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Abstract Based on an explicit representation of moments of hitting times for
single death processes, the criteria on ergodicity and strong ergodicity are
obtained. These results can be applied for an extended class of branching
processes. Meanwhile, some sufficient and necessary conditions for recurrence
and exponential ergodicity as well as extinction probability for the processes
are presented.
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1 Introduction

Consider a continuous-time homogeneous Markov chains {X(t) : t � 0}, on a
probability space (Ω,F , P), with transition probability matrix P (t) = (pij(t))
on a countable state space Z+ := {0, 1, 2, . . . }. We call {X(t) : t � 0} a single
death process if its transition rate matrix Q = (qij : i, j ∈ Z+) is irreducible and
satisfies qi,i−1 > 0 for all i � 1 and qi,i−j = 0 for all i � j � 2. Such a matrix
Q = (qij) with

∑
j qij = 0 for every i (conservativeness) is called a single death

Q-matrix. In the literature, the single death process is also called downwardly
skip-free process.

Symmetrically, we can define single birth processes. The single birth process
is nearly the largest class for which the explicit criteria on classical problems can
be expected. Hence, the single birth process becomes a fundamental comparison
tool in studying more complex processes, such as infinite-dimensional reaction-
diffusion processes. Actually, the study on the process is quite fruited and
relatively completed (cf. [2,4–6,11,15,17,18]).
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Usually, the single birth process and the single death one are non-symmetric,
and hence, they are regarded as the representative ones of the non-symmetric
processes. For non-symmetric processes, comparing with the symmetric ones,
our knowledge is much limited, except for single birth processes. For general
single death process, we know some results on stationary distribution and
criterion on zero-entrance of them. Refer to [1] and [13]. But as a special
kind of single death process, the branching processes are fruitful and applicable
intensively on which one of the main tools used is the generation functions.
Although the generation function is not valid for general single death process,
there exists some dual relations between single birth processes and single death
ones. We expect to obtain some parallel or similar results for single death
process on some classical problems, based on some ideas or approaches to study
single birth processes and branching ones.

In this paper, we focus on obtaining some criteria on several ergodicity of
single death processes. Define the hitting time

τi := inf{t > 0: Xt = i}, i � 0,

the first jumping time

η1 := inf{t > 0: Xt �= X0},
and the first returning time

σi := inf{t > η1 : Xt = i}, i � 0.

Throughout the paper, we consider only totally stable and conservative
single death Q-matrix:

qi := −qii =
∑

j �=i

qij < +∞, i ∈ Z+.

The following sequences are used throughout this paper:

q(k)
n =

+∞∑

j=k

qnj, k > n � 0,

and

G
(i)
i = 1, G(i)

n =
1

qn,n−1

i∑

k=n+1

q(k)
n G

(i)
k , 1 � n < i.

The main result is as follows.

Theorem 1.1 Assume that the single death Q-matrix Q = (qij) is irreducible
and the corresponding process is recurrent. Then

Enσ0 =
∑

1�k�n

∑

��k

G
(�)
k

q�,�−1
, n � 1,
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and

E0σ0 =
1
q0

+
1
q0

∑

k�1

q
(k)
0

∑

��k

G
(�)
k

q�,�−1
.

Furthermore, the process is ergodic if and only if

D :=
∑

k�1

q
(k)
0

∑

��k

G
(�)
k

q�,�−1
< +∞;

and it is strongly ergodic if and only if

S :=
∑

k�1

∑

��k

G
(�)
k

q�,�−1
< +∞.

Actually, for the last conclusion, the recurrence assumption can be replaced by
the uniqueness one.

The original branching process can be described as follows. Let α > 0, and
let (pj : j ∈ Z+) be a probability distribution. Then the process has death rate

αip0 : i → i − 1, i � 1,

and growth rate
αipk+1 : i → i + k, k � 1, i ∈ Z+.

Note that the process absorbs at state 0. In [7], an extended class of branching
processes with the following Q-matrix is introduced:

qij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0j, j > i = 0;

−q0, j = i = 0;

rip0, j = i − 1, i � 1;

ripk+1, j = i + k, i, k � 1;

−ri(1 − p1), j = i � 1;

0, else i, j ∈ Z+.

(1.1)

where
ri > 0, i � 1, 0 < q0 :=

∑

j�1

q0j < +∞.

Define the convolution of two nonnegative vectors a = (an; n � 2) and
b = (bn; n � 2):

(a ∗ b)n =
∑

2�m�n

an+2−mbm, n � 2.
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Define
fn =

∑

k�n

pk, n � 0, f = (fn; n � 2).

Denote the n-th convolution of f by f∗n. In convention, f∗1 = f .
The another main result is presented in the following.

Theorem 1.2 Assume that the Q-matrix Q = (qij) given by (1.1) is
irreducible and regular. Then the process is ergodic if and only if

∑

��1

1
r�

(

q
(�)
0 +

∑

1�k��−1

(f∗k ∗ q)�−k+1

pk
0

)

< +∞;

it is strongly ergodic if and only if

∑

��1

1
r�

(

1 +
∑

1�k��−1

(f∗k ∗ 1)�−k+1

pk
0

)

< +∞,

where
1 = (1, 1, . . .), q = (q(n−1)

0 ; n � 2).

This paper is organized as follows. The proof of Theorem 1.1 is given in
the next section. Then Sections 3 is devoted to the proof of Theorem 1.2. In
Section 4, an explicit sufficient condition for exponential ergodicity of single
death processes is obtained. For recurrence of single death processes, we present
some sufficient or necessary conditions, respectively, in Section 5, and the
returning (extinction) probability of the process is obtained in this section.

2 Moments of hitting times, criteria on ergodicity and strong ergodicity

Let us begin with a simple result for the solution to a class of linear equations,
which is an analogue of the results in [6, Section 2].

Lemma 2.1 For given real numbers (αnk)n+1�k�i and (fn)1�n�i, the solution
(gn)1�n�i to the recursive inhomogeneous equations

gn =
∑

n+1�k�i

αnkgk + fn, 1 � n � i, (2.1)

can be represented as

gn =
∑

n�k�i

γnkfk, 1 � n � i, (2.2)

where for fixed k � 1, (γnk)1�n�k with γkk = 1 is the solution to the recursive
equations

γnk =
∑

n+1�j�k

αnjγjk, 1 � n < k. (2.3)
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Proof Use induction. For n = i, we have

gi = fi = γiifi =
∑

i�k�i

γikfk.

Assume that (2.2) holds for all m � n � i. When n = m − 1 � 1, from (2.1),
we see that

gm−1 =
∑

m�k�i

αm−1,k gk + fm−1

=
∑

m�k�i

αm−1,k

∑

k���i

γk�f� + fm−1

=
∑

m���i

( ∑

m�k��

αm−1,kγk�

)

f� + fm−1

=
∑

m���i

γm−1,�f� + fm−1

=
∑

m−1���i

γm−1,�f�.

Hence, (2.2) holds for n = m − 1. By induction, the representation (2.2) holds
for all n � 1. �

Note that the coefficients (αnk) are often fixed and so are (γnk). Then
Lemma 2.1 says that once replacing (αnk) by (γnk), the solution to (2.1) has a
complete representation (2.2), mainly in terms of the inhomogeneous term (fn)
in (2.1).

Without condition γkk = 1, (2.3) is clearly homogeneous. However, it
becomes inhomogeneous under condition γkk �= 0 (then one may assume that
γkk = 1):

γnk =
∑

n+1�j�k−1

αnjγjk + αnkγkk, 1 � n � k − 1,

provided αk−1,k �= 0. Otherwise, once αk−1,k = 0, by induction, we actually
have γnk = 0 for all 1 � n � k − 1. Thus, under condition γkk = 1, by Lemma
2.1 (for fixed k), we have the following alternative representation of (γnk) :

γnk =
∑

n�j�k−1

γnjαjk, 1 � n � k − 1.

In what follows, we will use the following variant of Lemma 2.1. Replacing
the coefficient (αnk) by (αnkβk), for some non-zero sequence (βn), and set hn =
gn/βn (1 � n � i), we obtain the following result.

Corollary 2.2 The solution (hn)1�n�i to the recursive equations

hn =
1
βn

( ∑

n+1�k�i

αnkhk + fn

)

, 1 � n � i,
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can be represented as

hn =
∑

n�k�i

γnk

βk
fk, 1 � n � i,

where for each fixed i, (γni)1�n�i with γii = 1 is the solution to the equations

γni =
1
βn

∑

n+1�k�i

αnkγki, 1 � n < i.

Equivalently,

γii = 1, γni =
∑

n�k�i−1

γnk

βk
αki, 1 � n � i − 1.

Specifying βn = qn,n−1 and αnk = q
(k)
n and using the successive formula of

G
(k)
n , we obtain the following result.

Corollary 2.3 For given f, the sequence (hn) defined successively by

hn =
1

qn,n−1

( ∑

n+1�k�i

q(k)
n hk + fn

)

, 1 � n � i,

has a unified expression as follows:

hn =
i∑

k=n

G
(k)
n

qk,k−1
fk, 1 � n � i.

In particular, the sequence
(
G

(k)
n

)
has the following expression:

G
(i)
i = 1, G(i)

n =
i−1∑

k=n

G
(k)
n q

(i)
k

qk,k−1
, 1 � n � i − 1.

Before moving further, let us mention a comparison result for different γnj ,
which is useful elsewhere.

Proposition 2.4 For each triple 1 � n � i < j, the following assertion holds:

γnj =
∑

n�k�i

γnk

βk

∑

i+1���j

αk�γ�j. (2.4)

Furthermore, if αnk � 0 and βn > 0 for all 1 � n < k, then γniγij � γnj for all
1 � n � i � j.

Proof The first assertion is simply a consequence of Corollary 2.2. In fact, for
fixed i > j, take

fn =
∑

i+1���j

αn�γ�j, 1 � n � i.
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Then, for 1 � n � i,

γnj =
1
βn

[ ∑

n+1���i

αn�γ�j +
∑

i+1���j

αn�γ�j

]

=
1
βn

[ ∑

n+1���i

αn�γ�j + fn

]

.

Hence, by Corollary 2.2, we get

γnj =
∑

n�k�i

γnk

βk
fk =

∑

n�k�i

γnk

βk

∑

i+1���j

αk� γ�j, 1 � n � i.

If αnk � 0 and βn > 0 for all n and k, then from (2.4), it follows that for
all 1 � n < i < j,

γnj = γniγij +
∑

n�k�i−1

γnk

βk

∑

i+1���j

αk�γ�j � γniγij.

In the cases of n = i or i = j, the conclusion is trivial. �
To prove Theorem 1.1, we first prove the following proposition.

Proposition 2.5 Assume that the single death Q-matrix Q = (qij) is
irreducible and the corresponding process is recurrent. Then

Enτn−1 =
∑

k�n

G
(k)
n

qk,k−1
, n � 1.

As prepration for the proof of Proposition 2.5, we need to check two lemmas.

Lemma 2.6 Define

hn :=
∑

k�n

G
(k)
n

qk,k−1
, n � 1.

Then (hn; n � 1) is the minimal nonnegative solution of the following equation:

xi =
q
(i+1)
i

qi
· xi +

∑

��i+1

q
(�)
i

qi
· x� +

1
qi

, i � 1. (2.5)

Moreover, (hn; n � 1) satisfies the following relations:

hn =
1

qn,n−1

(

1 +
+∞∑

k=n+1

q(k)
n hk

)

, n � 1. (2.6)

Proof Fix N ∈ Z+, and define Q-matrix Q(N) = (q̃ij) on {0, 1, . . . , N} :

q̃ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

qij, i, j < N ;

q
(N)
i , i < N, j = N ;

(qN ∨ N)(1 + G(N)), i = N, j = N − 1;

−(qN ∨ N)(1 + G(N)), i = j = N ;

0, i = N, j < N − 1,
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where G(N) = max1�n�N G
(N)
n .

Define

q̃(k)
n =

N∑

j=k

q̃nj, 0 � n < k � N,

and

G̃
(i)
i = 1, G̃(i)

n =
1

q̃n,n−1

i∑

k=n+1

q̃(k)
n G̃

(i)
k , 1 � n < i � N.

It is easy to check that

h(N)
n :=

N∑

k=n

G̃
(k)
n

q̃k,k−1
, 1 � n � N, (2.7)

is a unique solution (the minimal non-negative solution) to the following
equations:

xi =
q̃
(i+1)
i

q̃i
· xi +

N∑

�=i+1

q̃
(�)
i

q̃i
· x� +

1
q̃i

, 1 � i � N. (2.8)

Note that q̃i := −q̃ii = −qii = qi for all i < N and q̃
(k)
n = q

(k)
n for all n < k � N.

Furthermore, G̃
(i)
n = G

(i)
n for all n � i � N. Hence, we can rewrite (2.8) as

xN =
1

(qN ∨ N)(1 + G(N))
, xi =

q
(i+1)
i

qi
· xi +

N∑

�=i+1

q
(�)
i

qi
· x� +

1
qi

, 1 � i < N.

(2.9)
On the one hand, from Equations (2.5) and (2.9), by [5, Theorem 2.7], we know
that (h(N)

n ) is increasing to the minimal non-negative solution of Equation (2.5)
as N → +∞. On the other hand, from (2.7), it follows that

h(N)
n =

N−1∑

k=n

G
(k)
n

qk,k−1
+

G
(N)
n

(qN ∨ N)(1 + G(N))
−→

+∞∑

k=n

G
(k)
n

qk,k−1
= hn, N → +∞,

for all n � 1. So it has proven that (hn) is the minimal non-negative solution
of Equation (2.5).

It is not difficult to check that (hn; n � 1) satisfies equality (2.6). The proof
of assertions are finished. �
Lemma 2.7 Assume that the single death Q-matrix Q = (qij) is irreducible
and corresponding process is recurrent. Give i0 ∈ Z+ arbitrarily. Then

Eiτi0 �
∑

i0+1�k�i

∑

��k

G
(�)
k

q�,�−1
, i � i0.
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Proof It is well known that (Eiτi0; i � 0) is the minimal non-negative solution
to the following equation:

xi0 = 0, xi =
∑

j �=i

qij

qi
· xj +

1
qi

, i �= i0.

From [5, Theorem 2.13] (Localization Theorem) and single death property, it
follows directly that (Eiτi0 ; i � i0) is the minimal non-negative solution to the
following equation:

xi0 = 0, xi =
∑

j �=i,j>i0

qij

qi
· xj +

1
qi

, i > i0. (2.10)

Define

yi =
∑

i0+1�k�i

∑

��k

G
(�)
k

q�,�−1
, i � i0.

It is not difficult to check that (yi; i � i0) is a non-negative solution to Equation
(2.10). Hence, Eiτi0 � yi for all i � i0. So the assertion is proven. �
Proof of Proposition 2.5 On the one hand, for all k > i − 1 � 0, from strong
Markov property and single death property, it follows that

Ekτi−1 = Ek(τk−1 + τi−1 − τk−1)
= Ekτk−1 + Ek(Ek(τi−1 − τk−1 | Fτk−1

))

= Ekτk−1 + Ek(EXτk−1
τi−1)

= Ekτk−1 + Ek−1τi−1

= · · ·

=
k∑

�=i

E�τ�−1.

Denote Eiτi−1 (i � 1) by mi. By strong Markov property and the equality
above, one gets that

mi = Eiη1 + Ei((τi−1 − η1)�{Xη1=i−1}) +
∑

k�i+1

Ei((τi−1 − η1)�{Xη1=k})

=
1
qi

+ Ei(Ei((τi−1 − η1)�{Xη1=i−1} | Fη1))

+
∑

k�i+1

Ei(Ei((τi−1 − η1)�{Xη1=k} | Fη1))

=
1
qi

+ Ei(�{Xη1=i−1}EXη1
τi−1) +

∑

k�i+1

Ei(�{Xη1=k}EXη1
τi−1)
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=
1
qi

+
∑

k�i+1

qik

qi

k∑

�=i+1

E�τ�−1 +
∑

k�i+1

qik

qi
Eiτi−1

=
q
(i+1)
i

qi
· mi +

∑

��i+1

q
(�)
i

qi
· m� +

1
qi

.

Hence, (mi; i � 1) is a solution of Equation (2.5). From Lemma 2.6, it follows
immediately that mi � hi for all i � 1.

On the other hand, fix i0 arbitrarily. By Lemma 2.7, we obtain that

Eiτi0 �
∑

i0+1�k�i

∑

��k

G
(�)
k

q�,�−1
, i � i0.

In particular, it holds that

mi0+1 = Ei0+1τi0 � hi0+1.

From the arbitrariness of i0, it follows that mn � hn for all n � 1.
Summing up the arguments above, we know that mn = hn for all n � 1.

The proof of the assertion is finished. �
Remark 2.8 Under the assumption of Proposition 2.5, by Lemma 2.6, it is
obtained that (mn; n � 1) is the minimal non-negative solution of (2.5), which
satisfies

mn =
1

qn,n−1

(

1 +
∑

k�n+1

q(k)
n mk

)

, n � 1. (2.11)

Moreover, for all i � k, it holds that

Eiτk =
∑

k+1�j�i

mj =
∑

k+1�j�i

∑

��j

G
(�)
j

q�,�−1
.

Now, we come to give the proof of Theorem 1.1 in details.

Proof of Theorem 1.1 By Remark 2.8, we know that for all i � 1,

Eiσ0 = Eiτ0 =
∑

1�j�i

mj =
∑

1�j�i

∑

��j

G
(�)
j

q�,�−1
.

Furthermore, we have

E0σ0 =
1
q0

+
∑

j�1

q0j

q0
Ejτ0 =

1
q0

+
∑

j�1

q0j

q0

∑

1�k�j

mk =
1
q0

+
1
q0

∑

k�1

q
(k)
0 mk.

Finally, note that

E0σ0 =
1 + D

q0
, D � q0S.
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From [5, Theorem 4.44 (1)], it follows immediately that the single death process
is ergodic if and only if E0σ0 < +∞, which is now equivalent to D < +∞.
By [5, Theorem 4.44 (3)] or [9], the process is strongly ergodic if and only if
supk�0 Eiσ0 < +∞, equivalently, S < +∞. As mentioned in the proof of the
cited book, for ergodicity, the uniqueness assumption is enough instead of the
recurrence one. The proof is now finished. �

Now, we illustrate our results by two examples.

Example 2.9 Assume that the birth-death Q-matrix (ai, bi) is totally stable
and conservative. Define

μ0 = 1, μi =
b0b1 · · · bi−1

a1a2 · · · ai
, i � 1; μ[i,+∞) =

∑

k�i

μk, i � 0.

Then
G(i)

n =
μiai

μnan
, 1 � n � i.

Suppose that the corresponding birth-death chain is recurrent. Then

mn =
μ[n,+∞)

μnan
, n � 1,

and

Eiτi0 =
∑

i0+1�k�i

μ[k,+∞)
μkak

=
∑

i0�k�i−1

μ[k + 1,+∞)
μkbk

, i > i0.

Assume that the chain is unique. Then the chain is ergodic if and only if
D = μ[1,+∞) < +∞, equivalently, μ := μ[0,+∞) < +∞; the chain is strongly
ergodic if and only if

S =
∑

n�1

μ[n,+∞)
μnan

=
∑

n�0

μ[n + 1,+∞)
μnbn

< +∞.

These results are well known. Refer to [5].

Example 2.10 Give a constant b > 2. Define a totally stable, conservative,
and irreducible single death Q-matrix Q = (qij) as follows:

qij =
b − 1
bj−i+2

, j � i + 1; qi,i−1 =
b − 1

b
, qi = −qii =

b2 − b + 1
b2

, i � 1;

q0j =
b − 1
bj+1

, j � 1; q0 = −q00 =
1
b
.

In Section 5, we know that the corresponding is recurrent. Then

q(k)
n =

1
bk−n+1

, 1 � n < k; q
(k)
0 =

1
bk

, k � 1,
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and

G(i)
n =

1
b(b − 1)i−n

, 1 � n < i; mn =
b − 1
b − 2

, n � 1.

Eiτi0 = (i − i0)
b − 1
b − 2

, i > i0.

Therefore, by D = 1/(b− 2) and S = +∞, we know that the process is ergodic
but not strongly ergodic.

At last, we present a result which is directly obtained by [12] and Proposition
2.5 and omit the detailed proof here.

Theorem 2.11 Assume that the single death Q-matrix Q = (qij) is regular
such that the state 0 is an absorbing state and the absorption occurs almost
surely. Furthermore, assume that Q = (qij) is irreducible on N := {1, 2, . . .}. If

∑

n�1

∑

k�n

G
(k)
n

qk,k−1
< +∞,

then there exists a unique quasi-stationary distribution ρ for the single death
process. Moreover, for any probability measure μ on N, we have

‖Pμ(X(t) ∈ ·|t < τ0) − ρ‖TV � 2(1 − γ)[t], t � 0,

for some positive constant γ independent of μ.

3 An extended class of branching processes

For the extended class of branching processes defined in (1.1), it is easy to check
that

q
(k)
i = ri

+∞∑

j=k

pj−i+1 = ri

+∞∑

j=k−i+1

pj = rifk−i+1, k > i � 1,

and

G(k)
n =

1
p0

k∑

�=n+1

f�−n+1G
(k)
� , 1 � n < k, (3.1)

in particular,

G
(k)
k−1 =

f2

p0
, k � 2.

Define

M1 =
+∞∑

k=1

kpk, Γ =
∑

k�1

kpk+1.
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Note that

M1 =
∑

k�1

fk, Γ =
∑

k�2

fk = M1 − f1 = M1 + p0 − 1.

From the definition of convolution, it follows that

a ∗ b = b ∗ a, (a ∗ b) ∗ c = a ∗ (b ∗ c).

When an � bn (n � 2), we denote a � b. If a � b, then a ∗ c � b ∗ c.
Before proving Theorem 1.2, we present one important lemma as follows.

Lemma 3.1 Give a nonnegative vector g = (gn; n � 2). Then

∑

1�n�k−1

gn+1G
(k)
n =

∑

1�n�k−1

(f∗n ∗ g)k−n+1

pn
0

. (3.2)

Proof In fact, by G
(k)
k = 1 and (3.1), it is derived that

∑

1�n�k−1

gn+1G
(k)
n =

1
p0

∑

1�n�k−1

∑

n+1���k

gn+1f�−n+1G
(k)
�

=
1
p0

∑

2���k

∑

1�n��−1

gn+1f�−n+1G
(k)
�

=
1
p0

∑

2���k

∑

2�m��

f�+2−mgmG
(k)
�

=
1
p0

∑

2���k

(f ∗ g)�G
(k)
� .

Furthermore, we have

∑

1�n�k−1

gn+1G
(k)
n =

(f∗1 ∗ g)k
p0

�{k�2} +
1
p0

∑

2�n�k−1

(f ∗ g)nG(k)
n

=
(f∗1 ∗ g)k

p0
�{k�2} +

1
p2
0

∑

2�n�k−1

(f ∗ g)n
∑

n+1���k

f�−n+1G
(k)
�

=
(f∗1 ∗ g)k

p0
�{k�2} +

1
p2
0

∑

3���k

∑

2�n��−1

f�+1−n(f ∗ g)nG
(k)
�

=
(f∗1 ∗ g)k

p0
�{k�2} +

1
p2
0

∑

3���k

(f∗2 ∗ g)�−1G
(k)
�

=
(f∗1 ∗ g)k

p0
�{k�2} +

(f∗2 ∗ g)k−1

p2
0

�{k�3}

+
1
p2
0

∑

3�n�k−1

(f ∗2 ∗ g)n−1G
(k)
n
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= · · ·
=

∑

1�n�k−1

(f∗n ∗ g)k−n+1

pn
0

.

Hence, the proof of (3.2) is finished. �
In the following, we come to verify Theorem 1.2.

Proof of Theorem 1.2 Define 1 = (1, 1, . . .) and q = (q(n−1)
0 ; n � 2). Replacing

g in (3.2) by 1 and q, respectively, it follows that
∑

1�n�k−1

G(k)
n =

∑

1�n�k−1

(f∗n ∗ 1)k−n+1

pn
0

and
∑

1�n�k−1

q
(n)
0 G(k)

n =
∑

1�n�k−1

(f∗n ∗ q)k−n+1

pn
0

.

Furthermore, we get

D =
∑

k�1

q
(k)
0

∑

��k

G
(�)
k

q�,�−1

=
∑

��1

1
r�p0

∑

1�k��

q
(k)
0 G

(�)
k

=
∑

��1

1
r�p0

(

q
(�)
0 +

∑

1�k��−1

(f∗k ∗ q)�−k+1

pk
0

)

and

S =
∑

k�1

∑

��k

G
(�)
k

q�,�−1

=
∑

��1

1
r�p0

∑

1�k��

G
(�)
k

=
∑

��1

1
r�p0

(

1 +
∑

1�k��−1

(f∗k ∗ 1)�−k+1

pk
0

)

.

By the argument above and Theorem 1.1, we know that the assertions hold
immediately. �

Come back to Example 2.10. Fix a positive constant a such that

a < 1 − 1
b2 − b + 1

.

Then Example 2.10 is the special case of (1.1):

ri =
b − 1
ab

, p0 = a, p1 = 1 − a − a

b2 − b
, pj =

a

bj
, j � 2.
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Furthermore,

fn =
a

(b − 1)bn−1
, n � 2; q

(�)
0 =

1
b�

, 	 � 1.

Now, let us verify

(f∗k ∗ q)�−k+1 =
ak

(b − 1)kb�
Ck

�−1, 1 � k � 	 − 1. (3.3)

At first, when k = 1, it holds that

(f ∗ q)� =
�∑

n=2

f�+2−nq
(n−1)
0 =

�∑

n=2

a

(b − 1)b�+1−n
· 1
bn−1

=
a

(b − 1)b�
C1

�−1.

So (3.3) holds for k = 1. Assume that (3.3) holds until k = s. For k = s + 1, by

k∑

n=0

Cm
m+n = Cm+1

m+k+1,

we obtain

(f∗(s+1) ∗ q)�−s =
�−s∑

n=2

f�−s+2−n(f∗s ∗ q)n

=
�−s∑

n=2

a

(b − 1)b�−s+1−n
· as

(b − 1)sbn+s−1
Cs

n+s−2

=
as+1

(b − 1)s+1b�

�−s∑

n=2

Ck
n+s−2

=
as+1

(b − 1)s+1b�

�−s−2∑

n=0

Cs
s+n

=
as+1

(b − 1)s+1b�
Cs+1

�−1.

Hence, (3.3) holds for k = s + 1. By induction, (3.3) holds for all 1 � k � 	− 1.
Then

∑

1�k��−1

(f∗k ∗ q)�−k+1

pk
0

=
∑

1�k��−1

1
(b − 1)kb�

Ck
�−1

=
1
b�

((
1 +

1
b − 1

)�−1 − 1
)

=
1

b(b − 1)�−1
− 1

b�
.
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Furthermore, we see that

∑

��1

1
r�

(

q
(�)
0 +

∑

1�k��−1

(f∗k ∗ q)�−k+1

pk
0

)

=
a

b − 2
< +∞.

Note that
(f ∗ 1)� =

a

(b − 1)2
(
1 − 1

b�−1

)
.

From the equality above, it follows that

∑

��1

1
r�

(

1 +
∑

1�k��−1

(f∗k ∗ 1)�−k+1

pk
0

)

�
∑

��2

1
r�

· (f ∗ 1)�
p0

=
ab

(b − 1)3
∑

��2

(
1 − 1

b�−1

)

= + ∞.

So the process in Example 2.10 is ergodic but not strong ergodic. This is the
case of b > 2. Note that

M1 =
a

(b − 1)2
+ 1 − a.

So M1 � 1 if and only if b � 2. Hence, it is easy to know that
the process is unique when b > 2 by [7, Theorem 1.2 (i)];
the process is unique and null recurrent when b = 2 by [7, Theorems

1.2 (i), 1.3 (i)];
the process is unique and transient when 1 < b < 2 by [7, Theorems

1.2 (ii), 1.3 (i)].

4 Exponential ergodicity

In this section, we consider the exponential ergodicity of single death processes.
Note that

G
(m)
n

G
(m)
1

=
1

qn,n−1

∑

k�n+1

q(k)
n

G
(m)
k

G
(m)
1

�[1,m](k).

By Fatou’s Lemma, we know that

lim
m→+∞

G
(m)
n

G
(m)
1

� 1
qn,n−1

∑

k�n+1

q(k)
n lim

m→+∞
G

(m)
k

G
(m)
1

�[1,m](k)

=
1

qn,n−1

∑

k�n+1

q(k)
n lim

m→+∞
G

(m)
k

G
(m)
1

.
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Define

Gn = lim
m→+∞

G
(m)
n

G
(m)
1

, n � 1. (4.1)

Then

Gn � 1
qn,n−1

+∞∑

k=n+1

q(k)
n Gk, n � 1. (4.2)

Now, we present a sufficient condition for the exponential ergodicity of single
death processes as follows.

Theorem 4.1 Let the single death Q-matrix be regular and irreducible.
Assume ∑

k�1

q
(k)
0 Gk < +∞. (4.3)

If

q := inf
n�0

qn > 0, M := sup
n�1

( n∑

k=1

Gk

+∞∑

j=n

1
qj,j−1Gj

)

< +∞,

then the process is exponentially ergodic.

Proof In view of [5, Theorem 4.45 (2)], the condition q > 0 is indeed necessary.
From [5, Theorem 4.45 (2)], the process is exponentially ergodic if and only if,
for some λ with 0 < λ < qi for all i ∈ Z+, the system of inequalities

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi � 1, i � 0,
∑

j

qijyj � −λyi, i � 1,

∑

j�1

q0jyj < +∞,

(4.4)

has a finite solution (yi). We need to construct a solution (gi) to (4.4) for a
fixed λ with 0 < λ < q. First, define an operator

IIi(f) =
1
fi

i∑

j=1

Gj

+∞∑

k=j

fk

qk,k−1Gk
, i � 1.

Next, define

ϕi =
i∑

j=1

Gj , i � 1.

Then ϕ is increasing in i and ϕ1 = G1. Let f = cq10
√

ϕ/
√

G1 for some c > 1.
Then f is increasing and f1 = cq10. Finally, define g = fII(f). Then g is
increasing and

g1 = G1

+∞∑

k=1

fk

qk,k−1Gk
� f1

q10
= c > 1.
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By [3, Lemma 3.6], it follows that

gi =
cq10√
G1

i∑

j=1

Gj

+∞∑

k=j

√
ϕk

qk,k−1Gk

� 2Mcq10√
G1

i∑

j=1

Gjϕ
−1/2
j

� 2Mcq10

G1

i∑

j=1

Gj

< + ∞, i � 1.

Then, by the argument above and (4.3), it is obtained that

∑

j�1

q0jgj � 2Mcq10

G1

∑

j�1

q0j

∑

1�k�j

Gk =
2Mcq10

G1

∑

k�1

q
(k)
0 Gk < +∞.

Let g0 = 1. Then 1 � gi < +∞ for all i � 0. We now determine λ in terms of
(4.4). When i = 1, we get

λg1 � q10(g1 − g0) −
+∞∑

�=2

q
(�)
1 G�

+∞∑

k=�

fk

qk,k−1Gk
.

By (4.2) and g0 = 1, it suffices that

λg1 � q10G1

+∞∑

k=1

fk

qk,k−1Gk
− q10 − q10G1

+∞∑

k=2

fk

qk,k−1Gk

= f1 − q10

= (c − 1)q10

=
c − 1

c
· f1.

We need
λ � c − 1

cII1(f)
. (4.5)

When i � 2, we should have

λgi � qi,i−1Gi

+∞∑

k=i

fk

qk,k−1Gk
−

+∞∑

�=i+1

q
(�)
i G�

+∞∑

k=�

fk

qk,k−1Gk
.

For this, it suffices that

λgi � qi,i−1Gi

+∞∑

k=i

fk

qk,k−1Gk
− qi,i−1Gi

+∞∑

k=i+1

fk

qk,k−1Gk
= fi.
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In other words, for (4.4), we need only

λ � fi

gi
=

1
IIi(f)

, i � 2,

and (4.5). Then we can take any λ satisfying

0 < λ <
c − 1

cII1(f)
∧ inf

i�2

1
IIi(f)

∧ q, (4.6)

provided the right-hand side of (4.6) is positive or, equivalently,

sup
i�1

IIi(f) < +∞.

To prove the last property, define another operator

Ii(f) =
Gi

fi − fi−1

+∞∑

k=i

fk

qk,k−1Gk
, i � 1,

where f0 := 0. By the proportion property, we get

sup
i�1

IIi(f) � sup
i�1

Ii(f).

By [3, Lemma 3.6] and the condition that M < +∞, it follows that

Ii(f) =
Gi√

ϕi −√
ϕi−1

+∞∑

k=i

√
ϕk

qk,k−1Gk
� 2MGi

(
√

ϕi −√
ϕi−1 )

√
ϕi

� 4M

for all i � 2 and

I1(f) =
G1√
ϕ1

+∞∑

k=1

√
ϕk

qk,k−1Gk
� 2MG1

ϕ1
= 2M.

Therefore,
sup
i�1

IIi(f) � 4M < +∞,

as required. We have thus constructed a solution (gi) to (4.4) with 1 � gi < +∞
for all i � 0 and

∑
j�1 q0jgj < +∞. This implies the exponential ergodicity of

the single death process. The proof is finished. �
For the birth-death chain (ai, bi),

G
(m)
n

G
(m)
1

=
μ1a1

μnan
.
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Thus,

Gn = lim
m→+∞

G
(m)
n

G
(m)
1

=
μ1a1

μnan
, n � 1,

and ∑

k�1

q
(k)
0 Gk = b0 < +∞.

The equality in (4.2) holds. Now,

M = sup
n�1

( n∑

k=1

1
μkak

+∞∑

j=n

μj

)

= sup
n�1

( n−1∑

k=0

1
μkbk

+∞∑

j=n+1

μj

)

.

As we have known (refer to [3]), the birth-death chain is exponentially ergodic
if and only if M < +∞.

Consider Example 2.10 with b > 2. We see that

G
(m)
n

G
(m)
1

= (b − 1)n−1.

Then

Gn = lim
m→+∞

G
(m)
n

G
(m)
1

= (b − 1)n−1, n � 1,

and ∑

k�1

q
(k)
0 Gk = 1 < +∞.

The equality in (4.2) holds. Note that q = 1/b > 0 and

M =
b(b − 1)
(b − 2)2

< +∞.

Hence, by Theorem 4.1, the process is exponentially ergodic.
Given a positive constant c arbitrarily, define a birth-death chain

b0 =
c

G1
, bi =

qi,i−1Gi

Gi+1
, ai = qi,i−1, i � 1.

Here, we take c � q0G1. Then

b0 � q0 = q
(1)
0 .

By (4.2), it is seen that
bi � q

(i+1)
i , ∀ i � 0.

Denote the first hitting time of the state 0 for the birth-death chain by τ0.
Then the following assertion holds.
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Proposition 4.2 Let the single death Q-matrix be regular and irreducible.
Assume that the birth-death Q-matrix defined above is regular. Then

Eiτ
n
0 � Eiτ

n
0 , n � 0, i � 1.

Proof Define

m
(n)
i = Eiτ

n
0 , m

(n)
i = Eiτ

n
0 , n � 0, i � 1.

Obviously,
m

(0)
i = m

(0)
i = 1, i � 1.

By [8, Chapter 9] or [14], we know that

m
(n)
i = n

i−1∑

j=0

1
μjbj

+∞∑

k=j+1

μkm
(n−1)
k = n

i−1∑

j=0

Gj+1

+∞∑

k=j+1

m
(n−1)
k

qk,k−1Gk
,

i � 1, n � 1. (4.7)

By [10] or [5, Proposition 4.56], (m(n)
i ) is the minimal nonnegative solution to

the equation

x
(n)
0 = 0, x

(n)
i =

∑

k �=i

qik

qi
x

(n)
k +

n

qi
m

(n−1)
i , i � 1. (4.8)

Then, by (4.7), it is not difficult to check that (m(n)
i ) satisfies

x
(n)
0 = 0, x

(n)
i �

∑

k �=i

qik

qi
x

(n)
k +

n

qi
m

(n−1)
i , i � 1. (4.9)

By (4.8), (4.9), and Comparison Theorem, we see that m
(n)
i � m

(n)
i for all i � 1

and n � 0. The proof is finished. �
Furthermore, we can get that

Eieλτ0 � Eieλτ0 , i � 1, λ > 0,

by Tayor’s expansion. Hence, based on [5, Theorems 4.44, 4.55] and the
argument above, some sufficient conditions on several ergodicity are obtained
immediately as follows.

Theorem 4.3 Let the single death Q-matrix be regular and irreducible.
Assume

∑
k�1 Gk = +∞. If the birth-death chain defined above is ergodic

(resp. exponentially ergodic, strongly ergodic), then so is the single death
process, equivalently,

if
∑

i�1

1
qi,i−1Gi

< +∞,
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then the single death process is ergodic;
if M < +∞, then the single death process is exponentially ergodic;
if

∑

n�1

Gn

∑

k�n

1
qk,k−1Gk

< +∞,

then the single death process is strongly ergodic.

The condition of ‘
∑

k�1 Gk = +∞’ guarantees that the single death process
and the birth-death chain are recurrent simultaneously. Refer to Theorem 5.1
below. So the birth-death Q-matrix is regular.

5 Recurrence and return probability

In this section, we consider the recurrence of single death processes. By
Proposition 2.4, we know that

G
(m)
k

G
(m)
1

� 1

G
(k)
1

, 1 � k � m.

Define

G̃n = lim
m→+∞

G
(m)
n

G
(m)
1

, n � 1.

Assume the following condition holds:

∑

k�n+1

q
(k)
n

G
(k)
1

< +∞, n � 1. (5.1)

Then, from Fatou’s Lemma and (5.1), it follows that

lim
m→+∞

G
(m)
n

G
(m)
1

� 1
qn,n−1

∑

k�n+1

q(k)
n lim

m→+∞
G

(m)
k

G
(m)
1

�[1,m](k)

=
1

qn,n−1

∑

k�n+1

q(k)
n lim

m→+∞
G

(m)
k

G
(m)
1

,

i.e.,

G̃n � 1
qn,n−1

+∞∑

k=n+1

q(k)
n G̃k, n � 1. (5.2)

Now, we present the criterion on the recurrence of single death processes as
follows.
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Theorem 5.1 Let the single death Q-matrix be regular and irreducible. If Gn

defined in (4.1) is finite for all n � 1 and

∑

n�1

Gn = +∞,

then the process is recurrent. Conversely, assume that condition (5.1) holds. If
the process is recurrent, then

∑

n�1

G̃n = +∞.

Proof First, we prove that the process is recurrent provided that
∑

n�1 Gn =
+∞. By [5, Theorems 4.34, 4.24], the process is recurrent if and only if the
inequality

∑

j �=i

qij

qi
yj � yi, i � 1, (5.3)

has a finite solution (yi) so that

lim
i→+∞

yi = +∞.

Take
g0 = 0, gi =

∑

1�n�i

Gn, i � 1.

It follows that (gi) is a finite solution of inequality (5.3) satisfying limi→+∞ gi =
+∞ from (4.2) immediately. So the process is recurrent.

Second, under assumption (5.1), when the process is recurrent, we consider
the case that

G̃ :=
∑

n�1

G̃n < +∞.

Take

xi =
1

G̃

∑

2�n�i

G̃n, i � 2, x1 =
q10G̃1

q1G̃
, x0 =

1
q0

∑

k�1

q0kxk.

Obviously, 0 � xi � 1 for all i � 0 and

∑

k �=0

q0k

q0
xk = x0.

By (5.2), it can be derived that

∑

k �=0,1

q1k

q1
xk =

1

q1G̃

∑

k�2

q1k

∑

2�n�k

G̃n =
1

q1G̃

∑

n�2

q
(n)
1 G̃n � q10G̃1

q1G̃
= x1.
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Moreover, by (5.2), we see that
∑

k �=0,2

q2k

q2
xk =

q21

q2
x1 +

1

q2G̃

∑

k�3

q2k

∑

2�n�k

G̃n

=
q21

q2
x1 +

1

q2G̃

∑

k�3

q2k

(

G̃2 +
∑

3�n�k

G̃n

)

=
q21

q2
x1 +

q
(3)
2 G̃2

q2G̃
+

1

q2G̃

∑

n�3

q
(n)
2 G̃n

� q21

q2
x1 +

q
(3)
2 G̃2

q2G
+

q21G̃2

q2G̃

� G̃2

G̃
= x2,

and for all i � 3,
∑

k �=0,i

qik

qi
xk =

qi,i−1

qiG̃

∑

2�n�i−1

G̃n +
1

qiG̃

∑

k�i+1

qik

∑

2�n�k

G̃n

=
qi,i−1

qiG̃

∑

2�n�i−1

G̃n +
1

qiG̃

∑

k�i+1

qik

( ∑

2�n�i

G̃n +
∑

i+1�n�k

G̃n

)

=
qi,i−1

qiG̃

∑

2�n�i−1

G̃n +
q
(i+1)
i

qiG̃

∑

2�n�i

G̃n +
1

qiG̃

∑

n�i+1

q
(n)
i G̃n

� 1

G̃

∑

2�n�i−1

G̃n +
q
(i+1)
i G̃i

qiG̃
+

qi,i−1G̃i

qiG̃

=
1

G̃

∑

2�n�i

G̃n

= xi.

Thus, (xi) is a non-trivial solution of the inequality

xi �
∑

k �=0,i

qik

qi
xk, 0 � xi � 1. (5.4)

By the comparison lemma, we know that the equation

xi =
∑

k �=0,i

qik

qi
xk, 0 � xi � 1,

has a non-trivial solution if and only if inequality (5.4) also has a non-trivial
solution. Thus, from [5, Lemma 4.51], it follows that the process is transient
immediately. It is a contradiction. So G̃ = +∞ holds. The proof is finished. �
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For the birth-death chain (ai, bi), we have

∑

k�n+1

q
(k)
n

G
(k)
1

=
bn

G
(n+1)
1

=
b0

μn
< +∞, n � 1,

and
Gn = G̃n =

μ1a1

μnan
, n � 1.

So assumption (5.1) holds and

∑

n�1

Gn =
∑

n�1

G̃n =
∑

n�1

μ1a1

μnan
=

∑

n�0

b0

μnbn
.

Hence, the birth-death chain is recurrent if and only if

∑

n�0

1
μnbn

= +∞,

which is well known before.
Consider Example 2.10 with b > 1. Then

∑

k�n+1

q
(k)
n

G
(k)
1

=
∑

k�n+1

(b − 1)k−1

bk−n
= (b − 1)n < +∞, n � 1,

and
Gn = G̃n = (b − 1)n−1, n � 1.

So assumption (5.1) holds and
∑

n�1

Gn =
∑

n�1

G̃n =
∑

n�1

(b − 1)n−1,

which is infinite when b � 2 and finite when 1 < b < 2. So the process is
recurrent if and only if b � 2. By the way, from [7, Therem 1.3], it follows that
the unique process is recurrent if and only if b � 2.

In the following, let us consider the return probability for single death
processes. Define

G0 =
1
q0

∑

n�1

q
(n)
0 Gn, G =

∑

n�1

Gn, G̃0 =
1
q0

∑

n�1

q
(n)
0 G̃n, G̃ =

∑

n�1

G̃n.

It is obvious that
G0 � G, G̃0 � G̃.

Then our result is presented as follows.
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Theorem 5.2 Let the single death Q-matrix be regular and irreducible.
Assume that (5.1) holds. Then

P0(σ0 < +∞) � 1 − G̃0

G̃
, Pn(σ0 < +∞) � 1 − 1

G̃

∑

1�k�n

G̃k, n � 1.

In addition, assume

lim
m→+∞

1

G
(m)
1

∑

1�j�k

G
(m)
j =

∑

1�j�k

Gj , k � 1. (5.5)

Then

P0(σ0 < +∞) � 1 − G0

G
, Pn(σ0 < +∞) � 1 − 1

G

∑

1�k�n

Gk, n � 1.

Proof First, take

x0 = 1 − G̃0

G̃
, xk = 1 − 1

G̃

∑

1�n�k

G̃n, k � 1.

Then, by (5.2), we see that

∑

k �=0

q0k

q0
xk =

1
q0

(

q
(1)
0 − 1

G̃

∑

n�1

q
(n)
0 G̃n

)

= 1 − G̃0

G̃
= x0,

and

∑

k �=0,1

q1k

q1
xk +

q10

q1
=

1
q1

(

q
(2)
1

(
1 − G̃1

G̃

)
− 1

G̃

∑

n�2

q
(n)
1 G̃n

)

+
q10

q1

� 1
q1

(
q
(2)
1

(
1 − G̃1

G̃

)
− q10G̃1

G̃

)
+

q10

q1

=
1
q1

(
q1

(
1 − G̃1

G̃

)
− q10

)
+

q10

q1

= 1 − G̃1

G̃
= x1.

For i � 2, by qi0 = 0, we have
∑

k �=0,i

qik

qi
xk +

qi0

qi

=
1
qi

∑

k �=i

qik

(

1 − 1

G̃

∑

1�n�k

G̃n

)



Criteria on ergodicity and strong ergodicity of single death processes 1241

=
1
qi

(

qi,i−1

(

1 − 1

G̃

∑

1�n�i−1

G̃n

)

+
∑

k�i+1

qik

(

1 − 1

G̃

∑

1�n�k

G̃n

))

=
1
qi

(

qi,i−1

(

1 − 1

G̃

∑

1�n�i−1

G̃n

)

+ q
(i+1)
i

(

1 − 1

G̃

∑

1�n�i

G̃n

)

− 1

G̃

∑

n�i+1

q
(n)
i G̃n

)

;

and furthermore, by (5.2), we get that
∑

k �=0,i

qik

qi
xk +

qi0

qi

� 1
qi

(

qi,i−1

(

1 − 1

G̃

∑

1�n�i−1

G̃n

)

+ q
(i+1)
i

(

1 − 1

G̃

∑

1�n�i

G̃n

)

− qi,i−1G̃i

G̃

)

=
1
qi

(

qi,i−1

(

1 − 1

G̃

∑

1�n�i

G̃n

)

+ q
(i+1)
i

(

1 − 1

G̃

∑

1�n�i

G̃n

))

= 1 − 1

G̃

∑

1�n�i

G̃n

= xi.

Thus, (xi) satisfies the inequality

xi �
∑

k �=0,i

qik

qi
xk +

qi0

qi
(1 − δi0), i � 0.

It is well known that (Pi(σ0 < +∞)) is the minimal nonnegative solution to
the equation

xi =
∑

k �=0,i

qik

qi
xk +

qi0

qi
(1 − δi0), i � 0.

Thus, from Comparison Theorem and the argument above, it follows that

Pi(σ0 < +∞) � xi, i � 0.

Second, under assumption (5.5), from [16, Theorem 1], it follows that

Pi(σ0 < +∞) � lim
m→+∞Pi(σ0 < τm)

= 1 − lim
m→+∞

∑
1�j�i G

(m)
j

∑
1�j�m G

(m)
j

� 1 − limm→+∞
∑

1�j�i G
(m)
j /G

(m)
1

limm→+∞
∑

1�j�m G
(m)
j /G

(m)
1
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� 1 −
∑

1�j�i Gj
∑

j�1 Gj

= 1 − 1
G

∑

1�j�i

Gj , i � 1.

So we obtain that

P0(σ0 < +∞) =
1
q0

∑

i�1

q0iPi(σ0 < +∞)

� 1
q0

∑

i�1

q0i

(

1 − 1
G

∑

1�j�i

Gj

)

=
1
q0

(

q
(1)
0 − 1

G

∑

j�1

q
(j)
0 Gj

)

= 1 − G0

G
.

The assertion is proven. �

Remark 5.3 If there exist the limits limm→+∞ G
(m)
n /G

(m)
1 for all n � 1 and

assumption (5.1) holds, then Gn = G̃n (n � 0) and (5.5) holds. Hence,

P0(σ0 < +∞) = 1 − G0

G
, Pn(σ0 < +∞) = 1 − 1

G

∑

1�k�n

Gk, n � 1.

Thus, Pi(σ0 < +∞) = 1 for all i � 1 if and only if P0(σ0 < +∞) = 1,
equivalently, if and only if G = +∞ (G0 < +∞). By the way, from the
dominated convergence theorem, it follows that equality (4.2) or (5.2) hold.
See Examples 2.9 and 2.10.

Acknowledgements The author acknowledges the constructive discussion with Professor

Mu-Fa Chen, Professor Yong-Hua Mao, Yue-Shuang Li, and Yan-Yan Yan. This work was

supported by the National Natural Science Foundation of China (Grant Nos. 11571043,

11771047, 11871008).

References

1. Chen A Y, Pollett P, Zhang H J, Cairns B. Uniqueness criteria for continuous-time
Markov chains with general transition structure. Adv Appl Probab, 2005, 37(4): 1056–
1074

2. Chen M F. Single birth processes. Chin Ann Math Ser B, 1999, 20: 77–82

3. Chen M F. Explicit bounds of the first eigenvalue. Sci China Ser A, 2000, 43(10):
1051–1059

4. Chen M F. Explicit criteria for several types of ergodicity. Chinese J Appl Probab
Statist, 2001, 17(2): 1–8



Criteria on ergodicity and strong ergodicity of single death processes 1243

5. Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed.
Singapore: World Scientific, 2004

6. Chen M F, Zhang Y H. Unified representation of formulas for single birth processes.
Front Math China, 2014, 9(4): 761–796

7. Chen R R. An extended class of time-continuous branching processes. J Appl Probab,
1997, 34(1): 14–23

8. Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Beijing: Science
Press, 1978 (in Chinese); English translation, Beijing: Science Press and Springer, 1988

9. Isaacson D, Arnold B. Strong ergodicity for continuous-time Markov chains. J Appl
Probab, 1978, 15, 699–706

10. Mao Y H. Ergodic degrees for continuous-time Markov chains. Sci China Math, 2004,
47(2): 161–174

11. Mao Y H, Zhang Y H. Exponential ergodicity for single-birth processes. J Appl Probab,
2004, 41: 1022–1032

12. Mart́ınez S, Mart́ın J S, Villemonais D. Existence and uniqueness of a quasi-stationary
distribution for Markov processes with fast return from infinity. J Appl Probab, 2014,
51(3): 756–768

13. Wang L D, Zhang Y H. Criteria for zero-exit (-entrance) of single-birth (-death)
Q-matrices. Acta Math Sinica (Chin Ser), 2014, 57(4): 681–692 (in Chinese)

14. Wang Z K, Yang X Q. Birth and Death Processes and Markov Chains. Science Press:
Beijing, 1992

15. Yan S J, Chen M F. Multidimensional Q-processes. Chin Ann Math Ser B, 1986, 7:
90–110

16. Yan Y Y, Zhang Y H. Probabilistic meanings for some numerical characteristics of
single death processes. J Beijing Normal Univ (Natur Sci), 2018 (to appear) (in
Chinese)

17. Zhang J K. On the generalized birth and death processes (I). Acta Math Sci, 1984, 4:
241–259

18. Zhang Y H. Strong ergodicity for single-birth processes. J Appl Probab, 2001, 38(1):
270–277


