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Abstract The criteria on separation cutoff for birth and death chains were
obtained by Diaconis and Saloff-Coste in 2006. These criteria are involving
all eigenvalues. In this paper, we obtain the explicit criterion, which depends
only on the birth and death rates. Furthermore, we present two ways to
estimate moments of the fastest strong stationary time and then give another
but equivalent criterion explicitly.
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1 Introduction and main results

In [6], Diaconis wrote: “At present writing, proof of a cutoff is a difficult,
delicate affair, requiring detailed knowledge of the chain, such as all eigen-
values and eigenvectors ....” Diaconis and Saloff-Coste [9] gave a necessary and
sufficient condition for separation cutoff of a sequence of continuous or discrete
time birth and death chains. This condition is involving all eigenvalues of the
generator or transition matrix of the birth and death chains. In this paper, we
give an explicit criterion, via three different ways. First of all, based on their
criterion, we will give the explicit criterion by using the celebrated estimates of
the spectral gap for the birth and death processes [5], and an eigentime identity
for the birth and death processes [16]. Second, cutoff in separation is closely
related to the fastest strong stationary time (FSST) [1,7]. A use of Chebyshev
inequality involving the mean and variance of the FSST will give the criterion of
cutoff. See [9]. We will recall briefly this argument in Section 2. So our second
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way for the criterion is to calculate explicitly the mean and variance of FSST
for the birth and death chains. Third, from the definition of the separation
between two probability measures, a halting state is crucial, especially for a
stochastically monotone Markov chain. See [13] and Section 3. The third way
we use is to give the moments of FSST via the moments of the hitting times.
Actually, all three criteria are nevertheless equivalent, but appear in disguises.

Let Xt, t � 0, be a continuous time birth and death process on the state
space E = {0, 1, . . . ,m}. Its generator is the matrix Q = (qij):

qij =

⎧⎪⎨
⎪⎩
bi, 0 � i � m− 1, j = i+ 1;

ai, 1 � i � m, j = i− 1;

−(ai + bi), 0 � i = j � m.

Here, ai > 0 for 1 � i � m, bi > 0 for 0 � i � m− 1, and a0 = bm = 0. This
process is ergodic (positive recurrent and irreducible). Let π0 = 1/Z, and

πi =
1
Z

b0 · · · bi−1

a1 · · · ai
, 1 � i � m, (1.1)

where Z is such that π = (πi, 0 � i � m) is a probability measure. Then π is
the stationary distribution.

The separation between probability measures μ, ν on finite space E is

sep(μ, ν) = max
i∈E

{
1 − μi

νi

}
. (1.2)

Applying the separation to the birth and death chains as above, we have

lim
t→∞ sep(μ(t), π) = 0, (1.3)

where μ(t) is the distribution of the chain at time t.
Separation cutoff is concerning a family of birth and death processes. For

n = 0, 1, 2, . . . , let X(n)
t be a sequence of birth and death process on En =

{0, 1, . . . ,mn} with generator matrix Q(n). Let π(n) be the corresponding
stationary distribution. Let

0 = λ
(n)
0 < λ

(n)
1 < · · · < λ(n)

mn

be the eigenvalues of −Q(n) and set

T (n) =
mn∑
i=1

1

λ
(n)
i

.

Let μ(n)(t) be the distribution X(n)
t starting from state 0:

μ
(n)
i (t) = P[X(n)

t = i | X(n)
0 = 0], i ∈ En.
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It is proved in [9] that whenever limn→∞ λ
(n)
1 T (n) = ∞,

lim
n→∞ sep(μ(n)(cT (n)), π(n)) =

{
0, c > 1;

1, c < 1.
(1.4)

The expression in (1.4) is referred to separation cutoff for birth and death
processes.

A similar separation cutoff was also proved in [9] for discrete-time birth
and death chains, under the additional assumption that the processes are
stochastically monotone. In the discrete time case, we keep the notations as in
the continuous time as same as possible. Let P = (pij) be transition probability
matrix on E = {0, 1, . . . ,m}:

pij =

⎧⎪⎨
⎪⎩
bi, 0 � i � m− 1, j = i+ 1;

ai, 1 � i � m, j = i− 1;

ci, 0 � i = j � m.

(1.5)

Here, all a’s and b’s are positive, and c’s are nonnegative. Assume

ai + bi + ci = 1 (1 � i � m− 1), b0 + c0 = 1, am + cm = 1.

The chain P is stochastically monotone whenever bi + ai+1 � 1 for 0 � i < m.
Let π be defined in the same way as in (1.1) and set 0 = λ0 < λ1 < · · · < λm to
be the eigenvalues of I −P, where I is the identity matrix. Then it was proved
in [9] that a family of ergodic and stochastically monotone discrete time birth
and death chains has the separation cutoff if and only if

lim
n→∞λ

(n)
1 T (n) = ∞.

In this paper, for the sake of simplicity, we focus on the continuous time
birth and death processes. For the discrete time birth and death chains, we
only point out the difference.

The rest of the paper is organized as follows. In Section 2, we will give
a general sufficient and necessary condition for separation cutoff, and revisit
the criterion in [9]. In Section 3, we present three explicit criteria. Finally, in
Section 4, we apply the criteria to the restricted chains and the Metropolis
chains.

2 Fastest strong stationary time

For the continuous time birth and death process X(t) on {0, 1, . . . ,m} starting
at 0, let μ(t) be the distribution of Xt. It is known from [7] that there exists a
FSST τ such that

sep(μ(t), π) = P[τ > t]. (2.1)
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And the distribution of τ is given in Laplace transformation:

Ee−λτ =
m∏

ν=1

λν

λ+ λν
, λ � 0, (2.2)

where λ1 < · · · < λm are positive eigenvalues of the matrix −Q.
For the discrete time birth and death chains on {0, 1, . . . ,m} starting at 0,

assume that the chain is stochastically monotone. It was proved in [11] that
(2.1) holds and the distribution of τ is given by

Esτ =
m∏

ν=1

λν

λν + s
, s ∈ [0, 1). (2.3)

Diaconis and Saloff-Coste [9] used this formula and a Chebyshev inequality
to give the cutoff for the birth and death process. The sufficient part in the
following proposition is essentially due to them, here we give a direct proof for
the necessary part.

Proposition 2.1 For the family of birth and death chains X(n)
t on the state

space {0, 1, . . . ,mn} starting at 0, let τ (n) be the FSST. Then there is the
separation cutoff (1.4) if and only if

(Eτ (n))2

Var(τ (n))
→ ∞, or, equivalently

(Eτ (n))2

E(τ (n))2
→ 1. (2.4)

Proof Assume first (2.4). The following Chebyshev type inequality can be
found on [10; p. 152]). For a non-negative ξ with mean Eξ and variance Var(ξ),
we have, for any c > 0,

P[ξ � Eξ + c
√

Var(ξ) ] � 1
1 + c2

, P[ξ � Eξ − c
√

Var(ξ) ] � 1
1 + c2

.

Apply this Chebyshev inequality to the sequence of fastest strong stationary
times τ (n) to get that under (2.4),

P[τ (n) � (1 + c)Eτ (n)] = P

[
τ (n) � Eτ (n) +

cEτ (n)√
Var(τ (n))

√
Var(τ (n))

]

� 1

1 + c2 [Eτ (n)]2

Var(τ (n))

→ 0,

and similarly,
P[τ (n) � (1 − c)Eτ (n)] → 0.

Conversely, assume (1.4). Let ξ(n) = τ (n)/T (n). Then (1.4) implies that ξ(n)

converges to 1 in probability. Since it follows from (2.2) that

E(τ (n))3 � 6(T (n))3, or E(ξ(n))3 � 6,
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we have (cf. [3])
lim

n→∞E|ξ(n) − 1|2 = 0.

In particular, the limit

lim
n→∞Eξ(n) = lim

n→∞E(ξ(n))2 = 1.

Therefore,

lim
n→∞

(Eτ (n))2

E(τ (n))2
= lim

n→∞
(Eξ(n))2

E(ξ(n))2
= 1.

The assertion is proved. �
We remark that in general, we can derive from (2.2) that

E(τ (n))k � k! (T (n))k, k = 1, 2, . . . .

For the FSST τ (n), it follows from (2.2) that

Eτ (n) = T (n) =
n∑

ν=1

1

λ
(n)
ν

, Var(τ (n)) =
n∑

ν=1

( 1

λ
(n)
ν

)2
.

Since ( 1

λ
(n)
1

)2
� Var(τ (n)) � 1

λ
(n)
1

T (n),

we get

λ
(n)
1 T (n) � (Eτ (n))2

Var(τ (n))
� [λ(n)

1 T (n)]2.

From this and (2.4), we obtain (1.4) whenever limn→∞ λ
(n)
1 T (n) = ∞, as did in

[9].

3 Explicit criteria

In this section, we will present three explicit criteria for separation cutoff of the
birth and death chains.

3.1 Eigenvalues

Our first explicit criterion is rather a direct use of the celebrated estimates for
λ

(n)
1 in [5; Corollary 6.6], and the explicit formula for T (n) in [16].

The formula for T (n) comes from the so-called eigentime identity, appearing
first in [2; Chapter 4]. Let λ(n)

ν , ν � 1, be the non-zero eigenvalues of −Q(n).
Then it holds that

mn∑
ν=1

1

λ
(n)
ν

=
mn∑

i,j=0

π
(n)
i π

(n)
j Eiτ

(n)
j =

mn∑
j=0

π
(n)
j Eiτ

(n)
j for all i.
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According to [16], for birth and death chains, we have

T (n) =
mn∑
ν=1

1

λ
(n)
ν

=
mn−1∑
i=0

1

π
(n)
i b

(n)
i

mn∑
j=i+1

π
(n)
j

i∑
j=0

π
(n)
j . (3.1)

Next, we introduce an elegant estimate of spectral gap for ergodic birth and
death chains derived recently in [5]. Let

κ(n) = min
0��<m�mn

[( �∑
i=0

π
(n)
i

)−1

+
( mn∑

i=m

π
(n)
i

)−1]( m−1∑
i=�

1

π
(n)
i b

(n)
i

)−1

. (3.2)

Then
1
4
κ(n) � λ

(n)
1 � κ(n). (3.3)

This estimate is a generalization of the classical Hardy inequality. The
obvious advantage is the universal constant 1/4 appears in (3.3). See [5] for a
comprehensive study on this topic.

The following is the first explicit criterion for the separation cutoff.

Theorem 3.1 Separation cutoff occurs if and only if

lim
n→∞κ(n)T (n) = ∞.

The only seeming obstacle is taking minimum in two variables �,m in (3.2).
For the discrete time case, the eigentime identity and the formula in (3.1)

remain true. Now, λ(n)
1 is eigenvalue for I − P, and P − I can be seen as the

generator of a continuous time birth and death chain, thus the estimates in (3.2)
still work. Therefore, Theorem 3.1 holds for stochastically monotone discrete
time birth and death chains.

3.2 Duality

From the above routine of the proof for the separation cutoff, we see that one
has only to get the first two moments of the FSST. In the sequel, we will focus
on this for a birth and death process, instead of a sequence of birth and death
processes.

For discrete time birth and death process P given in (1.5), Diaconis-Fill
[7] constructed a dual absorbing birth-death process, whose absorption time τ∗
has the same distribution as τ the FSST, after then Fill [11] obtained the same
conclusion for the continuous time birth and death process. Set for 0 � i �
m, Hi =

∑
j�i πj and for i � m− 1,

a∗i =
Hi−1

Hi
bi, b∗i =

Hi+1

Hi
ai+1, a∗m = b∗m = 0.

Let

π∗i =
b0H

2
i

πibi
.
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Let a∗i (1 � i � m) and b∗i (0 � i � m) be the birth and death rates for a
dual process X∗(t), respectively. So m is an absorbing state for X∗(t). Assume
that both X(t) and X∗(t) start at 0. Then the absorption time (hitting time to
m) of X∗(t) has the same distribution as the FSST τ of X(t). From these and
[15; Theorem 4.1], we have the first and second order moments of τ :

Eτ = Eτ∗ =
m−1∑
i=0

1
π∗i b

∗
i

i∑
j=0

π∗j ,

Eτ2 = E(τ∗)2

= 2
m−1∑
i=0

1
π∗i b

∗
i

i∑
j=0

π∗j
m−1∑
k=j

1
π∗kb

∗
k

j∑
l=0

π∗l

= 2(Eτ)2 − 2
m−1∑
i=0

1
π∗i b

∗
i

i∑
j=0

π∗j
j−1∑
k=0

1
π∗kb

∗
k

j∑
l=0

π∗l .

Denote

S = (Eτ)2 − 1
2

Eτ2 =
m−1∑
i=0

1
π∗i b

∗
i

i∑
j=0

π∗j
j−1∑
k=0

1
π∗kb

∗
k

j∑
l=0

π∗l .

To get the expression of these moments by ai, bi, we need the following lemma.

Lemma 3.2 Let αi be a positive sequence. For k � m, we have

k−1∑
i=0

1
π∗i b

∗
i

i∑
j=0

π∗jαj =
1
Hk

k−1∑
j=0

Hj(Hk −Hj)
πjbj

αj . (3.4)

Proof Note that

π∗i =
b0H

2
i

πibi
,

1
π∗i b

∗
i

=
πi+1

b0Hi+1Hi
= b0

[ 1
Hi

− 1
Hi+1

]
. (3.5)

We have
k−1∑
i=0

1
π∗i b

∗
i

i∑
j=0

π∗jαj =
k−1∑
j=0

π∗jαj

k−1∑
i=j

1
π∗i b

∗
i

=
k−1∑
j=0

b0αjH
2
j

πjbj

k−1∑
i=j

πi+1

b0Hi+1Hi

=
k−1∑
j=0

αjH
2
j

πjbj

k−1∑
i=j

[ 1
Hi

− 1
Hi+1

]

=
1
Hk

k−1∑
j=0

Hj(Hk −Hj)
πjbj

αj .

The proof is finished. �
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By letting k = m, αj = 1 in (3.4) and noting that Hm = 1, we get

Eτ =
m−1∑
j=0

1
πjbj

Hj(1 −Hj) = T.

Again in (3.4), letting k = m and

αj =
j−1∑
i=0

1
π∗i b

∗
i

i∑
k=0

π∗k =
1
Hj

j−1∑
k=0

1
πkbk

Hk(Hj −Hk),

we have

S =
m−1∑
j=0

1 −Hj

πjbj

j−1∑
k=0

Hk(Hj −Hk)
πkbk

. (3.6)

Since
Eτ2

(Eτ)2
= 2 − 2

S

(Eτ)2
,

Proposition 2.1 yields the following result.

Theorem 3.3 Separation cut-off occurs if and only if

lim
n→∞

S(n)

[T (n)]2
=

1
2
, (3.7)

where T (n) is given in (3.1) and

S(n) =
mn−1∑
j=0

1 −H
(n)
j

π
(n)
j b

(n)
j

j−1∑
k=0

H
(n)
k (H(n)

j −H
(n)
k )

π
(n)
k b

(n)
k

(3.8)

with H(n)
j =

∑j
k=0 π

(n)
k .

For the discrete time case, the only difference is that

Eτ2 = Eτ + 2(Eτ)2 − S.

But for discrete time birth and death chains,

Eτ = Eτ∗ �
m−1∑
i=0

1
b∗i

→ ∞, m→ ∞, as b∗i � 1.

Therefore, Theorem 3.3 also holds for stochastically monotone discrete time
birth and death chains.

3.3 Stochastic monotonicity

In this section, we will obtain the distribution of the FSST for the birth and
death process via the halting state. We will deduce Theorem 3.3 once again.
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However, this method can be used to deal with general stochastically monotone
Markov processes.

A stochastic matrix P = (pij , 0 � i, j � m) is said to be stochastically
monotone if for all i, j with i � j,∑

��k

pik �
∑
��k

pjk

for each k. A Markov chain is monotone if its transition probability matrices
are monotone. It is known that the continuous time birth and death process
is monotone, and the discrete time birth and death chain is stochastically
monotone whenever bi + ai+1 � 1.

Following [13], i ∈ E is called a halting state for the FSST τ if for all t � 0,

P[τ > t] = 1 − μi(t)
πi

= sep(μ(t), π). (3.9)

Since

sup
j

(
1 − μj(t)

πj

)
= sep(μ(t), π), (3.10)

i is the halting state if and only if for t � 0,

μi(t)
πi

= min
j

μj(t)
πj

. (3.11)

We remark that the definition of “halting state” appeared in a draft version
of [13], but disappeared in the final version published by AMS. Whatever, we
learned this definition from them.

Lemma 3.4 For the continuous time or stochastically monotone discrete time
birth and death process chain on state space E = {0, 1, . . . ,m}, starting at 0,
state m is a halting state for the FSST τ.

Proof Let
pij(t) = P[Xt = j | X0 = i].

Then πipij(t) = πjpji(t) by the symmetry, so that

μm(t)
πm

=
p0m(t)
πm

=
pm0(t)
π0

.

But by the stochastic monotonicity,

pm0(t) = min
i
pi0(t).

It follows that

μm(t)
πm

= min
i

pi0(t)
π0

= min
i

p0i(t)
πi

= min
i

μi(t)
πi

.

The assertion is proved. �
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Next, we will use Lemma 3.4 to give the distribution of the FSST in Laplace
transformation form. And then, we use the results in [14,15] to calculate the
first two order moments of the FSST by that of hitting times.

Theorem 3.5 Let τ be the FSST for a discrete time or continuous time birth
and death process on {0, 1, . . . ,m}, starting at 0.

(1) For the discrete-time case, assume further that the chain is stochastically
monotone, that is, bi + ai+1 � 1. Let

ψm(s) =
∞∑

n=0

P[Xn = m]sn.

Then
Esτ = (1 − s)

ψm(s)
πm

, s ∈ [0, 1). (3.12)

(2) For the continuous-time case, by letting

ψm(λ) =
∫ ∞

0
e−λt

P[Xt = m]dt,

we have
Ee−λτ =

λψm(λ)
πm

, λ � 0. (3.13)

Proof (1) Since τ � 1, for s ∈ (0, 1), we have

Esτ =
∑
k�1

P[τ = k]sk =
∑
k�1

P[τ = k](1 − s)
∑
l�k

sl = (1 − s)
∑
l�1

sl
P[τ � l].

Hence, by Lemma 3.4 and (3.9), we get

Esτ = (1 − s)
∑
n�1

snμm(s)
πm

= (1 − s)
ψm(s)
πm

.

(2) For λ � 0, the integral by parts gives

Ee−λτ =
∫ ∞

0
e−λtd(P[τ � t]) = λ

∫ ∞

0
e−λt

P[τ � t]dt.

Then by Lemma 3.4 and (3.9), we get

Ee−λτ = λ

∫ ∞

0
e−λtμm(t)

πm
dt =

λψm(λ)
πm

.

The proof is finished. �
To compute moments of τ of birth and death chains, we will use the

construction theory for birth and death chains on boundary. Let τk be the
hitting time of state k. The following result was proved in [12; Theorem 7.4].
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Lemma 3.6 For the continuous time birth death process Xt, let

φim(λ) = 0, φij(λ) =
∫ ∞

0
e−λt

P[Xt = j, t < τm | X0 = i]dt, 0 � i, j < m,

and for 0 � i, j � m,

ψij(λ) =
∫ ∞

0
e−λt

P[Xt = j | X0 = i]dt.

It holds that for 0 � i, j � m,

ψij(λ) = φij(λ) +
ξi(λ)πjξj(λ)
λ

∑m
i=0 πiξi(λ)

, (3.14)

where
ξi(λ) = E[e−λτm | X0 = i].

From Lemma 3.6 and Theorem 3.5, we can deduce the relationship between
the FSST τ and τk.

Theorem 3.7 For the continuous-time birth and death process starting at 0,

Ee−λτ =
(
π0 +

n∑
k=1

πk(Ee−λτk)−1

)−1

, λ � 0. (3.15)

Proof By the skip-free property of birth and death processes, we have

ξ0(λ) = E[e−λτi | X0 = 0] E[e−λτm | X0 = i] = E[e−λτi | X0 = 0]ξi(λ).

Since
ξm(λ) = 1, φ0m(λ) = 0,

it follows from (3.14) that

ψ0m(λ) =
ξ0(λ)πm

λ
∑m

i=0 πiξi(λ)
=
πm

λ

1∑m
i=0 πi(E[e−λτi | X0 = 0])−1

.

This plus (3.13) gives (3.15). �
From (3.15), we can obtain the moments of FSST τ from that of hitting time

τk, and the moments of hitting time are explicitly known. By taking derivatives
in (3.15) twice, we have

Eτ =
m∑

i=0

πiEτi, Eτ2 = 2(Eτ)2 +
m∑

i=0

πiEτ
2
i − 2

m∑
i=0

πi(Eτi)2. (3.16)

And it is known [15] that

Eτi =
i−1∑
j=0

1
πjbj

j∑
k=0

πk, Eτ2
i = 2(Eτi)2 − 2

i−1∑
j=0

1
πjbj

j∑
k=0

πkEτk. (3.17)
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Combining these formula, we have

Eτ =
m∑

i=0

1
πibi

i∑
j=0

πj

m∑
j=i+1

πj, Eτ2 = 2(Eτ)2 − 2
m∑

i=0

πi

i−1∑
j=0

1
πjbj

j∑
k=0

πkEτk.

If let

S = (Eτ)2 − 1
2

Eτ2 =
m∑

i=0

πi

i−1∑
j=0

1
πjbj

j∑
k=0

πk

k−1∑
u=0

1
πubu

u∑
v=0

πv,

and exchange the first summation and the second one, then exchange the third
one and the forth one, one can see that S is the same as in (3.6). Again, we
derive Theorem 3.3 in case of the continuous time birth and death processes.

As for the discrete time case, in the place of Lemma 3.4, we have the
following construction result. The proof is almost the same as in case of the
continuous time, thus is omitted here.

Lemma 3.8 For the discrete time birth death process Xn, let

φim(s) = 0, φij(s) =
∞∑

n=0

sn
P[Xn = i, t < τm | X0 = i], 0 � i, j < m,

and for 0 � i, j � m,

ψij(s) =
∞∑

n=0

sn
P[Xn = i | X0 = i].

It holds that for 0 � i, j � m,

ψij(s) = φij(s) +
ξi(s)πjξj(s)

(1 − s)
∑m

i=0 πiξi(s)
, (3.18)

where
ξi(s) = E[sτm | X0 = i].

From Lemma 3.8, we have the following relationship.

Theorem 3.9 For the stochastically monotone discrete-time birth and death
chain starting at 0, the FSST τ satisfies

Esτ =
(
π0 +

n∑
k=1

πk(E0s
τk)−1

)−1

, s ∈ [0, 1). (3.19)

By taking derivatives at s = 1 twice, we can also get similar relations as in
(3.16). Therefore, we deduce that Theorem 3.3 holds in case of discrete time
stochastically monotone birth and death chains.
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4 Applications and examples

In this section, we will give two applications and some examples. First, we
apply [9] to the family of restricted chains from a birth and death chain on
the half line. We show that the separation cutoff is closely related to the
exponential ergodicity and strong ergodicity. Second, we use the explicit
formula in Theorem 3.3 to detect the separation cutoff for the Metropolis
algorithm based on the simple symmetric random walk. These results can
be comparable with that in [9], where the arguments rely heavily on the exact
estimates of the eigenvalues.

4.1 Restricted chains

In this section, we will use the explicit criteria to study a special case: the
family of the birth and death chains are the restricted chains taking from a
birth and death chain on a countable state space.

Let ai (i � 1) and bi (i � 0) be the death and birth rates, respectively, for the
continuous time birth and death processes on {0, 1, . . . }. For each n = 1, 2, . . . , a
restricted process X(n)

t on {0, 1, . . . , n} is referred to a birth and death process
with birth rates b(n)

i = bi for 0 � i � n − 1 and b
(n)
n = 0, and death rates

a
(n)
i = ai for 1 � i � n. Then X(n)

t is ergodic with reflecting boundary at n. In
the discrete time case, we can define the ergodic restricted chains in a similar
way.

Corollary 4.1 Suppose that Xt is a continuous time birth and death process
on E = {0, 1, 2, . . . }. For each n = 1, 2, . . . , let X(n)

t be the restricted chain
on En = {0, 1, . . . , n} of Xt with reflecting boundary at n. Assume that Xt is
exponential ergodic. Then X

(n)
t has separation cutoff if and only if Xt is not

strongly ergodic.

Proof Let λ1 be the spectral gap for Xt and λ1 > 0 by exponential ergodicity.
Let λ(n)

1 as before. Then by [4; Theorem 9.21], limn→∞ λ
(n)
1 = λ1. On the other

hand, it is easy to see that

∞∑
i=0

1
πibi

∞∑
j=i+1

πj � lim
n→∞T (n)

= T

=
∞∑
i=0

1
πibi

i∑
j=0

πj

∞∑
j=i+1

πj

� π0

∞∑
i=0

1
πibi

∞∑
j=i+1

πj.

But the birth and death process is not strongly ergodic if and only if
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∞∑
i=0

1
πibi

∞∑
j=i+1

πj = ∞.

Therefore, the non-strong ergodicity is equivalent to

lim
n→∞λ

(n)
1 T (n) = ∞,

which completes the proof according to [9]. �
Since the strong ergodicity implies the exponential ergodicity, the family of

restricted chains of a strongly ergodic birth and death process cannot have the
separation cutoff.

The discrete time case is somewhat different and simpler.

Corollary 4.2 Suppose that Xt is a discrete time birth and death chain on
E = {0, 1, 2, . . . }, which is stochastically monotone and geometrically ergodic.
For each n = 1, 2, . . . , let X(n)

t be the restricted chain with reflecting boundary
at n. Then X

(n)
t has separation cutoff.

Proof From [17], we know that for Xn, the spectral gap λ1 > 0 if and only if
it is geometrically ergodic. As in the continuous time case,

lim
n→∞λ

(n)
1 = λ1, lim

n→∞T (n) = T.

But noting ai � 1, we get

T =
∞∑
i=0

1
πibi

i∑
j=0

πj

∞∑
j=i+1

πj

� π0

∞∑
i=0

1
πibi

∞∑
j=i+1

πj

� π0

∞∑
i=0

1
πibi

πi+1

= π0

∞∑
i=0

1
ai+1

= ∞.

The proof is finished. �
Let us present some examples.

Example 4.3 For the continuous time case, let ai = a, bi = b, or for discrete
time cases, let ai = a, bi = b with a+ b � 1.

(1) If a > b > 0, then
λ1 = (

√
a−

√
b )2.
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Thus, this process is exponentially ergodic, but not strongly ergodic, so that by
Corollary 4.1, there is separation cutoff for the restricted chains.

(2) If b � a > 0, then the process is transient. In this case, we cannot apply
Corollary 4.1. Instead, we apply Theorem 3.3. For β := b/a > 1, we have

Z =
βm+1 − 1
β − 1

, πi =
βi

Z
.

A direct and tedious calculation implies that the separation cutoff occurs.
(3) For a = b, we have πi = 1/m. Again, an easy calculation shows that

there is no separation cutoff.

Example 4.4 For the continuous time, let ai = aiγ , bi = b with γ � 0, a, b >
0. Then there is separation cutoff for the restricted chains if and only if γ ∈ [0, 1].

Proof As the death rates ai > b for i large enough, by comparing with the
processes with constant birth and death rates as in Example 4.3, we see that
the process is exponentially ergodic. To derive the assertion, we will show that
T = ∞ if and only if γ ∈ [0, 1]. For this, note that

πi =
1
Z

λi

(i!)γ
, Z =

∞∑
i=0

λi

(i!)γ
,

where λ = b/a. It is easy to see that∑
j�i+1

πj ≈ πi+1

(x ≈ y means ∃ c, C, 0 < c � C <∞, such that cy � x � Cy). Thus,

T =
∞∑
i=0

1
πibi

i∑
j=1

πj

∞∑
j=i+1

πj

≈
∞∑
i=0

1
πibi

∞∑
j=i+1

πj

≈
∞∑
i=0

1
πibi

πi+1

=
1
λb

∞∑
i=0

(i+ 1)−γ ,

which is infinity if and only if γ ∈ [0, 1]. �
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4.2 Metropolis algorithm

Another application is the Metropolis algorithm. The base chain is chosen to be
the simple symmetric random walk. See [8] for example. For each m = 1, 2, . . . ,
a Metropolis chain on {0, 1, . . . ,m} is formulated as follows:

ai =

⎧⎪⎨
⎪⎩

1
2
,

πi−1

πi
� 1,

πi−1

πi
,

πi−1

πi
< 1,

1 � i � m,

bi =

⎧⎪⎨
⎪⎩

1
2
,

πi+1

πi
� 1,

πi+1

πi
,

πi+1

πi
< 1,

0 � i � m− 1.

In the following, for positive sequences {xm} and {ym}, xm ∼ ym means

lim
m→∞

xm

ym
= 1.

Corollary 4.5 Let πi = (i+1)d/Z with d ∈ R, where Z makes π a probability
measure. For a family of Metropolis chains on {0, 1, . . . ,m} defined as above,
there is no separation cutoff.

Proof Case 1 d � 0.
Since πi is increasing in i, bi = 1/2 for 0 � i � m− 1. Note that

i∑
k=1

kd ∼ id+1

d+ 1
, i→ ∞.

Thus, by definitions of T and S, we have

T ∼ m2

d+ 3
, S ∼ m4

2(d+ 3)(d + 5)
,

so that
S

T 2
∼ d+ 3

2(d+ 5)
	= 1

2
.

Case 2 −1 < d < 0.
As πi is decreasing in i, ai = 1/2 for 1 � i � m, using facts

πibi = πi+1ai+1 (0 � i � m− 1),
i∑

k=1

kd ∼ id+1

d+ 1
,

we have

T =
m∑

i=1

Hi−1(1 −Hi−1)
πiai

∼ m2

d+ 3
, S ∼ m4

2(d+ 3)(d+ 5)
,
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so that
S

T 2
	∼ 1

2
.

Case 3 d = −1.
As in Case 2, we have

T =
m∑

i=1

Hi−1(1 −Hi−1)
πiai

.

Now, using facts

m∑
i=1

i−1 ∼ logm,
m∑

i=1

ip(log i)q =
mp+1(logm)q

p+ 1
− q

p+ 1

m∑
i=1

ip−1(log i)q−1,

we can inductively get

T ∼ m2

d+ 3
, S ∼ m4

2(d+ 3)(d + 5)
,

as in Case 1.
Case 4 d < −1.

Using the fact

m∑
i=1

id ∼ c−md+1

|d+ 1| (for some c = c(d) > 0),

we get

T ∼ m2

1 − d
, S ∼ m4

4(3 − d)(1 − d)
,

so that
S

T 2
	∼ 1

2
. �

From Example 4.3, we obtain the following results for geometric measures.

Corollary 4.6 Let πi = βi/Z with β > 0, where Z makes π a probability
measure. For a family of Metropolis chains on {0, 1, . . . ,m} defined as above,
there is separation cutoff except β = 1.
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