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Abstract Based on an explicit representation of moments of hitting times for
single death processes, the criteria on ergodicity and strong ergodicity are
obtained. These results can be applied for an extended class of branching
processes. Meanwhile, some sufficient and necessary conditions for recurrence
and exponential ergodicity as well as extinction probability for the processes
are presented.
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1 Introduction

Consider a continuous-time homogeneous Markov chains {X(¢): ¢ > 0}, on a
probability space (2,.%,P), with transition probability matrix P(t) = (p;;(t))
on a countable state space Z4 := {0,1,2,... }. We call {X(¢): t > 0} a single
death process if its transition rate matrix @ = (g;;: i, j € Z) is irreducible and
satisfies ¢;;—1 > 0 for all ¢ > 1 and ¢;;—; = 0 for all ¢ > j > 2. Such a matrix
@ = (gij) with >, q;; = 0 for every i (conservativeness) is called a single death
@Q-matrix. In the literature, the single death process is also called downwardly
skip-free process.

Symmetrically, we can define single birth processes. The single birth process
is nearly the largest class for which the explicit criteria on classical problems can
be expected. Hence, the single birth process becomes a fundamental comparison
tool in studying more complex processes, such as infinite-dimensional reaction-
diffusion processes. Actually, the study on the process is quite fruited and
relatively completed (cf. [2,4-6,11,15,17,18]).
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Usually, the single birth process and the single death one are non-symmetric,
and hence, they are regarded as the representative ones of the non-symmetric
processes. For non-symmetric processes, comparing with the symmetric ones,
our knowledge is much limited, except for single birth processes. For general
single death process, we know some results on stationary distribution and
criterion on zero-entrance of them. Refer to [1] and [13]. But as a special
kind of single death process, the branching processes are fruitful and applicable
intensively on which one of the main tools used is the generation functions.
Although the generation function is not valid for general single death process,
there exists some dual relations between single birth processes and single death
ones. We expect to obtain some parallel or similar results for single death
process on some classical problems, based on some ideas or approaches to study
single birth processes and branching ones.

In this paper, we focus on obtaining some criteria on several ergodicity of
single death processes. Define the hitting time

7 :=1inf{t > 0: X; =i}, >0,
the first jumping time
m = inf{t > 0: X; # Xo},
and the first returning time
op:=1inf{t >m: Xy =i}, i>0.

Throughout the paper, we consider only totally stable and conservative
single death @)-matrix:

g = —Qii = Zqz‘j <400, 1€ ZLy.
J#i

The following sequences are used throughout this paper:
“+oo
aP = gnj, k>n>=0,
j=k

and )
3

S el 1<n<i
k=n+1

; « 1
G =1, G=——
dn,n—1

The main result is as follows.

Theorem 1.1 Assume that the single death Q-matriz QQ = (qi;) is irreducible
and the corresponding process is recurrent. Then

Bav= 3 Y

1<k<n £k

Gl
qQoe-1

n =1,
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and

()

ooy = -+ L3y G

01 ok 26 a
Furthermore, the process is ergodic if and only if
DT T

Actually, for the last conclusion, the recurrence assumption can be replaced by
the uniqueness one.

The original branching process can be described as follows. Let « > 0, and
let (pj: j € Z4) be a probability distribution. Then the process has death rate

aipg:t—1—1, 12>1,
and growth rate
appy1:t—i+k k>21l,1€Z,.

Note that the process absorbs at state 0. In [7], an extended class of branching
processes with the following QQ-matrix is introduced:

,

905 J>i=0
—qo, J=1=0;
TiPo, 3_1_12217
qij = o . (1.1)
TiPk+1, J =1 + ka Z7k 2 17
—ri(l—=p1), Jj=iz=1
0, else i,j € Z.

where
ri>0,1>1, 0<QQZ:ZQO]’<+OO.
j=21

Define the convolution of two nonnegative vectors a = (a,; n > 2) and
b= (by;n>2):

(a*b), Z nt2—mbm, n = 2.
2<m<n
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Define
fn:zpk7n>oa f:(fn§n>2)-

k>n

Denote the n-th convolution of f by f*". In convention, f*! = f.
The another main result is presented in the following.

Theorem 1.2 Assume that the Q-matriz Q = (g;j) given by (1.1) is
irreducible and regular. Then the process is ergodic if and only if

Z < + Z fk*QZk+1><+oo;

é>1 1<k<l—1 Po

it 1s strongly ergodic if and only if

*k
Z%(H 3 %><+oo,

01 1<k<t—1 Po
where
1=(1,1,...), g=(¢" Vin>2).

This paper is organized as follows. The proof of Theorem 1.1 is given in
the next section. Then Sections 3 is devoted to the proof of Theorem 1.2. In
Section 4, an explicit sufficient condition for exponential ergodicity of single
death processes is obtained. For recurrence of single death processes, we present
some sufficient or necessary conditions, respectively, in Section 5, and the
returning (extinction) probability of the process is obtained in this section.

2 Moments of hitting times, criteria on ergodicity and strong ergodicity

Let us begin with a simple result for the solution to a class of linear equations,
which is an analogue of the results in [6, Section 2].

Lemma 2.1  For given real numbers (oumk)n+1<k<i and (frn)i<n<i, the solution
(gn)lgngi to the recursive inhomogeneous equations

Gn= Y Qukgk+fa, 1<n<d, (2.1)
n+1<k<i
can be represented as
> ke 1<n<i, (22)
n<k<i

where for fived k > 1, (Ynk)i1<n<k With Yir = 1 is the solution to the recursive
equations

Vnk = Z anjvik, 1<n<k. (2.3)
n+1<j<k
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Proof Use induction. For n = 4, we have

722]01 = Z /7zkfk

1<k<i

Assume that (2.2) holds for all m < n <i. When n =m —1 > 1, from (2.1),
we see that
Gm-1= D Om_1kgr+ fm1

m<k<i
= > amo1k Y Wefet fma
m<k<i k<l<i

= > < > Oém—l,k7u>fé+fm1

m<l<i S m<k<t

= Z ’mel,fff + fm—l

m<l<i
= Y meaele
m—1<0<i
Hence, (2.2) holds for n = m — 1. By induction, the representation (2.2) holds
for all n > 1. O

Note that the coefficients (a,x) are often fixed and so are (7,x). Then
Lemma 2.1 says that once replacing (c,) by (nk), the solution to (2.1) has a
complete representation (2.2), mainly in terms of the inhomogeneous term (f,)
n (2.1).

Without condition i, = 1, (2.3) is clearly homogeneous. However, it
becomes inhomogeneous under condition g, # 0 (then one may assume that
ke =1):

Vnk = Z QnjYik + QnkYek, 1<n<k—1,
nr1<j<k—1
provided aj_q # 0. Otherwise, once aj_1; = 0, by induction, we actually
have v, = 0 for all 1 < n < k — 1. Thus, under condition v = 1, by Lemma
1 (for fixed k), we have the following alternative representation of (y,x):

Ynk = Z Yk, 1<n<k—1
n<jk—1

In what follows, we will use the following variant of Lemma 2.1. Replacing
the coefficient (a,) by (ankfk), for some non-zero sequence (3,,), and set hy,, =
9n/Bn (1 < n <), we obtain the following result.

Corollary 2.2  The solution (hy)1<n<i to the recursive equations

1
hn__( Z ankhk+fn>; 1<n<i,

Pn n+1<k<i
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can be represented as
n<k<i P
where for each fized i, (Vni)i1<n<i With vi; = 1 is the solution to the equations
1 )
Tni = 5 Z ki, 1 <n <t
" onr1<k<i
FEquivalently,
k .
Yii =1, i = Z fyﬁiaki, I1<n<i—-1
n<k<i—1 "k
Specifying 5, = ¢nn—1 and ayy = q%k) and using the successive formula of
Gglk), we obtain the following result.
Corollary 2.3 For given f, the sequence (hy,) defined successively by
1
hn = < > %’“)hwfn), 1<n<i,

qn,n—1 n41<k<i

has a unified expression as follows:

i a®
hn =Y ——fr, 1<n<i.
p— k. k—1

In particular, the sequence (Gglk)) has the following expression:

i=1 (k) (i)
o =1, 6=y Gn

k=n

, I1<n<g<e—1.
qk,k—1

Before moving further, let us mention a comparison result for different ~,,;,
which is useful elsewhere.

Proposition 2.4  For each triple 1 <n <1 < j, the following assertion holds:

k
Ynj = fyﬁik Z QeYey- (2.4)

n<k<i 1<)
Furthermore, if apy, = 0 and B, > 0 for all 1 < n <k, then vnivij < ynj for all
1<n<i <y
Proof The first assertion is simply a consequence of Corollary 2.2. In fact, for
fixed ¢ > j, take

fn= Z QAneVej, I<n<i.
i+1<0<y



Criteria on ergodicity and strong ergodicity of single death processes 1221

Then, for 1 < n < 14,

Vnj = % [ D vt Y O‘M%’] = % [ > oy +f"]'

n+1<<i i+1<0<j n+1<<i

Hence, by Corollary 2.2, we get

Tnk Tnk .
Tnj = Z 5—1 k= ﬂ—: Z akeve, l<n<i.

n<k<i n<k<i i+1<0<)

If api = 0 and (B, > 0 for all n and k, then from (2.4), it follows that for
all 1<n<i<j

_ Ink >
Tnj = Yni%ij + B, Z QpeYej 2 YniVig-
n<k<i—1 R iy 1<
In the cases of n =i or ¢ = j, the conclusion is trivial. U

To prove Theorem 1.1, we first prove the following proposition.

Proposition 2.5 Assume that the single death Q-matriz Q = (qij) is
irreducible and the corresponding process is recurrent. Then

)
EnTn-1 = § i , n=1
s qk,k—1
>n

As prepration for the proof of Proposition 2.5, we need to check two lemmas.

Lemma 2.6 Define

G
hy = Z “ . n>1.
k>n k. k—1

Then (hyp; n > 1) is the minimal nonnegative solution of the following equation:

LD o0 .
Ti= it > S m+—, i1 (2.5)

qi (>it1 qi qi
Moreover, (hy; n > 1) satisfies the following relations:
1 =
By = <1 + ) qgkmk), n>1. (2.6)
dn,n—1 e
=n+1

Proof Fix N € Z, and define Q-matrix QN) = (¢ij) on {0,1,...,N}:

g™, i <N, j=N;

Gij =19 (gvnVN)1+GM),  i=N,j=N-1;
—(gvVN)1+GWN)), i=j=N;
0, i=N,j<N-—1,

\
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where GWV) = maxi<n<N G%N

Define o
N
E]ﬁzk)— an]a 0<’I’L<k‘<N,
7=k
and A
. - 1 ! s
GV =1 GO =_ dMGY 1<n<i<N.
dn,n—1 [—
It is easy to check that
N oGk
AN =N 1< n <N, (2.7)
P qk,k—1

is a unique solution (the minimal non-negative solution) to the following
equations:

§{1+1) N a{ﬁ) 1
gi =1 & di

Note that ¢; := ff]vii = Qi =i for all i < N and (}{nk) = q,(f) foralln < k < N.
Furthermore, GS) = GS) for all n <7 < N. Hence, we can rewrite (2.8) as

1 eSS N0
TN = , x; = T + Lxp+—, 1<i<N.
(av VN)L+GWN)T T g T A g ai

(2.9)
On the one hand, from Equations (2.5) and (2.9), by [5, Theorem 2.7], we know
that (hﬁLN)) is increasing to the minimal non-negative solution of Equation (2.5)
as N — 4o00. On the other hand, from (2.7), it follows that

N-1 G7(1k) G%N) +00 G7(1k)

th) = + — - hna N — 00,
kZ:;L Q-1 (gv VN)(1+GWI) kZ:;L The k—1

for all n > 1. So it has proven that (h,) is the minimal non-negative solution
of Equation (2.5).

It is not difficult to check that (h,; n > 1) satisfies equality (2.6). The proof
of assertions are finished. O

Lemma 2.7 Assume that the single death Q-matriz Q) = (g;5) is irreducible
and corresponding process is recurrent. Give ig € Zy arbitrarily. Then

oo
E;m < Z Z ki > .

do+1<k<i €2k
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Proof 1t is well known that (E;7;,; ¢ > 0) is the minimal non-negative solution
to the following equation:

qi r. .
Tig = a T = Z £ tdbg _'a ¢ # 20-
el i

From [5, Theorem 2.13] (Localization Theorem) and single death property, it
follows directly that (E;7;,; ¢ > ip) is the minimal non-negative solution to the
following equation:

ij 1
z;, = 0, ST +—,z>zo 2.10
om0 m= Y W, 210)
]#Z7]>ZO

Define

G\

DD > io.
it 1<k (>k 1ot a

It is not difficult to check that (y;; ¢ > ig) is a non-negative solution to Equation
(2.10). Hence, E;7;, < y; for all i > ip. So the assertion is proven. O

Proof of Proposition 2.5 On the one hand, for all k > i — 1 > 0, from strong
Markov property and single death property, it follows that

Eiric1 = Eg(th—1 + Tim1 — Tk—1)
= Epmi—1 + Ep(Ex(rim1 — 1 | Frp )
= Ex7p1 + Ex(Ex,,  7i-1)

=Epmp—1 +Ep_17m1

k
=) B
(=i

Denote E;m;—1 (¢ = 1) by m;. By strong Markov property and the equality
above, one gets that

mi = Eim + Ei((ri-1 — m)1x,, =i-1}) + Z Ei((i-1 = m)L{x,, =k})
k>it1

1
= o PEE(G =), —ien | Fn))

+ Z Ei(Bi((mim1 = m)Lix,, =%} | Fm))
k>i+1

1
= q_ + Ei(:ﬂ-{Xm:ifl}EanTi—l) + Z Ei(]l{an:k}EanTi—l)

k>i+1
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:l quZEZTZI"’_quETzl

i k>i+l 4% o k>i+l di
(i+1) ©) 1
— qZ ' - my; + qZ' m _.I_ —
qi (>it1 qi (h

Hence, (m;; i > 1) is a solution of Equation (2.5). From Lemma 2.6, it follows
immediately that m; > h; for all i > 1.
On the other hand, fix iy arbitrarily. By Lemma 2.7, we obtain that

E;Tiy < Z Z

to+1<k<i 02k

= 10.

QM 1
In particular, it holds that

Mig+1 = Eig17ig < Nigg1-

From the arbitrariness of ig, it follows that m,, < h,, for all n > 1.
Summing up the arguments above, we know that m, = h, for all n > 1.
The proof of the assertion is finished. U

Remark 2.8 Under the assumption of Proposition 2.5, by Lemma 2.6, it is
obtained that (my; n > 1) is the minimal non-negative solution of (2.5), which

satisfies .
My = <1 + ) q,(f)mk> n>1. (2.11)
dn,n—1 k>nt1

Moreover, for all ¢ > k, it holds that

Bn= X m= X 3

k4+1<<i k4+1<G<i €25

qe.0— 1

Now, we come to give the proof of Theorem 1.1 in details.

Proof of Theorem 1.1 By Remark 2.8, we know that for all 4 > 1

EZ‘UQZEZ‘TOZ Z m; = Z Z

1< 1G<i 55 Wt= a
Furthermore, we have
qo5 1 905 _
I L DR IER PR DI
do = 90 o =1 PG 0 k>1

Finally, note that

1+D

Eooo = , D < qoS.

q0
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From [5, Theorem 4.44 (1)], it follows immediately that the single death process
is ergodic if and only if Eqog < 400, which is now equivalent to D < 4o0.
By [5, Theorem 4.44 (3)] or [9], the process is strongly ergodic if and only if
supg>o Eioo < +00, equivalently, S < +o0o. As mentioned in the proof of the
cited book, for ergodicity, the uniqueness assumption is enough instead of the
recurrence one. The proof is now finished. U

Now, we illustrate our results by two examples.

Example 2.9 Assume that the birth-death Q-matrix (a;,b;) is totally stable
and conservative. Define
boby - - bi—1

po=1, pi= 200l o1 plitoo) =Y g 020
@102 """ G k>i

Then { "
GS):M7 1<n<i.

HnGn
Suppose that the corresponding birth-death chain is recurrent. Then
pi[n, +00)

mp = , n = 17
HnGn

and " ) i1, )
plk, 400 plk 4+ 1,400 S
EiTig = Z = Z b , 1> 10.
itlk<i  HROE io<k<i—1 Dk
Assume that the chain is unique. Then the chain is ergodic if and only if
D = u[l,4+00) < +00, equivalently, p := p[0,+00) < +00; the chain is strongly
ergodic if and only if

pln, +00) Z,un—i-l—i-oo)

S = < 4o00.

n>1 HnQn

These results are well known. Refer to [5].

Example 2.10 Give a constant b > 2. Define a totally stable, conservative,
and irreducible single death Q-matrix @ = (g;;) as follows:

b—1 b—1 V—b+1 |
Qijzm7 jzi+1; Qi,i—lzTa Qi:—Qii:T, 12> 1;

b—1 . 1
QOj:bjT7j>1; 0= —qo0 = 3

In Section 5, we know that the corresponding is recurrent. Then

1 1
k) _ N )
'Sl)_bkfn+l’1<n<k’ q(] _bk>k>1a
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and
1 ) b—1
1<n<i;, mpy=——,n=1

(i) _
G = sy

EiTio = (’L'—’L'o)m, 1> 1.
Therefore, by D = 1/(b—2) and S = 400, we know that the process is ergodic
but not strongly ergodic.

At last, we present a result which is directly obtained by [12] and Proposition
2.5 and omit the detailed proof here.

Theorem 2.11 Assume that the single death Q-matriz @ = (q;;) is reqular
such that the state 0 is an absorbing state and the absorption occurs almost
surely. Furthermore, assume that Q = (q;;) is irreducible on N := {1,2,...}. If

G
Z Z < +00,

n=1k>n k=1

then there exists a unique quasi-stationary distribution p for the single death
process. Moreover, for any probability measure  on N, we have

1P (X (1) € -l < 70) = pllrv <201 =M, ¢ >0,

for some positive constant v independent of p.

3 An extended class of branching processes

For the extended class of branching processes defined in (1.1), it is easy to check
that

k - S
j=k

j=k—it+1
and
G = Z fonnGF, 1< n <k, (3.1)
E n+1
in particular,
Gh — 2 s
Po

Define

Z/fpk, T'=> kpra.

k>1
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Note that
Zka, F:ka:Ml—f1:M1+p0_1-

E>1 E>2
From the definition of convolution, it follows that
axb=bxa, (axb)xc=ax(bxc).

When a,, < b, (n > 2), we denote @ < b. If a < b, then axc < bxc.
Before proving Theorem 1.2, we present one important lemma as follows.

Lemma 3.1 Give a nonnegative vector g = (gn; n > 2). Then

Yo oGP = > UG, (3.2)

1<n<k—1 1<n<k—1 Po

Proof 1In fact, by G,(Ck) =1 and (3.1), it is derived that
1
p

> gnaGP > D gnafee ns1GY

1<n<k—1 1<n<k—1 n4+1<U<k

-1 S>> gk ns1GY

PO 5 <k 1<n<t—1
1
— Z f€+2 mgm
" 2<t<k 2<m <!
1 k
= — (f *g)zGé ),
Po o o<k

Furthermore, we have

Z In1GP (f )]l{k>2}+pi Z (f * g)nGP

1<n<h—1 Po 2<n<k—1
(f < gk 1
=gyt Y, (Fr@n Y. foo i1 G
Po PO 5cnca1 n1<t<k

(f*1 9k (k)
:ﬂ-{k>2}+ 2 Z Z f€+1 n )nGg

3<£<k 2<n<l—-1

*1
(f ) Lisay + > S (5725 g) G
3<£<k
(f*1 * )k (F** % g1
=Ty tent T Lir>3y
% n 1G( )
0

3< <k1
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(" * @k—nt1
> g
1<n<k—1 0
Hence, the proof of (3.2) is finished.
In the following, we come to verify Theorem 1.2.
Proof of Theorem 1.2 Define 1 = (1,1,...) and q = (g, (n— 1), n > 2). Replacing
g in (3.2) by 1 and g, respectively, it follows that

k) _ (F™" * Dkt
> -y UL

1<n<k—1 1<n<k—1
. (/" +q)
(n) k *q)k—n+1
I
1<n<k—1 1<n<k—1 0
Furthermore, we get
Sy G
D=
k>l >k q” !
DI SRl
>1 P e
k x
_ Z < i Z q — k+1>
>1 1<k<i—1 pO
and
oy o
S =
k>1 sk 2641
-y o
>1 P e
1 k1),
:er <1+ T (f k)e k+1>_
1 0 1<k<t—1 Po
By the argument above and Theorem 1.1, we know that the assertions hold
immediately. O
Come back to Example 2.10. Fix a positive constant a such that
<1 L
a -
b2 —b+1

Then Example 2.10 is the special case of (1.1):

b—-1 a _a >0

T ab ) Po a, P1 a b2—b7 p] b]7 J
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Furthermore,
P S JO0_1 ;54
n*(b_l)bn_17 n =z 4 qO 7bé7 = L
Now, let us verify
k
. a

At first, when k = 1, it holds that

J4 l
_ (n—1) _ a r a 1
(f * q)é - 72.}%4’2%(]0 - Z (b _ l)bg_’_l_n : bn_l - (b _ 1)bg Cffl'

n=2

So (3.3) holds for k = 1. Assume that (3.3) holds until k¥ = s. For k = s+ 1, by
k
m m+1
Z Cm—i-n = CmikJrl?
n=0
we obtain

l—s
(.f*(8+1) * q)é—s = Z fé—s+2—n(f*s * q)n
n=2

l—s s

. Z a a Cs
= (b . 1)b£73+17n (b _ 1)5bn+3—1 n+s—2

n=2

ean l=s .
= (b _ 1)s+1bé Z Cn+s—2
n=2

l—s—2

as—i—l
- s
- (b— 1)s+1b£ Z CSJF”
n=0
s+1
a s+1

(b _ l)s—i-lbé Cé—l'

Hence, (3.3) holds for k = s+ 1. By induction, (3.3) holds for all 1 <k < ¢—1.

Then N
(f" *q)i—rr1 1 k
I Pl ot
k Z _ 1\kpt Tt-1
1<k<l—1 Po 1<k<l—1 (b—1)%
1 1 1 \¢1 1
- ﬁ(( +b—1> B )
1 1

bb— 1)1 pl
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Furthermore, we see that

Z ((E_I_ Z *QZk+1>:bi2<+oo‘

é>1 1<k<b—1 pO

Note that u 1
(FxLe=G=17 (1= 51):

From the equality above, it follows that

Z%<1+ 3 (f*k*lk)ekH) > Zl (f *1)g

0>1 1<k<t—1 Do 1>2 Ty Po
b _ 1 1 _1)\3 Z ( bz 1)
= + o0.

So the process in Example 2.10 is ergodic but not strong ergodic. This is the
case of b > 2. Note that

a
M; = m +1—a.
So My < 1 if and only if b > 2. Hence, it is easy to know that
the process is unique when b > 2 by [7, Theorem 1.2 (i)];
the process is unique and null recurrent when b = 2 by [7, Theorems
1.2 (i), 1.3 ()];
the process is unique and transient when 1 < b < 2 by [7, Theorems

1.2 (ii), 1.3 (i)).

4 Exponential ergodicity

In this section, we consider the exponential ergodicity of single death processes.
Note that

G(m) 1 G(m)

Jn (k) Tk

™ o 2, g ol (B
1 ’ k>n+1 1

By Fatou’s Lemma, we know that

am om)
lim o = Z ¢ lim ](f )1[1,m}(k)
m—-+o00 G dn,n—1 k>nt1 m—-+o00 G
(m)
> ¢ lim G
an 1 m—-+o0o G(m)

k>n+1
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Define
G, = lim % n>1. (4.1)
m—-+o00 Gl
Then
1 +oo ®)
G, > ¢, G, n=>1 4.2
dn,n—1 k%l ( )

Now, we present a sufficient condition for the exponential ergodicity of single
death processes as follows.

Theorem 4.1 Let the single death Q-matriz be reqular and irreducible.
Assume

Zq((]k)Gk < +00. (4.3)
k>1
If
= inf ¢, > 0, =su G < 400,
q n}Oq n>I;<Z kZQJ] 1G>

then the process is exponentially ergodic.

Proof 1In view of [5, Theorem 4.45 (2)], the condition ¢ > 0 is indeed necessary.
From [5, Theorem 4.45 (2)], the process is exponentially ergodic if and only if,
for some A with 0 < A < ¢; for all ¢ € Z, the system of inequalities

Yi = la (> Oa
> aiy < —Xyi, =1,
- (4.4)
ZQijj < +0o9,
j=1

has a finite solution (y;). We need to construct a solution (g;) to (4.4) for a
fixed X\ with 0 < X\ < ¢. First, define an operator

JZGZ i

WV
—_

Qe Jo— le

Next, define
i
i = Z Gy, =1
j=1
Then ¢ is increasing in ¢ and @1 = G1. Let f = cqi0,/@/v/G1 for some ¢ > 1.
Then f is increasing and f; = cqio. Finally, define ¢ = fII(f). Then g is
increasing and

f1
=Gy — =c>1.
ZQkk le q10
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By [3, Lemma 3.6], it follows that

X o
VG
2Meqio

< G

< 400, 121

Then, by the argument above and (4.3), it is obtained that

2Mc 2Mc
ZQOJ'QJ < qum ZQOJ Z Gr = qulo Zqék)Gk < 400.

j>1 i1 1<k< k>1

Let g9 = 1. Then 1 < g; < 400 for all ¢ > 0. We now determine A in terms of
(4.4). When i = 1, we get

Ag1 < quo(gr — qu Gzzqkk e

By (4.2) and go = 1, it suffices that

+oo
Ag1 < q10G1 Z Qo 1Gk —q10 — q10G1 kZ_2 r’k{lek
= f1—quo
= (c—1)qio
-
We need A
NS (4.5)

When i > 2, we should have

Agi < ¢ 1G§7—E quE
LS A G pGr = < Gk le
1+1
For this, it suffices that

A ¢ii-1Gi — ¢i.i1G; .
% < Gisi- Z‘Zkk G T kz;rl%k 1Gk =i
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In other words, for (4.4), we need only

fi 1 .
X T Ty ? 2 2a
gi  1L(f)

and (4.5). Then we can take any A satisfying

c—1 1
A Ainf A 4.6
O<A<Tmip "M mop (4.6)

provided the right-hand side of (4.6) is positive or, equivalently,

sup IT;(f) < 4o0.
i>1

To prove the last property, define another operator
+o0o

G fr .
Ii = s 2 = 1,
() fi— fic1 ;::Z Gk k—1Gr

where fo := 0. By the proportion property, we get

sup II;(f) < sup L;(f).
i>1 i>1

By [3, Lemma 3.6] and the condition that M < +o0, it follows that

| G N 2MG,
Li(f) = Vi — WZQkk 1Gk<(\/@—\/ﬁ)\/@<4M

for all 7+ > 2 and

=2M.

_ Gl +Z: k 2MG1
ko le 1

Therefore,

sup I1;(f) < 4M < +o0,
i1

as required. We have thus constructed a solution (g;) to (4.4) with 1 < g; < 400
for all i > 0 and ) j>140;9; < +oo. This implies the exponential ergodlclty of
the single death process. The proof is finished. O

For the birth-death chain (a;, b;),

Gim _ e
Ggm) Mnan.
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Thus,
G(m)
G, = lim —_—Ha 1,
m—+00 Ggm) HnQn,
and

quk)Gk = by < +o00.
k>l

The equality in (4.2) holds. Now,

n 1 +o0o n—1 1 +00
oo (E 5 En) 2 (B )

a
n>z1 \ ;] HkGk i=n =0 273 et

As we have known (refer to [3]), the birth-death chain is exponentially ergodic
if and only if M < +oc.
Consider Example 2.10 with b > 2. We see that

(m)
= b
Gy
Then
G(m)
G, = lim % =b-1)""1 n>1,
m—-4o00 Glm
and

ZQ(()k)Gk =1 < Foo.
k>1

The equality in (4.2) holds. Note that ¢ =1/b > 0 and

Hence, by Theorem 4.1, the process is exponentially ergodic.
Given a positive constant ¢ arbitrarily, define a birth-death chain
c _ %i.i1Gi

bo=—~ b

) y @i = Qii—1, 1> 1.
G Git1

Here, we take ¢ > ¢oG1. Then

bo = qo = q((]l)-
By (4.2), it is seen that
b > Y vixo.

7 )

Denote the first hitting time of the state 0 for the birth-death chain by 7.
Then the following assertion holds.
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Proposition 4.2 Let the single death Q-matriz be reqular and irreducible.
Assume that the birth-death Q-matriz defined above is reqular. Then

EZ’TOH < EZ‘FBL, n>012>1
Proof Define
m\™ =By, m" =By, n>0,i>1
;- — LTg, Mm; @ = LETg, N =U 1=l

Obviously,
m® =m® =1, i>1L

By [8, Chapter 9] or [14], we know that

i—1 400 m(n—l)
__ k
AT SR S SR ST S S
=0 lu.] J k=j+1 j=0 k=j+1 qkk—1Gk

izl,n>1. (4.7)

By [10] or [5, Proposition 4.56], (mgn)) is the minimal nonnegative solution to
the equation

x(()n) Z sz n 2 m(n_l), i>1. (48)
k;éz

Then, by (4.7), it is not difficult to check that (mf”)) satisfies

7 = Z Gik 7 4 D=l >, (4.9)
k;éz

By (4.8), (4.9), and Comparison Theorem, we see that mgn) <m ( Jforalli > 1
and n > 0. The proof is finished. O

Furthermore, we can get that
E;eM < E;e’™, i>1, A>0,

by Tayor’s expansion. Hence, based on [5, Theorems 4.44,4.55] and the
argument above, some sufficient conditions on several ergodicity are obtained
immediately as follows.

Theorem 4.3 Let the single death Q-matriz be reqular and irreducible.
Assume Ek>1 G = +oo. If the birth-death chain defined above is ergodic
(resp. exponentially ergodic, strongly ergodic), then so is the single death
process, equivalently,

if

< 400
>1 qi,i-1G} ’
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then the single death process is ergodic;

if M < 400, then the single death process is exponentially ergodic;

if
DG Z

n>1

m’
“ 1Gk

then the single death process is strongly ergodic.

The condition of ‘)" k>1 G, = 400’ guarantees that the single death process
and the birth-death chain are recurrent simultaneously. Refer to Theorem 5.1
below. So the birth-death @-matrix is regular.

5 Recurrence and return probability

In this section, we consider the recurrence of single death processes. By
Proposition 2.4, we know that

(m)
G < Lk 1<k<m.
7 = G
Define )
én = lim G n > 1.

m— 400 G(m)
Assume the following condition holds:
Qn
> ;< too, m>1 (5.1)
k>2n+1 G

Then, from Fatou’s Lemma and (5.1), it follows that

am G
< (k) Zk_q
mLHE"O G(m) = ot k>§n:+1 o mLIJroo G(m) L1m) (K)
G(m)
- Z q lim ]Em)
dn,n—1 k>n41 m—>+oo G
ie.,
_ 1 = _
Gos— 3 & a1 52
dn,n—1 [a—

Now, we present the criterion on the recurrence of single death processes as
follows.



Criteria on ergodicity and strong ergodicity of single death processes 1237

Theorem 5.1 Let the single death QQ-matriz be regular and irreducible. If G,
defined in (4.1) is finite for alln > 1 and

ZG" = 400,

n=1

then the process is recurrent. Conversely, assume that condition (5.1) holds. If
the process is recurrent, then

Zén = 4o00.

n>1

Proof First, we prove that the process is recurrent provided that Zn>1 G, =
+oo. By [5, Theorems 4.34,4.24], the process is recurrent if and only if the
inequality

- y_] Yi, l 2 1, (53)
has a finite solution (y;) so that

li = .
L

g0=0, gi= Y G izl

1<n<i

Take

It follows that (g;) is a finite solution of inequality (5.3) satisfying lim; . g; =
+oo from (4.2) immediately. So the process is recurrent.
Second, under assumption (5.1), when the process is recurrent, we consider
the case that B B
G:=) Gp< o

n>1

Take

1 ~ Q10G1
= Gn, 122, 1= =— Zquﬂ?k
G 2<n<i 0nG 0 k>1

Obviously, 0 < x; < 1 for all 7 > 0 and

qok
— X — Xy.

k20 q0

By (5.2), it can be derived that

o)~ G
quk - ~ZQ1kZ n_m%zqg)(?n?q;?él—m-

k#0,1 k>2 2<n<k
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Moreover, by (5.2), we see that

Z Lk :@37 +—~ZQ2k > Ga

k20,2 4 G 2<n<k
2,
=Bt oG X G
G 3<n<k
3 )G
:@x1+q2 2+—~Z (G
q2 QQG QQG n>3
(3)6 G
> @xl—i—% 2+Q21~2
qz G qG
> &2
G
= T2,

and for all 7 > 3,

I aD I DI O

Z

k0, 2<n<i—1 k>7,+1 2<n<k
i ~ 1 ~ ~
Sditoy gy Loy qik< S Gt Y an>
e 2<n<i—1 4G >i 2<n<i it1<n<k
D DI >
1,2—
= B Gn + 21— + — g™
in 2<n<i—1 in 2<n<i n>z+1
) o DE o &
> = Z Gn—i-qZ ~Z+qm}vz
G2<n<i 1 7.G q:G
2<n<z

= Xj.
Thus, (z;) is a non-trivial solution of the inequality
<Y oy o<m<lL (5.4)
k£0,4 1
By the comparison lemma, we know that the equation
T = ok, 0< @ <1,
k£0,i di

has a non-trivial solution if and only if inequality (5.4) also has a non-trivial
solution. Thus, from [5, Lemma 4.51], it follows that the process is transient

immediately. It is a contradiction. So G = +00 holds. The proof is finished. [J
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For the birth-death chain (a;,b;), we have

(k)
dn " bn _ b(]
Z@—W—M—<+OO, 7121,
k>n+1 U1 1 n
and B a
G, =G, =14 1.
HnAn,

So assumption (5.1) holds and

-~ =~ piay bo
Yooy a ey Ay b

a
n>1 n>1 n>1 HnGn n>0 Hn

Hence, the birth-death chain is recurrent if and only if

Z 1b = 400,

>0 HnOn

which is well known before.
Consider Example 2.10 with b > 1. Then

(k) b—1 k—1
Y = Y e =6 < e w21,
k>n+1 Gl k>n+1

and N
Gn,=G,=(b— 1)"_1, n>1.
So assumption (5.1) holds and

Y Gu=> G=)> (b-1)",

n>1 n>1 n>1

which is infinite when b > 2 and finite when 1 < b < 2. So the process is
recurrent if and only if b > 2. By the way, from [7, Therem 1.3], it follows that
the unique process is recurrent if and only if b > 2.

In the following, let us consider the return probability for single death
processes. Define

Go= =Y a"G G=YGu Go=— > a"Gr G=Y G
9 = n>1 9 = n>1

It is obvious that
Go <G, Go<AQG.

Then our result is presented as follows.
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Theorem 5.2 Let the single death Q-matriz be regqular and irreducible.
Assume that (5.1) holds. Then
Gl
PQ(O’Q<+OO)§1—T, ]P)n(0'0<+00 1—— Z Gk,n/
G 1<k<n

In addition, assume

lim (m > G =Y G k=1 (5.5)
m—too Gy 1 Ty 1<j<k
Then
Go 1
P0(00<+oo)>1—5, Pn(00<+oo)>l—5 Z Gi, n>1
1<k<n

Proof First, take

Go 1 ~
rn=1-—, zpz=1——= Gpn, k> 1.
o=1-2, & 3

Then, by (5.2), we see that

and

ql—kxk-i-qﬂ i<Q§2)<1—%> ~Z(" > E

k0,1 n>2
1 G G
<= (q§2)(1 _ Tl) _ o 1) + 40
T G G a1
1 ( G q10
= — (h(l—T) —qlo> + =
q G qn
G
=1- =
G
= I1.
For ¢ > 2, by g;0 = 0, we have
> 2
k#£0,i i
- —zqm(l 5> a)
k#i G 1<n<k
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)

¢ 1<n<i—1 E>it1 1<n<k
1 < < 1 ~
=—(Gi—1|1-= Z Gn)
i G 1<n<i—1
i1 1 ~ 1 -
P (12 Y G) -2 T a6
1<n<i G5
and furthermore, by (5.2), we get that
G, G0
k20.i qi qi
1 ~ : 1 ~ G
< . (qz,z—1< - = Gn) + §Z+1) (1 - Gn) i ~1 Z)
di 1<n<i—1 G 1<n<i G

1<n<s

= Z;.
Thus, (x;) satisfies the inequality

Zqz’“ o+ 0 (1= 5), i>0.
k#£0,i i &

It is well known that (P;j(c9 < +00)) is the minimal nonnegative solution to
the equation

=Y B+ (1 -60), izo0.
}£0,i qi qi

Thus, from Comparison Theorem and the argument above, it follows that
Pi(og < +00) <z, 72> 0.
Second, under assumption (5.5), from [16, Theorem 1], it follows that

Pi(og < +00) > hm Pi(oo < Tim)

m*) o0
g G
=1- lim <«  ~m)
m=t00 ) i<i<m G

im,, oo D 1gici G§m)/G§m)
h_mm—>+oo Zlgjgm G§m)/G§m)

WV

1—




1242 Yuhui ZHANG

2gi<i G
> 1-
>ix1Gj
1
=1-—= Z Gj, 1>1
1< <i

So we obtain that

1
Py(og < +00) = — ZQOi]P’i(Uo < 400)

q0 i>1
1 1
P OWACEED oy
S 1G<i
1 < m_ 15,0 )
=% —~ Zqo Gj
o ¢
Go
=1-—
G
The assertion is proven. O

Remark 5.3 If there exist the limits lim,,— 400 G%m) / Ggm) for all n > 1 and
assumption (5.1) holds, then G,, = G,, (n > 0) and (5.5) holds. Hence,

Go

1
PO(O’O<+OO):1—6, Pn(0'0<+00):1—EZGk,TL21.

1<k<n

Thus, Pi(op < 4+00) = 1 for all i« > 1 if and only if Py(og < +o0) = 1,
equivalently, if and only if G = +o0o (Gy < +00). By the way, from the
dominated convergence theorem, it follows that equality (4.2) or (5.2) hold.
See Examples 2.9 and 2.10.
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