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Abstract This paper deals with the principal eigenvalue of discrete p-Laplacian
on the set of nonnegative integers. Alternatively, it is studying the optimal
constant of a class of weighted Hardy inequalities. The main goal is the
quantitative estimates of the eigenvalue. The paper begins with the case having
reflecting boundary at origin and absorbing boundary at infinity. Several
variational formulas are presented in different formulation: the difference
form, the single summation form, and the double summation form. As their
applications, some explicit lower and upper estimates, a criterion for positivity
(which was known years ago), as well as an approximating procedure for the
eigenvalue are obtained. Similarly, the dual case having absorbing boundary
at origin and reflecting boundary at infinity is also studied. Two examples are
presented at the end of Section 2 to illustrate the value of the investigation.
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1 Introduction

In the past years, we have been interested in various aspects of stability
speed, such as exponentially ergodic rate, exponential decay rate, algebraic
convergence speed, exponential convergence speeds. The convergence speeds
are often described by principal eigenvalues or the optimal constants in
different types of inequalities. Having a great effort on the L2-case (refer to
[1–4] and references therein), we now come to a more general setup, studying the
nonlinear p-Laplacian, especially on the discrete space E := {0, 1, · · · , N} (N �
+∞) in this paper. This is a typical topic in harmonic analysis (cf. [8]). The
method adopted in this paper is analytic rather than probabilistic. Let us
presume that N < +∞ for a moment. Following the classification given in
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[4,6], where p = 2 was treated, we have four types of boundary conditions: DD,
DN, ND, and NN, according to Dirichlet (code ‘D’) or Neumann (code ‘N’)
boundary at each of the endpoints. For instance, the Neumann condition at
the right endpoint means that fN+1 = fN . For Dirichlet condition, it means
that fN+1 = 0. In the continuous context, the DN-case was partially studied
in [7] by Jin and Mao. For the NN- and DD-cases, one may refer to [5]. Based
on [4,6], here, we study the mixed eigenvalues (i.e., the ND- and DN-cases) of
discrete p-Laplacian. Certainly, the above classification of the boundaries for
p-Laplacian remains meaningful even if N = +∞.

This paper is organized as follows. In Section 2, we study the ND-case.
First, we introduce three groups of variational formulas for the eigenvalue. As
a consequence, we obtain the basic estimates (i.e., the ratio of the upper and
the lower bounds is a constant) of the eigenvalue. Furthermore, an approximat-
ing procedure and some improved estimates are presented. Except the basic
estimates, when p �= 2, the other results seem to be new. To illustrate the
power of our main results, two examples are included at the end of Section 2.
Usually, the nonlinear case (here, it means p �= 2) is much harder than the
linear one (p = 2). We are lucky in the present situation since most of ideas
developed in [4] are still suitable in the present general setup. This saves us
a lot of spaces. Thus, we do not need to publish all details, but emphasize
some key points and the difference to [4]. The sketched proofs are presented in
Section 3. In Section 4, the corresponding results for the DN-case are presented.

2 ND-case

Throughout the paper, denoted by CK the set of functions having compact
support. In this section, let E = {i : 0 � i < N + 1} (N � +∞). The discrete
p-Laplacian is defined as follows:

Ωpf(k) = νk|fk − fk+1|p−2(fk+1 − fk)− νk−1|fk−1 − fk|p−2(fk − fk−1), p > 1,

where {νk : k ∈ E} is a positive sequence with boundary condition ν−1 = 0
(and f−1 = f0). Alternatively, we may rewrite Ωp as

Ωpf(k) = νk|fk − fk+1|p−1sgn(fk+1 − fk) − νk−1|fk−1 − fk|p−1sgn(fk − fk−1),

especially when p ∈ (1, 2). Then we have the following discrete version of the
p-Laplacian eigenvalue problem with ND-boundary conditions:

‘Eigenequation’: Ωpg(k) = −λμk|gk|p−2gk, k ∈ E; (1)

ND-boundary conditions: 0 �= g0 = g−1 and gN+1 = 0 if N < +∞. (2)

If (λ, g) is a solution to the eigenvalue problem, then λ is called an ‘eigenvalue’
and g is its eigenfunction. Especially, when p = 2, the first (or principal)
eigenvalue corresponds to the exponential decay rate for birth-death process on
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half line, where {μk} is just the invariant measure of the birth-death process
and {νk} is a quantity related to the recurrence criterion of the process
([4; Sections 2 and 3]).

Define
Dp(f) =

∑
k∈E

νk|fk − fk+1|p, p � 1, f ∈ CK,

and the ordinary inner product

(f, g) =
∑
k∈E

fkgk.

Then we have
Dp(f) = (−Ωpf, f).

Actually,

(−Ωpf, f) =
N∑

k=0

νkfk|fk − fk+1|p−2(fk − fk+1)

+
N∑

k=0

νk−1fk|fk − fk−1|p−2(fk − fk−1).

Since ν−1 = 0, one may rewrite the second term as
∑N

k=1 and then as
∑N−1

k=0
by a change of the index. Combining the resulting sum with the first one, we
get

(−Ωpf, f) =
N−1∑
k=0

νk|fk − fk+1|p−2(fk − fk+1)2 + νN |fN |p

=
∑
k∈E

νk|fk − fk+1|p (since fN+1 = 0).

In this section, we are interested in the principal eigenvalue defined by the
following classical variational formula:

λp = inf{Dp(f) : μ(|f |p) = 1, f ∈ CK}, (3)

where μ(f) =
∑

k∈E μkfk. We mention that the Neumann boundary at left
endpoint is described by f0 = f−1 or ν−1 = 0. The Dirichlet boundary condition
at right endpoint is described by fN+1 = 0 if N < +∞. Actually, the condition
also holds even if N = +∞ (fN := limi→N fi provided N = +∞) as will be
proved in Proposition 3.4 below. Formula (3) can be rewritten as the following
weighted Hardy inequality:

μ(|f |p) � ADp(f), f ∈ CK ,

with optimal constant A = λ−1
p . This explains the relationship between the

p-Laplacian eigenvalue and the Hardy’s inequality. Throughout this paper, we
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concentrate on p ∈ (1,+∞) since the degenerated cases that p = 1 or +∞ are
often easier (cf. [11; Lemmas 5.4, 5.6]).

2.1 Main results

To state our main results, we need some notations. For p > 1, let p∗ be its
conjugate number (i.e., 1

p + 1
p∗ = 1). Define ν̂j = ν1−p∗

j and three operators
which are parallel to those introduced in [4], as follows:

Ii(f) =
1

νi(fi − fi+1)p−1

i∑
j=0

μjf
p−1
j (single summation form),

IIi(f) =
1

fp−1
i

[ ∑
j∈supp(f)∩[i,N ]

ν̂j

( j∑
k=0

μkf
p−1
k

)p∗−1]p−1

(double summation form),

Ri(w) = μ−1
i [νi(1 − wi)p−1 − νi−1(w−1

i−1 − 1)p−1] (difference form).

We make a convention that w−1 > 0 is free and wN = 0 if N < +∞. For the
lower estimates to be studied below, their domains are defined, respectively, as
follows:

FI = {f : f > 0 and f is strictly decreasing},
FII = {f : f > 0 on E},
W =

{
w : wi ∈ (0, 1) if

∑
j∈E

ν̂j < +∞ and wi ∈ (0, 1] if
∑
j∈E

ν̂j = +∞
}

.

For the upper estimates, some modifications are needed to avoid the non-
summable problem:

F̃I = {f : f is strictly decreasing on some [n,m],
0 � n < m < N + 1, f· = f·∨n�.�m},

F̃II = {f : fi > 0 up to some m ∈ [1, N + 1) and then vanishes},
W̃ = {w : ∃m ∈ [1, N + 1) such that wi > 0 up to m − 1, wm = 0,

wi < 1 − (νi−1/νi)p−1(w−1
i−1 − 1) for i = 0, 1, . . . ,m}.

In some extent, these functions are imitated of eigenfunction corresponding to
λp. Each part of Theorem 2.1 below plays a different role in our study. Operator
I is used to deduce the basic estimates (Theorem 2.3) and operator II is a tool
to produce our approximating procedure (Theorem 2.4). In comparing with
these two operators, the operator R is easier in the computation. Noting that
for each f ∈ FI , the term infi∈E Ii(f)−1 given in part (i) below is a lower
bound of λp, it indicates that the formulas on the right-hand side of each term
in Theorem 2.1 are mainly used for the lower estimates. Similarly, the formulas
on the left-hand side are used for the upper estimates.
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Theorem 2.1 For λp (p > 1), we have
(i) single summation forms:

inf
f∈F̃I

sup
i∈E

Ii(f)−1 = λp = sup
f∈FI

inf
i∈E

Ii(f)−1;

(ii) double summation forms:

inf
f∈F̃II

sup
i∈supp(f)

IIi(f)−1 = λp = sup
f∈FII

inf
i∈E

IIi(f)−1;

(iii) difference forms:

inf
w∈W̃

sup
i∈E

Ri(w) = λp = sup
w∈W

inf
i∈E

Ri(w).

Moreover, the supremum on the right-hand sides of the three above formulas
can be attained.

The next proposition adds some additional sets of test functions for
operators I and II. For simplicity, in what follows, we use ↓ (resp. ↓↓) to denote
decreasing (resp. strictly decreasing). In parallel, we also use the notation ↑ and
↑↑ .

Proposition 2.2 For λp (p > 1), we have

inf
f∈F̃I

sup
i∈supp(f)

IIi(f)−1 = λp = sup
f∈FI

inf
i∈E

IIi(f)−1,

λp = inf
f∈F̃ ′

II∪F̃II

sup
i∈supp(f)

IIi(f)−1 = inf
f∈F̃ ′

I

sup
i∈E

Ii(f)−1,

where

F̃ ′
I = {f : f ↓↓, f is positive up to some m ∈ [1, N + 1), then vanishes} ⊂ F̃I ,

F̃ ′
II = {f : f > 0 and fII(f)p

∗−1 ∈ Lp(μ)}.
Throughout the paper, we write μ̃[m,n] =

∑n
j=m μ̃j for a measure μ̃ and

define k(p) = pp∗p−1 (Fig. 1). Next, define

10 20 30 40

1.4

1.6

1.8

2.0

Fig. 1 Function p → k(p)1/p is unimodal with maximum 2 at p = 2
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σp = sup
n∈E

(μ[0, n] ν̂[n,N ]p−1).

Applying f = ν̂[·,D]r(p−1) (r = 1/2 or 1) to Theorem 2.1 (i), we obtain the
basic estimates given in Theorem 2.3 below. This result was known in 1990s
(cf. [8; Theorem 7]). See also [10].

Theorem 2.3 (Basic estimates) For p > 1, we have λp > 0 if and only if
σp < +∞. More precisely,

(k(p)σp)−1 � λp � σ−1
p .

In particular, when N = +∞, we have

λp

⎧⎪⎪⎨⎪⎪⎩
= 0, ν̂[1,+∞) = +∞,

> 0,
+∞∑
k=0

ν̂kμ[0, k]p
∗−1 < +∞.

As an application of variational formulas in Theorem 2.1 (ii), we obtain an
approximating procedure in the next theorem. This approach can improve the
above basic estimates step by step. Noticing that λp is trivial once σp = +∞ by
Theorem 2.3, we may assume that σp < +∞ in the study on the approximating
procedure.

Theorem 2.4 (Approximating procedure) Assume that σp < +∞. Let p > 1.
(i) When ν̂[0, N ] < +∞, define

f1 = ν̂[·, N ]1/p∗ , fn = fn−1II(fn−1)p
∗−1 (n � 2), δn = sup

i∈E
IIi(fn).

Otherwise, define δn = +∞. Then δn is decreasing in n (denote its limit by δ∞)
and

λp � δ−1
∞ � · · · � δ−1

1 � (k(p)σp)−1.

(ii) For fixed �,m ∈ E, � < m, define

f
(�,m)
1 = ν̂[· ∨ �,m]��m, f (�,m)

n = f
(�,m)
n−1 (II(f (�,m)

n−1 ))p
∗−1

��m (n � 2),

where ��m is the indicator of the set {0, 1, . . . ,m} and then define

δ′n = sup
�,m : �<m

min
i�m

IIi(f (�,m)
n ).

Then δ′n is increasing in n (denote its limit by δ′∞) and

σ−1
p � δ′−1

1 � · · · � δ′−1
∞ � λp.

Next, define

δn = sup
�,m : �<m

μ(|f (�,m)
n |p)

Dp(f
(�,m)
n )

, n � 1.
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Then δ
−1
n � λp and δn+1 � δ′n for n � 1.

The next result is a consequence of Theorem 2.4.

Corollary 2.5 (Improved estimates) For p > 1, we have

σ−1
p � δ′−1

1 � λp � δ−1
1 � (k(p)σp)−1,

where

δ1 = sup
i∈E

[
1

ν̂[i,N ]1/p∗

N∑
j=i

ν̂j

( j∑
k=0

μkν̂[k,N ](p−1)/p∗
)p∗−1]p−1

,

δ′1 = sup
�∈E

1
ν̂[�,N ]p−1

[ N∑
j=�

ν̂j

( j∑
k=0

μkν̂[k ∨ �,N ]p−1

)p∗−1]p−1

.

Moreover,

δ1 = sup
m∈E

1
ν̂[m,N ]

N∑
j=0

μj ν̂[j ∨ m,N ]p ∈ [σp, pσp],

and δ1 � δ′1 for 1 < p � 2, δ1 � δ′1 for p � 2.

An remarkable point of Corollary 2.5 is its last assertion which is comparable
with the known result that δ1 = δ′1 when p = 2 (cf. [4; Theorem 3.2]). This
indicates that some additional work is necessary for general p than the specific
one p = 2.

2.2 Examples

In the worst case that p = 2 (cf. Fig. 1), the ratio k1/p(p) of the upper and
lower estimates is no more than 2 which can be improved (no more than

√
2 ) by

the improved estimates as shown by a large number of examples (cf. [4]). The
same conclusion should also be true for general p as shown by two examples
below. Actually, the effectiveness of the improved bounds δ1 and δ1 shown by
the examples is quite unexpected.

Example 2.6 Assume that E = {0, 1, . . . , N}, a > 0, and r > 1. Let μk = rk,
νk = ark+1 for k ∈ E. Then

σp =
r

a(r − 1)(rp∗−1 − 1)p−1
,

δ1 =
1

ar(r1/p − 1)
sup
i∈E

{ N∑
j=i

(ri−j+[(j−i+1)/p] − ri−j−(i/p))p
∗−1

}p−1

,

δ1 =
rp∗ − 1

a(rp∗−1 − 1)p(r − 1)
,

δ′1 =
1
ar

sup
�∈E

{ N∑
j=�

( r�+1 − 1
rj(r − 1)

+ (j − �)r�−j
)p∗−1

}p−1

.

The improved estimates given in Corollary 2.5 are shown in Figure 2.
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Fig. 2 Let N = 80, a = 1, r = 20, and let p vary over (1.001, 30.001) avoiding the
singularity at p = 1. Viewing from right-hand side, curves from top to bottom are

(k(p)σp)
1/p, δ1

1/p, δ
1/p
1 , δ′1

1/p
, and σ

1/p
p , respectively. Note that lower bounds

δ
1/p
1 and δ′1

1/p
of λ

−1/p
p are nearly overlapped.

The ratio between δ1 and δ′1 (or δ1) is obvious smaller than the basic
estimates k(p) obtained in Theorem 2.3. When p = 2, δ1 = δ′1 which is known
as just mentioned.

Example 2.7 Assume that E = {0, 1, . . . , N}, N < +∞. Let μk = 1 and
νk = 1 for k ∈ E. Then

σp = sup
n∈E

[
(n + 1)(N − n + 1)p−1

]
,

δ1 = sup
i∈E

[
1

(N − i + 1)(p−1)/p

N∑
j=i

( j∑
k=0

(N − k + 1)(p−1)/p∗
)p∗−1]p−1

,

δ1 = sup
m∈E

(
m(N − m + 1)p−1 +

1
N − m + 1

N∑
j=m

(N − j + 1)p
)

,

δ′1 = sup
�∈E

{
1

N − � + 1

N∑
j=�

[
�(N − � + 1)p−1 +

j∑
k=�

(N − k + 1)p−1

]p∗−1}p−1

.

Surprisingly, the improved estimates δ1, δ′1, and δ1 are nearly overlapped as
shown in Figure 3.

3 Proofs of main results in Section 2

This section is organized as follows. Some preparations are collected in
Subsection 3.1. The preparations may not be needed completely for our proofs
here, but they are useful for the study in a more general setup. The proofs of
the main results are presented in Subsection 3.2.
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Fig. 3 Let N = 40, and let p vary over (1.0175, 30.0175) avoiding singularity at p = 1.

Viewing from right-hand side, curves from top to bottom are again (k(p)σp)
1/p, δ1

1/p, δ
1/p
1 ,

δ′1
1/p

, and σ
1/p
p , respectively. Note that δ

1/p
1 and δ′1

1/p
(lower bounds of λ

−1/p
p ), as well as

δ1
1/p (upper bound) are nearly overlapped, except in a small neighborhood of p = 2.

For this example, exact λp is unknown except that λp = sin2 π
2(N+2)

when p = 2.

3.1 Some preparations

A large part of the results stated in Section 2 depend on the properties of the
eigenfunction g of λp. The goal of this subsection is studying these properties.

Define an operator

Ωpf(k) = Ωpf(k) − μkdk|fk|p−2fk, k ∈ E, p > 1,

where {dk}k∈E is a fixed nonnegative sequence. Then there is an extended
equation of (1):

Ωpf(k) = −λμk|fk|p−2fk, k ∈ E, (4)

which coincides with equation (1) for λ = λ if dk = 0 for every k ∈ E.

Proposition 3.1 Define

Dp(f) = Dp(f) +
∑
k∈E

dkμk|fk|p, f ∈ CK .

Let

λ = inf{Dp(f) : μ(|f |p) = 1, f ∈ CK and fN+1 = 0 if N < +∞}. (5)

Then the solution, say g, to equation (4) with ND-boundaries is either positive
or negative. In particular, the assertion holds for the eigenfunction of λp.

Proof Since g−1 = g0, by making summation from 0 to i ∈ E with respect to
k on both sides of (4), we get

νi|gi − gi+1|p−2(gi − gi+1) =
i∑

k=0

(λ − dk)μk|gk|p−2gk, i ∈ E. (6)
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If λ = 0, then the assertion is obvious by (6) and induction. If λ > 0, then
g0 �= 0 (otherwise, g ≡ 0). Without loss of generality, assume that g0 = 1 (if
not, replace g with g/g0). Suppose that there exists k0, 1 � k0 < N, such that
gi > 0 for i < k0 and gk0 � 0. Let

fi = gi�i<k0 + ε�i=k0

for some 0 < ε < gk0−1. Then f belongs to the setting defining λ (cf. (5)). Since
gk0 � 0 < ε < gk0−1 and |ε − gk0−1| < |gk0 − gk0−1|, we have

Ωpf(k0 − 1) = Ωpg(k0 − 1) + νk0−1|gk0−1 − gk0 |p−2(gk0−1 − gk0)

− νk0−1|ε − gk0−1|p−2(gk0−1 − ε)

� Ωpg(k0 − 1) − νk0−1|ε − gk0−1|p−2[(gk0−1 − ε) − (gk0−1 − gk0)]

= Ωpg(k0 − 1) − νk0−1(gk0−1 − ε)p−2(gk0 − ε)

> Ωpg(k0 − 1),

Ωpf(k0) = −νk0ε
p−1 + νk0−1|gk0−1 − ε|p−2(gk0−1 − ε) − μk0dk0ε

p−1.

Hence,

Dp(f) = (−Ωpf, f)

= −
k0−2∑
i=0

fiΩpf(i) − fk0−1Ωpf(k0 − 1) − εΩpf(k0)

< −
k0−2∑
i=0

giΩpg(i) − gk0−1Ωpg(k0 − 1) − εΩpf(k0)

= λ

k0−1∑
i=0

μi|gi|p−2g2
i + ε[(νk0 + μk0dk0)ε

p−1 − νk0−1(gk0−1 − ε)p−1].

In the second equality, we have used the fact that

νi|gi − gi+1|p−2(gi − gi+1)gi =
i∑

k=0

(λ − dk)μk|gk|p −
i−1∑
k=0

νk|gk − gk+1|p,

i ∈ E, (7)

which can be obtained from (4), by a computation similar to that of (−Ωpf, f)
given above (3). Noticing that

μ(|f |p) =
k0−1∑
i=0

μi|gi|p−2g2
i + μk0ε

p

and
νk0 + μk0dk0 − λμk0 < νk0−1

(gk0−1

ε
− 1

)p−1
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for small enough ε, we obtain a contradiction to (5):

Dp(f)
μ(|f |p) < λ � Dp(f)

μ(|f |p) .

This proves the first assertion and then the second one is obvious. �
Before moving further, we introduce an equation which is somehow more

general than eigenequation:

Poisson equation: Ωpg(k) = −μk|fk|p−2fk. (8)

By putting f = λp∗−1
p g, we return to eigenequation. From (8), for i, j ∈ E with

i < j, we obtain

νj |gj − gj+1|p−2(gj − gj+1)−νi−1|gi−1 − gi|p−2(gi−1 − gi)=
j∑

k=i

μk|fk|p−2fk. (9)

Moreover, if g is positive and decreasing, then

gn − gN+1 =
N∑

j=n

(
1
νj

j∑
k=0

μk|fk|p−2fk

)p∗−1

, n ∈ E. (10)

Besides Proposition 3.1, two more propositions are needed. One describes
the monotonicity of the eigenfunction presented in the next proposition, and
the other one is about the vanishing property to be presented in Proposition
3.4.

Proposition 3.2 Assume that (λp, g) is a solution to (1) with ND-boundaries
and λp > 0. Then the eigenfunction g is strictly monotone. Furthermore,

1
λp

=
[

1
gn − gN+1

N∑
k=n

(
1
νk

k∑
i=0

μig
p−1
i

)p∗−1]p−1

, n ∈ E. (11)

Proof Without loss of generality, assume that g0 = 1. The first assertion
follows by letting i = 0 and f = λp∗−1

p g in (9). Moreover, it is clear that g is
strictly decreasing. Formula (11) then follows from (10) by letting f = λp∗−1

p g.
�

As mentioned above, with f = λp∗−1
p g, (9) and (10) are simple variants of

eigenequation (1). However, for general test function f, the left-hand side of
the function g defined by (10) may be far away from the eigenfunction of λp.
Nevertheless, we regard the resulting function (assuming gN+1 = 0) as a mimic
of the eigenfunction. This explains where the operator II comes from: it is
regarded as an approximation of λ−1

p since II(λp∗−1
p g) ≡ λ−1

p . Next, write IIi(f)
as ui/vi. Then Ii(f) is defined by

Ii(f) =
ui − ui+1

vi − vi+1
.
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In other words, the operator I comes from II in the use of proportional property.
The operator R also comes from the eigenequation by setting wi = gi+1/gi.

Remark 3.3 Define

λ̃p = inf{Dp(f) : μ(|f |p) = 1 and fN+1 = 0}. (12)

(i) It is easy to check that the assertions in Propositions 3.1 and 3.2 also
hold for λ̃p defined by (12).

(ii) Define

λ(n)
p = inf{Dp(f) : μ(|f |p) = 1, f = f�n}.

We have λp = λ̃p and λ
(n)
p ↓ λp as n ↑ N. Indeed, it is clear that

λ(n)
p � λp � λ̃p.

By definition of λ̃p, for any fixed ε > 0, there exists f ∈ Lp(μ) such that
fN+1 = 0 and

Dp(f)
μ(|f |p) � λ̃p + ε.

Define f (n) = f�[0,n). Then f (n) ∈ Lp(μ) and

Dp(f (n)) ↑ Dp(f), μ(|f (n)|p) ↑ μ(|f |p), n → N.

Next, for large enough n, we have

λp � λ(n)
p � Dp(f (n))

μ(|f (n)|p) � Dp(f)
μ(|f |p) + ε � λ̃p + 2ε � λp + 2ε.

By letting n → N first and then ε ↓ 0, it follows that λp = λ̃p. Actually, we
have λ

(n)
p ↓ λp.

(iii) The test functions in (12) are described by fN+1 = 0, which can be
seen as the imitations of eigenfunction, so the assertion in item (ii) above also
implies the vanishing property of eigenfunction to some extent.

From now on, in this section, without loss of generality, we assume that
the eigenfunction g corresponding to λp (or λ̃p) is nonnegative and
strictly decreasing. The monotone property is important to our study. For
example, it guarantees the meaning of the operator I defined in Section 2 since
the denominator is fi − fi+1 there.

3.2 Sketch proof of main results in ND-case

Since a large part of proofs are analogies of the case that p = 2, we need only
to show some keys and some difference between the general p and the specific
p = 2.
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Proof of Theorem 2.1 We adopt the following circle arguments for the lower
estimates:

λp � sup
f∈FII

inf
i∈E

IIi(f)−1

= sup
f∈FI

inf
i∈E

IIi(f)−1

= sup
f∈FI

inf
i∈E

Ii(f)−1

� sup
w∈W

inf
i∈E

Ri(w)

� λp.

Step 1 Prove that
λp � sup

f∈FII

inf
i∈E

IIi(f)−1.

Clearly, we have λp � λ̃p by Remark 3.3 (ii). Let {hk : k ∈ E} be a positive
sequence, and let g satisfy μ(|g|p) = 1 and gN+1 = 0. Then

1 = μ(|g|p)

�
N∑

i=0

μi

( N∑
k=i

|gk − gk+1|
)p

(since gN+1 = 0)

=
N∑

i=0

μi

( N∑
k=i

|gk − gk+1|
( νk

hk

)1/p(hk

νk

)1/p
)p

�
N∑

i=0

μi

[( N∑
k=i

|gk − gk+1|p νk

hk

)1/p( N∑
j=i

(hj

νj

)p∗/p
)1/p∗]p

(by Hölder’s inequality)

=
N∑

k=0

νk

hk
|gk − gk+1|p

k∑
i=0

μi

( N∑
j=i

ν̂jh
p∗−1
j

)p−1

(by exchanging the order of the sums)
� Dp(g) sup

k∈E
Hk,

where

Hk =
1
hk

k∑
i=0

μi

( N∑
j=i

ν̂jh
p∗−1
j

)p−1

.

For every f ∈ FII with supi∈E IIi(f) < +∞, let

hk =
k∑

j=0

μjf
p−1
j .
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Then
sup
k∈E

Hk � sup
k∈E

IIk(f)

by the proportional property. Hence,

Dp(g) � inf
k∈E

IIk(f)−1

for every g with μ(|g|p) = 1, gN+1 = 0, and f ∈ FII . By making the supremum
with respect to f ∈ FII first and then the infimum with respect to g with
gN+1 = 0 and μ(|g|p) = 1, it follows

λp � λ̃p � sup
f∈FII

inf
i∈E

IIi(f)−1.

Step 2 Prove that

sup
f∈FII

inf
i∈E

IIi(f)−1 = sup
f∈FI

inf
i∈E

IIi(f)−1 = sup
f∈FI

inf
i∈E

Ii(f)−1.

Using the proportional property, on the one hand, for any fixed f ∈ FI , we
have

sup
i∈E

IIi(f) = sup
i∈E

[
1
fi

N∑
j=i

ν̂j

( j∑
k=0

μkf
p−1
k

)p∗−1]p−1

= sup
i∈E

{[ N∑
j=i

ν̂j

( j∑
k=0

μkf
p−1
k

)p∗−1][ N∑
j=i

(fj − fj+1) + fN+1

]−1}p−1

� sup
j∈E

1
νj(fj − fj+1)p−1

j∑
k=0

μkf
p−1
k (since ν̂j = νj

1−p∗)

= sup
j∈E

Ii(f).

Since FI ⊂ FII , by making the infimum with respect to f ∈ FI on both sides
of the inequality above, we have

sup
f∈FII

inf
i∈E

IIi(f)−1 � sup
f∈FI

inf
i∈E

IIi(f)−1 � sup
f∈FI

inf
i∈E

Ii(f)−1.

On the other hand, for any fixed f ∈ FII , let

g = fII(f)p
∗−1 ∈ FI .

Similar to the proof above, we have

sup
i∈E

Ii(g) � sup
i∈E

IIi(f).
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Therefore,
sup

f∈FI

inf
i∈E

Ii(f)−1 � sup
f∈FII

inf
i∈E

IIi(f)−1,

and the required assertion holds.
Step 3 Prove that

sup
f∈FII

inf
i∈E

IIi(f)−1 � sup
w∈W

inf
i∈E

Ri(w).

First, we change the form of Ri(w). Given w ∈ W , let ui+1 = wiwi−1 · · ·w0

for i � 0, u0 = 1. Then u is positive, strictly decreasing, and wi = ui+1/ui. By
a simple rearrangement, we get

Ri(w) =
1
μi

[
νi

(
1 − ui+1

ui

)p−1 − νi−1

(ui−1

ui
− 1

)p−1]
= − 1

μiu
p−1
i

Ωpu(i).

Next, we prove the main assertion. Without loss of generality, assume
that infi∈E Ri(w) > 0. Let u be the function constructed above and let f =
uR(w)p

∗−1 > 0. Then Ωpu = −μfp−1. Since ν−1 = 0, u is decreasing and u > 0.
By (10), we have

ui − uN+1 =
N∑

k=i

(
1
νk

k∑
j=0

μjf
p−1
j

)p∗−1

.

Hence,

Ri(w)1−p∗ =
ui

fi
� 1

fi

N∑
k=i

(
1
νk

k∑
j=0

μjf
p−1
j

)p∗−1

= IIi(f)p
∗−1.

Then
sup

f∈FII

inf
i∈E

IIi(f)−1 � inf
i∈E

Ri(w)

holds for every w ∈ W and the assertion follows immediately.
Step 4 Prove that

sup
w∈W

inf
i∈E

Ri(w) � λp.

If
∑

i∈E ν̂i < +∞, then choose f to be a positive function satisfying h =
fII(f)p

∗−1 < +∞. We have

hi =
N∑

k=i

ν̂k

( k∑
j=0

μjf
p−1
j

)p∗−1

, h ↓↓, hi − hi+1 = ν̂i

( i∑
j=0

μjf
p−1
j

)p∗−1

.

Let wi = hi+1/hi for i ∈ E. By a simple calculation, we obtain

Ri(w) =
−Ωph(i)

μih
p−1
i

=
fp−1

i

hp−1
i

> 0.
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If
∑

i∈E ν̂i = +∞, then set w ≡ 1. We have Ri(w) = 0. So

sup
w∈W

inf
i∈E

Ri(w) � 0.

Without loss of generality, assume that λp > 0. By Proposition 3.1, the eigen-
function g of λp is positive and strictly decreasing. Let wi = gi+1/gi ∈ W . Then
the assertion follows from the fact that Ri(w) = λp for every i ∈ E.

Step 5 We prove that the supremum in the circle arguments can be attained.
As an application of the circle arguments before Step 1, the assertion is easy

in the case of λp = 0 since

0 = λp � inf
i∈E

IIi(f)−1 � 0, 0 = λp � inf
i∈E

Ii(f)−1 � 0

for every f in the set defining λp and

λp � sup
w∈W

inf
i∈E

Ri(w) � inf
i∈E

Ri(w) � 0

for w used in Step 4 above. In the case that λp > 0 with eigenfunction g
satisfying g0 = 1, let wi = gi+1/gi. Then Ri(w) = λp as seen from the remarks
after Proposition 3.2 and Ii(g) = λp by letting f = λp∗−1

p g in (9). Moreover, we
have IIi(g) = λp for i ∈ E by letting f = λp∗−1

p g in (10) whenever gN+1 = 0.
It remains to rule out the probability that gN+1 > 0. The Proposition 3.4

below, which is proved by the variational formulas verified in Step 1, gives us
the positive answer.

Proposition 3.4 Assume that λp > 0 and p > 1. Let g be an eigenfunction
corresponding to λp. Then

gN+1 := lim
i→N+1

gi = 0.

Proof Let f = g − gN+1. Then f ∈ FII . By (11), we have

λ1−p∗
p fi =

N∑
j=i

ν̂j

( j∑
k=0

μkgk
p−1

)p∗−1

.

Denote

Mi =
N∑

j=i

ν̂j

( j∑
k=0

μk

)p∗−1

.

If Mi = +∞, then

λ1−p∗
p fi =

N∑
j=i

ν̂j

( j∑
k=0

μkgk
p−1

)p∗−1

> MigN+1.
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There is a contradiction once gN+1 �= 0. If Mi < +∞, then

sup
i∈E

IIi(f) = sup
i∈E

1
(gi − gN+1)p−1

[ N∑
j=i

ν̂j

( j∑
k=0

μk(gk − gN+1)
p−1

)p∗−1]p−1

= sup
i∈E

1
λp

{∑N
j=i ν̂j [

∑j
k=0 μk(gk − gN+1)p−1]p

∗−1∑N
j=i ν̂j [

∑j
k=0 μkg

p−1
k ]p∗−1

}p−1

(by (11))

� 1
λp

sup
k∈E

(
1 − gN+1

gk

)p−1
(by the proportional property)

=
1
λp

(
1 − gN+1

g0

)p−1
(since g ↓↓).

If gN+1 > 0, then by the variational formula for lower estimates proved in Step
1 above, we have

λ−1
p � inf

f∈FII

sup
i∈E

IIi(f) � sup
i∈E

IIi(f) < λ−1
p ,

which is a contradiction. So we must have gN+1 = 0. �
By now, we have finished the proof for the lower estimates. From this

proposition, we see that the vanishing property of eigenfunction holds naturally.
So the classification also holds for N = +∞. Combining with (10), the vanishing
property also further explains where the operator II comes from. Then, we come
back to the main proof of Theorem 2.1.

For the upper estimates, we adopt the following circle arguments:

λp � inf
f∈F̃ ′

II∪F̃II

sup
i∈supp(f)

IIi(f)−1

� inf
f∈F̃II

sup
i∈supp(f)

IIi(f)−1

= inf
f∈F̃I

sup
i∈supp(f)

IIi(f)−1

= inf
f∈F̃I

sup
i∈E

Ii(f)−1

� inf
f∈F̃ ′

I

sup
i∈E

Ii(f)−1

� inf
w∈W̃

sup
i∈E

Ri(w)

� λp.

Since the proofs are parallel to that of the lower bounds part, we ignore most
of the details here and only mention a technique when proving

inf
f∈F̃II

sup
i∈supp(f)

IIi(f)−1 = inf
f∈F̃I

sup
i∈supp(f)

IIi(f)−1 = inf
f∈F̃I

sup
i∈E

Ii(f)−1.
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To see this, we adopt a small circle arguments below:

λp � inf
f∈F̃II

sup
i∈supp(f)

IIi(f)−1 � inf
f∈F̃I

sup
i∈supp(f)

IIi(f)−1 � inf
f∈F̃I

sup
i∈E

Ii(f)−1 � λp.

The technique is about an approximating procedure, which is used to prove the
last inequality above. Recall that

λ(m)
p = inf{Dp(f) : μ(|f |p) = 1, f = f�·�m}

and λ
(m)
p ↓ λp as m ↑ N (see Remark 3.3). Let g be an eigenfunction of λ

(m)
p > 0

with g0 = 1. Then {gi}m
i=0 is strictly decreasing and gm+1 = 0 by letting E be

E(m) := [0,m]∩E in Proposition 3.2. Extend g to E with gi = 0 for i � m+1,
we have

g ∈ F̃ ′
I , supp(g) = {0, 1, . . . ,m}, λ(m)

p = Ik(g)−1 (k � m).

Hence,

λ(m)
p = sup

i�m
Ii(g)−1 � inf

f∈F̃ ′
I ,supp(f)=E(m)

sup
k∈E

Ik(f)−1 � inf
f∈F̃ ′

I

sup
k∈E

Ik(f)−1.

Since F̃ ′
I ⊂ F̃I , the right-hand side of the formula above is bounded below by

inf
f∈F̃I

supk∈E Ik(f)−1. So the required assertion follows by letting m → N. �

Instead of the approximating with finite state space used in the proof of the
upper bound above, it seems more natural to use the truncating procedure for
the ‘eigenfunction’ g. However, the next result, which is easy to check by (9)
and Proposition 3.2, shows that the procedure is not practical in general.

Remark 3.5 Let (λp, g) be a non-trivial solution to eigenequation (1) and (2)
with λp > 0. Define g(m) = g��m. Then

min
i∈supp(g(m))

IIi(g(m)) =
(1 − gm+1

gm
)p−1

λp
.

In particular, the sequence {mini∈supp(g(m)) IIi(g(m))}m�1 may not converge to
λ−1

p as m ↑ +∞.

Proof The proof is simply an application of f = λ
1/(p−1)
p g to (9), based on

Proposition 3.2. �
For simplicity, we write ϕi = ν̂[i,N ]p−1 in the proofs of Theorems 2.3, 2.4,

and Corollary 2.5 below.

Proof of Theorem 2.3 (a) First, we prove that λp � (k(p)σp)−1. Without loss
of generality, assume that ϕ0 < +∞ (otherwise, σp = +∞). Let f = ϕ1/p <
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+∞. Using the summation by parts formula, we have

i∑
j=0

μjf
p−1
j = μ[0, i]ϕ1/p∗

i +
i−1∑
j=0

μ[0, j](ϕ1/p∗
j − ϕ

1/p∗
j+1 )

� σp

[
ϕ
−1/p
i +

i−1∑
j=0

1
ϕj

(ϕ1/p∗
j − ϕ

1/p∗
j+1 )

]
� pσp ϕ

−1/p
i .

In the last inequality, we have used the fact that

i−1∑
j=0

1
ϕj

(ϕ1/p∗
j − ϕ

1/p∗
j+1 ) � (p − 1)ϕ−1/p

i .

To see this, since ϕ0 > 0, it suffices to show that

ϕ
1/p∗
j − ϕ

1/p∗
j+1 � (p − 1)ϕj(ϕ

−1/p
j+1 − ϕ

−1/p
j ).

Multiplying ϕ
1/p
j+1 on both sides, this is equivalent to

pϕ
1/p∗
j ϕ

1/p
j+1 � (p − 1)ϕj + ϕ

1/p∗
j+1 ϕ

1/p
j+1,

which is now obvious by Young’s inequality:

ϕ
1/p∗
j ϕ

1/p
j+1 � 1

p∗
(ϕ1/p∗

j )p
∗
+

1
p

(ϕ1/p
j+1)

p.

Since

1
νi

= ν̂p−1
i = (ϕp∗−1

i − ϕp∗−1
i+1 )p−1, ϕ

1
p(p−1)

i ϕ
1/p
i+1 � 1

p
ϕp∗−1

i +
1
p∗

ϕp∗−1
i+1 ,

we have

Ii(f) =
1

νi(ϕ
1/p
i − ϕ

1/p
i+1)p−1

i∑
j=0

μjϕ
1/p∗
j

� pσpϕ
−1/p
i

νi(ϕ
1/p
i − ϕ

1/p
i+1)p−1

= pσp

(
ϕp∗−1

i − ϕp∗−1
i+1

ϕp∗−1
i − ϕ

1/(p(p−1))
i ϕ

1/p
i+1

)p−1

� pp∗p−1σp. (13)

Then the required assertion follows by Theorem 2.1 (i).



1280 Mu-Fa CHEN et al.

(b) Next, we prove that λp � σ−1
p . Let f = ν̂[·∨n,m]�·�m for some m,n ∈ E

with n < m. Then f ∈ F̃I and fi−fi+1 = ν̂i�n�i�m. By convention 1/0 = +∞,
we have

Ii(f) =
( n∑

k=0

μkν̂[n,m]p−1 +
i∑

k=n+1

μkν̂[k,m]p−1

)
�[n,m] + ∞�[n,m]c.

So
λ−1

p = sup
f∈F̃I

inf
i∈E

Ii(f)

� inf
i∈E

Ii(f)

= inf
n�i�m

Ii(f)

= inf
n�i�m

( n∑
k=0

μkν̂[n,m]p−1 +
i∑

k=n+1

μkν̂[k,m]p−1

)

=
n∑

k=0

μkν̂[n,m]p−1, m > n.

The assertion that λ−1
p � σp follows by letting m → N.

(c) At last, if ν̂[1,+∞) = +∞, then λp = 0 is obvious. If

+∞∑
k=1

ν̂kμ[0, k]p
∗−1 < +∞,

then

ϕnμ[0, n] =
( +∞∑

k=n

ν̂kμ[0, n]p
∗−1

)p−1

�
( +∞∑

k=1

ν̂kμ[0, k]p
∗−1

)p−1

< +∞.

So σp = +∞ and λp = 0. �
Proof of Theorem 2.4 By definitions of {δn} and {δ′n}, using the proportional
property, it is not hard to prove most of the results except that δn+1 � δ′n (n �
1). Put g = f

(�,m)
n+1 and f = f

(�,m)
n . Then g = fII(f)p

∗−1
�·�m. By a simple

calculation, we have

(gi − gi+1)p−1 =
1
νi

i∑
k=0

μkf
p−1
k , i � m.

Inserting this term into Dp(g), we obtain

Dp(g) =
m∑

i=0

νi(gi − gi+1)p−1(gi − gi+1) =
m∑

i=0

i∑
k=0

μkf
p−1
k (gi − gi+1).
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Noticing gm+1 = 0 and exchanging the order of the sums, we obtain

Dp(g) =
m∑

k=0

μkf
p−1
k

m∑
i=k

(gi − gi+1) =
m∑

k=0

μkf
p−1
k gk �

m∑
k=0

μkg
p
k max

0�i�m

fp−1
k

gp−1
k

,

i.e.,
Dp(g) � μ(|g|p) sup

0�i�m
IIi(f)−1.

So the required assertion follows by definitions of δn+1 and δ′n. �
Most of the results in Corollary 2.5 can be obtained from Theorem 2.4

directly. Here, we study only those assertions concerning δ′1 and δ1.

Proof of Corollary 2.5 (a) We compute δ′1 first. Since p > 1 and

1
ν̂[i,m]

m∑
j=i

ν̂j

( j∑
k=0

μkν̂[k ∨ �,m]p−1

)p∗−1

is increasing in i ∈ [�,m] (not hard to check), we have

min
i�m

IIi(f
(�,m)
1 ) =

[
1

ν̂[�,m]

m∑
j=�

ν̂j

( j∑
k=0

μkν̂[k ∨ �,m]p−1

)p∗−1]p−1

.

We claim that

δ′1 = sup
�∈E

1
ϕ�

[ N∑
j=�

ν̂j

( j∑
k=0

μkϕk∨�

)p∗−1]p−1

because
1

ν̂[�,m]p−1

[ m∑
j=�

ν̂j

( j∑
k=0

μkν̂[k ∨ �,m]p−1

)p∗−1]p−1

is increasing in m (m > �). To see this, it suffices to show that

1
ν̂[�,m + 1]

m+1∑
j=�

ν̂j

( j∑
k=0

μkν̂[k ∨ �,m + 1]p−1

)p∗−1

� 1
ν̂[�,m]

m∑
j=�

ν̂j

( j∑
k=0

μkν̂[k ∨ �,m]p−1

)p∗−1

.

Equivalently,

m+1∑
j=�

ν̂j

( j∑
k=0

μk
ν̂[k ∨ �,m + 1]p−1

ν̂[�,m + 1]p−1

)p∗−1

�
m∑

j=�

ν̂j

( j∑
k=0

μk
ν̂[k ∨ �,m]p−1

ν̂[�,m]p−1

)p∗−1

.
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It suffices to show that

ν̂[k ∨ �,m + 1]
ν̂[�,m + 1]

� ν̂[k ∨ �,m]
ν̂[�,m]

, k ∈ E.

When k � �, the required assertion is obvious. When k > �, the inequality is
just

ν̂[k,m + 1]
ν̂[k,m]

� ν̂[�,m + 1]
ν̂[�,m]

.

Noticing that ν̂[i,m + 1] = ν̂m+1 + ν̂[i,m] for any fixed i � m and ν̂[k,m] <
ν̂[�,m] for k > �, we have

ν̂[k,m + 1]
ν̂[k,m]

= 1 +
ν̂m+1

ν̂[k,m]
> 1 +

ν̂m+1

ν̂[�,m]
=

ν̂[�,m + 1]
ν̂[�,m]

,

and then the required monotone property follows.
(b) Computing δ1. Since

μ(|f (�,m)
1 |p) =

m∑
j=0

μj ν̂[� ∨ j,m]p = μ[0, �]ν̂[�,m]p +
m∑

j=�+1

μj ν̂[j,m]p

and

Dp(f
(�,m)
1 ) =

m∑
j=0

νj(f
(�,m)
1 (j) − f

(�,m)
1 (j + 1))p

=
m∑

j=�

νj ν̂
p
j

= ν̂[�,m] (since ν̂k = ν1−p∗
k ),

we have

μ(|f (�,m)
1 |p)

Dp(f
(�,m)
1 )

= ν̂[�,m]p−1μ[0, �] +
1

ν̂[�,m]

m∑
k=�+1

μkν̂[k,m]p.

So

δ1 = sup
�,m∈E : �<m

(
ν̂[�,m]p−1μ[0, �] +

1
ν̂[�,m]

m∑
k=�+1

μkν̂[k,m]p
)

.

The assertion on δ1 follows immediately once we show that

ν̂[�,m]p−1μ[0, �] +
1

ν̂[�,m]

m∑
k=�+1

μkν̂[k,m]p

is increasing in m (� < m). To see this, it suffices to show that

1
ν̂[�,m]

m∑
k=�+1

μkν̂[k,m]p � 1
ν̂[�,m + 1]

m+1∑
k=�+1

μkν̂[k,m + 1]p,
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or equivalently,

μm+1

ν̂[�,m + 1]
ν̂p

m+1 +
m∑

k=�+1

μk

(
ν̂[k,m + 1]p

ν̂[�,m + 1]
− ν̂[k,m]p

ν̂[�,m]

)
� 0.

Since p > 1 and k > �, we have(
ν̂[k,m + 1]

ν̂[k,m]

)p

>
ν̂[k,m + 1]

ν̂[k,m]
= 1 +

ν̂m+1

ν̂[k,m]
> 1 +

ν̂m+1

ν̂[�,m]
=

ν̂[�,m + 1]
ν̂[�,m]

.

So the required assertion holds.
(c) We compare δ1 with σp and δ′1.
For the convenience of comparison of δ1 with σp and δ′1, we rewrite δ1 as

follows:

δ1 = sup
l∈E

(
ϕ�μ[0, �] +

1

ϕp∗−1
�

N∑
k=�+1

μkϕ
p(p∗−1)
k

)
.

By definition of σp, it is clear that δ1 � σp. To compare δ1 with δ′1, we further
change the form of δ1. By definition of ϕ, we have

N∑
j=0

μjϕ
p∗
j∨m =

m−1∑
j=0

μjϕm

N∑
k=m

ν̂k +
N∑

j=m

μjϕj

N∑
k=j

ν̂k

=
N∑

k=m

ν̂k

m−1∑
j=0

μjϕm +
N∑

k=m

ν̂k

k∑
j=m

μjϕj .

So

δ1 = sup
l∈E

(
1

ϕp∗−1
�

N∑
k=0

μkϕ
p∗
k∨�

)
= sup

m∈E

(
1

ϕp∗−1
m

N∑
k=m

ν̂k

k∑
j=0

μjϕm∨j

)
.

Denote a�(k) = ν̂k/ϕ
p∗−1
� . Then

∑N
k=� a�(k) = 1 (i.e., {a�(k) : k = �, . . . ,N} is

a probability measure on {�, � + 1, . . . , N}). By the increasing property of the
moments E(|X|s)1/s in s > 0, it follows that

δ′1 = sup
�∈E

[ N∑
j=�

a�(j)
( j∑

k=0

μkϕk∨�

)p∗−1]p−1

� sup
�∈E

N∑
j=�

a�(j)
j∑

k=0

μkϕk∨� (if p∗ − 1 > 1)

= δ1.

Hence, δ1 � δ′1 for 1 < p � 2. Otherwise, δ1 � δ′1 for p � 2.
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(d) At last, we prove that δ1 � pσp. Using the summation by parts formula,
we have

N∑
j=0

μjϕ
p∗
j∨� =

N∑
j=�

(ϕp∗
j − ϕp∗

j+1)μ[0, j].

Hence,

1

ϕp∗−1
m

N∑
j=0

μjϕ
p∗
j∨m =

1

ϕp∗−1
m

N∑
j=m

(ϕp∗
j − ϕp∗

j+1)μ[0, j]

� σp
1

ϕp∗−1
m

N∑
j=m

1
ϕj

(ϕp∗
j − ϕp∗

j+1)

�
σp

∑N
j=m

1
ϕj

(ϕp∗
j − ϕp∗

j+1)∑N
j=m(ϕp∗−1

j − ϕp∗−1
j+1 )

(since ϕN+1 = 0).

By Young’s inequality, we have

ϕjϕ
p∗−1
j+1 � 1

p∗
ϕp∗

j +
1
p

ϕp∗
j+1.

Combining this inequality with the proportional property, we obtain

1
ϕp∗−1

m

N∑
j=0

μjϕ
p∗
j∨m � σp sup

j∈E

ϕp∗
j − ϕp∗

j+1

ϕj(ϕ
p∗−1
j − ϕp∗−1

j+1 )

= σp sup
j∈E

ϕp∗
j − ϕp∗

j+1

ϕp∗
j − ϕjϕ

p∗−1
j+1

� pσp.

So the assertion holds. �

4 DN-case

In this section, we use the same notations as the last section because they play
the same role. However, they have different meaning in different sections. Set
E = {i ∈ N : 1 � i < N+1}. Let {μi}i∈E and {νi}i∈E be two positive sequences.
Similar to the ND-case, we have the discrete version of p-Laplacian eigenvalue
problem with DN-boundaries:

‘Eigenequation’: Ωp g(k) = −λμk|gk|p−2gk, k ∈ E;
DN-boundary conditions: g0 = 0 and gN+1 = gN if N < +∞,

where

Ωpf(k) = νk+1|fk+1 − fk|p−2(fk+1 − fk)− νk|fk − fk−1|p−2(fk − fk−1), p > 1,
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νN+1 := 0 if N < +∞ and νN+1 := limi→+∞ νi if N = +∞. Let λp denote the
first eigenvalue. Then

λp = inf
{ Dp(f)

μ(|f |p) : f �= 0, Dp(f) < +∞
}
. (14)

where

μ(f) =
∑
k∈E

μkfk � +∞, Dp(f) =
∑
k∈E

νk|fk − fk−1|p, f0 = 0.

The constant λp describes the optimal constant A = λ−1
p in the following

weighted Hardy inequality:

μ(|f |p) � ADp(f), f(0) = 0,

or equivalently,

‖f‖Lp(μ) � A1/p‖∂−f‖Lp(ν), f(0) = 0,

where ∂−f(k) = fk−1 − fk. In other words, we are studying again the weighted
Hardy inequality in this section. In view of this, by a duality [9; p. 13], the
optimal constant λ

−1/p
p in the last inequality coincides with λ

−1/p∗
p∗ , which is

the optimal constant in the inequality

‖f‖Lp∗(ν1−p∗ ) � A′1/p∗‖∂+f‖Lp∗(μ1−p∗ ), f(N + 1) = 0,

where ∂+f(k) = fk+1−fk, studied in Section 2. However, due to the difference
of boundaries in these two cases, the variational formulas and the approximating
procedure are different (cf. [4]). Therefore, it is worthy to present some details
here. Similar notations as Section 2 are defined as follows. Define ν̂j = ν1−p∗

j
for j ∈ E, and

Ii(f) =
1

νi(fi − fi−1)p−1

N∑
j=i

μjf
p−1
j (single summation form),

IIi(f) =
1

fp−1
i

[ i∑
j=1

ν̂j

( N∑
k=j

μkf
p−1
k

)p∗−1]p−1

(double summation form),

Ri(w) = μ−1
i [νi(1 − w−1

i−1)
p−1 − νi+1(wi − 1)p−1], w0 := +∞ (difference form).

For the lower bounds, the domains of the operators are defined, respectively, as
follows:

FI = {f : f > 0 and is strictly increasing on E},
FII = {f : f > 0 on E},
W = {w : wi > 1 for i ∈ E}.
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Note that the test function given in FI is different from that given in Section
2. Again, this is due to the property of eigenfunction (which is proved in
Proposition 4.6 later). For the upper bounds, we need modify these sets as
follows:

F̃I = {f : ∃m ∈ E such that f is strictly increasing on {1, . . . ,m},
and f· = f·∧m},

F̃II = {f : f· = f·∧m > 0 for some m ∈ E},
W̃ =

⋃
m∈E

{w : 1 < wi < 1 + νp∗−1
i (1 − w−1

i−1)ν
1−p∗
i+1 for 1 � i � m − 1

and wi = 1 for i � m}.

Define R̃ acting on W̃ as a modified form of R by replacing μm with μ̃m :=∑N
k=m μk in Ri(w) for the same m in W̃ . The change of μm is due to the

Neumann boundary at right endpoint. Note that if wi = 1 for every i � m,
then

R̃i(w) = Ri(w) = 0, i > m.

Besides, we also need the following set:

F̃ ′
II = {f : f > 0 on E and fII(f)p

∗−1 ∈ Lp(μ)}.
If

∑
i∈E μi = +∞, let fi = 1 for i ∈ E and f0 = 0. Then

Dp(f) =
N∑

k=1

νk|fk − fk−1|p = ν1 < +∞ and μ(|f |p) = +∞.

So λp = 0 by (14). If
∑

i∈E μi < +∞, then as we will prove later (Lemma 4.5)
that λp coincides with

λ[1]
p := inf{Dp(f) : μ(|f |p) = 1}.

Actually, the later is also coincides with

λ[1]
p = inf{Dp(f) : μ(|f |p) = 1, fi = fi∧m for some m ∈ E}.

Now, we introduce the main results, many of which are parallel to that in
Section 2. However, the exchange of boundary conditions ‘D’ and ‘N’ makes
many difference. For example, the results related to R̃, the definition of σp (see
Theorem 4.2 later), and so on.

Theorem 4.1 Assume that p > 1 and
∑N

k=1 μi < +∞. Then the following
variational formulas holds for λp (equivalently, λ

[1]
p or λ

[2]
p ).

(i) Single summation forms :

inf
f∈F̃I

sup
i∈E

Ii(f)−1 = λp = sup
f∈FI

inf
i∈E

Ii(f)−1.
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(ii) Double summation forms :

λp = inf
f∈F̃II

sup
i∈E

IIi(f)−1 = inf
f∈F̃I

sup
i∈E

IIi(f)−1 = inf
f∈F̃ ′

II∪F̃II

sup
i∈E

IIi(f)−1,

λp = sup
f∈FII

inf
i∈E

IIi(f)−1 = sup
f∈FI

inf
i∈E

IIi(f)−1.

(iii) Difference forms :

inf
w∈W̃

sup
i∈E

R̃i(w) = λp = sup
w∈W

inf
i∈E

Ri(w).

As an application of the variational formulas in Theorem 4.1 (i), we have
the following theorem. This result was known in 1990s (cf. [8; Theorem 7] plus
the duality technique, cf. [9; p. 13]). See also [10]. It can be regarded as a dual
of Theorem 2.3.

Theorem 4.2 (Basic estimates) For p > 1, we have λp (or equivalently, λ
[1]
p

or λ
[2]
p provided

∑
k∈E μk < +∞) is positive if and only if σp < +∞, where

σp = sup
n∈E

(μ[n,N ]ν̂[1, n]p−1).

More precisely,
(k(p)σp)−1 � λp � σ−1

p ,

where k(p) = pp∗p−1. In particular, we have λp = 0 if
∑

i∈E μi = +∞ and
λp > 0 if N < +∞, or

∑+∞
k=1 μ[k,N ]p

∗−1νk < +∞, or
∑+∞

k=1(μk + ν̂k) < +∞.

The next result is an application of the variational formulas in Theorem 4.1
(ii). It is interesting that the result is not a direct dual of Theorem 2.4.

Theorem 4.3 (Approximating procedure) Assume that p > 1,
∑

k∈E μk <
+∞, and σp < +∞. Then the following assertions hold.

(i) Define

f1 = ν̂[1, ·]1/p∗ , fn = fn−1II(fn−1)p
∗−1, δn = sup

i∈E
IIi(fn).

Then δn is decreasing in n and

λp � δ−1
∞ � · · · � δ−1

1 � (k(p)σp)−1.

(ii) For fixed m ∈ E, define

f
(m)
1 = ν̂[1, · ∧ m], f (m)

n = f
(m)
n−1II(f (m)

n−1)(· ∧ m)p
∗−1, n � 2,

and
δ′n = sup

m∈E
inf
i∈E

IIi(f (m)
n ).
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Then δ′n is increasing in n and

σ−1
p � δ′1

−1 � · · · � δ′∞
−1 � λp.

Next, define

δn = sup
m∈E

μ(f (m)
n

p
)

Dp(f
(m)
n )

, n ∈ E.

Then δn � λp and δn+1 � δ′n for every n � 1.

Corollary 4.4 (Improved estimates) Assume that
∑

k∈E μk < +∞. For p >
1, we have

σ−1
p � δ′1

−1 � λ−1
p � δ−1

1 � (k(p)σp)−1,

where

δ1 = sup
i∈E

[
ν̂[1, i]−1/p∗

i∑
j=1

ν̂j

( N∑
k=j

μkν̂[1, k](p−1)/p∗
)p∗−1]p−1

,

δ′1 = sup
m∈E

1
ν̂[1,m]p−1

[ m∑
j=1

ν̂j

( N∑
k=j

μkν̂[1, k ∧ m]p−1

)p∗−1]p−1

.

Moreover,

δ1 = sup
m∈E

1
ν̂[1,m]

N∑
j=1

μj ν̂[1, j ∧ m]p ∈ [σp, pσp],

and δ1 � δ′1 for p � 2, δ1 � δ′1 for 1 < p � 2.

When p = 2, the result that δ′1 = δ1 is also known (see [4; Theorem 4.3]).

4.1 Partial proofs of main results

Before moving to the proofs of the main results, we give some more descriptions
of λp. Define

λ(m)
p = inf{Dp(f) : μ(|f |p) = 1, fi = fi∧m, i ∈ E}.

Let

D̃p(f) =
m∑

i=1

ν̃i|fi − fi−1|p, μ̃(f) =
m∑

i=1

μ̃i|fi|p,

where ν̃ and μ̃ are defined as follows:

ν̃i = νi (i � m); μ̃i = μi (i � m − 1), μ̃m =
N∑

k=m

μk.

For f = f·∧m, we have

D̃p(f) = Dp(f), μ̃(|f |p) = μ(|f |p).
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So λ
(m)
p is the first eigenvalue of the local Dirichlet form (D̃,D(D̃)) on E(m) :=

{1, 2, . . . ,m} with reflecting (Neumann) boundary at m + 1 and absorbing
(Dirichlet) boundary at 0. Furthermore, we have the following fact.

Lemma 4.5 If
∑

i∈E μi < +∞, then λp = λ
[1]
p = λ

[2]
p . Moreover, λ

(m)
p ↓ λ

[2]
p

as m → N.

Proof Since each f with μ(|f |p) = +∞ can be approximated by f
(m)
i = fi∧m

(m ∈ E) with respect to norm ‖ · ‖p = Dp(·)+ μ(| · |p), it is clear that λp = λ
[1]
p .

We now prove that λ
[1]
p = λ

[2]
p . It is clear that λ

[2]
p � λ

[1]
p since

∑
k∈E μk <

+∞. For any fixed ε > 0, there exists f ∈ Lp(μ) such that

Dp(f)
μ(|f |p) � λ[1]

p + ε.

Let f (n) = f·∧n. Then

Dp(f (n)) → Dp(f), μ(|f (n)|p) → μ(|f |p), n → N.

By definitions of λ
(n)
p and λ

[2]
p , for large enough n ∈ E, we have

λ[2]
p � λ(n)

p � Dp(f (n))
μ(|f (n)|p) � Dp(f)

μ(|f |p) + ε � λ[1]
p + 2ε � λ[2]

p + 2ε.

Hence, λ
[1]
p = λ

[2]
p and λ

(m)
p ↓ λ

[2]
p . �

Proof of Theorem 4.1 In parallel to the ND-case, we also adopt two circle
arguments to prove the theorem. For instance, the circle argument below is
adopted for the upper estimates:

λp � inf
f∈F̃ ′

II∪F̃II

sup
i∈E

IIi(f)−1

� inf
f∈F̃II

sup
i∈E

IIi(f)−1

= inf
f∈F̃I

sup
i∈E

IIi(f)−1

= inf
f∈F̃I

sup
i∈E

Ii(f)−1

� inf
w∈W̃

sup
i∈E

R̃i(w)

� λp.

The proofs are similar to the ND-case. Here, we present the proofs of the
assertions related to the operator R̃ in the above circle argument, which are
obvious different from that in Section 2 due to the boundary conditions.

(i) We first prove

inf
f∈F̃II

sup
i∈E

IIi(f)−1 � inf
w∈W̃

sup
i∈E

R̃i(w).
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For w ∈ W̃ , it is easy to check that R̃i(w) > 0. Let u0 = 0 and ui = ui∧m > 0
for i ∈ E such that wi (= ui+1/ui) ∈ W̃ . Then ui is strictly increasing on [0,m].
Put

fp−1
i =

{
μ−1

i [νi(ui − ui−1)p−1 − νi+1(ui+1 − ui)p−1], i � m − 1,

μ̃−1
m νm(um − um−1)p−1, i � m.

We have f ∈ F̃II and

Ωpu(k) = −μkf
p−1
k , k � m − 1,

νm(um − um−1)p−1 =
N∑

j=m

μjf
p−1
m =

N∑
j=m

μjf
p−1
j .

By a simple reorganization and making summation from 1 to i (� m) with
respect to k, we obtain

i∑
k=1

ν̂k

( N∑
j=k

μjf
p−1
j

)p∗−1

= ui − u0 = ui, i � m.

Therefore,

R̃i(w)p
∗−1 =

fi

ui
= fi

[ i∑
k=1

ν̂k

( N∑
j=k

μjf
p−1
j

)p∗−1]−1

= IIi(f)1−p∗, i � m,

and then

sup
i∈E

R̃i(w) � max
i�m

R̃i(w) � sup
i∈E

IIi(f)−1 � inf
f∈F̃II

sup
i∈supp(f)

IIi(f)−1.

(ii) We prove that
inf

w∈W̃
sup
i∈E

R̃i(w) � λp.

Let g denote the solution to the equation

−Ωpg(i) = λ(m)
p μ̃i|gi|p−2gi, g0 = 0, gm+1 := gm, i ∈ E(m) := {0, 1, . . . ,m}.

Without loss of generality, assume g1 > 0. Then g is strictly increasing (by
Proposition 4.6 below) and

−νi+1(gi+1 − gi)p−1 + νi(gi − gi−1)p−1 = λ(m)
p μig

p−1
i , i � m − 1,

νm(gm − gm−1)p−1 = λ(m)
p μ̃mgp−1

m .

That is,

νi

(
1 − gi−1

gi

)p−1
− νi+1

(gi+1

gi
− 1

)p−1
= λ(m)

p μi, i � m − 1;



Mixed eigenvalues of discrete p-Laplacian 1291

νm

(
1 − gm−1

gm

)p−1
= λ(m)

p μ̃m.

Let wi = gi+1/gi for i � m − 1 and wi = 1 for i � m. Then w ∈ W̃ and
R̃i(w) = λ

(m)
p for every i � m. Therefore,

λ(m)
p = max

0�i�m
R̃i(w)

� inf
w∈W̃ : wi=wi∧m

sup
0�i�m

R̃i(w)

� inf
w∈W̃ : wi=wi∧n for some n∈E

sup
i∈E

R̃i(w)

� inf
w∈W̃

sup
i∈E

R̃i(w).

We obtain the required assertion by letting m → N. �
Noticing the difference between the ND- and the DN-cases, one may

finish the proofs of other theorems in this section without much difficulties
following Section 2 or [4; Section 4]. So we ignore the details here but present
one proposition below, which is essential to our study and is used to verify the
last inequalities related to R or R̃ in the two circle arguments. The proposi-
tion, whose proof is independent of the other assertions in this paper, provides
the basis for imitating the eigenfunction to construct the corresponding test
functions of the operators.

Proposition 4.6 Assume that g is a nontrivial solution to p-Laplacian
problem with DN-boundary conditions. Then g is monotone. Moreover, g is
increasing provided g1 > 0.

Proof The proof is parallel to that in [3; Proposition 3.4]. We give the skeleton
of the proof. The proof is quite easy in the case of λp = 0. For the case that
λp > 0, suppose that there exists n ∈ E such that g0 < g1 < · · · < gn � gn+1.
Then define gi = gi∧n. By a simple calculation and (14), we obtain

λp � Dp(g)
μ(|g|p) =

λp
∑n−1

k=1 μk|gk|p + νn|gn − gn−1|p−2(gn − gn−1)gn∑n−1
k=1 μk|gk|p + |gn|p

∑N
k=n μk

< λp.

In the last inequality, we have used the following fact:

νn|gn − gn−1|p−2(gn − gn−1)gn � −g(n)Ωpg(n) = λpμn|gn|p < λp|gn|p
N∑

k=n

μk

for n < N. Therefore, there is a contradiction and so the required assertion
holds. �
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