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A b stract: We consider probabilistic meanings for some numerical characteristics of single
b irth  processes. Some probabilities of events, such as extinction probability, returning probability, 
are represented in term s of these numerical characteristics. Two examples are also presented to 
illustrate the value of the results.
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§1. In trod u ction  and M ain R esu lts
W ang and Yang [11 present probabilistic meanings for a lot of numerical characteris­

tics of b irth -death  processes, such as returning probability, extinction probability. This 
paper is devoted to  considering the  corresponding problems for the  single b irth  processes 
described as follows.

On a probability space (Q, F , P), consider a continuous-tim e, homogeneous and ir­
reducible Markov chain {X (t) : t  ^  0} w ith transition  probability m atrix  P (t) =  (p ij(t)) 
and s ta te  space Z+ =  {0,1, 2 , . . .} .  We call {X (t) : t  ^  0} a single b irth  process if its
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density m atrix  Q =  (qij : i , j  G Z+) has the  following form
/ —q0 q01 0 0 0

Q = q10 —q1 q12 0 0

q20 q21 —q2 q23 0

V ' )

⑴

where qi :=  —qu ^  ^  q ij, qi,i+ 1  >  0, qi,i+j =  0 for i G Z+ and j  ^  2. The m atrix  in (1) is
j= icalled a single b irth  Q -m atrix  deduced by

p ij( t ) =
q ijt +  o (t) ,

1 — qit +  o(t),

if j  <  i or j  =  i +  1 ;
if j  =  i

as t  4  0. Throughout the  rest of the  paper, we consider only to ta lly  stable and conserva­
tive single b irth  Q -m atrix: qi =  —qii =  E  qij 〈 ⑴  for i G Z十. Especially, if q j  =  0 for

j =i
0 彡 i 彡 j  — 2 and j  彡 2, then  (1) is ju st a b irth  death  Q-m atrix.

Some notations are necessary before moving on. Define qik) =  ^ ]  qnj  for 0 彡 k <  n
j =〇

(k, n  G Z十) and

m 0 = —— ,q01
mn

d0 =  0, dn

4 n) =  1 , F (i) n

1 / n-1 \
-------- ( 1 + E q n k)m fc), n  ^  1 ,
qn,n十 1 、 k=0 ’

1 / n-1 x
-------- ( 1 + E q n fc)dfc), n  ^  1 ,
qn,n十 1 y k=0 ’

1 n-  1
—— 以背 ， 0 d < n .qn,n 十1 k=i

T hen the numerical characteristics defined below play im portant roles in studying single 
b irth  processes:

R S  mn , Zm =  ^  Fnm),n=0 n=m
d =  supi>0

i-1  / x
E 4 0)

n=0

k
S =  sup E ( ^ n 0)d — dn).k 0̂ n=0

To explain w hat the numerical characters m ight m ean in probability, we introduce some
stoping tim es. D enote the  first leaping tim e and the n -th  jum ping tim e by n and nn 
respectively, i.e.,

nn =  inf{t >  n n -1 : X (t)  =  X (n n -1)}, n  ^  1 ; n =  lim nn,
where n0 三 0. The first h itting  tim e and the first returning tim e of the  s ta te  i are defined 
respectively as follows

Ti =  inf{t >  0 : X (t)  =  i}, ^i =  inf{t ^  n1 : X (t)  =  i}.



454 C hinese Jo u rn a l o f A pplied  P ro b a b ility  an d  S ta tis tic s Vol. 32

Though these numerical characteristics may seem complex, they do have explicit 
probabilistic meanings and make a positive contribution towards understanding the process 
clearly. Let Pi(A) = P(A | X0 =  i), i.e., the condition probability given {X0 =  i} and 
EilA  =  Pi(A) for some measurable set A. Then Zhang [21 proved that m n =  Enrn+ \, R  =
E0n and pointed out that

P0(^0 < n )  =  i  - Z0 .
1

So R is the mean time of the first hitting to of the single birth process with starting from 
0 and P0(a。 < n) = 1 once 1 /Z 0 =  to. In [3], we see that d = E1T0, 巳0。 0 =  1/伽  + d and

EiT0 = — (Fn0)d -  dn), i >  1 .
n=0

It is easy to see that S = sup EiT0.i 0̂Based on the above results, the following explicit criteria for several classical problems 
can be understood clearly (cf. [2,4-7]).

The process is unique if and only if R = to. Assume that the Q-matrix is irreducible 
and regular. Then the process is recurrent if and only if Z0 = to. For the regular case, 
the process is ergodic if and only if d < to, and the process is strongly ergodic if and only 
if S  <  to.

Now we still need to study the probabilistic meanings of Zm and Zm,n defined as

Zm,n = E , n >  m  ^  0
i=m

n-1  ( )with the convention that Zm,n = E  Fi(m) = 0 if m 彡 n. It will be seen later that these
i=mquantities are related to Pk(Tm < Tn), which is the probability of arriving at m along the 

trajectory before reaching n with starting from k.
Before presenting our main results, we mention that if the single birth process is 

ergodic, then the stationary distribution (ni) can be described as (cf. [8])
1 「i-1  , i-1  n

n k = -----------, Ck = sup E  mn /  E  Fnk) , k ^  0. (2)qk,k+1Ck i>k ^~n=k n=k -
Moreover,

Ck E  F nk) = EkTi + EiTk, 0 彡 k < i. (3)
n=k

It is easy to see that Ck is the mean commute time between k and k + 1. Now, we present 
our main results as follows.

Theorem  1 Suppose that m < n . Then Pk(Tn < Tm) + Pk(Tm < Tn) = 1, and
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(i) for 0 ^  k ^  n,

Pk iTn <  Tm) Zm,k

Zm,n
Pk(丁m < T n ) =  1

Zm,i
Zm,n

(ii) for k >  n,

Pk(Tm <  Tn) =  Zn,kPn+l(7m <  Tn) +  +  1 .Zm,n Zm ,n
Moreover, if the process is ergodic, then

Pn+1(Tm <  Tn) ， (尹 + ^  E j m , j ) -  ^ .Zm,n vcm qn,n+1 j=m+1 / qn,n+1

It is easy to  see th a t Pk(Tm <  Tn) =  1 and Pk(Tn <  Tm) =  0 for 0 彡 k 彡 m,
Pn(Tm <  Tn) = 0  and Pn(Tn <  Tm) =  1 .

As for Pk(^m <  Tn), it is obvious th a t Pk(^m <  Tn) =  Pk(Tm <  Tn) for k =  m and
Pk(〜 <  Tm) =  Pk(Tn <  Tm) for k =  n. Moreover, we have the  following theorem . 

Theorem  2 Suppose that m <  n.

(i) Suppose the single birth process is ergodic. Then
Pn (Tm <  ^ n ) = qn,n+1^n

qn cmZm,n Pn (^n <  Tm) =  1
qn,n+1cn

qncmZm,n
(ii)

Pm(^m <  Tn ) =  1
qm,m+1

qmZm,n
and Pm(Tm <  ^m) =  1, Pm(^m <  Tm) =  0 .

Pm(Tn <  ^m) qm,m+1

qmZm,n

Pk (^m <  n) is the  probability of reaching m along the tra jec to ry  through finitely 
m any jum ps w ith  starting  from k. In particular, Pm(^m <  n) is the  probability, starting  
from m, of returning to  m  along the tra jec to ry  through finitely m any jum ps after leaving 
m, which is called a returning probability.

C orollary 3 For Pk(^m <  n ), we have
if k <  m ; 

if k =  m ; 

if k >  m,

where we use the convention that 1 / ^  =  0.

Pk (^m <  n) qm,m+1
qmZm
Zm,k
Zm

1

1

1
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In practical applications, Pk(^0 <  n) is called an extinction probability, i.e., the 
probability th a t there exist k individuals initially but (through finitely many steps of 
transition) they finally die out (namely reach the  s ta te  0). A bout extinction probability, 
one may also refer to  [9; C hapter 9] for the  case m =  0 in Corollary 3.

§2. P roofs o f th e  M ain R esu lts
P roof of Theorem  1 It is easy to  see th a t Pk(r m <  r n) =  1 and Pk(rn <  r m) =  0 

for 0 ^  k ^  m. To prove the  rem ainders, denote Pk(r m <  r n) by pk . By the strong Markov 
property  of the  process, for m <  k =  n , we have

Pk = Qk,k+1

qk

k-1
Pk+1 +  E  j =0 qk

Pj.

T hen by the  conservative property  of Q -m atrix  and pk =  1 for 0 彡 k 彡 m, it follows from 
the above equality th a t

k— 1 (.)
qk,k+1 (Pk — Pk+ 1 ) =  J2 qk  (Pi -  Pi+ 1 )  m  <  k =  n. (4)

i=m

D enote pi — pi+1 by Vi for i >  0. So we have the difference equation
1 k—1 ，i)

Vk = --------  E  qk ，vi ， m <  k <  nqk,k+1 i=m

w ith the  boundary conditions pm =  1 and Pn =  0. By the induction, it is seen th a t

Vi = Vm F (m)
Fi m  ^  i  <  n. (5)

By definitions of Vi and Zm,n, it is derived th a t
n— 1 n— 1

1 =  pm — pn =  ^  Vi =  Vm F i ) =  Vm . Zm,n.

So Vm =  1/Zm,n and Vi =  Fi(m)/Zm ,n(m  彡 i <  n). Therefore, it follows from pn =  0 th a t
n—1 / n—1 , ) \

pk =  pk — pn =  E  Vi =  ( E  F (m ) /Zm ,n 
i=k 、i=k ’

n— 1 ' n—1 ,(m) 1 d m ) 、 / "  Zm,k
E E  F M )/Z m ,n  =  1

Zm,n

i=m i=m

i=m

for m  <  k <  n. By the sim ilar argum ent, one can prove the  second part of the  assertion (i).
Of course, it is followed im m ediately from the property  of Pk(Tm <  Tn) +  Pk(Tn <  Tm) =  1
too.
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To prove the  assertion (ii), we will discuss firstly the  relation between pn+1 and pk 
w ith k ^  n  +  1. By (4) and (5), it is seen th a t

1 n - 1 k - 1

Then
Vk

p ( m)

- — 、 以 、F — V m + Z ^qk,k+1 v i=m
m +  /  , -k Vi 

i=n y

vm — vk 1 E  -ki)(F(m)Vm -  vi).

k >  n.

k >  n.
qk,k+1 i=n

Define Ui =  F (m)Vm —Vi (i 彡 n). Thus, one obtains th a t

Uk
1 k—1 (i)

E  -k  Ui, k > n .-k,k+1

By the equalities above and the induction, it follows th a t Ui 

deduces th a t
Un (i  彡 n ). Hence, one

Vi =  F; ，Vm — Ui =  F; ，Vm — F … Un =  F 、 ，Vm — F ; ， Vm — Vn)F M Vm —F ^ U n  == F M Vm

m))Vm + F ^ V n , i ^  n.

N ote th a t Vn =  Pn — Pn+1 =  —Pn+1. Furtherm ore, it is obtained th a t for k >  n,
k 1 k 1

Pk =  Pk — Pn =  — E Vi =  E ((Fi(n)Fnm) — Fi(m))Vm +  Fi(n)pn+1)
i=n i=n

,kF ,(T) — fcE  Fi(m))/Z m ,n  +  Zn,kPn+1

Zn k F (m) Zm k= Zn,kPn+1 +  nz  — Z m^  +  1.
Zm,n Zm,n

By the similar argum ent or the  property  Pk(Tm <  Tn) +  Pk(Tn <  Tm) =  1, one can prove 
the  second part of the  assertion (ii).

Now it remains to  show the assertion on the  expression of Pn+1. Using the  strong 
M arkov property  w ith Theorem  1, we have

n 1D / \ -n,n+1 . ▽  -nj
Pn(Tm <  〜 ）= 」 —— Pn+1 +  L 」 Pj

-n j =0 -n

= - n ^ P n +1 +  -nm) +  nE 1 f 1
qn

—n,n+1 Pn+1 +

Zm,-
Zm

-nn—1) n- 1 - n j Zm,j

qn j=m +1 - n 
n— 1

,n

—n —n j=m +1 —n Zm,n
Combining the  above equality w ith the  assertion (i) in Theorem  2, which needs only some 
simple calculations, the  required assertion holds immediately. □

Before proving Theorem  2, we introduce the  following result (refer to  [10]).

i=n

i=n
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Proposition 4 Given an ergodic Markov chain {X (t) : t  彡 0} with the stationary 

distribution (n i ) . Then for j  =  i, we have

Pi(Tj < a i )
1

Qî i ( £ iTj +  Ej Ti)

P roof of Theorem  2 The assertion (i) follows directly from (2), (3) and P ropo­
sition 4 by some simple calculations. By the strong M arkov property  and the assertion 
below Theorem  1, it tu rns out th a t

Pm(Tn <
m— 1
E  qmj Pj  (Tn <  Tm) +  ^ 财 1 Pm+1(Tn <  Tm)j =0 qm Qm

= Qmm± iP m 十1(Tn <  Tm)
Qm,m+1 _  Qm,m+1 

Qm QmZm,m+1
Qm,m+1Zm,m+1 — Qm,m+1 

QmZm,n QmZm,n
Qm,m+1

QmZm,n

if n  =  m +  1

if n >  m  +  1

The rem ainders of the  assertion (ii) are easily obtained. □

R e m a rk  5 By induction, it is not difficult to  obtain that F (n)Fnm) ^  F (m), i ^  n  ^  

m . Further, we get the following inequality: Zm,n ^  Zm,k — Zn,kFn \  m <  n  <  k . Hence, 

it follows that ZnFnm )彡 Zm — Zm,n, m <  n . In particular, we see that ZnFn0) 彡 Z0 — Z0,n
for all n  >  0.

P roof of Corollary 3 N ote th a t Tn 卞 n as n  4  to almost surely w ith respect to  
Pk. Hence Pk(Tm <  Tn) t  Pk(^m <  n) as n  4  to for k =  m. Combining these facts w ith 
the  assertions proved above, one gets easily the first and the  th ird  parts of the  assertion. 
By the strong M arkov property  and argum ent above, it is seen th a t

m 1
Pm(^m <  n) ^  E  Qmj Pj(^m  <  n) +  ^ 财 1 Pm+1(^m <  n)

j=0 Qm Qm
(m -1) +  Qm,m+1 (1 Z
qm qm

Qm,m+1

QmZm

m,m+1
Zm

1

In the  last equality, we use the  fact th a t Zm,m+1 □
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§3. E xam ples
The first example is about the birth-death process which is a special class of single 

birth processes.
Example 6 For birth-death processes with birth rate di and death rate bi at i, denoted 

by (a i, bi). We have these important quantities with simple forms, as follows
m n ^ [0, n ] vn , dn — ^ [1, n ]vn , )

Vn ,
Vm

n 彡 m 彡 0,

where "[i,fc] — E  with {叫} is the invariant measure having the following form
J=i

—1 — b0b1 . . . bi_l , ," 0 — 1, IM — (i > 1)，d1d2 . . .  di
and Vi is another measure related to the recurrence of the process with Vi — 1/ " ibi (i 彡 0).

k ^In the following, we always let v [i ,k ] denote the term E  Vj and v [i, to) :— E  Vj for some
j=i j=imeasure.

For the process we have the following results, which can also refer to [1].
Corollary 7 Suppose that m  <  n. For birth-death processes, we have

(i) Pk(Tm <  Tn) — 1 and Pk(Tn <  Tm) — 0 for all 0 《 k 《 m ; Pk(Tm <  Tn) — 0 and
Pk(Tn < T m) — 1 for all k 彡 n ;

(ii) For m <  k <  n,

Pk(Tn <Tm) — Pk ( T m < T n )  1]Vi[m, n  ―  1] ’
(iii) Pm(Tm <  ^m) — 1 , Pm(^m <  Tm) — 0 and

Pm(Tn < 1

(iv)

(v)
Pn(Tm <

Pk(汀m <  n)

(dm +  bm)"mV[m,n ―  1] 

1

(dn +  bn)"nV [m ,n ―  1]

/
1 

1 

1

1

" m (am +  bm)V[m, to)
V[m, k ―  1]

v [m, to)

Vi[m, n  ―  1]，

1 — Pm(^m <  Tn );

1 ―  Pn(^n <  Tm)，

if k <  m 

if k — m 

if k >  m
in convention that 1/ to — 0.
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P roof By Theorem s 1, 2 and Corollary 3, all the  assertions are derived directly 
except the  assertion (iv), which is proven as follows. By the strong M arkov property  and 
the assertion (i) as well as (ii), we have

Pn (Tm <  ^n )
bn

an +  bn 
an

an +  bn 
an

Pn+1(Tm <  Tn) +  

Pn - 1(Tm <  Tn)

an
an +  bn

P n— 1(丁m 〈 丁n)

an +  bn
「 n— 1

an vn- 1/  (an +  bn) E  vi L i=m
n -  1

(an +  bn)^n  vi
i=m •

if m  =  n — 1

if m 〈n — 1

The proof is finished. □
Especially, the  extinction probability

k—1 , ^
Pfc(^0 〈 n) =  1 -  E  V n/ E  Vn,

n=0 ' n=0
k ^  1 .

The following example is an extension of the  one in [8] or [11].
Example 8 Let qn,n+1 =  1 for all n  ^  0 , 1̂0 =  b, qn,n-1 =  b -  a, qn,n-2 =  a for all 

n  ^  2 and qij =  0 for other i =  j ,  where a and b are constants satisfying b ^  a >  0.

By com puting, we know th a t }n>k are generalized Fibonacci num bers for every
k .

F ⑷F k+n pn +1 qn+1

p - q n  ^  0, k ^  0,
where p =  (b +  Vb2 +  4a)/2  and q =  (b — Vb2 +  4a)/2 . Note th a t p >  b and —1 〈 q 〈 0.
Now

1 ,p n -m +1 — p qn-m+1 — q、

Z m.,n
p — q p — 1 

n — m  qn-m+1 — q
1 — q +  (1 — q)2 

1

q — 1

pn+2 — p qn+2 — q、

m n p — q p — 1

n  +  1 q n +2
+ q

and
1 — q (1 — q)2 

1 pn+1 — p qn+i — q、

dn
p — q p — 1 

n +
qn+1 — q

1 — q (1 — q)2

if p =  1; 

if p =  1 , 

if p =  1; 

if p =  1 ,

if p =  1; 

if p =  1 .

q

q
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Hence, it turns out that R =  m n =  i.e., the process is always unique for alln=0
b ^  a >  0. Moreover, we get that

oc
Zm 1 p +  q

-  q V1 —p q — 1

if p ^  1; 

if p < 1.

Thus, when p 彡 1 (equivalently, a +  b 彡 1), we have Z0 =  to, the process is recurrent and 
P k < n) =  1 for all k ^  0. When p < 1 (equivalently, a  +  b < 1), we have Z0 < ^  and 
the process is transient,

Pk(汀m < n )

1

a  +  b
(1 — p )(1 — q) 

i T b
p(1 — q)(1 — pk-m) — (1 — p)q(1 — qk-m)k - m \

p — q

if k < m; 

if k =  m =  0; 

if k =  m > 0; 

if k > m.
Moreover, for p =  1, we get that
。 ，一 ，一 、 pq(pk-m — qk-m ) — pk-m+1 +  qk-m + 1) +  p — qPk (Tn <  Tm) =  7~二~ ~  二~ 二~ _1 1 ~ ： 二~ _i 1 ~ ： , m  <  k <  n;

pq(pn~ qn-m ) — pn-m+1 +  qn-m+1 +  p — q

P0(Tn < ^ 0) =

Pm(Tn <  ^m)

(p — q)(p — 1)(q — 1)
pq(pn — qn) — pn+1 +  qn+1 +  p — q 5

(p — q)(p — 1)(q — 1)
0 <  n;

(1 +  b)(pq(pn-m — qn-m ) — pn-m十1 +  qn-m十1 +  p — q) 1 彡 m < n,
for p =  1, one obtains that

Pk(丁n 〈 丁m)

P0(Tn < ^ 0)

Pm(Tn <  ^m)

k — m — (k — m +  1)q +  qk-m 十1 
n — m — (n — m +  1)q +  qn-m 十1,
___________(1 — q)2___________
n — m — (n — m +  1)q +  qn-m 十1,

= _______________(1 -  q)2_______________
(1 +  b)(n — m — (n — m +  1)q +  q n -^ ^ 1) ’

m < k < n; 

0 < n;

1 ^  m < n.
By the way, when p =  1, the process is null recurrent because d =  to.

1

1

References

[1] Wang Z K, Yang X Q. Birth and Death Processes and Markov Chains [M]. Beijing: Science Press, 
1992.



462 C hinese Jo u rn a l o f A pplied  P ro b a b ility  an d  S ta tis tic s Vol. 32

[2] Zhang J K. On the generalized b irth  and death  processes (I) — the numeral introduction, the func­
tional of integral type and the distributions of runs and passage tim es[J]. Acta. Math. Sci., 1984, 
4 (2 ) : 241-259.

[3] Zhang Y H. Moments of the h itting  time for single b irth  processes [J]. J. Beijing Normal Univ. (Natur. 
Sci.), 2003, 3 9 (4 ) : 430-434. (in Chinese)

[4] Chen M F. From Markov Chains to Non-Equilibrium Particle Systems [M]. 2nd ed. Singapore: World 
Scientific, 2004.

[5] Chen M F. Single b irth  processes[J] Chinese Ann. Math. Ser. B, 1999, 2 0 (1 ) : 77-82.
[6] Chen M F. Explicit criteria for several types of ergodicity [J]. Chinese J. Appl. Probab. Statist., 2001, 

1 7 (2 ) : 113-120.
[7] Zhang Y H. Strong ergodicity for single-birth processes[J]. J. Appl. Probab., 2001, 3 8 (1 ) : 270-277.
[8] Zhang Y H. The hitting tim e and stationary distribution for single b irth  processes[J]. J. Beijing 

Normal Univ. (Natur. Sci.), 2004, 4 0 (2 ) : 157-161. (in Chinese)
[9] Anderson W  J. Continuous-Time Markov Chains: A n  Applications-Oriented Approach [M]. New York: 

Springer-Verlag, 1991.
[10] Aldous D, Fill J A. Reversible Markov Chains and Random Walks on Graphs [M/OL]. Preprint, 

2014[2014-06-02]. http://w w w .stat.berkeley .edu/~aldous/R W G /B ook_R alph/book.htm l.
[11] Mao Y H, Zhang Y H. Exponential ergodicity for single-birth processes[J]. J. Appl. Probab., 2004, 

4 1 (4 ) : 1022-1032.

单生过程数字特征的概率含义

廖仲威 王玲娣

(中山大学数学学院，广州，5 1 0 2 7 5 ) (河南大学数学与统计学院，开封，475004)

张余辉

(北京师范大学数学科学学院，北京，100875)

摘 要 ： 本文考虑了单生过程的一些数字特征，借助这些数字特征刻画了某些事件 (如灭绝时间、回返时 

等 )发生的概率 . 最后，利用本文结果计算了两个例子的相关数字特征 .
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