. Miclo [8] described the shapes of eigen-
functions associated to λ1.

For some classic problems on trees such as uniqueness, recurrence, and
ergodicity, Ma [4] obtained some computable sufficient conditions or necessary
ones for that by constructing two corresponding birth-death processes on Z+.

In this paper, we are devoted to obtaining such an explicit representation
for moments of the first hitting times that will lay the foundation or provide
the preparation for further investigation on the ergodicity theory of birth-death
processes on trees.

Denote the birth-death process on the tree T by {Xt : t > 0}. For all i ∈ T,
define the first hitting time

τi := inf{t > 0: Xt = i},

the first jumping time

η1 := inf{t > 0: Xt 6= X0},

and the first returning time

σi := inf{t > η1 : Xt = i}.

Our main result is presented as follows.
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Theorem 1.1 Assume that the process corresponding to the Q-matrix on the

tree T is recurrent. Then the n-th moments of the first hitting time

Eiτ
n
k = n

∑

j∈P(i)\P(k)

1

µjqjj∗

∑

`∈Tj

µ`E`τ
n−1
k , k ∈ P(i),

and

Eiτ
n
o = n

∑

j∈P(i)

1

µjqjj∗

∑

`∈Tj

µ`E`τ
n−1
o .

Essentially, by Theorem 1.1, we can get Eiτ
n
j for any i and j in the tree

when we choose one proper vertex as the corresponding root for this pair of
vertices i and j.

This paper is organized as follows. We prove the result in the case of
n = 1 for Theorem 1.1 in the next section, from which the criteria on ergodicity
and strong ergodicity of the process are obtained directly. Then Sections 3 is
devoted to the proof of Theorem 1.1 by induction and a necessary condition for
exponential ergodicity as well as a criterion on `-ergodicity are presented there.

2 In the case of n = 1 for Theorem 1.1

Define
q
(+)
i =

∑

j∈J(i)

qij, ∀ i ∈ T,

and

hi =
1

µiqii∗

∑

k∈Ti

µk, i ∈ T \ {o}.

At first, we prove two important lemmas. The main idea comes from our study
on the first moment of hitting times of single death processes. Refer to [11].

Lemma 2.1 (hi, i ∈ T \ {o}) is the minimal nonnegative solution of the

following equations:

yi =
q
(+)
i

qi
yi +

∑

j∈J(i)

qij

qi
yj +

1

qi
, i ∈ T \ {o}. (2.1)

Proof Fix N ∈ Z+, and define Q-matrix Q(N) = (q̃ij) on E(N) := ∪06n6NEn

as follows:

q̃ij =





qij, |i| < N, |j| 6 N,

(qi ∨ N)GN , |i| = N, j = i∗,

0, other cases of j 6= i,

where
GN = 1 ∨

∑

k∈EN

µkqkk∗,
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which is finite by the assumption that any vertex has finite offsprings. Define
a measure µ̃ on E(N) as follows:

µ̃o = 1, µ̃i =
∏

j∈P(i)

q̃j∗j

q̃jj∗
, i ∈ E(N) \ {o},

and denote

q̃
(+)
i =

∑

j∈J(i)∩E(N)

q̃ij, ∀ i ∈ E(N). (2.2)

Define

h
(N)
i =

1

µ̃iq̃ii∗

∑

k∈Ti∩E(N)

µ̃k, i ∈ E(N) \ {o}.

By the reversibility of (1.1), it is obtained that

q̃
(+)
i

q̃i

h
(N)
i +

∑

j∈J(i)∩E(N)

q̃ij

q̃i

h
(N)
j +

1

q̃i

=
q̃
(+)
i

q̃i
h

(N)
i +

1

µ̃iq̃i

∑

j∈Ti∩E(N)\{i}

µ̃k +
1

q̃i

=
q̃
(+)
i

q̃i
h

(N)
i +

1

µ̃iq̃i

∑

j∈Ti∩E(N)

µ̃k

=
q̃
(+)
i

q̃i
h

(N)
i +

q̃ii∗

q̃i
h

(N)
i

= h
(N)
i , ∀ i ∈

⋃

16n6N−1

En,

and

h
(N)
i =

1

q̃i
, i ∈ EN .

Hence, (h
(N)
i ) is the unique solution (i.e., the minimal nonnegative solution) to

the following equations:

yi =
q̃
(+)
i

q̃i
yi +

∑

j∈J(i)∩E(N)

q̃ij

q̃i
yj +

1

q̃i
, i ∈ E(N) \ {o}. (2.3)

Note that q̃ij = qij for all i ∈ E(N) \ EN . Thus,

q̃i = qi, q̃
(+)
i = q

(+)
i , ∀ i ∈ E(N) \ EN . (2.4)
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Rewrite (2.3) as

yi =





1

(qi ∨ N)GN

, i ∈ EN ,

q
(+)
i

qi
yi +

∑

j∈J(i)

qij

qi
yj +

1

qi
, i ∈

⋃

16n6N−1

En.
(2.5)

From (2.1) and (2.5), by [1, Theorem 2.7], it follows that (h
(N)
i ) is increasing

to the minimal nonnegative solution of (2.1) as N → ∞. Note that

µ̃i =





µi, i ∈ E(N−1),
µiqii∗

(qi ∨ N)GN

, i ∈ EN ,

and

h
(N)
i =

1

µiqii∗

∑

k∈Ti∩E(N−1)

µk +
1

µiqii∗

∑

k∈Ti∩EN

µkqkk∗

(qk ∨ N)GN

6
1

µiqii∗

∑

k∈Ti∩E(N−1)

µk +
1

µiqii∗N
, i ∈ E(N−1) \ {o}.

Thus, for all i ∈ T \ {o}, we see that

h
(N)
i →

1

µiqii∗

∑

k∈Ti

µk = hi, N → ∞.

So it is proven that (hi) is the minimal nonnegative solution of (2.1). �

Lemma 2.2 Assume that the birth-death process on the tree T is recurrent.

Fix i0 ∈ T. Then

Eiτi0 6
∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk, i ∈ Ti0 .

In particular,

Eiτi∗ 6
1

µiqii∗

∑

k∈Ti

µk, i ∈ T \ {o}.

Proof It is well known that (Eiτi0 , i ∈ T ) is the minimal nonnegative solution
to the following equations:

xi0 = 0, xi =
∑

j 6=i

qij

qi
xj +

1

qi
, i 6= i0;

refer to [5]. By the Localization Theorem (refer to [1, Theorem 2.13]) and the
single death property, we obtain that (Eiτi0 , i ∈ Ti0) is the minimal nonnegative
solution to the following equations:

xi0 = 0, xi =
∑

j∈Ti0
\{i0,i}

qij

qi

xj +
1

qi

, i ∈ Ti0 \ {i0}. (2.6)
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Rewrite the equation above as

xi =





0, i = i0,
∑

j∈J(i)

qij

qi
xj +

1

qi
, i ∈ J(i0),

qii∗

qi
xi∗ +

∑

j∈J(i)

qij

qi
xj +

1

qi
, i ∈ Ti0 \ ({i0} ∪ J(i0)).

Define

yi =
∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk, i ∈ Ti0 .

Then, by (1.1), for all i ∈ J(i0), one gets that

∑

j∈J(i)

qij

qi
yj +

1

qi
=

∑

j∈J(i)

qij

qi

∑

`∈P(j)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

qi

=
∑

j∈J(i)

qij

qi

(
1

µiqii∗

∑

k∈Ti

µk +
1

µjqjj∗

∑

k∈Tj

µk

)
+

1

qi

=
q
(+)
i

qi
·

1

µiqii∗

∑

k∈Ti

µk +
∑

j∈J(i)

qij

qi
·

1

µjqji

∑

k∈Tj

µk +
1

qi

=
q
(+)
i

qi
·

1

µiqii∗

∑

k∈Ti

µk +
1

µiqi

∑

j∈J(i)

∑

k∈Tj

µk +
1

qi

=
q
(+)
i

qi

·
1

µiqii∗

∑

k∈Ti

µk +
1

µiqi

∑

k∈Ti

µk

=
1

µiqii∗

∑

k∈Ti

µk

= yi.

For all i ∈ Ti0 \ ({i0} ∪ J(i0)), it follows from (1.1) that

qii∗

qi
yi∗ +

∑

j∈J(i)

qij

qi
yj +

1

qi

=
qii∗

qi
yi∗ +

∑

j∈J(i)

qij

qi

∑

`∈P(j)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

qi

=
qii∗

qi
yi∗ +

∑

j∈J(i)

qij

qi
·

1

µjqjj∗

∑

k∈Tj

µk +
∑

j∈J(i)

qij

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

qi

=
qii∗

qi
yi∗ +

∑

j∈J(i)

qij

qi
·

1

µjqji

∑

k∈Tj

µk +
q
(+)
i

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

qi
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=
qii∗

qi
yi∗ +

1

µiqi

∑

j∈J(i)

∑

k∈Tj

µk +
q
(+)
i

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

qi
.

Furthermore, we obtain that

qii∗

qi

yi∗ +
∑

j∈J(i)

qij

qi

yj +
1

qi

=
qii∗

qi

∑

`∈P(i∗)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

µiqi

∑

k∈Ti

µk

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk

=
qii∗

qi

( ∑

`∈P(i∗)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
1

µiqii∗

∑

k∈Ti

µk

)

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk

=
qii∗

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk +
q
(+)
i

qi

∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk

=
∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µk

= yi.

So we have checked that (yi, i ∈ Ti0) is a nonnegative solution of (2.6). Hence,
by the minimal property, one obtains that Eiτi0 6 yi (i ∈ Ti0). The first
assertion holds. By the arbitrariness of i0, it is easy to derive the second
assertion. �

Then we present the corresponding result in the case of n = 1 for Theorem
1.1 as follows.

Theorem 2.3 Assume that the birth-death process on the tree T is recurrent.

Then

Eiτk =
∑

j∈P(i)\P(k)

1

µjqjj∗

∑

`∈Tj

µ`, k ∈ P(i),

and

Eiτo =
∑

j∈P(i)

1

µjqjj∗

∑

`∈Tj

µ`.

Proof Denote Eiτi∗ by mi. By the strong Markov property, for all i ∈ T \ {o},
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it holds that

mi = Eiη1 + Ei(Ei(τi∗ − η1 | Fη1))

=
1

qi

+ Ei(EXη1
τi∗)

=
1

qi
+

∑

j∈J(i)

qij

qi
Ejτi∗

=
1

qi
+

∑

j∈J(i)

qij

qi
Ejτj∗ +

∑

j∈J(i)

qij

qi
Eiτi∗ (by (2.8))

=
q
(+)
i

qi
mi +

∑

j∈J(i)

qij

qi
mj +

1

qi
.

Hence, (mi, i ∈ T \{o}) satisfies (2.1). By Lemma 2.1 and the minimal property,
we obtain mi > hi. And the inverse inequality hi > mi is seen in Lemma 2.2.
Thus, mi = hi for all i ∈ T \ {o}. Hence, we have

Eiτi∗ =
1

µiqii∗

∑

k∈Ti

µk, i ∈ T \ {o}. (2.7)

By the strong Markov property, we know that for all k ∈ P(i),

Eiτk = Eiτi∗ + Ei(Ei(τk − τi∗ | Fτi∗
)) = Eiτi∗ + Ei(EXτi∗

τk) = Eiτi∗ + Ei∗τk.

Recursively, it is derived that

Eiτk =
∑

j∈P(i)\P(k)

Ejτj∗, k ∈ P(i). (2.8)

Similarly, it holds that

Eiτo =
∑

j∈P(i)

Ejτj∗. (2.9)

From (2.7)–(2.9), the assertions are followed immediately. �

Remark 2.4 Under the conditions of Theorem 2.3, (Eiτi∗ , i ∈ T \ {o}) is the
minimal nonnegative solution of (2.1) and satisfies

mi =
1

qii∗

(
1 +

∑

j∈J(i)

qijmj

)
, i ∈ T \ {o}.

For the first returning time σo of the root o, we have the following assertion.

Corollary 2.5 Assume that the Q-matrix on the tree T is regular and the

process is recurrent. Define µ =
∑

i∈T µi. Then Eoσo = µ/qo.
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Proof It follows from Theorem 2.3 that

Eoσo =
∑

i∈J(o)

qoi

qo

Eiτo +
1

qo

=
∑

i∈J(o)

qoi

qo

Eiτi∗ +
1

qo

=
∑

i∈J(o)

qoi

qo

·
1

µiqii∗

∑

`∈Ti

µ` +
1

qo

=
1

qo

∑

i∈J(o)

∑

`∈Ti

µ` +
1

qo

=
µ

qo
.

So the proof is finished. �

Based on the results and arguments above, we get the criteria on ergodicity
and strong ergodicity directly as follows.

Corollary 2.6 Assume that the Q-matrix on the tree T is regular. Then the

process is ergodic if and only if µ < ∞; the process is strongly ergodic if and

only if

sup
i∈T\{o}

∑

j∈P(i)

1

µjqjj∗

∑

`∈Tj

µ` < ∞. (2.10)

Proof Under the assumption of uniqueness, if µ < ∞, then (µi/µ, i ∈ T ) is
the unique stationary distribution of the process; moreover, we know that the
process is ergodic. Conversely, if the process is ergodic, then Eoσo < ∞ (refer to
[1, Theorem 4.44]); thus, it follows that µ < ∞ from Corollary 2.5 immediately.
The first assertion is proven.

If the process is strongly ergodic, then

sup
i∈T

Eiσo < ∞

(refer to [1, Theorem 4.44] or [2]); furthermore,

sup
i∈T\{o}

Eiτo < ∞.

By Theorem 2.3, we get that

sup
i∈T\{o}

Eiτo = sup
i∈T\{o}

∑

j∈P(i)

1

µjqjj∗

∑

`∈Tj

µ` < ∞.

Conversely, if (2.10) holds, then

max
i∈J(o)

∑

`∈Ti

µ` < ∞.
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Thus, µ < ∞, which means that the process is ergodic. It follows from Theorem
2.3 and (2.10) that

sup
i∈T\{o}

Eiτo < ∞.

Furthermore,

max
i∈J(o)

Eiτo < ∞,

which implies that Eoσo < ∞. So it is seen that supi∈T Eiσo < ∞. Then by [1,
Theorem 4.44], it is derived that the process is strongly ergodic. �

Remark 2.7 Under the assumption of ergodicity, Martinez and Ycart [6]
obtained the same result in Theorem 2.3 in a different approach but some
mistakes were made in their proof. Although they took the same truncation of
the state space but the approximation they used is of conditional expectation.
The criterion on ergodicity is mentioned in [4, Remark 1.1] too.

3 Proof of Theorem 1.1

First, we introduce four lemmas as follows.

Lemma 3.1 Assume that the Q-matrix on the tree T is regular and the process

is recurrent. Fix i0 ∈ T. Then

Eiτ
n
i0

6 n
∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

, i ∈ Ti0 .

In particular,

Eiτ
n
i∗ 6

n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i∗ , i ∈ T \ {o}.

Proof It is well known that (Eiτ
n
i0

, i ∈ T ) is the minimal nonnegative solution
to the following equations:

xi0 = 0, xi =
∑

j 6=i

qij

qi

xj +
n

qi

Eiτ
n−1
i0

, i 6= i0;

refer to [5, Theorem 3.1]. By the Localization Theorem (refer to [1, Theorem
2.13]) and the single death property, it is obtained that (Eiτ

n
i0

, i ∈ Ti0) is the
minimal nonnegative solution to the following equations:

xi0 = 0, xi =
∑

j∈Ti0
\{i0 ,i}

qij

qi

xj +
n

qi

Eiτ
n−1
i0

, i ∈ Ti0 \ {i0}. (3.1)
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Rewrite the equation above as

xi =





0, i = i0,
∑

j∈J(i)

qij

qi
xj +

n

qi
Eiτ

n−1
i0

, i ∈ J(i0),

qii∗

qi
xi∗ +

∑

j∈J(i)

qij

qi
xj +

n

qi
Eiτ

n−1
i0

, i ∈ Ti0 \ ({i0} ∪ J(i0)).

Define

yi = n
∑

`∈P(i)\P(i0)

1

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

, i ∈ Ti0 .

Then, by (1.1), for all i ∈ J(i0), one gets that

∑

j∈J(i)

qij

qi

yj +
n

qi

Eiτ
n−1
i0

= n
∑

j∈J(i)

qij

qi

∑

`∈P(j)\P(i0)

1

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

+
n

qi

Eiτ
n−1
i0

= n
∑

j∈J(i)

qij

qi

(
1

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i0

+
1

µjqjj∗

∑

k∈Tj

µkEkτ
n−1
i0

)
+

n

qi
Eiτ

n−1
i0

=
q
(+)
i

qi

·
n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i0

+
∑

j∈J(i)

qij

qi

·
n

µjqji

∑

k∈Tj

µkEkτ
n−1
i0

+
n

qi

Eiτ
n−1
i0

=
q
(+)
i

qi

·
n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i0

+
n

µiqi

∑

j∈J(i)

∑

k∈Tj

µkEkτ
n−1
i0

+
n

qi

Eiτ
n−1
i0

=
q
(+)
i

qi
·

n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i0

+
n

µiqi

∑

k∈Ti

µkEkτ
n−1
i0

=
n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i0

= yi.

For all i ∈ Ti0 \ ({i0} ∪ J(i0)), it follows from (1.1) that

∑

j∈J(i)

qij

qi
yj

=
∑

j∈J(i)

qij

qi

∑

`∈P(j)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

+
n

qi
Eiτ

n−1
i0

=
∑

j∈J(i)

qij

qi
·

n

µjqjj∗

∑

k∈Tj

µkEkτ
n−1
i0

+
∑

j∈J(i)

qij

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0
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=
∑

j∈J(i)

qij

qi
·

n

µjqji

∑

k∈Tj

µkEkτ
n−1
i0

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

=
n

µiqi

∑

j∈J(i)

∑

k∈Tj

µkEkτ
n−1
i0

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

.

Furthermore, it is derived that
qii∗

qi
yi∗ +

∑

j∈J(i)

qij

qi
yj +

n

qi
Eiτ

n−1
i0

=
qii∗

qi

∑

`∈P(i∗)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

+
n

µiqi

∑

k∈Ti

µkEkτ
n−1
i0

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

=
qii∗

qi

( ∑

`∈P(i∗)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

+
n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i0

)

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

=
qii∗

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

+
q
(+)
i

qi

∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

=
∑

`∈P(i)\P(i0)

n

µ`q``∗

∑

k∈T`

µkEkτ
n−1
i0

= yi.

So it is verified that (yi, i ∈ Ti0) is a nonnegative solution of (3.1). Hence, by
the minimal property, one obtains Eiτ

n
i0

6 yi (i ∈ Ti0). The first assertion holds.
By the arbitrariness of i0, it is easy to derive the second assertion. �

Lemma 3.2 Assume that the Q-matrix on the tree T is regular and the process

is recurrent. If there exist two vertices i0 6= j0 in the tree and some positive

integer m > 1 such that Ei0τ
m
j0

< ∞, then Eiτ
m
j0

< ∞ for all i ∈ T. Moreover,

Eiτ
m
j < ∞ for all i, j ∈ T satisfying j 6= o and j0 ∈ Tj , or J(j) 6= ∅ and j0 /∈ Tj .

In addition, if j0 6= o and #{J(o)} > 1, then Eiτ
m
o < ∞ for all i ∈ T.

Proof For any i ∈ T, by the irreducibility of the process, we know that there
exist some adjacent and distinct vertices k0 = i0, k1, . . . , kn = i (qk`,k`+1

>
0, ` = 0, 1, . . . , n − 1). Note that

Ei0τ
m
j0

=
∑

k 6=i0

qi0,k

qi0

Ekτ
m
j0

+
m

qi0

Ei0τ
m−1
j0

.
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Then one gets that Ek1τ
m
j0

< ∞ and

Ek1τ
m
j0

=
∑

k 6=k1

qk1,k

qk1

Ekτ
m
j0

+
m

qk1

Ek1τ
m−1
j0

.

Hence, it derives that Ek2τ
m
j0

< ∞ and so on. Inductively, we obtain that
Ekn

τm
j0

< ∞, i.e.,
Eiτ

m
j0

< ∞, ∀ i ∈ T.

Give j ∈ T arbitrarily with j 6= j0. When j0 ∈ Tj with j 6= o, from the
strong Markov property, it follows that

∞ > Ej∗τ
m
j0

= Ej∗(τj + τj0 − τj)
m

=

m∑

`=0

(
m

`

)
Ej∗τ

`
j Ej∗(Ej∗((τj0 − τj)

m−` | Fτj
))

=
m∑

`=0

(
m

`

)
Ej∗τ

`
j Ej∗(EXτj

τm−`
j0

)

=
m∑

`=0

(
m

`

)
Ej∗τ

`
j Ejτ

m−`
j0

.

Hence, we obtain Ej∗τ
m
j < ∞. Again by the irreducibility and the argument

above, it is derived that Eiτ
m
j < ∞ for all i ∈ T.

When j0 /∈ Tj with J(j) 6= ∅, take k ∈ J(j). By the strong Markov property,
one gets that

∞ > Ekτ
m
j0

=
m∑

`=0

(
m

`

)
Ekτ

`
j Ek(Ek((τj0 − τj)

m−` | Fτj
))

=
m∑

`=0

(
m

`

)
Ekτ

`
j Ejτ

m−`
j0

.

Hence, it holds that Ekτ
m
j < ∞. By the irreducibility, we know that Eiτ

m
j < ∞

for all i ∈ T.
In addition, assume that j0 6= o and #{J(o)} > 1. Then there exist k 6= `

such that k, ` ∈ J(o) and j0 ∈ T`. Note that

∞ > Ekτ
m
j0

=
m∑

`=0

(
m

`

)
Ekτ

`
oEk(Ek((τj0 − τo)

m−` | Fτo))

=

m∑

`=0

(
m

`

)
Ekτ

`
oEoτ

m−`
j0

.
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Hence, from the strong Markov property, it follows that Ekτ
m
o < ∞. By the

irreducibility, it is easy to seen that Eiτ
m
o < ∞ for all i ∈ T.

The proofs of all the assertions are finished. �

Lemma 3.3 Assume that the Q-matrix on the tree T is regular and the process

is recurrent. Define

fi =
1

qii∗

(
Eiτ

n−1
i∗ +

∑

j∈J(i)

qij

n−2∑

m=0

(
n − 1

m

)
1

m + 1
Ejτ

m+1
j∗ Eiτ

n−1−m
i∗

)
, i 6= o.

Then (Eiτ
n
i∗ , i 6= o) satisfies the following equation:

yi =
q
(+)
i

qi

yi +
∑

j∈J(i)

qij

qi

yj +
nqii∗

qi

fi, i 6= o. (3.2)

Moreover, fi < ∞ for some i with |i| > 1 is equivalent to that fi < ∞ for all i
satisfying |i| > 1.

Proof Fix i 6= o. On the one hand, under the assumption that the process is
recurrent, we know that (Ejτ

n
i∗ , j ∈ T ) is the minimal nonnegative solution to

the equation

xi∗ = 0, xj =
∑

k 6=j

qjk

qj

xk +
n

qj

Ejτ
n−1
i∗ , j 6= i∗.

So
Eiτ

n
i∗ =

∑

k 6=i

qik

qi
Ekτ

n
i∗ +

n

qi
Eiτ

n−1
i∗ =

∑

k∈J(i)

qik

qi
Ekτ

n
i∗ +

n

qi
Eiτ

n−1
i∗ .

For j ∈ J(i), by the strong Markov property, we have

Ejτ
n
i∗ =

n∑

m=0

(
n

m

)
Ejτ

m
j∗Eiτ

n−m
i∗ .

Thus,

Eiτ
n
i∗ =

n

qi
Eiτ

n−1
i∗ +

∑

j∈J(i)

qij

qi

n∑

m=0

(
n

m

)
Ejτ

m
j∗Eiτ

n−m
i∗

=
q
(+)
i

qi

Eiτ
n
i∗ +

∑

j∈J(i)

qij

qi

Ejτ
n
j∗ +

n

qi

Eiτ
n−1
i∗

+
∑

j∈J(i)

qij

qi

n−1∑

m=1

(
n

m

)
Ejτ

m
j∗Eiτ

n−m
i∗

=
q
(+)
i

qi
Eiτ

n
i∗ +

∑

j∈J(i)

qij

qi
Ejτ

n
j∗ +

n

qi
Eiτ

n−1
i∗
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+
n

qi

∑

j∈J(i)

qij

n−2∑

m=0

(
n − 1

m

)
1

m + 1
Ejτ

m+1
j∗ Eiτ

n−1−m
i∗

=
q
(+)
i

qi
Eiτ

n
i∗ +

∑

j∈J(i)

qij

qi
Ejτ

n
j∗ +

nqii∗

qi
fi, i 6= o.

Hence, (Eiτ
n
i∗ , i 6= o) satisfies (3.2), which means that the first assertion holds.

If fi < ∞ for some i with |i| > 1, we have to check that fk < ∞ for other
k 6= i with |k| > 1. Now, by the definition of fi, it is seen that Eiτ

n−1
i∗ < ∞.

For |k| > 1, by Lemma 3.2, it holds that Ekτ
n−1
k∗ < ∞ and Ejτ

n−1
j∗ < ∞ for all

j ∈ J(k). Hence, it is easy to be checked that fk < ∞. The second assertion
holds. �

The following lemma is a key result in the proof of Theorem 1.1.

Lemma 3.4 Assume that the Q-matrix on the tree T is regular and the process

is recurrent. Define

hi =
n

µiqii∗

∑

k∈Ti

µkqkk∗fk, i 6= o, (3.3)

where fi is defined in Lemma 3.3. Then (hi, i 6= o) is the minimal nonnegative

solution of (3.2).

Proof Fix a positive integer N > 2, and define Q-matrix Q(N) = (q̃ij) on

E(N) :

q̃ij =





qij, |i| < N, |j| 6 N,
( qi

qii∗
∨ N

)
GN , |i| = N, j = i∗,

0, other cases of j 6= i,

where

GN =





1 ∨
∑

k∈EN

µkqkk∗fk, fi < ∞ for some i with |i| > 1,

1, otherwise.

By Lemma 3.3, we know that GN < ∞. Define a measure µ̃ on E(N) as follows:

µ̃o = 1, µ̃i =
∏

j∈P(i)

q̃j∗j

q̃jj∗
, i ∈ E(N) \ {o},

and denote q̃
(+)
i as in (2.2). Define

h
(N)
i =

n

µ̃iq̃ii∗

( ∑

k∈Ti∩E(N−1)

µ̃kq̃kk∗fk +
∑

k∈Ti∩EN

µ̃kfk

)
, i ∈ E(N) \ {o}.
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By the reversibility of (1.1), for all i 6= o, |i| 6 N − 1, it holds that

q̃
(+)
i

q̃i

h
(N)
i +

∑

j∈J(i)∩E(N)

q̃ij

q̃i

h
(N)
j +

nq̃ii∗

q̃i

fi

=
q̃
(+)
i

q̃i
h

(N)
i +

∑

j∈J(i)∩E(N)

n

µ̃iq̃i

( ∑

k∈Tj∩E(N−1)

µ̃kq̃kk∗fk +
∑

k∈Tj∩EN

µ̃kfk

)

+
nq̃ii∗

q̃i
fi

=
q̃
(+)
i

q̃i
h

(N)
i +

n

µ̃iq̃i

( ∑

k∈Ti∩E(N−1)\{i}

µ̃kq̃kk∗fk +
∑

k∈Ti∩EN

µ̃kfk

)
+

nq̃ii∗

q̃i
fi

=
q̃
(+)
i

q̃i
h

(N)
i +

n

µ̃iq̃i

( ∑

k∈Ti∩E(N−1)

µ̃kq̃kk∗fk +
∑

k∈Ti∩EN

µ̃kfk

)

=
q̃
(+)
i

q̃i
h

(N)
i +

q̃ii∗

q̃i
h

(N)
i

= h
(N)
i .

Note that
h

(N)
i =

n

q̃ii∗
fi, i ∈ EN .

Hence, (h
(N)
i , i ∈ E(N) \ {o}) is the unique solution (i.e., the minimal non-

negative solution) to the following equation:

yi =





q̃
(+)
i

q̃i

yi +
∑

j∈J(i)∩E(N)

q̃ij

q̃i

yj +
nq̃ii∗

q̃i

fi, i 6= o, |i| 6 N − 1,

n

q̃ii∗
fi, i ∈ EN .

Note that q̃ij = qij for all i ∈ E(N)\EN . Thus, (2.4) holds. Rewrite the equation
above as

yi =





nfi

((qi/qii∗) ∨ N)GN
, i ∈ EN ,

q
(+)
i

qi
yi +

∑

j∈J(i)

qij

qi
yj +

nqii∗

qi
fi, i 6= o, |i| 6 N − 1.

(3.4)

From (3.2) and (3.4), by [1, Theorem 2.7], it follows that (h
(N)
i ) is increasing

to the minimal nonnegative solution of (3.2) as N → ∞. Note that

µ̃i =





µi, i ∈ E(N−1),
µiqii∗

((qi/qii∗) ∨ N)GN

, i ∈ EN ,
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and

h
(N)
i =

n

µiqii∗

∑

k∈Ti∩E(N−1)

µkqkk∗fk +
n

µiqii∗

∑

k∈Ti∩EN

µkqkk∗fk

((qk/qkk∗) ∨ N)GN
.

Thus, for all i ∈ T \ {o}, we see that

lim
N→∞

h
(N)
i =





n

µiqii∗

∑

k∈Ti

µkqkk∗fk, fj < ∞ for some j with |j| > 1,

∞, otherwise,

=
n

µiqii∗

∑

k∈Ti

µkqkk∗fk

= hi.

So it is verified that (hi) is the minimal nonnegative solution of (3.2). The proof
is finished. �

Proof of Theorem 1.1 We prove the theorem by the induction. By Theorem
2.3, we know that the assertion in Theorem 1.1 holds for n = 1. Assume that
the assertion holds until n − 1. In the following arguments, we will prove the
assertion for n.

Denote Eiτ
n
i∗ by mi. On the one hand, by Lemmas 3.3, 3.4, and the minimal

property, we obtain that hi 6 mi for all i 6= o, where hi is defined in (3.3). On
the other hand, we can prove that

hi =
n

µiqii∗

∑

s∈Ti

µsEsτ
n−1
i∗ , i 6= o. (3.5)

In fact, if there exists some s ∈ Ti such that Esτ
n−1
i∗ = ∞, then by Lemma 3.2,

we know that Ekτ
n−1
i∗ = ∞ for all k ∈ T ; furthermore fi = ∞. Hence,

n

µiqii∗

∑

s∈Ti

µsEsτ
n−1
i∗ = ∞ = hi.

If Esτ
n−1
i∗ < ∞ for all s ∈ Ti, then by Lemma 3.2, we know that Esτ

n−1
k∗ < ∞

and Esτ
n−1
k < ∞ for all k ∈ Ti and s ∈ Tk. Then by the definition of fi, we

have

hi =
n

µiqii∗

∑

k∈Ti

µk

(
Ekτ

n−1
k∗ +

∑

j∈J(k)

qkj

n−2∑

`=0

(
n − 1

`

)
1

` + 1
Ejτ

`+1
j∗ Ekτ

n−1−`
k∗

)
.

By the assumption that the assertion in Theorem 1.1 holds until n−1, we have

Ejτ
`+1
j∗ =

` + 1

µjqjj∗

∑

s∈Tj

µsEsτ
`
j∗ , 0 6 ` 6 n − 2.
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Hence,

hi =
n

µiqii∗

∑

k∈Ti

µk

(
Ekτ

n−1
k∗ +

∑

j∈J(k)

qkj

n−2∑

`=0

(
n − 1

`

)
1

µjqjj∗

·
∑

s∈Tj

µsEsτ
`
j∗Ekτ

n−1−`
k∗

)

=
n

µiqii∗

∑

k∈Ti

(
µkEkτ

n−1
k∗ +

∑

j∈J(k)

µkqkj

n−2∑

`=0

(
n − 1

`

)
1

µjqjk

·
∑

s∈Tj

µsEsτ
`
j∗Ekτ

n−1−`
k∗

)

=
n

µiqii∗

∑

k∈Ti

(
µkEkτ

n−1
k∗ +

∑

j∈J(k)

∑

s∈Tj

n−2∑

`=0

(
n − 1

`

)
µsEsτ

`
kEkτ

n−1−`
k∗

)

=
n

µiqii∗

∑

k∈Ti

∑

s∈Tk

n−2∑

`=0

(
n − 1

`

)
µsEsτ

`
kEkτ

n−1−`
k∗ .

Moreover, we have

hi =
n

µiqii∗

∑

k∈Ti

∑

s∈Tk

µs

(
Esτ

n−1
k∗ − Esτ

n−1
k

)

=
n

µiqii∗

∑

s∈Ti

µs

∑

k∈P(s)\P(i∗)

(
Esτ

n−1
k∗ − Esτ

n−1
k

)

=
n

µiqii∗

∑

s∈Ti

µsEsτ
n−1
i∗ .

Hence, (3.5) holds. From (3.5) and Lemma 3.1, it follows that mi 6 hi for all
i 6= o immediately.

Summing up the arguments above, we obtain that

Eiτ
n
i∗ = mi = hi =

n

µiqii∗

∑

k∈Ti

µkEkτ
n−1
i∗ , i 6= o.

From the strong Markov property, it follows that, for any k ∈ P(i) \ {i},

Eiτ
n
k =

n∑

`=0

(
n

`

)
Eiτ

`
i∗ · Ei∗τ

n−`
k = Eiτ

n
i∗ +

n−1∑

`=1

(
n

`

)
Eiτ

`
i∗ · Ei∗τ

n−`
k + Ei∗τ

n
k .

Then we inductively obtain that

Eiτ
n
k =

∑

j∈P(i)\P(k)

Ejτ
n
j∗ +

∑

j∈P(i)\P(k)

n−1∑

`=1

(
n

`

)
Ejτ

`
j∗ · Ej∗τ

n−`
k
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=
∑

j∈P(i)\P(k)

n

µjqjj∗

∑

s∈Tj

µsEsτ
n−1
j∗ +

∑

j∈P(i)\P(k)

n−1∑

`=1

(
n

`

)
`

µjqjj∗

·
∑

s∈Tj

µsEsτ
`−1
j∗ · Ej∗τ

n−`
k

=
∑

j∈P(i)\P(k)

n

µjqjj∗

∑

s∈Tj

µs

(
Esτ

n−1
j∗ +

n−1∑

`=1

(
n − 1

` − 1

)
Esτ

`−1
j∗ · Ej∗τ

n−`
k

)

=
∑

j∈P(i)\P(k)

n

µjqjj∗

∑

s∈Tj

µs

(
Esτ

n−1
j∗ +

n−2∑

`=0

(
n − 1

`

)
Esτ

`
j∗ · Ej∗τ

n−1−`
k

)

=
∑

j∈P(i)\P(k)

n

µjqjj∗

∑

s∈Tj

µs

n−1∑

`=0

(
n − 1

`

)
Esτ

`
j∗ · Ej∗τ

n−1−`
k

= n
∑

j∈P(i)\P(k)

1

µjqjj∗

∑

s∈Tj

µsEsτ
n−1
k , k ∈ P(i),

and

Eiτ
n
o = n

∑

j∈P(i)

1

µjqjj∗

∑

s∈Tj

µsEsτ
n−1
o .

So the assertion in Theorem 1.1 holds for n. By the induction, we know that
the assertion in Theorem 1.1 holds for all n > 1. The proof is finished. �

Remark 3.5 Under the conditions of Theorem 1.1, (Eiτ
n
i∗ , i ∈ T \ {o}) is the

minimal nonnegative solution of (3.2) and satisfies

mi =
1

qii∗

(
nqii∗fi +

∑

j∈J(i)

qijmj

)
, i ∈ T \ {o}.

By Theorem 1.1, we can get a necessary condition for the exponential
ergodicy of the process as follows.

Corollary 3.6 Assume that the Q-matrix on the tree T is regular and the

process is exponentially ergodic. Then

δ := sup
i∈T\{o}

∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ` < ∞.

Proof By the exponential ergodicy of the process, we see that the process is
recurrent. Then

Eiτ
n
o = n

∑

j∈P(i)

1

µjqjj∗

∑

`∈Tj

µ`E`τ
n−1
o , i ∈ T, n > 1.

By the fact that Eiτ
n−1
o 6 E`τ

n−1
o for all ` ∈ Ti and Theorem 1.1, one gets that
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Eiτ
n
o > n

∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ`E`τ
n−1
o

> n

( ∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ`

)
Eiτ

n−1
o

> · · ·

> n!

( ∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ`

)n

, n > 1.

By the exponential ergodicity and [1, Theorem 4.44 (2)], there exists a λ with
0 < λ < qi for all i such that Eoe

λσo < ∞. Then, by [1, p. 148], it holds that
Eie

λσo < ∞, i.e., Eie
λτo < ∞ for all i 6= o. The Taylor expansion

∞ > Eie
λτo =

∑

n>0

λn

n!
Eiτ

n
o

leads us to

∞ >
∑

n>0

(
λ

∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ`

)n

,

which implies that

λ
∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ` < 1.

Taking the supremum over i 6= o, we obtain

δ = sup
i∈T\{o}

∑

j∈P(i)

1

µjqjj∗

∑

`∈Ti

µ` 6
1

λ
< ∞.

The proof is finished. �

Now, we present a remark about exponential moment as follows.

Remark 3.7 Under the conditions of Theorem 1.1, we obtain that

Eie
λσo = 1 + λ

∑

j∈P(i)

1

µjqjj∗

∑

`∈Tj

µ`E`e
λτo , i 6= o.

In the end, we consider `-ergodicity of birth-death processes on trees. Given
a positive integer `, a recurrent Q-process is called to be `-ergodic provided
that Ejσ

`
j < ∞ for some (equivalently, all) j. Refer to [5]. Then we obtain the

following result.

Corollary 3.8 Assume that the Q-matrix on the tree T is regular and the

process is recurrent. Then the process is `-ergodic if and only if

d(`) :=
∑

k∈J(o)

∑

j∈Tk

µjEjτ
`−1
o < ∞.
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Proof By the strong Markov property and the single death property, we derive
that

Eoσ
n
o = Eo(η1 + σo − η1)

n

= Eoη
n
1 +

n∑

s=1

(
n

s

)
Eo((σo − η1)

sηn−s
1 ))

=
n!

qn
o

+

n∑

s=1

(
n

s

) ∑

k∈J(o)

Eo(η
n−s
1

�

{Xη1=k}EXη1
τ s
o )

=
n!

qn
o

+

n∑

s=1

(
n

s

) ∑

k∈J(o)

(n − s)!

qn−s
o

·
qok

qo
Ekτ

s
o

=
n!

qn
o

+

n∑

s=1

(
n

s

) ∑

k∈J(o)

(n − s)!

qn−s
o

·
qok

qo
·

s

µkqko

∑

`∈Tk

µ`E`τ
s−1
o

=
n!

qn
o

+
n∑

s=1

n!

(s − 1)! qn−s+1
o

∑

k∈J(o)

∑

`∈Tk

µ`E`τ
s−1
o .

By the argument above, it is easy to check that Eoσ
n
o is finite if and only if∑

k∈J(o)

∑
`∈Tk

µ`E`τ
n−1
o < ∞. Hence, the assertion holds. �
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