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Abstract We obtain sufficient criteria for central limit theorems (CLTs) for
ergodic continuous-time Markov chains (CTMCs). We apply the results to
establish CLTs for continuous-time single birth processes. Moreover, we present
an explicit expression of the time average variance constant for a single birth
process whenever a CLT exists. Several examples are given to illustrate these
results.
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1 Introduction

Let {Xt, t ∈ R+} be a continuous-time Markov chain (CTMC) on a countable
state space E with the Q-matrix Q = (qij) and the transition function P t(i, j).
Throughout this paper, we assume that Q is irreducible, totally stable, and
regular, which implies that Q is conservative and the Q-process is unique.
We further assume that Xt is positive recurrent with the unique invariant
distribution π. Then we have

‖P t(i, ·) − π‖ :=
∑
j∈E

|P t(i, j) − πj| → 0, t → +∞,

for any i ∈ E. Define
τi = inf{t > 0: Xt = i}
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to be the first hitting time on the state i. Let J1 be the first jump time of the
process Xt, and define

δi = inf{t > J1 : Xt = i}
to be the first return time on the state i. Define

π(g) =
∑
i∈E

πigi

for a function g on E.
When π(|f |) < +∞, by [19, Proposition 4.2 (ii)], we know that the sample

mean S(t) is well defined by

S(t) =
1
t

∫ t

0
fXsds, t � 0.

Moreover, it is known that the strong law of large numbers holds, i.e., S(t) →
π(f) with probability 1 as t → +∞. We say that a CLT holds if there exists a
scaling constant 0 � σ2(f) < +∞ such that

t1/2[S(t) − π(f)] � N(0, σ2(f)), t → +∞,

for any initial distribution, where N(0, 1) denotes the standard normal
distribution, and ‘�’ means convergence in distribution. The (deterministic)
constant σ2(f) is called the time average variance constant.

It is a fundamental issue to find conditions on Xt and f, under which a CLT
holds. Let

f := f − π(f).

From [8], we immediately know that if π(|f |) < +∞, then a CLT holds if and
only if

Ei

[(∫ δi

0
fXs

ds

)2]
< +∞

for any i ∈ E. Obviously, this condition holds whenever

Ei

[(∫ δi

0
|fXs

|ds

)2]
< +∞. (1.1)

It is hard to check the above two conditions directly to verify a CLT for Markov
models, since both expressions involve the function f and the first return time
δi simultaneously. It is well known that the moments of the first return time are
closely related with ergodicity (e.g., [6]). We will establish three easily checked
criteria in Theorem 3.1 for (1.1) in terms of the conditions on the function f
and ergodicity separately, in which, the first one is new and the other two are
analogous to those for discrete-time Markov chains (DTMCs) (see [13,20]).
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This current research is also motivated by investigating CLTs for a
continuous-time single birth process (see [6]) on the state space E = Z+, which
is a CTMC with the following Q-matrix:

Q =

⎛⎜⎜⎜⎝
q00 q01 0 0 · · ·
q10 q11 q12 0 · · ·
q20 q21 q22 q23 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎠ .

The single birth processes, also called continuous-time Markov processes skip-
free to the right ([1]), are a class of important Markov processes, which cover
many interesting Markov processes, such as the birth-death processes, the
population processes, and the level-dependent queues. It has been shown by [18]
that the single birth processes can be used to investigate generalized Markov
branching processes and multidimensional CTMCs. The single birth processes
have been applied to modeling real problems in queues, biology, and so on.
However, to model a real-world phenomenon, we have to judge whether this
model is appropriate or not. That is to say, we need to test this model through
the sample path, which raises a problem of statistical hypothesis testing.

To attack this problem, we apply Theorem 3.1 and the known ergodicity
results to obtain sufficient criteria for a CLT for a single birth process.
Moreover, we get the explicit expression of the variance constant, which is
extremely important since it is a key parameter for determining the confidence
interval for statistical hypothesis testing. In the literature, the variance
constant has been investigated for continuous-time birth-death process on a
finite state space (see, e.g., [21]), the continuous-time queues driven by a
Markovian marked point process ([3]), the discrete-time waiting time of the
M/G/1 queue [7] and the PH/PH/1 queue [4], the discrete-time birth-death
process ([14]) and single birth process ([12]), the continuous-time matrix-
analytical models ([15]), and so on.

2 Preliminaries on ergodicity

In this section, we review the definitions and known criteria of several types
of ergodicities. We also state the known ergodicity results for continuous-time
single birth processes.

A positive recurrent CTMC Xt is said to be strongly ergodic if

sup
i∈E

‖P t(i, ·) − π‖ → 0, t → +∞.

From [6], we know that Xt is strongly ergodic if and only if

sup
k∈E

Ek[τi] < +∞



936 Yuanyuan LIU, Yuhui ZHANG

for some i ∈ E. A positive recurrent CTMC Xt is said to be exponentially
ergodic if

eγt‖P t(i, ·) − π‖ → 0, t → +∞,

for some γ > 0 and for any i ∈ E. From [6] again, we know that the chain Xt

is exponentially ergodic if and only if

Ei[erδi ] < +∞
for some r > 0 and some i ∈ E. For a positive real number � such that � � 1, a
positive recurrent CTMC Xt is said to be �-ergodic (see, [11,17]) if

t�−1‖P t(i, ·) − π‖ → 0, t → +∞,

for any i ∈ E. It follows from [16] that the chain Xt is �-ergodic if and only if

Ei[δ�
i ] < +∞

for some i ∈ E. The equivalent criteria of the three types of ergodicity can be
characterized in terms of different drift functions on the intensity matrix Q (see,
e.g., [6,16]).

The sufficient and necessary criteria for strong ergodicity, exponential
ergodicity, and �-ergodicity have been established for single-birth processes by
[22], [18], and [24], respectively. The invariant distribution is obtained by [23].
We do not present those results here in order to avoid introducing too many
notations.

We note that

strong ergodicity =⇒ exponential ergodicity =⇒ �-ergodicity

for any � ∈ R+ and � � 1. Generally speaking, it is easiest to investigate strong
ergodicity for a CTMC among the three types of ergodicities. Strong ergodicity
is a restrictive condition for DTMCs, since a DTMC on a infinitely countable
state space fails to be strongly ergodic whenever its transition matrix P = (Pij)
is a Feller transition one (see [10, Section 2] for details), i.e.,

lim
i→+∞

Pij = 0

for any fixed j ∈ E. However, it is rather different for CTMCs with unbounded
Q-matrices, for which, strong ergodicity may hold under feasible conditions.

3 CLTs for general CTMCs

In the following, we will present sufficient criteria of a CLT for polynomially,
exponentially, or strongly ergodic CTMCs. The proofs of these results are
postponed to Section 5.
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Theorem 3.1 Let Xt be a positive recurrent CTMC with the invariant
distribution π. Let f be a function on E such that π(|f |) < +∞ and i0 be
any fixed state in E. Then any one of the following conditions is sufficient for
a CLT to hold:

(i) Xt is �-ergodic and π(|f |2+η) < +∞ for some η > 0 and � > 2 + 4
η ;

(ii) Xt is exponentially ergodic and π(|f |2+η) < +∞ for some η > 0;
(iii) Xt is strongly ergodic and π(|f |2) < +∞.

Moreover, if any of the above condition holds, then the variance constant is
given by

σ2(f) = 2π(f f̂) = 2
∑
i∈E

πif if̂i, (3.1)

where the function f̂ , given by

f̂k = Ek

[ ∫ δi0

0
fXs

ds

]
, k ∈ E,

is a solution of the Poisson equation Qx = −f. Note that f̂i0 = 0.

Remark 3.2 (1) The discrete-time analogue of (ii) and (iii) can be found in
the survey papers [13] or [20]. However, the arguments in the proof are new.

(2) As we note in Section 2, strong ergodicity rarely holds for discrete-
time Markov chains, which is however the easiest checked ergodicity condition
for CTMCs. Hence, assertion (iii) has a wider application potential than the
corresponding discrete-time result.

(3) Result (i) is new, which is useful for polynomially but not exponentially
ergodic Markov processes. The proof of (i) is modified from the proof of
[20, Lemma 34], by extending it to the continuous-time case and weakening
the geometric ergodicity condition there with the polynomial ergodicity
condition.

We now give an example to illustrate Theorem 3.1 under various ergodic
situations.

Example 3.3 Let Xt be a birth-death process with birth coefficients bi and
death coefficients ai given by b0 = 1, and bi = ai = iγ , i � 1. From [5,17],
we know that Xt is �-ergodic if and only if γ ∈ (1, 2) and γ > 2 − 1

� ; Xt is
exponentially ergodic if and only if γ = 2; and Xt is strongly ergodic if and
only if γ > 2. Now, take fi = iα, where α is a positive constant to be determined.
Let η be an arbitrarily given positive constant. It is easy to obtain the following
results.

(1) Let �, γ, and α be such that

� > 2 +
4
η
, 2 − 1

�
< γ < 2, α <

γ − 1
2 + η

.

Then Theorem 3.1 (i) holds.



938 Yuanyuan LIU, Yuhui ZHANG

(2) Let γ and α be such that γ = 2 and α < 1/(2 + η). Then Theorem 3.1
(ii) holds.

(3) Let γ and α be such that γ > 2 and α < (γ − 1)/2. Then Theorem 3.1
(iii) holds.

4 Application to single birth processes

In this section, we will apply Theorem 3.1 to single birth processes. Define

q(k)
n =

k∑
j=0

qnj, 0 � k < n,

F
(i)
i = 1, F (i)

n =
1

qn,n+1

n−1∑
k=i

q(k)
n F

(i)
k , n > i � 0,

Theorem 4.1 Let Xt be a positive recurrent single birth process with the
invariant distribution π. Let f be a function on E such that π(|f |) < +∞.
Suppose that any one of the conditions in Theorem 3.1 (i)–(iii) is satisfied.
Then a CLT holds and the variance constant is given by

σ2(f) = 2
+∞∑
n=0

( n∑
k=0

F
(k)
n fk

qk,k+1

) n∑
k=0

πkfk. (4.1)

Remark 4.2 (i) [12, Theorem 3.1] derives the explicit expression of the
variance constant for discrete-time single birth processes. Note that there is a
difference between both expressions, specifically, one more item,

∑
n∈E

πnf
2
n,

appears in the discrete-time expression.
(ii) The proof of Theorem 4.1 is a little different from the one of [12], which

can be modified to give a shorter and more complete proof of [12, Theorem 2.1].

Remark 4.3 When Xt is a birth-death process under the condition of
Theorem 4.1, we obtain the variance constant

σ2(f) = 2
+∞∑
n=0

1
bnμn

( n∑
k=0

μkfk

)2

,

where
μ0 = 1, μi =

b0b1 · · · bi−1

a1a2 · · · ai
, i � 1.

Example 4.4 Let qn,n+1 = 1 for all n � 0, q10 = 1, qn,n−2 = 1 for all n � 2,
and qij = 0 for other i �= j. The single birth process is exponentially ergodic
but not strongly ergodic (refer to [18]). By computing, we know that {F (k)

n }n�k

are Fibonacci numbers for every k :

F
(k)
k+n =

1√
5

(An+1 − (−B)n+1), n, k � 0,
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where

A =
√

5 + 1
2

, B =
√

5 − 1
2

.

The stationary distribution is

πn = (1 − B)Bn, ∀n � 0,

which is obtained in [23]. Let fi = i. Then we have

π(f) = π(|f |) = A, π(|f |3) = 6A4 + A.

So by Theorem 4.1, (4.1) holds. Now,

n∑
k=0

F
(k)
n fk

qk,k+1
= −n + (−B)n+3 + A − 3,

n∑
k=0

πkfk = −(n + 1)Bn+1, n � 0.

Hence, from (4.1), one gets

σ2(f) =
44
√

5 + 98
5

.

Example 4.4 is the so-called uniform catastrophes in population models.

Example 4.5 Let qn,n+1 = n + 1 for all n � 0, qnj = 1 for all 0 � j < n, and
qij = 0 for other i �= j. The single birth process is strongly ergodic (see [25]).
By computing, we know that

F
(k)
k = 1, F (k)

n = 2n−k−1 k + 1
n + 1

, n > k � 0.

The stationary distribution is

πn = 2−n−1, ∀n � 0.

Let fi = i. Then we have

π(f) = π(|f |) = 1, π(|f |2) = 3.

So by Theorem 4.1, (4.1) holds. Now, we have

n∑
k=0

F
(k)
n fk

qk,k+1
= − 1

n + 1
,

n∑
k=0

πkfk = −(n + 1)2−(n+1), n � 0.

Hence, we derive that
σ2(f) = 2.
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5 Proof of Theorem 3.1

Note that assertion (ii) follows from (i) directly by observing that if Ei[erδi ] <
+∞ for some r > 0, then Ei[δ�

i ] < +∞ for any � > 0. Hence, we only need to
prove (i), (iii), and the last part of Theorem 3.1.

We prove Theorem 3.1 (i) and (iii) by verifying condition (1.1). To proceed
our arguments, we need the following lemma, which presents a functional
Cauchy-Schwarz inequality for CTMCs.

Lemma 5.1 Let V be a nonnegative function. If∫ +∞

0
V (t,Xt)dt,

∫ +∞

0

√
Ex[V 2(t,Xt)] dt

exist, then we have

Ex

[(∫ +∞

0
V (t,Xt)dt

)2]
�

(∫ +∞

0

√
Ex[V 2(t,Xt)] dt

)2

.

Proof Fix any b > 0. Divide the interval [0, b] into n + 1 parts:

[s0, s1], [s1, s2], . . . , [sn−1, sn],

where s0 = 0 and sn = b. Let

Δsi = si − si−1, 1 � i � n, d = max
1�i�n

Δsi.

We simply write Vi = V (ti,Xti). Since both∫ +∞

0
V (t,Xt)dt,

∫ +∞

0

√
Ex[V 2(t,Xt)] dt

exist, we have

Ex

[(∫ b

0
V (t,Xt)dt

)2]
= Ex

[(
lim
d→0

n∑
i=0

ViΔsi

)2]

� lim inf
d→0

Ex

[( n∑
i=0

ViΔsi

)2]

� lim inf
d→0

( n∑
i=0

√
Ex[V 2

i ]
)2

=
(∫ b

0

√
Ex[V 2(t,Xt)] dt

)2

, (5.1)

where the first inequality follows from the Fatou lemma, and the second
inequality follows from the Cauchy-Schwarz inequality, i.e.,

E

[( +∞∑
n=0

Xn

)2]
�

( +∞∑
n=0

√
E[X2

n]
)2

.
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We obtain the assertion by letting b → +∞ in (5.1). �
5.1 Proof of Theorem 3.1 (i)

Let
V (t,Xt) = It<δi

|fXt
|.

By Lemma 5.1, we have

Ei

[(∫ δi

0
|fXs

|ds

)2]
�

(∫ +∞

0

√
Ei[It<δi

|fXt
|2] dt

)2

. (5.2)

Let
p = 1 +

2
η
, q = 1 +

η

2
.

It follows from Hölder inequality that

Ei[It<δi
|fXt

|2] � (Ei[It<δi
])1/p(Ei[|fXt

|2q])1/q. (5.3)

Since π(|f |2+η) < +∞, we have

(Ei[|fXt
|2q])1/q �

( 1
πi

Eπ[|fXt
|2q]

)1/q
=

( 1
πi

π(|f |2q)
)1/q

< +∞. (5.4)

It follows from the Markov inequality that

Ei[It<δi
] = Pi[t < δi] � Ei[δ�

i ]
t�

. (5.5)

From (5.2)–(5.5), we obtain (1.1). �
5.2 Proof of Theorem 3.1 (iii)

To bound (1.1), we let the process start at the state i. Recall that J1 is the first
jump time. Define

T0 = 0, Tk := inf{t � Tk−1 + J1 : Xt = i}, i � 1.

Then Tk denotes the k-th return time on i. Obviously, Xt is a undelayed
regenerative process with Ti, i � 0, as the regenerative time points, i.e.,

{Xt, Ti � t < Ti+1, i � 0}
are independently identically distributed random variables. We divide the proof
of this assertion into three steps.

(a) Since

Ex[τi] =
∫ +∞

0
tdPx[τi � t] � sPx[τi > s], ∀ s > 0,

we know that if
sup
x∈E

Ex[τi] < +∞,
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then there exists constants h < +∞ and β < 1 such that

sup
x∈E

Px[τi � h] < β.

(b) Now, we can use the time length h given by (a) to divide this interval
[J1, δi]. Let

tn = J1 + nh, n � 0.

Let us define a Bernoulli random sequence {Zn, n � 0} as follows:

Z0 = 0, Zn =

{
1, Xt = i for some t ∈ [tn−1, tn],

0, otherelse.

Let
N = inf{n � 1: Zn = 1}

be the first hitting time of the state 1. Then we have

P [N = n] =
n−1∏
m=1

P [Zm = 0]P [Zn = 1] � βn−1 · 1 = βn−1, n � 1,

where we make the convention that

0∏
m=1

P [Zm = 0] = 1.

Thus, we have

J1 + (N − 1)h = tN−1 � δi � tN = J1 + Nh. (5.6)

(c) Now, we use (5.6) to bound Ei[(
∫ δi

0 |fXs
|ds)2].

Ei

[(∫ δi

0
|fXs

|ds

)2]
= Ei

[(∫ t0

0
|fXt

|dt +
∫ δi

t0

|fXt
|dt

)2]
� Ei

[(∫ t0

0
|fXt

|dt

)2]
+ Ei

[(∫ δi

t0

|fXt
|dt

)2]
+ 2Ei

[ ∫ t0

0
|fXt

|dt

]
Ei

[ ∫ δi

t0

|fXt
|dt

]
�

( 1
λ

+
1
λ2

)
|f |2(i) +

2|f(i)|
λ

π(|f |)
πi

+ D, (5.7)

where

D = Ei

[(∫ δi

t0

|fXt
|dt

)2]
.
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Now, we focus on bounding on D. Let

Sk =
∫ tk

tk−1

|fXt
|dt, k � 1.

Then we have

D � Ei

[(∫ tN

t0

|fXt
|dt

)2]
= Ei

[ N∑
k=1

S2
k

]
+ 2Ei

[ N∑
k=1

Sk

N∑
m=k+1

Sm

]
.

Conditioning on J1 and applying Lemma 5.1 gives that for any k � 1,

Eπ[S2
k] =

∫ +∞

0
Eπ[S2

k|J1 = s] · dP [J1 � s] � h
√

π(f2),

which implies

Ei[S2
k ] � 1

πi
Eπ[S2

k ] � 1
πi

h
√

π(f2) < +∞.

By conditioning on N, we have

Ei

[ N∑
k=1

S2
k

]
= Ei

[
E

[ N∑
k=1

S2
k

∣∣N]]
�

+∞∑
n=1

nh
√

π(f2)
πi

βn−1 < +∞.

Similarly, we have

Ei

[ N∑
k=1

Sk

N∑
m=k+1

Sm

]
= 2

+∞∑
n=1

Ei

[ n∑
k=1

Sk

n∑
m=k+1

Sm

]
P [N = n]

� 2
+∞∑
n=1

( n∑
k=1

n∑
m=k+1

√
Ei[S2

k ]
√

Ei[S2
m]

)
βn−1

� 2
+∞∑
n=1

n2 − n

πi
h
√

π(f2)βn−1

< +∞, (5.8)

where we use the Hölder inequality with p = q = 2 in the second inequality.
The assertion follows immediately from (5.7) and (5.8). �
5.3 Proof of last part of Theorem 3.1

It follows from [8] and the similar arguments in the proof of [3, Lemma 3.1], we
have

σ2(f) =
2

Ei0 [δi0 ]
Ei0

[ ∫ δi0

0
fXt

f̂Xtdt

]
= 2π(f f̂).

[9, Theorem 9.5.2] shows that the sequence {xk, k ∈ E}, given by

xk = Ek

[ ∫ δi0

0
gXtdt

]
,
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is a solution of the following equations:∑
k �=i0

qikxk = −gi, i ∈ E, (5.9)

where g is a nonnegative function. [2, Theorem VI.1.2] shows that

Ei0

[ ∫ δi0

0
fXtdt

]
= π(f)Ei0 [δi0 ],

which implies that xi0 = 0. For a real number a, define

a+ = max{a, 0}, a− = max{−a, 0}.

Obviously,
a = a+ − a−.

By considering

x+
k = Ek

[ ∫ δi0

0
(fXt

)+dt

]
, x−

k = Ek

[ ∫ δi0

0
(fXt

)−dt

]
,

we know that the sequence {xk, k ∈ E} satisfies the Poisson equation Qx = −f.
The proof of the theorem is finished. �

6 Proof of Theorem 4.1

The fist part of Theorem 4.1 follows from Theorem 3.1 directly. We only need
to prove the expression (4.1) of the variance constant.

Lemma 6.1 Give a function f on E. The sequence of functions {hn, n ∈ Z+},
defined by

hi =
fi

qi,i+1
, hn =

1
qn,n+1

[
fn +

n−1∑
k=i

q(k)
n hk

]
, n � i + 1, (6.1)

has the the following equivalent presentation:

hn =
n∑

k=i

F
(k)
n fk

qk,k+1
, n � i. (6.2)

Proof We use the induction. For n = i,

hi =
fi

qi,i+1
=

F
(i)
i fi

qi,i+1
=

i∑
k=i

F
(k)
i fk

qk,k+1
.
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Assume that (6.2) holds for all n � m. When n = m + 1, from (6.1), we see
that

hm+1 =
fm+1

qm+1,m+2
+

1
qm+1,m+2

m∑
k=i

q
(k)
m+1

k∑
�=i

F
(�)
k f�

q�,�+1

=
fm+1

qm+1,m+2
+

m∑
�=i

(
1

qm+1,m+2

m∑
k=�

q
(k)
m+1F

(�)
k

)
f�

q�,�+1

=
fm+1

qm+1,m+2
+

m∑
�=i

F
(�)
m+1f�

q�,�+1

=
m+1∑
�=i

F
(�)
m+1f�

q�,�+1
.

Hence, (6.2) holds for n = m + 1. By induction, we know that (6.2) hold for all
n � i. �
Lemma 6.2 For a single birth Q-matrix Q = (qij), a finite solution x =
(xi, i ∈ E) of Poisson’s equation Qx = −g with xj = 0 is given by

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

j−1∑
n=i

( n∑
k=0

F
(k)
n gk

qk,k+1

)
, i < j,

0, i = j,

−
i−1∑
n=j

( n∑
k=0

F
(k)
n gk

qk,k+1

)
, i > j.

(6.3)

Proof From Poisson’s equation Qx = −g, one easily sees that

x0 − x1 =
g0

q01
, xn − xn+1 =

1
qn,n+1

[
gn +

n−1∑
k=0

q(k)
n (xk − xk+1)

]
, n � 1.

So, by Lemma 6.1, we know that

xn − xn+1 =
n∑

k=0

F
(k)
n gk

qk,k+1
, n � 0.

Note that

xi = −
i−1∑
n=0

(xn − xn+1) + x0 = −
i−1∑
n=0

( n∑
k=0

F
(k)
n gk

qk,k+1

)
+ x0, i � 1.

Since xj = 0, we know that

x0 =
j−1∑
n=0

( n∑
k=0

F
(k)
n gk

qk,k+1

)
.
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Then we obtain the assertion. �
Proof of Theorem 4.1 It is known that the sequence x̃ = (x̃i, i ∈ E), defined
by

x̃i = Ei

[ ∫ δj

0
fXt

dt

]
,

is a solution of Poisson’s equation with x̃j = 0. Due to the special structure of
the single birth processes, we know that Poisson’s equation has a unique finite
solution. Hence, x̃ = x, where x is given by (6.3). By (3.1), we obtain

σ2(f) = −2
+∞∑
n=1

πnfn

n−1∑
k=0

( k∑
m=0

F
(m)
k fm

qm,m+1

)
. (6.4)

The assertion (4.1) follows by exchanging the order of summation in the right-
hand side of (6.4) and using the fact that

+∞∑
k=0

πkf(k) = 0. �
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