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1. Introduction and main results

This paper deals with the first Dirichlet eigenvalue for B-D process on tree with the unique root 0 as absorbing boundary.
One may refer to Miclo (2008) and Ma (2010) and the references therein for more related works. Our work is inspired by
analogies research for B-D processes in Chen (2010) and Chen et al. (2013), in which the principal eigenvalues in dimension
one with kinds of boundary conditions were studied. Let T be a tree of at least two vertexes with the edge set E (i.e., a
connected graph without circle), such that the degree d; for each i € T is finite. Let |i| denote the layer of i, and i ~ j if
(i,j) € E.We callj € T a son (correspondingly, the father) of vertexi € T ifi ~ jand |j| = |i| 4+ 1 (correspondingly,
lil = lil — 1). Consider a continuous time B-D process with Q-matrix such that g; > 0 if and only if i ~ j. Then the
corresponding operator is

f) =Y (i —f) + g —f), i€T,
IS[U}
where ] (i) is the set of sons of i and i* is the father of i. It is easy to obtain the unique symmetric measure ; on T:
Gj%j
po=1 =[] 2. keT\(o},
je o
where (i) is the set of all the vertexes (the root 0 is excluded) in the unique simple path from i € T \ {0} to the root. If
(A, g) with g # 01is a solution to “eigenequation”:

$2g(i) = —Ag(), ieT\{0}, (1.1)
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then A is called an “eigenvalue”, and g is called an “eigenfunction” of the eigenvalue A. Note that the “eigenvalue” and
“eigenfunction” used in this paper in a generalized sense rather than the standard ones since we do not require g € L2(1).
In this paper, we focus on estimating the principal Dirichlet eigenvalue A, (i.e., the corresponding eigenfunction satisfies
boundary condition go = 0), which has the following classical variational formula:

Ao = inf(D(f) : u(f?) = 1,fo = 0}, (1.2)
where u(f) = Zkemo} wifi and

D)= Y (i —f)>, f€2D)

i€T\{0}

with 2(D) = {f : D(f) < oo, fo = 0}. Without loss of generality, we assume that the vertex 0 has only one son throughout
this paper (i.e., [J(0)] = 1) and the layer counting begins from the son of the unique root 0. Denote by N (N < o0) the
maximal layer of tree T and T; (i is included) a subtree of tree T with i as root. It is clear that A¢ > 0 if N < oo (otherwise,
£2g (i) = 0. Denoted by Ay the set of vertexes in the maximal layer N. By lettingi € Ay in(1.1), we have g; = g« fori € Ay.
By the induction, we have g; = gy = 0 fori € T, which is a contraction to g # 0). To state our results, we need some
notations as follows. Fori € T \ {0}, define

1
(f) = ——— E wifi  (single summation form),
’ mwm—myﬁ~m

1
I;(f) = Z Z wifi (double summation form),
f ke (i) MRk i
Ri(w) = qi» (1 — w,._1) + Z q;;(1 — wj) (difference form).
je] ()
The forms of these operators defined above were initially introduced in Chen (1996, 2001, 2010) respectively for birth—
death processes in dimension one. Shao and Mao in Shao and Mao (2007) extended the operator with single summation form

from line to tree, and obtained the first operator defined above. The domains of the three operators are defined respectively
as follows:

F1={f :fo=0,f; > fifori e T\ {0}},
Fn=1{f:fo=0,f >00nT\ {0},
={w:w> 1, wyg = 00}.

These are used for the lower estimates of Aq. For the upper bounds, some modifications are needed to avoid non-summable
phenomenon, as shown below.

={f>0:fo=0,31 <n <N+ 1suchthatf; > fi= for |i| <n, and f; = fi+ for |i| > n+ 1},
9‘” {f>0:f=0,31 <n < N+ 1suchthatf; = fi for |i| > n+ 1},
W = U w:we =00, w; > 1and Zq,-jwj<q,-,-*(1—wi_])
m: 1<m<N+1 Jjel (@)
+ Zq,-jfor|i| <m, andw; = 1for|i| >m+ 1
JjeJ @
Define R acting on # as a modified form of R by replacing g;+ with ,u,qn*/ Z jer; M in R;(w) when |i| = m, where m is the

same one in #. When using the approximating method, we also use R (at this time, g;;+ is replaced with g;;+ for eachi € T,
see the arguments before Lemma 2.1 and Step 4 in the proof of Theorem 1.1). Here and in what follows, we adopt the usual
convention 1/0 = co. The superscript “~ " means modified.

In Theorem 1.1, “sup inf” are used for the lower bounds of Aq, e.g., each test function f € .#; produces a lower bound
inficry o) I;(f)~1, so this part is called the variational formula for the lower estimate of A. Dually, the “inf sup” are used for
the upper estimates of Ao. Among them, the ones expressed by operator R are easiest to compute in practice, and the ones
expressed by II are hardest to compute but provide better estimates. Because of “inf sup”, a localizing procedure is used for
the test function to avoid I(f) = oo for instance, which is removed out automatically for the “sup inf’ part. Define another
set

Fy=1f > 0:fll(f) € ()}

Then we present our main results.

Theorem 1.1. The following variational formulas hold for Aq defined by (1.2).



L.-D. Wang, Y.-H. Zhang / Statistics and Probability Letters 83 (2013) 1973-1982 1975

(1) Single summation forms:

sup inf L(f)"' =xo = inf sup L(f)"',
fez, i€T\(0) feF ieT\{0}

(2) Double summation forms:
sup inf IL(f)~ ' =2 = inf_ sup ()71
fes(z) i€T\{0} FEeS(ZF) ieT\{0}
with S(F) = Fy or F and S(F) = Fy, or F, or F U Fy.
(3) Difference forms:

sup inf Rij(w) =Xo = inf_sup ’Ei(w)~
wew i€T\{0} weW ieT\{0}

We mention that the lower bounds of Ay in Theorem 1.1 (1) were known in Shao and Mao (2007) as an inequality. Liu
et al. in Liu et al. (2013) extend the result in Shao and Mao (2007), obtaining lower estimates of Ao under some conditions.
In view of the relation between the test functions of R, I and II (they are all the analogies of an eigenfunction, see arguments
after Lemma 2.1 for details), it is not hard to check that these estimates in Theorem 1.1 can be sharp (Shao and Mao, 2007),
which illustrated that the lower estimates with single summation form can be sharp.

Define |A| = number of elements in the set A, u(T;) == Zkerj i, and

1
¢ = » JeT\ {0}
’ ke;(j) Mk ki

As applications of Theorem 1.1 (1) and (2), we have the following theorem.

Theorem 1.2. Let § = supjcr (o) 14 (T;) @;. Then
-1
87 > 20> [(2 sup Cl-) 8] ,
ieT\(0}

G=1+UOI+ Y > WUHdI-1), ieT.

seJ (i) keTs

where

The theorem effectively presents to us the positive criterion of the first Dirichlet eigenvalue of a B-D process on trees
with one branch after some layer. For the degenerated case of the tree (only one branch), the results reduce to that of the
B-D process on a half line studied in Chen (2010) (the ratio of the upper and lower bounds for the estimates of )¢ is no more
than 4). It is worthy to point out that the B-D process on a tree with the root as a Dirichlet boundary can be a comparison
with the B-D process on a line with bilateral reflecting boundaries. Let us have a look at the B-D process on a line with
reflecting boundaries. From Chen (2010), we see that the eigenfunction of the first eigenvalue is strictly monotone with a
unique zero. If we treat the unique zero of the eigenfunction as a root, then the B-D process on a line is just a B-D process
on a tree with two branches and the unique “root” as a Dirichlet boundary (the intuition is pointed out by Professor Mao
Y.H.). Concerning the B-D process on a line with reflecting boundaries, one may refer to Chen (2013).

2. Proofs of the main results

Define Ay, = {i: |i| = m},T(n) = U} _, Ay and
o = D) : w(f?) = 1,31 <n < N + 1such that f; = fx for |i| > n + 1}.
As will be seen in Lemma 2.1, Ay = Ao Once Y ket Mk < 00.To this end, define
AV =inf{D() : u(fF) =1, fi=fsfor lil >m+1}, 1<m<N+1

There is an explanation for )»g") (see Chen, 2010, Section 4, p. 427): let

fi =i,  Gy=gqy forlil<m—Tandl|jl<m—1;
Ri = ZIM, Qi = Qi i = MiQii*/Z pj for il = m.
JET; JET;

Noticing u;qi+ = iLiGi+, for f with f; = fi= for |i| > m + 1, we have
DF)= Y fule(i—fi)? =D, u(® =Y uf’ =i

ieT(m)\{0} ieT(m)



1976 L.-D. Wang, Y.-H. Zhang / Statistics and Probability Letters 83 (2013) 1973-1982

So the Q-matrix a = (g : i,j € T(m)) is symmetric with respect to {{;}ierm) and Ag”) is the first Dirichlet eigenvalue of

the local Dirichlet form (D, (D)) with state space T (m).
For simplicity, we use “iff” to denote “if and only if” and 1 (resp. | ) to denote increasing and decreasing throughout the

paper.
Lemma 2.1. Assume that ZkeT i < 0o. We have Ag = ):0 and k(()") J Apasn— N.

Proof. By the definition of Ao, for any & > 0, there exists f such that D(f)/(f2) < Ao + &. Construct f™ such that £ = f;
for|i| <n andfi(”) = f for |i| > n+ 1.Since ), iy < 00, by symmetry, we have

D™y = > g Gi—fr)* =Y i (i —f)* 1 D)

ieT\{0} ieT(m)\{0}
2
Py =Y wf+ Y @ - u).
ieT(m)\{0} i€ At

By definitions of Aq, %o and Aé"), the required assertion holds. O

This lemma presents us with an approximating procedure, making it sometimes possible that we only need to show that
some assertion or property holds for finite trees even if N = oo (see Step 6 (b) and Step 8 in proofs of Theorem 1.1). The
following lemma known in Shao and Mao (2007), gives us an important property of eigenfunction g. The property provides
us with the basis for the choices of those test function sets of operators I, Il and R.

Lemma 2.2 (Shao and Mao, 2007, Proposition 2.4). For a B-D process on tree T (may have infinite vertexes). If (Ao, g) is asolution
to (1.1) with boundary condition gy = 0 and g € L*(u) holds, then g; > g foreachi € T \ {0}.

Obviously, for a B-D process on finite tree T (a tree with maximal layer N < 00), the eigenfunction g of the first Dirichlet
eigenvalue satisfies g; > g+ for every i € T. Before moving further, we introduce a general equation and discuss the origin
of operators. Consider

Poisson equation : 2g(i) = —f;, i€T)\{0}.
By multiplying 1; on both sides of the equation and making a summation with respect toi € Ty N T(n) for some k € T \ {0}
with |k| < n, itis easy to check that
> i @ — &)+ e @ — ge) = Y i k<. (2.1)
JE€AR41NTy JETKNT (n)

Iflim,_ ZjeAnﬂmk 1iqji+ (g — &) = 0 (which is obvious for N < o0o), then we obtain the form of the operator I by letting
n — Nandf = Ag in (2.1). Moreover, if gy = 0 (which is clear for the eigenfunction of Dirichlet eigenvalue Xy), then

1
§= >

ke 2 (i) Mrdkks e

This explains where the operator II comes from. Similarly, from the eigenequation (1.1), we obtain the operator R by letting
w; = gi/g. The eigenequation is a “bridge” among these operators. Based on Chen (2010), Chen et al. (2013) and taking full
advantage of these relations, we present the proofs of the main results.

Proof of Theorem 1.1. We introduce the following circle arguments for lower bounds of XA,.

do > sup inf IE(F))~'= sup inf I(f)~' = sup inf L(f)~' > sup inf Ri(w) > Ao.
0 fegrl:)"ieT\{O} i) fefﬁ, ieT\(0} i) f&gl ieT\(0) i) P o) (W) > 4o

Step 1 Prove that &g > supy¢ &, infier (o) I;(FH~.
For positive sequence {h;}ier\(o; and g with g = 0, w(g?) =1, we have

2
1= > ug= ). w( > (gi—gi*)> (since go = 0)

keT\{0} keT\{0} ic 22 (k)

Z i Z M]f?ﬂ («gj—gj*)z Z "~ (by Cauchy’s ineq.)

keT\{o}  jezek) Y ie 2o (k) Midii*

h;
Z 1G5+ (g —gj*)z hl Zuk Z

jeT\{0} ket i ok Mildit

N

(by exchanging the order of sums, and j € 2 (k) iffk € T)).
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For every f with fII(f) < oo, leth; = ZkeT,- ifi. By the proportional property, we get

1(g*) < D(g) sup > Y / > i< D(g) sup Ij().

JETNO} \kery  ic o Midir ke,

By (1.2), we have

Ao > inf II; , € 7,
0> I j(f) f il

and the required assertion follows by making the supremum with respect to f € .%.
Step 2 Prove that Supfeg” inf,-eT\{o} ”,'(f)_l = supfegzl il’lf,‘er\{o} I]j(f)_l = Supfeu@l inf,‘er\ (0} I,‘(f)_l

(a) Prove that the direction >. The first inequality is clear since .#; C .#j. Replacing f in the denominator of II;(f) with
Zkegzo) (fk — fi). Using the proportional property, for f € %, we have

1
sup I(f) = sup || D Youdi] [ D Ge—fi) | < sup ().
jeT\{0} Jen\foh | \éz(j) Mk e, ke () keT\{0}

So the required assertion holds.
(b) To prove the equality, it suffices to show that

sup inf L(f)~'> sup inf I(f)”"
feF ieT\{0} fezy ieT\{0}

For f € .7y, without loss of generality, assume that Il (f) < oo.Letg = flI(f). Theng € 7,

k .
g — E E - T\ {0
8i — &i /’L]f} ;& keT\{O} g ieT\{0},

Mz‘]n ey JeT;
and then the required assertion follows immediately since f € % is arbitrary.

There is another choice to show the equality. By Lemma 2.2, we see that the eigenfunction g satisfies that g; > g+ for
i e T\ {0} providedN < co.Sog € % and Ay = I;(g)~ " fori e T\ {0} (Shao and Mao, 2007, Lemma 2.3). By making the infi-
mum with respect toi € T\ {0} first and then the supremum with respect to f € .%;, we have Ao > sups¢ &, inficr\(o) L(FH)T
There is a small gap in the proof since the eigenfunction g may not belong to L> when N = co. However, one may avoid this
by a standard approximating procedure (according to the approximating idea used in Step 4 below). Combining this with
Step 1 above, the required assertion holds.

Step 3 Prove that supy, Zu infiery oy 1I; ()1 > SUPy, ey inficryjoy Ri(w).

We first change the form of R;(w). For w € #, let u with ug = 0 be a positive function on T \ {0} such that w; = u;/u;+
fori e T\ {0}, ie,

H w; forieT\ {0}, ug = 0.
jez ()

Then u; > u; fori € T \ {0} and

1 Lu(
Ri(w) = - |;Z i (Ui — uy) + Gige (Ui — Ui*):| s (2.2)

i€l ) Ui

Now we turn to the main text. For any fixed w € ¥, without loss of generality, assume that R(w) > 0. Let u be a function
mentioned above such that w; = u;/u and f = uR(w) > 0.Then f € #; and 2u(i) = —f;. Since u; > u;+, by (2.1), we have

D wifi < e (e — we) < 0o, [kl <n
JETKNT (n)

Sof e L'(u) and

1
U — Upe > > i

=y

by letting n — N. Moreover,

ui?Z Zﬂ?

kE:@(l) l"l’quk ]ETk
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Hence,

. . fi . 1
f R = inf — < inf II; , T\ {0},
it (o) i(w) it (0) u; T [0) i) PeTA0)
and the assertion follows by making the supremum over f € .# first and then over w € 7.
Step 4 Prove that sup,,c inficr\jo; Ri(w) > Ao.
We first prove that sup,,c, infier\jo) Ri(w) > 0. Let f € L'(1) be a positive function on T \ {0} and h = flI(f) on
T \ {0}, hp = 0.Then

1
hi — hix = Hicfie-
l ' Miqii* ; '

Put w; = h;/hi fori € T \ {0}. By symmetry, we have

—Qh() = gis(hi — hiw) = Y qe(hy — hye)  (byj € ) iff i = j7)
jel@
1 gj+j
=— > wh—), > i
=y jery M e,
1
= — | D wdi— Y ) midi| =Fi
Hi | er, il () keT;
So
$2h(i i
R = -0 _ o ety o,

h; h;

and the required assertion then follows by making the infimum with respect toi € T \ {0} first and then the supremum
with respect to w € #.

By Lemma 2.2, if Ao > 0 and the maximal layer of the tree N < oo, then the eigenfunction g satisfies g; > g+ for every
ieT)\{0}. Let w; = g;/gi+. Then w € # and

—$2g()

1

Ri(w) = = Ao, 1€T\{0}
So the assertion holds for N < oo. If N = oo, then an approximating procedure is used. Let m € Nt and1 < m < N + 1.

Then Ag") J Agasm 1 N by Lemma 2.1. Noticing the explanation of Aém) at the beginning of this section and the assertion
we have just shown for N < oo, we have

Af)m) = sup _inf Ri(w),
wew (m) I€T(M)\{0}
where #(m) = {w : w; > 1,i € T(m), wy = oo},ﬁ is a modified form of R by replacing g;+ with g;+. So for any ¢ > 0,
there exists w € ¥ (m) such that
AW < inf Ri@)4e< inf  Ri(w)+e.
ieT(m)\{0} ieT(m—1)\{0}
Extend w to T by setting w; = w;« for |i| > m. Noticing g;+ = @+ for |i| < m, we have Ei(ﬁ)) = Ri(w) for |i| < m. Since
inficrm—1)\0y Ri(w) — infiep\ (o) Ri(w) as m — oo, the required assertion follows by letting m — oo.
We adopt the following circle to prove the upper bounds of Ag.

ho < dnf _ sup IL(F)~!
feFUZy ieT\{0}

< inf sup L)' = inf sup IL(f)~' = inf sup L(H)~!
feZy ieT\{0} feZy ieT\{0} feZy ieT\{0}

< inf_ sup E,-(w) < Ag.
weW ieT\{0}

The second inequality above is clear and we only need to prove the remainders.
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Step 5 Prove that 1 < mffegz U5, SUDier\ (0} ()1
Forf € Zu1, there exists n € E such that f; = fi for |1| n—+ 1. Let g; = fill;(f) for |i| < nand g; = g for |i| > n+ 1. Then

g € [?(u) and
E wifil
Miqii* =7 el

& — &ix =

Inserting this term into D(g), we have

D) = Y (G—g) Y mdilgin

jeT\{0} keT;

> wfie Y V(G — ge)  (since k € T iff j € 2(k))
keT\{0} je?(k)

> fige (since g = g for i > n+1).
KETV(0}

Since g € L?(), we further obtain

Ji _
D(g) < Z wgd sup = < (g sup ().
keT\{0 keT\{0} &k keT\{0}

Hence,

D(g) _
0 < > < sup II(f) L
n(g?)  ker\(o)

This inequality also holds for f € 9;:,’, since the key point in its proofis g = flII(f) e L?>(1), which holds also for f € ?N/I So

the required assertion holds.
Step 6 Prove that inf;_ 5, sup,er\{o} II,(f)‘] = inffegl Supicry oy Ii(f) ! = infr 5 SUPier o) L(H~

(a) We first prove the direction “ <”. Since F1 C y, the first inequality is clear. For f € Z;, there exists 1 <n < N + 1
such that f; = fi+ for |i| > n+ 1 and f; > fi for |i| < n.Since f; = Zke{'}’(l) (fx — fix) for |i| < n, inserting th1s term into
the denominator of II(f) and using the proportional property, we have

inf I(f)= inf I(f) > inf L(f)
ieT\{0} ieT(n)\{0} ieT\{0}

and the required assertion holds since f € Zis arbitrary.
(b) Prove the equality.

Forf € Zy,3n € [1,N + 1) such that f; = fi« for |il > n+ 1andf > 0. Letg = fill;(f) for 0 < |i| < n,g = 0and
gi=gnforlil >n+ 1.Theng € 4 and

Zu,fj, lil <n

Miqiix et

& — 8ix =

Moreover,

1igie (8 — &) < Y 14ig sup— > wigisuplli(f)~', ieT\{0}.
JET; JET; JET; JET;

Hence,

sup I(g)™' < sup M(f)~".
keT\{0} keT\{0}
Then the assertion follows by making the infimum over f?} first and then the infimum over y‘~,,
Alternatively, there is another method to prove the equality. Combining with the arguments in Step 5 and Step 6 (a), it
suffices to show that

inf sup L(f)"' < Ao
FeZ keT\(0}

To see this, assume that g is an eigenfunction corresponding to Aém) .Then g; > g;+ fori € T(m). Extend g to the whole space
by letting g; = g;+ for |i| > m 4+ 1.Then g € .%; and

W= sup h(g) = sup Ig)™" > inf sup k().
keT(m)\{0} ke feF keT\{0}

Noticing Lemma 2.1, the required assertion then holds by letting m — oo.
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Step 7 Prove that inf 5, SUPicr\(0) ()~ <inf, .5 SUDPjer (0} Ri(w).

First, we change the form of R. For w € # with w; = 1for |i| > m+ 1, let g be a positive functionon T \ {0} withgy =0
such that w; = g;/g;+. Then g; > g for |i| < mand g; = g+ for |i| > m + 1. Since

Z qiwj < Gie (1 — w; 1) + Zqij for il <m
=10 jel @

we haveﬁ (w) = —(N)g(i)/g, > Ofor|i] <m andﬁ (w) = 0for |i| > m+ 1, where 2 is defined on T(m), corresponding to
Q-matrix (q;) (see the arguments before Lemma 2.1).

Now, we come back to the main assertion. For w € # with w; = 1 for lil > m+ 1, let g be the function mentioned above
and

> aiei —g) + g (@ — &), il <m—

f= {90 _
Qi+ (& — &), li| = m,
fix, li| >m+ 1.
Then f; = —?Zg(i) > 0 for |i| < m.By (2.1), we have
> wa e — &)+ medue @ —ge) = Y wf. kl<m—1.
j€AmNTy JETNT(m—1)

Since

wigie (& — ) = Y wifi =y wfi,  lil=m,

J€T; J€T;
we have
Do owtrg g = Y Yomhi= Y i k<m
jeAmNTy jeAmNTy i€T; Je(T\T(m—1))NT;

Hence, for 0 < |k| < m, we obtain
e (8= 8e) = Y wfi+ > widp (g —g) = Y wifi
JETNT(m—1) j€AmNT €Ty

Moreover,

Do 0<lil<

ke o (i) Mrdkks e

& =

and Ri(w) = fi/gi = II;(f)~! for 0 < |i| < m. Since Ry(w) = O and f; = f» for |i| > m -+ 1, we obtain

sup Ri(w) = sup I:(f)"' > inf sup I;()™', we#,
ieT\{0} ieT\{0} feZy ieT\{0}
and the required assertion holds.
Step 8 Prove that inf,,c.7 Sup;er (o) R; (w) <

Let g with gy = 0 be an eigenfunction of local ﬁrst eigenvalue Aém) and extend g to T\ {0} by setting g; = g;« for |i| > m+1.
Put w; = g;/g fori € T \ {0}. Then w € #.Since m < oo, we have Ri(w) = )»g") > Ofori € T(m) \ {0}, and R;(w) = O for
T \ T(m). Therefore,

AW = max Ri(w)
ieT\(0)

WV

inf max R; i(w)
we W -wi=1 for |i|>m-+1i€T(m)\{0}

Vv

inf max R (w)
we# :An>1 such that wi=1 for |i|>n+1 i€T\{0

WV

inf_ max R,(w)
we# i€T\{0}

The assertion then follows by lettingm — N. O
Define T;; = T; UT;. Then Tj; = {k : s € J(i) and k € T;}. Similarly, we have J(T;) = {k : s € T and k € J(s)}. It is obvious

that J(T;) = Tj;. Without loss of generality, we adopt convention that w (Ty) = 0if Ty = ¢. The proof of Theorem 1.2, which
is an application of Theorem 1.1, is presented as follows.
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Proof of Theorem 1.2. First, we prove that ;" < (2 supjcr (o) Gi) 8. It is easy to see that

D owfi =) [u(rﬂ -y u(m}
J€T; J€T; ke ()
=Y uMfi— Y wTofie (since](T)) = Ty and k € J(j) iff j = k)
JjeT; keTy

= u(fi+ Y w(@o (e —fir) (since T, = {i} UT) .

keTy

Putfi = ./ forj € T. Then

1
D G = r@Vei+ Y @) (Vo — Vo) <8 | o P+ ) o (Vo= Vo)

JET; keTy iy keTj)
Since ¢y > @+, we obtain
1 ~1/2 ~12
Z *(\/‘Pk_\/@k*)g Z (‘ﬂk* — Y )7
keTy K keTy)

Noticing that Tj; = J(T;) and k € J(j) if and only if k* = j, we have

2oeelt=2 0= g =2 Uy

keTy iy keJ (Ty) J€T; kel () =
Inserting this term to the inequality above, it holds!
1 . _
Y — (o= o) < [ UOI+ Y Wl =1 [ ¢
keTy) Tk keTj )

Hence,

INCE [] UG+ > Wk - 1)} s * = o 1

J€T; sej (i) keTs

Since
1 1
= i + A/ @ix) = RiGix (V@i + /0i)

oo g VAT Er) =it (Vot V)

we obtain
1 —1/2
(Vo) = i@ < Gogp ' (Vi + Vi) < 2G6.
' widi- (V& — /o) ; /9 < e (Vo 2 '

Itis clear that /@ € %, by Theorem 1.1 (1), we have

Ayt < inf sup L(f) < sup L(V/@) < (2 sup C,-) s.
feZ1ieT\{0} ieT\{0} ieT\{0}

Now, we prove that Ay < § 1. Foriy € T \ {0}, let f be a function such that

¢ ifie 2(p),
ﬁ = 1% ifie Tio!
0 Others.
Then
TED NTCTEED D B
JET; JETiNTy, keTiN( 2 (ip)\{0}) jETk

1 More details are presented in the Appendix.
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Since f; — fix = 1/ (1igs+) fori € 2(ip) and f; — fix = 0fori € T \ 2(ip). We have
Ap! = sup inf Ii(g) > inf L(f)

gef’}“ ieT\{0} ieT\{0}
= ot | Dot D D
JETiNTy, keTiN( 22 (i) \{0}) jETk

= u(Tiy)eiy, io € T\ {0}.

Then the assertion follows by taking the supremum over T \ {0}. O
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Appendix

It is not certain whether Z i<y <pj 2 ~ s or not, so we adopt the following methods to show the required assertion.
It is easy to see

S W) < Y () =l Y (w - ).

seJ (i) keTs Pr seJ (i) keTs m |i|+1 ke AmNT;
Since
. 1/2 . 1/2 &« 1/2
> 2 wt= 3 3 Uble =30 3 Umle”
m=li|l4+1 ke AnNT; m=|i|l+1keAyn_1NT; m=|i| ke AmNT;
. —1/2
= Ulg "+ Z > UMl
m=|i|+1 ke AnNT;
we have
n
. —1/2 —1/2
Sy lwmova) 3 T (o)
seJ(i) keTs m=|i|+1 ke AnNT;
n—1
_ N —1/2 . -1/2 —1/2
= U@lg P +lm (30 D UkI-De, Y Ukl
m=|i|l4+1 ke AnNT; ke ApNT;
N
N —1/2 ~12
<UDl "+ >0 Y Wl-1g "

m=|i|l+1 ke AnNT;

Uler "+ D Ukl —1eg

keTjq)

and the required assertion holds. O
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