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Abstract The mixed principal eigenvalue of p -Laplacian (equivalently, the
optimal constant of weighted Hardy inequality in Lp space) is studied in
this paper. Several variational formulas for the eigenvalue are presented. As
applications of the formulas, a criterion for the positivity of the eigenvalue
is obtained. Furthermore, an approximating procedure and some explicit
estimates are presented case by case. An example is included to illustrate the
power of the results of the paper.
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1 Introduction

As a natural extension of Laplacian from linear to nonlinear, p -Laplacian plays
a typical role in mathematics, especially in nonlinear analysis. Refer to [1,10]
for recent progresses on this subject. Motivated by the study on stability speed,
we come to this topic, see [2,3] and references therein. The present paper is a
continuation of [5] in which the estimates of the mixed principal eigenvalue for
discrete p -Laplacian were carefully studied. This paper deals with the same
problem but for continuous p -Laplacian, its principal eigenvalue is equivalent
to the optimal constant in the weighted Hardy inequality. Even though the
discrete case is often harder than the continuous one, the latter has its own
difficulty. For instance, the existence of the eigenfunction is rather hard in the
nonlinear context, but it is not a problem in the discrete situation. Similar to
the case of p = 2 ([3,4]), there are four types of boundaries: Neumann (denoted
by code ‘N’) or Dirichlet (denoted by code ‘D’) boundary at the left- or right-
endpoint of the half line [0,D]. In [7], Jin and Mao studied a class of weighted
Hardy inequality and presented two variational formulas in the DN-case. Here,
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we study ND-case carefully and add some results to [7]. The DD- and NN-cases
will be handled elsewhere. Comparing with our previous study, here the general
weights are allowed.

The paper is organized as follows. In the next section, restricted in the
ND-case, we introduce the main results: variational formulas and the basic
estimates for the optimal constant (cf. [8,9]). As an application, we improve the
basic estimates step by step through an approximating procedure. To illustrate
the power of the results, an example is included. The sketched proofs of the
results in Section 2 are presented in Section 3. For another mixed case: DN-case
studied in [7], some complementary are presented in Section 4.

2 ND-case

Let μ and ν be two positive Borel measures on [0,D], D � ∞ (replace [0,D]
by [0,D) if D = ∞), dμ = u(x)dx, and dν = v(x)dx. Next, let

Lpf = (v|f ′|p−2f ′)′, p > 1.

Then the eigenvalue problem with ND-boundary conditions reads{
Eigenequation : Lpg(x) = −λu(x)|g|p−2g(x);

ND-boundaries : g′(0) = 0, g(D) = 0 if D < ∞.
(1)

If (λ, g) is a solution to the eigenvalue problem above, g �= 0, then we call
λ an ‘eigenvalue’ and g is an ‘eigenfunction’ of λ. When p = 2, the operator
Lp defined above returns to the diffusion operator defined in [4]: u−1(vf ′)′,
where u(x)dx is the invariant measure of the diffusion process and v is a Borel
measurable function related to its recurrence criterion. For α � β, define

C [α, β] = {f : f is continuous on [α, β]},
C k(α, β) = {f : f has continuous derivatives of order k on (α, β)}, k � 1,

and

μα,β(f) =
∫ β

α
fdμ, Dα,β

p (f) =
∫ β

α
|f ′|pdν.

Similarly, one may define C (α, β). In this section, we study the first eigen-
value (the minimal one), denoted by λp, described by the following classical
variational formula:

λp = inf{Dp(f) : f ∈ CK [0,D], μ(|f |p) = 1, f(D) = 0 if D < ∞}, (2)

where
μ(f) = μ0,D(f), Dp(f) = D0,D

p (f),
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and

CK [α, β] = {f ∈ C [α, β] : vp∗−1f ′ ∈ C (α, β) and f has compact support},

with p∗ the conjugate number of p (i.e., p−1+p∗−1 = 1). When p = 2, it reduces
to the linear case studied in [4]. Thus, the aim of the paper is extending the
results in linear case (p = 2) to nonlinear one. Set

A [α, β] = {f : f is absolutely continuous on [α, β]}.

As will be proved soon (see Lemmas 3.3 and 3.4), we can rewrite λp as

λ̃∗,p := inf{Dp(f) : μ(|f |p) = 1, f ∈ A [0,D], f(D) = 0}. (3)

By making inner product with g on both sides of eigenequation (1) with
respect to the Lebesgue measure over (α, β), we obtain

λμα,β(|g|p) = Dα,β
p (g) − (v|g′|p−2g′g)|βα.

Moreover, since g′(0) = 0, we have

λμ(|g|p) = Dp(g) − (
v|g′|p−2g′g

)
(D),

where, throughout this paper, f(D) := limx→D f(x) provided D = ∞. Hence,
with

D(Dp) = {f : f ∈ A [0,D], Dp(f) < ∞},
A := λ−1

p is the optimal constant of the following weighted Hardy inequality:

Hardy inequality : μ(|f |p) � ADp(f), f ∈ D(Dp);
Boundary condition : f(D) = 0.

Note that the boundary condition ‘f ′(0) = 0’ is unnecessary in the inequality.
Throughout this paper, we concentrate on p ∈ (1,∞) since the degenerated

cases that either p = 1 or ∞ are often easier to handle (cf. [11; Lemmas 5.4,
5.6]).

2.1 Main notation and results

For p > 1, let p∗ be its conjugate number. Define

v̂(x) = v1−p∗(x), ν̂(dx) = v̂(x)dx.

We use the following hypothesis throughout the paper:
u, v̂ are locally integrable with respect to the Lebesgue measure on [0,D],

without mentioned time by time.
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Our main operators are defined as follows.

I(f)(x) = − 1
(vf ′|f ′|p−2)(x)

∫ x

0
fp−1dμ (single integral form),

II(f)(x) =
1

fp−1(x)

[ ∫
(x,D)∩supp(f)

v̂(s)
(∫ s

0
fp−1dμ

)p∗−1

ds

]p−1

(double integral form),

R(h)(x) = u(x)−1[−|h|p−2(v′h + (p − 1)(h2 + h′)v)](x) (differential form).

These operators have domains, respectively, as follows:

FI = {f ∈ C [0,D] : vp∗−1f ′ ∈ C (0,D), f |(0,D) > 0, f ′|(0,D) < 0},
FII = {f : f ∈ C [0,D], f |(0,D) > 0},
H = {h : h ∈ C 1(0,D) ∩ C [0,D], h(0) = 0, h|(0,D) < 0 if ν̂(0,D) < ∞,

and h|(0,D) � 0 if ν̂(0,D) = ∞},

where ν(α, β) =
∫ β
α dν for a measure ν. To avoid the non-integrability problem,

some modifications of these sets are needed for studying the upper estimates.

F̃I = {f ∈ C [x0, x1] : vp∗−1f ′ ∈ C (x0, x1), f ′|(x0,x1) < 0 for some

x0, x1 ∈ (0,D) with x0 < x1, and f = f(· ∨ x0)�[0,x1)},
F̃II = {f : f = f�[0,x0) for some x0 ∈ (0,D) and f ∈ C [0, x0]},
H̃ =

{
h : ∃x0 ∈ (0,D) such that h ∈ C [0, x0] ∩ C 1(0, x0), h|(0,x0) < 0,

h|[x0,D] = 0, h(0) = 0, and sup
(0,x0)

(v′h + (p − 1)(h2 + h′)v) < 0
}
,

In Theorem 2.1 below, for each f ∈ FI , infx∈(0,D) I(f)(x)−1 produces a lower
bound of λp. So the part having ‘sup inf’ in each of the formulas is used for the
lower estimates of λp. Dually, the part having ‘inf sup’ is used for the upper
estimates. These formulas deduce the basic estimates in Theorem 2.3 and the
approximating procedure in Theorem 2.4.

Theorem 2.1 (Variational formulas) For p > 1, we have
(i) single integral forms:

inf
f∈F̃I

sup
x∈(0,D)

I(f)(x)−1 = λp = sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1;

(ii) double integral forms:

inf
f∈F̃II

sup
x∈supp(f)

II(f)(x)−1 = λp = sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1.

Moreover, if u and v′ are continuous, then we have additionally
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(iii) differential forms:

inf
h∈H̃

sup
x∈(0,D)

R(h)(x) = λp = sup
h∈H

inf
x∈(0,D)

R(h)(x).

Furthermore, the supremum on the right-hand side of the above three formulas
can be attained.

The following proposition adds some additional sets of functions for
operators I and II. It then provides alternative descriptions of the lower and
upper estimates of λp.

Proposition 2.2 For p > 1, we have

λp = sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1;

λp = inf
f∈F̃II∪F̃ ′

II

sup
x∈ supp(f)

II(f)(x)−1

= inf
f∈F̃I

sup
x∈ supp(f)

II(f)(x)−1

= inf
f∈F̃ ′

I

sup
x∈(0,D)

I(f)(x)−1,

where
F̃ ′

II = {f : f ∈ C [0,D] and fII(f) ∈ Lp(μ)},
F̃ ′

I = {f : ∃x0 ∈ (0,D), f = f�[0,x0) ∈ C [0, x0],

f ′|(0,x0) < 0, and vp∗−1f ′ ∈ C (0, x0)}.
Define k(p) = pp∗p−1 for p > 1 and

σp = sup
x∈(0,D)

μ(0, x)ν̂(x,D)p−1.

As applications of the variational formulas in Theorem 2.1 (i), we have the
following basic estimates known in [11].

Theorem 2.3 (Criterion and basic estimates) For p > 1, the eigenvalue λp >
0 if and only if σp < ∞. Moreover, the following basic estimates hold:

(k(p)σp)−1 � λp � σ−1
p ,

In particular, we have λp = 0 if ν̂(0,D) = ∞ and λp > 0 if∫ D

0
μ(0, s)p

∗−1v̂(s)ds < ∞.

The approximating procedure below is an application of variational
formulas in Theorem 2.1 (ii). The main idea is an iteration, its first step
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produces Corollary 2.5 below. Noticing that λp is trivial once σp = ∞, we
may assume that σp < ∞ for further study on the estimates of λp.

Theorem 2.4 (Approximating procedure) Assume that σp < ∞.

(i) Let

f1 = ν̂(·,D)1/p∗ , fn+1 = fnII(fn)p
∗−1, δn = sup

x∈(0,D)
II(fn)(x), n � 1.

Then δn is decreasing and

λp � δ−1
n � (k(p)σp)−1.

(ii) For fixed x0, x1 ∈ (0,D) with x0 < x1, define

fx0,x1
1 = ν̂(· ∨ x0, x1)�[0,x1), fx0,x1

n = fx0,x1
n−1 II

(
fx0,x1

n−1

)p∗−1
�[0,x1),

and
δ′n = sup

x0,x1 : x0<x1

inf
x<x1

II(fx0,x1
n )(x), n � 1.

Then δ′n is increasing and
σ−1

p � δ′n
−1 � λp.

Next, define

δn = sup
x0<x1

‖fx0,x1
n ‖p

p

Dp(f
x0,x1
n )

, n � 1.

Then δ
−1
n � λp and δn+1 � δ′n for n � 1.

The following Corollary 2.5 can be obtained directly from Theorem 2.4. It
provides us some improved and explicit estimates of the eigenvalue (see Example
2.6 below).

Corollary 2.5 (Improved estimates) Assume that σp < ∞. Then

σ−1
p � δ′1

−1 � λp � δ−1
1 � (k(p)σp)−1,

where

δ1 = sup
x∈(0,D)

[
1

ν̂(x,D)1/p∗

∫ D

x
v̂(s)

( ∫ s

0
ν̂(t,D)(p−1)/p∗μ(dt)

)p∗−1

ds

]p−1

,

δ′1 = sup
x∈(0,D)

1
ν̂(x,D)p−1

[ ∫ D

x
v̂(s)

( ∫ s

0
ν̂(t ∨ x,D)p−1μ(dt)

)p∗−1

ds

]p−1

.

Moreover,

δ1 = sup
x∈(0,D)

[
μ(0, x)ν̂(x,D)p−1 +

1
ν̂(x,D)

∫ D

x
ν̂(t,D)pμ(dt)

]
∈ [σp, pσp],
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δ1 � δ′1 for 1 < p � 2 and δ1 � δ′1 for p � 2.

When p = 2, the assertion that δ1 = δ′1 was proved in [4; Theorem 3]. To
illustrate the results above, we present an example as follows.

2.2 Example

Example 2.6 Let dμ = dν = dx on (0, 1). In the ND-case, the eigenvalue λp

satisfies

λ1/p
p =

π(p − 1)1/p

p
sin−1 π

p
. (4)

For the basic estimates, we have

σ1/p
p =

(1
p

)1/p( 1
p∗

)1/p∗
.

Furthermore, we have

δ
1/p
1 = p

1
p
−2(p2 − 1)1−

1
p ,

δ
1/p
1 =

1
(p + 1

p − 1)1/p

{
sup

x∈(0,1)

1
(1 − x)1/p∗

∫ 1−x

0

(
1 − zp+ 1

p
−1)p∗−1dz

}1/p∗

.

The exact value λ
1/p
p and its basic estimates are shown in Fig. 1. Then, the

improved upper bound δ
1/p
1 and lower one δ

1/p
1 are added to Fig. 1, as shown

in Fig. 2. It is quite surprising and unexpected that both of δ
1/p
1 and δ

1/p
1 are

almost overlapped with the exact value λ
1/p
p except in a small neighborhood of

p = 2, where δ
1/p
1 is a little bigger and δ

1/p
1 is a little smaller than λ

1/p
p . Here,

δ′1
1/p is ignored since it improves δ

1/p
1 only a little bit for p ∈ (1, 2).

3 Proofs of main results

Some preparations for the proofs are collected in Subsection 3.1. They may
not be used completely in the proofs but are helpful to understand the idea in
this paper and may be useful in other cases. The proofs of the main results
are presented in Subsection 3.2. For simplicity, we let ↑ (resp. ↑↑, ↓, ↓↓) denote
increasing (resp. strictly increasing, decreasing, strictly decreasing) throughout
this paper.

3.1 Preparations

The next lemma is taken from [1; Theorem 1.1, p. 170] (see [13] for its
original idea). Combining with the following Remark 3.2, Lemmas 3.3 and 3.4,
it guarantees the existence of the solution (λp, g) to the eigenvalue problem.

Lemma 3.1 (Existence and uniqueness) (i) Suppose that u and v are
locally integrable on [0,D] ⊆ R (or [0,D) ⊆ R provided D = ∞) and v > 0.
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Fig. 1 Middle curve is exact value of λ
1/p
p . Top straight line

and bottom curve are basic estimates of λ
1/p
p .

5 10 15 20 25 30

Fig. 2 Improved bounds δ
1/p
1 and δ

1/p
1 are added to Figure 1.

Given constants A and B, for each fixed λ, there is uniquely a solution g such
that g(0) = A, g′(0) = B, and eigenequation (1) holds almost everywhere.
Moreover, vp∗−1g′ is absolutely continuous.

(ii) Suppose additionally that u and v are continuous. Then g ∈ C 2[0,D]
and the eigenequation holds everywhere on [0,D].

If eigenequation (1) holds (almost) everywhere for (λp, g), then g is called
an (a.e.) eigenfunction of λp.

Remark 3.2 (i) One may also refer to [6; Lemma 2.1] for the existence of
solution to eigenvalue problem with ND boundary conditions provided D < ∞.
When D = ∞, the Dirichlet boundary at D means g(D) = 0, which is proved
by Proposition 3.7 below.

(ii) By [11; Theorems 4.1, 4.7], we see that the eigenequation in (1) has
solutions if and only if the following equation has solutions:

(|g′|p−2g′)′(x) = −λũ(x)|g|p−2g(x),
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where ũ is related to v and u in the eigenequation. Hence, the weight function v
in the eigenquation is not a sensitive or key quantity to the existence of solution
to the eigenequation and can be seen as a constant.

Define AK [0,D] = {f : f ∈ A [0,D], f has compact support} and

λ∗,p = inf{Dp(f) : f ∈ AK [0,D], ‖f‖p = 1, and f(D) = 0 if D < ∞}, (5)

λ̃p = inf{Dp(f) : vp∗−1f ′ ∈ C (0,D), f ∈ C [0,D], ‖f‖p = 1, f(D) = 0}, (6)

where ‖ · ‖p means the norm in Lp(μ) space. The following quantities are also
useful for us. Set α ∈ (0,D) and define

λ
(0,α)
∗,p = inf{Dp(f) : μ(|f |p) = 1, f ∈ A [0, α] and f |[α,D] = 0},

λ(0,α)
p = inf{Dp(f) : f ∈ C [0, α], vp∗−1f ′ ∈ C (0, α), μ(|f |p) = 1, f |[α,D] = 0}.

The following three lemmas describe in a refined way the first eigenvalue and
lead to, step by step, the conclusion that

λ̃p = λp = λ∗,p = λ̃∗,p.

Lemma 3.3 We have λp = λ∗,p.

Proof It is obvious that λp � λ∗,p. Next, let g be the a.e. eigenfunction of
λ∗,p. Then g ∈ C [0,D] and vp∗−1g′ ∈ C (0,D) by Lemma 3.1. Since Lpg =
−λ∗,p|g|p−2g, by the arguments after formula (3), we have

−(vg|g′|p−2g′)|D0 + Dp(g) = λ∗,p‖g‖p
p.

Since g′(0) = 0 and (gg′)(D) � 0, we have λ∗,p � Dp(g)/‖g‖p
p. Because g ∈

CK [0,D], it is clear that Dp(g)/‖g‖p
p � λp. We have thus obtained that

λp � λ∗,p � λp,

and so λp = λ∗,p. There is a small gap in the proof above since in the case
of D = ∞, the a.e. eigenfunction g may not belong to Lp(μ) and we have
not yet proved that (gg′)(D) � 0. However, one may avoid this by a standard
approximating procedure, using [0, αn] instead of [0,D) with αn ↑ D provided
D = ∞ :

lim
n→∞λ(0,αn)

p = lim
n→∞ inf{Dp(f) : μ(|f |p) = 1, f ∈ C [0, αn],

vp∗−1f ′ ∈ C (0, αn), f |[αn,D] = 0}
= λp.

Similarly, λ
(0,αn)
∗,p → λ∗,p as n → ∞. �

Lemma 3.4 For λ̃∗,p defined in (3), we have λ̃∗,p = λ∗,p. Furthermore,

λ̃p = λp = λ∗,p = λ̃∗,p.
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Proof On one hand, by definition, if βn+1 � βn, then λ
(0,βn)
∗,p � λ

(0,βn+1)∗,p . We
have thus obtained

lim
n→∞λ

(0,βn)
∗,p � λ

(0,D)
∗,p = λ̃∗,p.

On the other hand, by definition of λ̃∗,p, for any fixed ε > 0, there exists f
satisfying

‖f‖p = 1, f(D) = 0, Dp(f) � λ̃∗,p + ε.

Let βn ↑ D and fn = (f −f(βn))�[0,βn). Then Dp(fn) ↑ Dp(f) as n ↑ ∞. Choose
subsequence {nm}m�1 if necessary such that

lim
n→∞

Dp(fn)
‖fn‖p

p
= lim

m→∞
Dp(fnm)
‖fnm‖p

p
.

By Fatou’s lemma and the fact that f(D) = 0, we have

lim
m→∞

‖fnm‖p
p �

∥∥ lim
m→∞

fnm

∥∥p

p
= ‖f‖p

p = 1.

Therefore, we obtain

lim
n→∞λ

(0,βn)
∗,p � lim

n→∞
Dp(fn)
‖fn‖p

p

= lim
m→∞

Dp(fnm)
‖fnm‖p

p

� limm→∞ Dp(fnm)
limm→∞ ‖fnm‖p

p

� Dp(f)

� λ̃∗,p + ε.

Since limn→∞ λ
(0,βn)
∗,p = λ∗,p, we get λ̃∗,p = λ∗,p. Moreover,

λ̃p � λ̃∗,p = λ∗,p = λp � λ̃p,

and the required assertion holds. �

The following lemma, which serves for Lemma 3.6, presents us that {λ(0,α)
∗,p }

is strictly decreasing with respect to α.

Lemma 3.5 For α, β ∈ (0,D) with α < β, we have λ
(0,α)
∗,p > λ

(0,β)
∗,p .

Furthermore, λ
(0,βn)
∗,p ↓↓ λ∗,p as βn ↑↑ D.

Proof Let g (�= 0) be an a.e. eigenfunction of λ
(0,α)
∗,p . Then g′(0) = 0, g(α) = 0,

and Lpg = −λ
(0,α)
∗,p |g|p−2g on (0, α). Moreover,

λ
(0,α)
∗,p =

D0,α
p (g)

‖g‖p
Lp(0,α;μ)

, Dα,β
p (f) =

∫ β

α
|f ′|pdν
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(see arguments after formula (3)). By the proof of Lemma 3.3, the proof of
the first assertion will be done once we choose a function g̃ ∈ A [0, β] such that
g̃′(0) = 0, g̃(β) = 0, and

D0,α
p (g)

‖g‖p
Lp(0,α; μ)

>
D0,β

p (g̃)
‖g̃‖p

Lp(0,β; μ)

(� λ
(0,β)
∗,p ). (7)

To do so, without loss of generality, assume that g|(0,α) > 0 (see [12; Lemma
2.4]). Then the required assertion follows for

g̃(x) = (g + ε)�[0,α)(x) +
ε(β − x)
β − α

�[α,β](x), x ∈ [0, β],

once ε is sufficiently small. Actually, by simple calculation, we have

D0,β
p (g̃) = D0,α

p (g) +
εp

(β − α)p
ν(α, β),

‖g̃‖p
Lp(0,β;μ) = ‖g‖p

Lp(0,α;μ) +
∫ α

0
(|g + ε|p − |g|p)dμ +

∫ β

α

εp(β − x)p

(β − α)p
μ(dx).

Since

λ
(0,α)
∗,p =

D0,α
p (g)

‖g‖p
Lp(0,α;μ)

,

inequality (7) holds if and only if

εpν(α, β)
(β − α)p

<

(∫ α

0
(|g + ε|p − |g|p)dμ +

εp

(β − α)p

∫ β

α
(β − x)pμ(dx)

)
λ

(0,α)
∗,p .

It suffices to show that

εp−1

(β − α)p
ν(α, β) < λ

(0,α)
∗,p

(∫ α

0

|g(x) + ε|p − |g(x)|p
ε

μ(dx)
)

.

By letting ε → 0, the right-hand side is equal to

λ
(0,α)
∗,p

∫ α

0
pgp−1dμ,

which is positive. So the required inequality is obvious for sufficiently small ε
and the first assertion holds. The second assertion was proved at the end of the
proofs of Lemma 3.4. �

The following lemma is about the eigenfunction of λp, which is the basis of
the test functions used for the corresponding operators.

Lemma 3.6 Let g be the first eigenfunction of eigenvalue problem (1). Then
both g and g′ do not change sign. Moreover, if g > 0, then g′ < 0.
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Proof If there exists α ∈ (0,D) such that g(α) = 0, then λ
(0,α)
∗,p � λ∗,p by the

minimum property of λ
(0,α)
∗,p . However, by Lemma 3.5, we get λ

(0,α)
∗,p ↓↓ λ∗,p as

α ↑↑ D. This is a contradiction. So g does not change its sign. Next, consider
g′. By [12; Lemma 2.3], if there exists x ∈ (0,D) such that g′(x) = 0, then
∃x0 ∈ (0, x) such that g(x0) = 0, which is impossible by the strictly decreasing
property of λ

(0,α)
∗,p with respect to α. So the assertion holds. �

Before moving on, we introduce a general equation, non-linear ‘Poisson
equation’ as follows:

Lpg(x) = −u(x)|f |p−2f(x), x ∈ (0,D). (8)

Integration by parts yields that for x, y ∈ (0,D) with x < y,

v(x)|g′|p−2g′(x) − v(y)|g′|p−2g′(y) =
∫ y

x
|f |p−2fdμ. (9)

By replacing f with λp∗−1g, it is not hard to understand where the operator I
comes from. Moreover, if g is positive and decreasing, g′(0) = 0, then

g(y) − g(D) =
∫ D

y
v̂(x)

( ∫ x

0
|f |p−2fdμ

)p∗−1

dx, y ∈ (0,D). (10)

Replacing f with λp∗−1g, it is easy to see where the operator II comes from,
provided g(D) = 0 (which is affirmative by Proposition 3.7 below). Finally,
assume that (λp, g) is a solution to (1). Then λp = −Lpg/(|g|p−2gu). Hence, by
letting h = g′/g, we deduce the operator R from the eigenequation.

3.2 Proof of main results

Proofs of Theorem 2.1 and Proposition 2.2 We adopt the circle arguments
below to prove the lower estimates:

λp � λ̃p

� sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1

= sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1

= sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1

� sup
h∈H

inf
x∈(0,D)

R(h)(x)

� λp.

Step 1 Prove that

λp � λ̃p � sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1.
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It suffices to show the second inequality. For each fixed h > 0 and g ∈
C [0,D] with ‖g‖p = 1, g(D) = 0, and vp∗−1g′ ∈ C (0,D), we have∫ D

0
|gp|dμ =

∫ D

0

∣∣∣ ∫ D

x
g′(t)

(v(t)
h(t)

)1/p(h(t)
v(t)

)1/p
dt

∣∣∣pμ(dx)

�
∫ D

0

∫ D

x

v(t)
h(t)

|g′(t)|pdt

[∫ D

x

(h(s)
v(s)

)p∗−1
ds

]p−1

μ(dx)

(by Hölder’s inequality)

=
∫ D

0

v(t)
h(t)

|g′(t)|pdt

∫ t

0

[ ∫ D

x

(h(s)
v(s)

)p∗−1
ds

]p−1

μ(dx)

(by Fubini’s Theorem)
� Dp(g) sup

t∈(0,D)
H(t),

where

H(t) =
1

h(t)

∫ t

0

[ ∫ D

x

(h(s)
v(s)

)p∗−1
ds

]p−1

μ(dx).

For f ∈ FII with supx∈(0,D) II(f)(x) < ∞, let

h(t) =
∫ t

0
fp−1(s)u(s)ds.

Then h′ = fp−1u. By Cauchy’s mean-value theorem, we have

sup
x∈(0,D)

H(x) � sup
x∈(0,D)

II(f)(x).

Thus, λp � infx∈(0,D) II(f)(x)−1. The assertion then follows by making the
supremum with respect to f ∈ FII .

Step 2 Prove that

sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1 = sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1 = sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1.

(a) We prove the part ‘�’. Since FI ⊂ FII , it suffices to show that

sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1 � sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1

for f ∈ FI with supx∈(0,D) I(f) < ∞. Since f(D) � 0, by replacing f in

the denominator of II(f) with − ∫ D
· f ′(s)ds and using Cauchy’s mean-value

theorem, we have

sup
x∈(0,D)

II(f)(x) � sup
x∈(0,D)

I(f)(x) < ∞.
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So the assertion holds by making the supremum with respect to f ∈ FI .

(b) To prove the equality, it suffices to show that

sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1 � sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1.

For f ∈ FII , without loss of generality, assume that infx∈(0,D) II(f)(x)−1 > 0.
Let g = f [II(f)]p

∗−1. Then g ∈ FI . Moreover,

v(x)(−g′(x))p−1 =
∫ x

0
fp−1dμ �

∫ x

0
gp−1dμ inf

t∈(0,x)

fp−1(t)
gp−1(t)

,

i.e.,
I(g)(x)−1 � inf

x∈(0,D)
II(f)(x)−1.

Hence,

sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1 � inf
x∈(0,D)

I(g)(x)−1 � inf
x∈(0,D)

II(f)(x)−1

and the assertion holds since f ∈ FII is arbitrary.
Then there is another method to prove the equality: prove that

sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1 � λp.

Let g be an a.e. eigenfunction corresponding to λp. Then g is positive and
strictly decreasing. It is easy to check that g ∈ FI . By (9), we have

λp = inf
x∈(0,D)

I(g)(x)−1 � sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1.

Step 3 When u and v′ are continuous, we prove that

sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1 � sup
h∈H

inf
x∈(0,D)

R(h)(x).

First, we change the form of R(h). Let g with g(D) = 0 be a positive
function on [0,D) such that h = g′/g (see the arguments after Lemma 3.6).
Then

R(h) = −u−1{|h|p−2[v′h + (p − 1)v(h2 + h′)]} = − 1
ugp−1

Lpg.

Now, we turn to our main text. It suffices to show that

sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1 � inf
x∈(0,D)

R(h)(x) for every h ∈ H .
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Without loss of generality, assume that infx∈(0,D) R(h)(x) > 0, which implies
R(h) > 0 on (0,D). Let f = g(R(h))p

∗−1 (g is the function just specified).
Since u, v′ are continuous, we have f ∈ FII and

u(x)fp−1(x) = −Lpg(x), x ∈ (0,D).

Moreover, by (10), we have

g(y) − g(D) =
∫ D

y
v̂(x)

(∫ x

0
fp−1dμ

)p∗−1

dx.

So gp−1/fp−1 � II(f) on (0,D) and

inf
(0,D)

R(h) = inf
(0,D)

fp−1

gp−1
� inf

(0,D)
II(f)−1 � sup

f∈FII

inf
x∈(0,D)

II(f)(x)−1.

Hence, the required assertion holds.
Step 4 Prove that

sup
h∈H

inf
x∈(0,D)

R(h)(x) � λp

when u and v′ are continuous.
Note that

ν̂(x,D)
( ∫ x

0
fp−1dμ

)p∗−1

� fII(f)(x)p
∗−1 � ν̂(x,D)

( ∫ D

0
fp−1dμ

)p∗−1

.

If ν̂(0,D) < ∞, then choose f ∈ Lp−1(μ) to be a positive function such that
g = fII(f)p

∗−1 < ∞. Set h = g′/g. Then h ∈ H since u and v′ are continuous.
Moreover, Lpg = −ufp−1 and

R(h) = − 1
ugp−1

Lpg =
fp−1

gp−1
> 0.

If ν̂(0,D) = ∞, then set h = 0. So R(h) = 0. In other words, we always have

sup
h∈H

inf
x∈(0,D)

R(h)(x) � 0.

Without loss of generality, assume that λp > 0 and g is an eigenfunction of
λp, i.e.,

Lpg = −λpu|g|p−2g.

Let h = g′/g ∈ H . Then R(h) = λp and the assertion holds.
Step 5 Prove that the supremum in the lower estimates can be attained.

Since

0 = λp � inf
x∈(0,D)

II(f)(x)−1 � 0, 0 = λp � inf
x∈(0,D)

I(f)(x)−1 � 0
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for every f in the set defining λp, the assertion is clear for the case that λp =
0. Similarly, the conclusion holds for operator R as seen from the preceding
proof in Step 4. For the case that λp > 0, assume that g is an eigenfunction
corresponding to λp. Let h = g′/g ∈ H . Then R(h) = λp, I(g)−1 ≡ λp by
letting f = λp∗−1

p g in (9) and II(g)−1 ≡ λp by letting f = λp∗−1
p g in (10)

whenever g(D) = 0.
Now, it remains to show that the vanishing property of eigenfunction at D,

which is proved in the following proposition by using the variational formula
proved in Step 1 above.

Proposition 3.7 Let g be an a.e. eigenfunction of λp > 0. Then g(D) = 0.

Proof Let f = g − g(D). Then f ∈ FII . By (10), we have

f(x) = λp∗−1
p

∫ D

x
v̂(t)

(∫ t

0
gp−1dμ

)p∗−1

dt.

We prove the proposition by dividing it into two cases. Denote

M(x) =
∫ D

x
v̂(t)

(∫ t

0
dμ

)p∗−1

dt.

(a) If M(x) = ∞, then f(x) = g(x) − g(D) < ∞ and

λ1−p∗
p f(x) =

∫ D

x
v̂(t)

( ∫ t

0
gp−1dμ

)p∗−1

dt > g(D)M(x) = ∞

once g(D) �= 0. So there is a contradiction.
(b) If M(x) < ∞, then

fII(f)(x)p
∗−1 =

∫ D

x
v̂(t)

( ∫ t

0
(g − g(D))p−1dμ

)p∗−1

dt < g(0)M(0) < ∞.

Replacing f in the denominator of II(f) with this term and using Cauchy’s
mean-value theorem twice, we have

sup
(0,D)

II(f) � 1
λp

sup
(0,D)

fp−1

gp−1
=

1
λp

sup
x∈(0,D)

(
1 − g(D)

g(x)

)p−1

=
1
λp

(
1 − g(D)

g(0)

)p−1

.

The last equality comes from the fact that g ↓↓ . If g(D) > 0, then

λ−1
p � inf

f∈FII

sup
x∈(0,D)

II(f)(x) � sup
x∈(0,D)

II(f)(x) < λ−1
p ,

which is a contradiction. Therefore, we must have g(D) = 0. �
By now, we have finished the proof of the lower estimates of λp. Dually,

one can prove the upper estimates without too much difficulty. We ignore the
details here.
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The following lemma or its variants have been used many times before (cf.
[3; Proof of Theorem 3.1], [2; p. 97], or [7], and the earlier publications therein).
It is essentially an application of the integration by parts formula, and is a key
to the proof of Theorem 2.3.

Lemma 3.8 Assume that m and n are two non-negative locally integrable
functions. For p > 1, define

S(x) =
(∫ D

x
n(y)dy

)p−1

, M(x) =
∫ x

0
m(y)dy,

and
c0 = sup

x∈(0,D)
S(x)M(x) < ∞.

Then ∫ x

0
m(y)S(y)p

∗r/pdy � c0

1 − p∗r
p

S(x)(p
∗r/p)−1, r ∈

(
0,

p

p∗
)
.

Proof of Theorem 2.3 First, we prove that λp � (k(p)σp)−1. Fixing r ∈
(0, p/p∗), let f(x) = ν̂(x,D)p

∗r/p. Applying m(x) = u(x), n(x) = v̂(x) to
Lemma 3.8, we have

M(x) = μ(0, x), S(x) = ν̂(x,D)p−1, c0 = σp,

and ∫ x

0
ν̂(y,D)rμ(dy) � σp

1 − p∗r
p

ν̂(x,D)r−(p/p∗).

Since
|f ′|p−2f ′ = −

(p∗r
p

ν̂(·,D)(p
∗r/p)−1v̂(·)

)p−1
,

we have

sup
x∈(0,D)

I(f)(x) � [p/(p∗r)]p−1

1 − p∗r
p

σp. (11)

By Theorem 2.1 (i), (11), and an optimization with respect to r ∈ (0, p/p∗), we
obtain

λ−1
p �

(
sup

f∈FI

inf
x∈(0,D)

I(f)(x)−1
)−1 � pp∗p−1σp = k(p)σp.

Now, we prove that λp � σ−1
p . For fixed x0, x1 ∈ (0,D) with x0 < x1, let

f(x) = ν̂(x ∨ x0,D)�[0,x1)(x).

Then

I(f)(x) = ν̂(x0,D)p−1μ(0, x0) +
∫ x

x0

ν̂(t,D)p−1μ(dt), x ∈ (x0, x1),
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and I(f)(x) = ∞ on [0, x0] ∪ [x1,D] by convention 1/0 = ∞. Combining with
Theorem 2.1 (i), we have

λ−1
p � inf

x<x1

I(f)(x) = ν̂(x0,D)p−1μ(0, x0), x0 < x1.

Thereby the assertion that λp � σ−1
p follows by letting x1 → D. Since

μ(0, x)p
∗−1ν̂(x,D) �

∫ D

x
μ(0, s)p

∗−1v̂(s)ds �
∫ D

0
μ(0, s)p

∗−1v̂(s)ds,

the assertions hold. �
From the proof above, it is easy to understand why we choose the test

function as f = ν̂[·,D]1/p∗ in [5; Proof of Theorem 2.3 (a)] in the discrete case.

Proof of Theorem 2.4 Using Cauchy’s mean-value theorem and definitions of
δ′n, δn, δn, and λp, it is not hard to show the most of the results except that
δn+1 � δ′n. Put f = fx0,x1

n and g = fx0,x1
n+1 . Then g = fII(f)p

∗−1. By simple
calculation, we have

Dp(g) =
∫ x1

0
|g′|p−1 |g′|(x)v(x)dx =

∫ x1

0
v(x)−1

∫ x

0
fp−1dμ|g′(x)|v(x)dx.

Exchanging the order of the integrals, we have

Dp(g) = −
∫ x1

0
fp−1(t)μ(dt)

∫ x1

t
g′(x)dx (by Fubini’s Theorem)

�
∫ x1

0
fp−1(t)g(t)μ(dt) (since g(x1) � 0)

�
∫ x1

0
gpdμ sup

t∈(0,x1)

(f(t)
g(t)

)p−1

� μ(|g|p) sup
x∈(0,x1)

II(f)(x)−1.

So the required assertion holds. �
Proof of Corollary 2.5 (a) The calculation of δ1 is simple. We compute δ′1
first. Consider the term infx<x1 II(fx0,x1

1 )(x). By calculation, we obtain that
for x ∈ (x0, x1), the numerator of (II(fx0,x1

1 )(x)p
∗−1)′|x equals

v̂(x)
[ ∫ x1

x
v̂(s)

(∫ s

0
(fx0,x1

1 )p−1dμ

)p∗−1

ds − ν̂(x, x1)
( ∫ x

0
(fx0,x1

1 )p−1dμ

)p∗−1]
,

which is obviously non-negative. So

II(fx0,x1
1 )(x) =

[
1

ν̂(x, x1)

∫ x1

x
v̂(s)

(∫ s

0
ν̂(t ∨ x0, x1)p−1μ(dt)

)p∗−1

ds

]p−1
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is increasing in x ∈ (x0, x1). Hence,

δ′1 = sup
x0<x1

[
1

ν̂(x0, x1)

∫ x1

x0

v̂(s)
( ∫ s

0
ν̂(t ∨ x0, x1)p−1μ(dt)

)p∗−1

ds

]p−1

= sup
x0∈(0,D)

1
ν̂(x0,D)p−1

[ ∫ D

x0

v̂(s)
(∫ s

0
ν̂(t ∨ x0,D)p−1μ(dt)

)p∗−1

ds

]p−1

.

In the last equality, we have used the fact that II(fx0,x1
1 )(x0) is increasing in

x1 ∈ [x0,D]. Indeed, let

Nk(s, y) =
∫ s

x0

ν̂(t, y)kμ(dt), f(s, y) = v̂(s)Np−1(s, y)p
∗−1.

Then

II(f (x0,y)
1 )(x0)p

∗−1 =
1

ν̂(x0, y)

[ ∫ y

x0

f(s, y)ds +
∫ y

x0

v̂(s)ds

∫ x0

0
ν̂(x0, y)p−1μ(dt)

]
=

1
ν̂(x0, y)

∫ y

x0

f(s, y)ds + μ(0, x0)ν̂(x0, y)p−1

=: H1(y) + H2(y),

and

∂

∂y
Np−1(s, y) =

∫ s

x0

(p − 1)ν̂(t, y)p−2v̂(y)μ(dt) = (p − 1)v̂(y)Np−2(s, y),

∂

∂y
f(s, y) = (p∗ − 1)v̂(s)Np−1(s, y)p

∗−2 ∂

∂y
Np−1(s, y),

∂

∂y

∫ y

x0

f(s, y)ds =
∫ y

x0

∂

∂y
f(s, y)ds + f(y, y).

Hence, the numerator of dH1/dy equals(
∂

∂y

∫ y

x0

f(s, y)ds

)
ν̂(x0, y) − v̂(y)

∫ y

x0

f(s, y)ds

= ν̂(x0, y)v̂(y)
∫ y

x0

v̂(s)Np−1(s, y)p
∗−2Np−2(s, y)ds

+ ν̂(x0, y)f(y, y) − v̂(y)
∫ y

x0

f(s, y)ds

= v̂(y)
(

ν̂(x0, y)
∫ y

x0

v̂(s)Np−1(s, y)p
∗−2Np−2(s, y)ds

−
∫ y

x0

v̂(s)Np−1(s, y)p
∗−1ds

)
+ ν̂(x0, y)f(y, y).

Since
ν̂(x0, y)Np−2(s, y) − Np−1(s, y) � 0, s ∈ [x0, y],
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we see that dH1/dy is positive. It is obvious that dH2/dy is positive. So
II(fx0,y

1 )(x0) is increasing in y and the required assertion holds.

(b) Compute δ1. By definition of δ1, we have

‖fx0,x1
1 ‖p

p =
∫ x1

0

(∫ x1

x0∨x
v̂(s)ds

)p

μ(dx)

= μ(0, x0)ν̂(x0, x1)p +
∫ x1

x0

(∫ x1

x
v̂(t)dt

)p

μ(dx),

Dp(f
x0,x1
1 ) =

∫ x1

x0

v̂(t)pv(t)dt = ν̂(x0, x1).

Hence,

δ1 = sup
x0<x1

(
μ(0, x0)ν̂(x0, x1)p−1 +

1
ν̂(x0, x1)

∫ x1

x0

ν̂(s, x1)pμ(ds)
)

= sup
x0∈(0,D)

(
μ(0, x0)ν̂(x0,D)p−1 +

1
ν̂(x0,D)

∫ D

x0

ν̂(s,D)pμ(ds)
)

.

In the second equality, we have used the fact that

μ(0, x0)ν̂(x0, x1)p−1 +
1

ν̂(x0, x1)

∫ x1

x0

ν̂(s, x1)pμ(ds) ↑ in x1.

Indeed, it suffices to show that

1
ν̂(x0, x)

∫ x

x0

ν̂(s, x)pμ(ds) � 1
ν̂(x0, y)

∫ y

x0

ν̂(s, y)pμ(ds), x0 � x < y,

which is equivalent to

1
ν̂(x0, y)

∫ y

x
ν̂(s, y)pμ(ds) +

∫ x

x0

( ν̂(s, y)p

ν̂(x0, y)
− ν̂(s, x)p

ν̂(x0, x)

)
μ(ds) � 0.

Since p > 1 and ν̂(t, x) � ν̂(x0, x) for x � t � x0, we have

ν̂(t, y)p

ν̂(t, x)p
=

[ ν̂(t, x) + ν̂(x, y)
ν̂(t, x)

]p
� 1 +

ν̂(x, y)
ν̂(t, x)

� 1 +
ν̂(x, y)
ν̂(x0, x)

=
ν̂(x0, y)
ν̂(x0, x)

for t � x0 and the required assertion holds.
(c) Comparing δ′1 and δ1. It is easy to see that∫ D

x
ν̂(·,D)pdμ =

∫ D

x
ν̂(t,D)p−1

∫ D

t
v̂(s)dsμ(dt)

=
∫ D

x
v̂(s)

∫ s

x
ν̂(t,D)p−1μ(dt)ds,
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μ(0, x)ν̂(x,D)p =
∫ D

x
v̂(s)

∫ x

0
ν̂(x,D)p−1μ(dt)ds.

Let ax(s) = v̂(s)
/
ν̂(x,D) for s ∈ (x,D). Noticing that ax is a probability

on (x,D), by the increasing property of moments E(|X|s)1/s in s > 0 and
combining the preceding assertions (a) and (b), we have

δ1 = sup
x∈(0,D)

∫ D

x
ax(s)

∫ s

0
ν̂(t ∨ x,D)p−1μ(dt)ds

� sup
x∈(0,D)

[ ∫ D

x
ax(s)

( ∫ s

0
ν̂(t ∨ x,D)p−1μ(dt)

)p∗−1

ds

]p−1

(if p∗ − 1 > 1)

= δ′1.

Similarly, if p∗ − 1 < 1 (i.e., p > 2), then δ1 � δ′1.
(d) Prove that δ1 � pσp. Using the integration by parts formula, we have∫ x

x0

ν̂(y,D)pμ(dy) = ν̂(y,D)pμ(0, y)|xx0
+ p

∫ x

x0

ν̂(y,D)p−1v̂(y)μ(0, y)dy

� σpν̂(x,D) − ν̂(x0,D)pμ(0, x0) + pσp

∫ x

x0

v̂(y)dy.

Since ν̂(x,D) < ∞, letting x → D, we have

δ1 = sup
x0∈(0,D)

(
μ(0, x0)ν̂(x0,D)p−1 +

1
ν̂(x0,D)

∫ D

x0

ν̂(·,D)pdμ

)
� sup

x0∈(0,D)

[
μ(0, x0)ν̂(x0,D)p−1

+
1

ν̂(x0,D)

(
− ν̂(x0,D)pμ(0, x0) + pσp

∫ D

x0

v̂(y)dy

)]
= pσp,

and the required assertion holds. �

4 DN-case

From now on, we concern on p -Laplacian eigenvalue with DN-boundaries. We
use the same notation as the previous ND-case since they play the similar role
but have different meaning in different context. Let D � ∞, p > 1. The p -
Laplacian eigenvalue problem with DN-boundary conditions is{

Eigenequation : Lpg(x) = −λu(x)|g|p−2g(x);

DN-boundaries: g(0) = 0, g′(D) = 0 if D < ∞.
(12)
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The first eigenvalue λp has the following classical variational formula:

λp = inf
{ Dp(f)

μ(|f |p) : f(0) = 0, f �= 0, f ∈ C [0,D],

vp∗−1f ′ ∈ C (0,D), Dp(f) < ∞
}

. (13)

Correspondingly, we are also estimating the optimal constant A := λ−1
p in the

weighted Hardy inequality:

μ(|f |p) � ADp(f), f(0) = 0, f ∈ D(Dp).

For p > 1, define v̂ = v1−p∗ and ν̂(dx) = v̂(x)dx. We use the following operators:

I(f)(x) =
1

(vf ′|f ′|p−2)(x)

∫ D

x
fp−1dμ (single integral form),

II(f)(x) =
1

fp−1(x)

[ ∫ x

0
v̂(s)

(∫ D

s
fp−1dμ

)p∗−1

ds

]p−1

(double integral form),

R(h)(x) = −u−1{|h|p−2[v′h + (p − 1)v(h2 + h′)]}(x) (differential form).

The three operators above have domains, respectively, as follows:

FI = {f ∈ C [0,D] : vp∗−1f ′ ∈ C (0,D), f(0) = 0 and f ′|(0,D) > 0},
FII = {f : f ∈ C [0,D], f(0) = 0 and f |(0,D) > 0},

H =
{

h : h ∈ C 1(0,D) ∩ C [0,D], h|(0,D) > 0 and
∫

0+
h(u)du = ∞

}
,

where
∫
0+ means

∫ ε
0 for sufficiently small ε > 0. Some modifications are needed

when studying the upper estimates:

F̃I = {f ∈ C [0, x0] : f(0) = 0, vp∗−1f ′ ∈ C (0, x0), f ′|(0,x0) > 0

for some x0 ∈ (0,D), and f = f(· ∧ x0)},
F̃II = {f : f(0) = 0,∃x0 ∈ (0,D) such that f = f(· ∧ x0) > 0

and f ∈ C [0, x0]},
H̃ =

{
h : ∃x0 ∈ (0,D) such that h ∈ C [0, x0] ∩ C 1(0, x0), h|(0,x0) > 0,

h|[x0,D] = 0,
∫

0+
h(u)du = ∞, and sup

(0,x0)
[v′h + (p − 1)(h2 + h′)v] < 0

}
.

When D = ∞, replace [0,D] and (0,D] with [0,D) and (0,D), respectively.
Besides, we also need the following notation:

F̃ ′
II = {f : f(0) = 0, f ∈ C [0,D] and fII(f) ∈ Lp(μ)}.
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If μ(0,D) = ∞, then λp defined by (13) is trivial. Indeed, let

f = �(δ, D] + h�[0,δ],

where h is chosen such that h(0) = 0 and f ∈ C 1(0,D) ∩C [0,D] (for example,
h(x) = −x2 · δ−2 + 2x · δ−1). Then Dp(f) ∈ (0,∞) and μ(|f |p) = ∞. It follows
that λp = 0.

Otherwise, μ(0,D) < ∞. Then for every f with μ(|f |p) = ∞, by setting

f (x0) = f(· ∧ x0) ∈ Lp(μ),

we have

∞ > D(f (x0)) → D(f), ∞ > μ(|f (x0)|p) → μ(|f |p) as x0 → D.

In other words, for f /∈ Lp(μ), both μ(|f |p) and Dp(f) can be approximated by
a sequence of functions belonging to Lp(μ). Hence, we can rewrite λp as follows:

λp = inf{Dp(f) : μ(|f |p) = 1, f(0) = 0, and f ∈ C 1(0,D) ∩ C [0,D]}. (14)

In this case, we also have

λp = inf{Dp(f) : μ(|f |p) = 1, f(0) = 0, f = f(· ∧ x0),

f ∈ C 1(0, x0) ∩ C [0, x0] for some x0 ∈ (0,D)}.
We are now ready to state the main results in the present context.

Theorem 4.1 Assume that μ(0,D) < ∞. For p > 1, the following variational
formulas hold for λp defined by (14) (equivalently, (13)) :

(i) single integral forms:

inf
f∈F̃I

sup
x∈(0,D)

I(f)(x)−1 = λp = sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1;

(ii) double integral forms:

λp = inf
f∈F̃I

sup
x∈(0,D)

II(f)(x)−1 = inf
f∈F̃II∪F̃ ′

II

sup
x∈(0,D)

II(f)(x)−1,

λp = sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1 = sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1.

Moreover, if u and v′ are continuous, then we have additionally
(iii) differential forms:

inf
h∈H̃

sup
x∈(0,D)

R(h)(x) = λp = sup
h∈H

inf
x∈(0,D)

R(h)(x).

Define
k(p) = pp∗p−1, σp = sup

x∈(0,D)
μ(x,D)ν̂(0, x)p−1.
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As an application of the variational formulas in Theorem 4.1 (i), we have the
following theorem which was also known in 1990s (cf. [11; Lemmas 3.2, 3.4]).

Theorem 4.2 (Criterion and basic estimates) For p > 1, λp > 0 if and only
if σp < ∞. Moreover,

(k(p)σp)−1 � λp � σ−1
p .

In particular, we have λp = 0 if μ(0,D) = ∞ and λp > 0 if∫ D

0
μ(s,D)p

∗−1ν̂(ds) < ∞.

The next result is an application of the variational formulas in Theorem
4.1 (ii).

Theorem 4.3 (Approximating procedure) Assume that μ(0,D) < ∞ and
σp < ∞.

(i) Let

f1 = ν̂(0, ·)1/p∗ , fn+1 = fnII(fn)p
∗−1, δn = sup

x∈(0,D)
II(fn)(x), n � 1.

Then δn is decreasing in n and

λp � δ−1
n � (k(p)σp)−1.

(ii) For fixed x0 ∈ (0,D), let

f
(x0)
1 = ν̂(0, · ∧ x0), f (x0)

n = f
(x0)
n−1II

(
f

(x0)
n−1

)
(· ∧ x0)p

∗−1,

δ′n = sup
x0∈(0,D)

inf
x∈(0,D)

II
(
f (x0)

n

)
(x), n � 1.

Then δ′n is increasing in n and

σ−1
p � δ′n

−1 � λp.

Moreover, define

δn = sup
x0∈(0,D)

‖f (x0)
n ‖p

p

Dp(f
(x0)
n )

, n � 1.

Then
δ
−1
n � λp, δn+1 � δ′n, n � 1.

Most of the results in Corollary 4.4 below can be obtained directly from
Theorem 4.3.

Corollary 4.4 (Improved estimates) Assume that μ(0,D) < ∞ and λp > 0.
We have

σ−1
p � δ′−1

1 � λp � δ−1
1 � (k(p)σp)−1,
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where

δ1 = sup
x∈(0,D)

[
1

ν̂(0, x)1/p∗

∫ x

0
v̂(s)

(∫ D

s
ν̂(0, t)p/p∗2

μ(dt)
)p∗−1

ds

]p−1

,

δ′1 = sup
x∈(0,D)

1
ν̂(0, x)p−1

[ ∫ x

0
v̂(s)

(∫ D

s
ν̂(0, t ∧ x)p−1μ(dt)

)p∗−1

ds

]p−1

.

Moreover,

δ1 = sup
x∈(0,D)

(
μ(x,D)ν̂(0, x)p−1 +

1
ν̂(0, x)

∫ x

0
ν̂(0, t)pμ(dt)

)
∈ [σp, pσp],

δ1 � δ1 for p � 2 and δ1 � δ′1 for 1 < p � 2.

When p = 2, the equality δ1 = δ1 was proved in [4; Theorem 6].
Most of the results in this section are parallel to that in Section 2. One

may follow Section 3 or [4,7] to complete the proofs without too many
difficulties. The details are omitted here. Instead, we prove some properties
of the eigenfunction g, which are used in choosing the test functions for the
operators.

Lemma 4.5 Let (λp, g) be a solution to (12), g �= 0. Then g′ does not change
sign, and so does g.

Proof First, the solution provided by Lemma 3.1 is trivial: g = 0, if the given
constants A and B are zero. Because we are in the situation that g(0) = 0,
we can assume that g′(0) �= 0. Next, we prove that g′ dose not change sign by
seeking a contradiction. If there exists x0 ∈ (0,D) such that g′(x0) = 0, then
g(x0) �= 0 by [12; Lemma 2.3]. Let

g = g�[0,x0] + g(x0)�(x0,D].

By simple calculation, we obtain

Dp(g) = (−Lpg, g)μ = λpμ0,x0(|g|p).
So

λp � Dp(g)
μ(|g|p) =

λpμ0,x0(|g|p)
μ0,x0(|g|p) + μ(x0,D)|g(x0)|p < λp,

which is a contradiction. Therefore, g′ does not change sign. Since g(0) = 0,
the second assertion holds naturally. �
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