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a b s t r a c t

This paper investigates the birth–death (‘‘B–D’’ for short) process on trees, emphasizing
on estimating the principal eigenvalue (equivalently, the convergence rate) of the process
with Dirichlet boundary at the unique root 0. Three kinds of variational formulas for the
eigenvalue are presented. As an application, we obtain a criterion for positivity of the first
eigenvalue for B–D processes on trees with one branch after some layer.
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1. Introduction and main results

This paper deals with the first Dirichlet eigenvalue for B–D process on tree with the unique root 0 as absorbing boundary.
One may refer to Miclo (2008) and Ma (2010) and the references therein for more related works. Our work is inspired by
analogies research for B–D processes in Chen (2010) and Chen et al. (2013), in which the principal eigenvalues in dimension
one with kinds of boundary conditions were studied. Let T be a tree of at least two vertexes with the edge set E (i.e., a
connected graph without circle), such that the degree di for each i ∈ T is finite. Let |i| denote the layer of i, and i ∼ j if
(i, j) ∈ E. We call j ∈ T a son (correspondingly, the father) of vertex i ∈ T if i ∼ j and |j| = |i| + 1 (correspondingly,
|j| = |i| − 1). Consider a continuous time B–D process with Q -matrix such that qij > 0 if and only if i ∼ j. Then the
corresponding operator is

Ωf (i) =


j∈J(i)

qij(fj − fi) + qii∗(fi∗ − fi), i ∈ T ,

where J(i) is the set of sons of i and i∗ is the father of i. It is easy to obtain the unique symmetric measure µ on T :

µ0 = 1, µk =


j∈P(k)

qj∗j
qjj∗

, k ∈ T \ {0},

where P(i) is the set of all the vertexes (the root 0 is excluded) in the unique simple path from i ∈ T \ {0} to the root. If
(λ, g) with g ≠ 0 is a solution to ‘‘eigenequation’’:

Ωg(i) = −λg(i), i ∈ T \ {0}, (1.1)
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then λ is called an ‘‘eigenvalue’’, and g is called an ‘‘eigenfunction’’ of the eigenvalue λ. Note that the ‘‘eigenvalue’’ and
‘‘eigenfunction’’ used in this paper in a generalized sense rather than the standard ones since we do not require g ∈ L2(µ).
In this paper, we focus on estimating the principal Dirichlet eigenvalue λ0 (i.e., the corresponding eigenfunction satisfies
boundary condition g0 = 0), which has the following classical variational formula:

λ0 = inf{D(f ) : µ(f 2) = 1, f0 = 0}, (1.2)

where µ(f ) =


k∈T\{0} µkfk and

D(f ) =


i∈T\{0}

µiqii∗(fi − fi∗)2, f ∈ D(D)

with D(D) = {f : D(f ) < ∞, f0 = 0}. Without loss of generality, we assume that the vertex 0 has only one son throughout
this paper (i.e., |J(0)| = 1) and the layer counting begins from the son of the unique root 0. Denote by N (N 6 ∞) the
maximal layer of tree T and Ti (i is included) a subtree of tree T with i as root. It is clear that λ0 > 0 if N < ∞ (otherwise,
Ωg(i) = 0. Denoted by ΛN the set of vertexes in the maximal layer N . By letting i ∈ ΛN in (1.1), we have gi = gi∗ for i ∈ ΛN .
By the induction, we have gi = g0 = 0 for i ∈ T , which is a contraction to g ≠ 0). To state our results, we need some
notations as follows. For i ∈ T \ {0}, define

Ii(f ) =
1

µiqii∗(fi − fi∗)


j∈Ti

µjfj (single summation form),

IIi(f ) =
1
fi


k∈P(i)

1
µkqkk∗


j∈Tk

µjfj (double summation form),

Ri(w) = qii∗(1 − w−1
i ) +


j∈J(i)

qij(1 − wj) (difference form).

The forms of these operators defined above were initially introduced in Chen (1996, 2001, 2010) respectively for birth–
death processes in dimension one. Shao andMao in Shao andMao (2007) extended the operatorwith single summation form
from line to tree, and obtained the first operator defined above. The domains of the three operators are defined respectively
as follows:

FI = {f : f0 = 0, fi > fi∗ for i ∈ T \ {0}},
FII = {f : f0 = 0, f > 0 on T \ {0}} ,

W = {w : w > 1, w0 = ∞}.

These are used for the lower estimates of λ0. For the upper bounds, somemodifications are needed to avoid non-summable
phenomenon, as shown below.FI = {f > 0 : f0 = 0, ∃1 6 n < N + 1 such that fi > fi∗ for |i| 6 n, and fi = fi∗ for |i| > n + 1} ,FII = {f > 0 : f0 = 0, ∃1 6 n < N + 1 such that fi = fi∗ for |i| > n + 1},

W =


m: 16m<N+1


w : w0 = ∞, wi > 1 and


j∈J(i)

qijwj < qii∗(1 − w−1
i )

+


j∈J(i)

qij for |i| 6 m, and wi = 1 for |i| > m + 1


.

DefineR acting on W as a modified form of R by replacing qii∗ with µiqii∗/


j∈Ti
µj in Ri(w) when |i| = m, where m is the

same one in W . When using the approximating method, we also useR (at this time, qii∗ is replaced with q̃ii∗ for each i ∈ T ,
see the arguments before Lemma 2.1 and Step 4 in the proof of Theorem 1.1). Here and in what follows, we adopt the usual
convention 1/0 = ∞. The superscript ‘‘ ’’ means modified.

In Theorem 1.1, ‘‘sup inf’’ are used for the lower bounds of λ0, e.g., each test function f ∈ FI produces a lower bound
infi∈T\{0} Ii(f )−1, so this part is called the variational formula for the lower estimate of λ0. Dually, the ‘‘inf sup’’ are used for
the upper estimates of λ0. Among them, the ones expressed by operator R are easiest to compute in practice, and the ones
expressed by II are hardest to compute but provide better estimates. Because of ‘‘inf sup’’, a localizing procedure is used for
the test function to avoid I(f ) ≡ ∞ for instance, which is removed out automatically for the ‘‘sup inf’’ part. Define another
set F ′

II = {f > 0 : fII(f ) ∈ L2(µ)}.

Then we present our main results.

Theorem 1.1. The following variational formulas hold for λ0 defined by (1.2).
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(1) Single summation forms:

sup
f∈FI

inf
i∈T\{0}

Ii(f )−1
= λ0 = inf

f∈ FI

sup
i∈T\{0}

Ii(f )−1,

(2) Double summation forms:

sup
f∈S(F)

inf
i∈T\{0}

IIi(f )−1
= λ0 = inf

f∈S( F)
sup

i∈T\{0}
IIi(f )−1

with S(F ) = FII or FI and S( F ) = FII , or FI , or F ′

II ∪ FII .
(3) Difference forms:

sup
w∈W

inf
i∈T\{0}

Ri(w) = λ0 = inf
w∈ W sup

i∈T\{0}

Ri(w).

We mention that the lower bounds of λ0 in Theorem 1.1 (1) were known in Shao and Mao (2007) as an inequality. Liu
et al. in Liu et al. (2013) extend the result in Shao and Mao (2007), obtaining lower estimates of λ0 under some conditions.
In view of the relation between the test functions of R, I and II (they are all the analogies of an eigenfunction, see arguments
after Lemma 2.1 for details), it is not hard to check that these estimates in Theorem 1.1 can be sharp (Shao and Mao, 2007),
which illustrated that the lower estimates with single summation form can be sharp.

Define |A| = number of elements in the set A, µ(Tj) :=


k∈Tj
µk, and

ϕj =


k∈P(j)

1
µkqkk∗

, j ∈ T \ {0}.

As applications of Theorem 1.1 (1) and (2), we have the following theorem.

Theorem 1.2. Let δ = supj∈T\{0} µ

Tj

ϕj. Then

δ−1 > λ0 >


2 sup

i∈T\{0}
Ci


δ

−1

,

where

Ci = 1 + |J(i)| +


s∈J(i)


k∈Ts

(|J(k)| − 1) , i ∈ T .

The theorem effectively presents to us the positive criterion of the first Dirichlet eigenvalue of a B–D process on trees
with one branch after some layer. For the degenerated case of the tree (only one branch), the results reduce to that of the
B–D process on a half line studied in Chen (2010) (the ratio of the upper and lower bounds for the estimates of λ0 is nomore
than 4). It is worthy to point out that the B–D process on a tree with the root as a Dirichlet boundary can be a comparison
with the B–D process on a line with bilateral reflecting boundaries. Let us have a look at the B–D process on a line with
reflecting boundaries. From Chen (2010), we see that the eigenfunction of the first eigenvalue is strictly monotone with a
unique zero. If we treat the unique zero of the eigenfunction as a root, then the B–D process on a line is just a B–D process
on a tree with two branches and the unique ‘‘root’’ as a Dirichlet boundary (the intuition is pointed out by Professor Mao
Y.H.). Concerning the B–D process on a line with reflecting boundaries, one may refer to Chen (2013).

2. Proofs of the main results

Define Λm = {i : |i| = m}, T (n) = ∪
n
m=0 Λm and

λ̃0 = {D(f ) : µ(f 2) = 1, ∃1 6 n < N + 1 such that fi = fi∗ for |i| > n + 1}.

As will be seen in Lemma 2.1, λ0 = λ̃0 once


k∈T µk < ∞. To this end, define

λ
(m)
0 = inf


D(f ) : µ(f 2) = 1, fi = fi∗ for |i| > m + 1


, 1 6 m < N + 1.

There is an explanation for λ
(m)
0 (see Chen, 2010, Section 4, p. 427): let

µ̃i = µi, q̃ij = qij for |i| 6 m − 1 and |j| 6 m − 1;

µ̃i =


j∈Ti

µj, q̃i∗ i = qi∗ i, q̃ii∗ = µiqii∗


j∈Ti

µj for |i| = m.

Noticing µiqii∗ = µ̃iq̃ii∗ , for f with fi = fi∗ for |i| > m + 1, we have

D(f ) =


i∈T (m)\{0}

µ̃iq̃ii∗(fi − fi∗)2 =:D(f ), µ(f 2) =


i∈T (m)

µ̃if 2i =: µ̃(f 2).
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So the Q -matrix Q = (q̃ij : i, j ∈ T (m)) is symmetric with respect to {µ̃i}i∈T (m) and λ
(m)
0 is the first Dirichlet eigenvalue of

the local Dirichlet form
D, D(D)


with state space T (m).

For simplicity, we use ‘‘iff’’ to denote ‘‘if and only if’’ and ↑ (resp. ↓) to denote increasing and decreasing throughout the
paper.

Lemma 2.1. Assume that


k∈T µk < ∞. We have λ0 = λ̃0 and λ
(n)
0 ↓ λ0 as n → N.

Proof. By the definition of λ0, for any ε > 0, there exists f such that D(f )/µ(f 2) 6 λ0 + ε. Construct f (n) such that f (n)
i = fi

for |i| 6 n and f (n)
i = fi∗ for |i| > n + 1. Since


k∈T µk < ∞, by symmetry, we have

D(f (n)) =


i∈T\{0}

µiqii∗ (fi − fi∗)2 =


i∈T (n)\{0}

µiqii∗ (fi − fi∗)2 ↑ D(f )

µ(f (n)2) =


i∈T (n)\{0}

µif 2i +


i∈Λn+1

µ(Ti)f 2i∗ → µ(f 2).

By definitions of λ0, λ̃0 and λ
(n)
0 , the required assertion holds. �

This lemma presents us with an approximating procedure, making it sometimes possible that we only need to show that
some assertion or property holds for finite trees even if N = ∞ (see Step 6 (b) and Step 8 in proofs of Theorem 1.1). The
following lemma known in Shao and Mao (2007), gives us an important property of eigenfunction g . The property provides
us with the basis for the choices of those test function sets of operators I, II and R.

Lemma 2.2 (Shao andMao, 2007, Proposition 2.4). For a B–D process on tree T (may have infinite vertexes). If (λ0, g) is a solution
to (1.1) with boundary condition g0 = 0 and g ∈ L2(µ) holds, then gi > gi∗ for each i ∈ T \ {0}.

Obviously, for a B–D process on finite tree T (a tree with maximal layer N < ∞), the eigenfunction g of the first Dirichlet
eigenvalue satisfies gi > gi∗ for every i ∈ T . Before moving further, we introduce a general equation and discuss the origin
of operators. Consider

Poisson equation : Ωg(i) = −fi, i ∈ T \ {0}.

By multiplying µi on both sides of the equation and making a summation with respect to i ∈ Tk ∩ T (n) for some k ∈ T \ {0}
with |k| 6 n, it is easy to check that

j∈Λn+1∩Tk

µjqjj∗(gj∗ − gj) + µkqkk∗(gk − gk∗) =


j∈Tk∩T (n)

µjfj, |k| 6 n. (2.1)

If limn→N


j∈Λn+1∩Tk
µjqjj∗(gj∗ − gj) = 0 (which is obvious for N < ∞), then we obtain the form of the operator I by letting

n → N and f = λg in (2.1). Moreover, if g0 = 0 (which is clear for the eigenfunction of Dirichlet eigenvalue λ0), then

gi =


k∈P(i)

1
µkqkk∗


j∈Tk

µjfj.

This explains where the operator II comes from. Similarly, from the eigenequation (1.1), we obtain the operator R by letting
wi = gi/gi∗ . The eigenequation is a ‘‘bridge’’ among these operators. Based on Chen (2010), Chen et al. (2013) and taking full
advantage of these relations, we present the proofs of the main results.

Proof of Theorem 1.1. We introduce the following circle arguments for lower bounds of λ0.

λ0 > sup
f∈FII

inf
i∈T\{0}

IIi(f )−1
= sup

f∈FI

inf
i∈T\{0}

IIi(f )−1
= sup

f∈FI

inf
i∈T\{0}

Ii(f )−1 > sup
w∈W

inf
i∈T\{0}

Ri(w) > λ0.

Step 1 Prove that λ0 > supf∈FII
infi∈T\{0} IIi(f )−1.

For positive sequence {hi}i∈T\{0} and g with g0 = 0, µ(g2) = 1, we have

1 =


k∈T\{0}

µkg2
k =


k∈T\{0}

µk

 
i∈P(k)

(gi − gi∗)

2

(since g0 = 0)

6


k∈T\{0}

µk


j∈P(k)

µjqjj∗
hj


gj − gj∗

2 
i∈P(k)

hi

µiqii∗
(by Cauchy’s ineq.)

=


j∈T\{0}

µjqjj∗

gj − gj∗

2 1
hj


k∈Tj

µk


i∈P(k)

hi

µiqii∗

(by exchanging the order of sums, and j ∈ P(k) iff k ∈ Tj).
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For every f with fII(f ) < ∞, let hi =


k∈Ti
µkfk. By the proportional property, we get

µ(g2) 6 D(g) sup
j∈T\{0}


k∈Tj

µk


i∈P(k)

hi

µiqii∗


k∈Tj

µkfk 6 D(g) sup
j∈T\{0}

IIj(f ).

By (1.2), we have

λ0 > inf
j∈T\{0}

IIj(f )−1, f ∈ FII ,

and the required assertion follows by making the supremum with respect to f ∈ FII .
Step 2 Prove that supf∈FII

infi∈T\{0} IIi(f )−1
= supf∈FI

infi∈T\{0} IIi(f )−1
= supf∈FI

infi∈T\{0} Ii(f )−1.

(a) Prove that the direction >. The first inequality is clear since FI ⊂ FII . Replacing f in the denominator of IIj(f ) with
k∈P(j)(fk − fk∗). Using the proportional property, for f ∈ FI , we have

sup
j∈T\{0}

IIj(f ) = sup
j∈T\{0}

 
k∈P(j)

1
µkqkk∗


i∈Tk

µifi

 
k∈P(j)

(fk − fk∗)


6 sup

k∈T\{0}
Ik(f ).

So the required assertion holds.
(b) To prove the equality, it suffices to show that

sup
f∈FI

inf
i∈T\{0}

Ii(f )−1 > sup
f∈FII

inf
i∈T\{0}

IIi(f )−1.

For f ∈ FII , without loss of generality, assume that II(f ) < ∞. Let g = fII(f ). Then g ∈ FI ,

gi − gi∗ =
1

µiqii∗


j∈Ti

µjfj >

j∈Ti

µjgj inf
k∈T\{0}

fk
gk

, i ∈ T \ {0},

and then the required assertion follows immediately since f ∈ FII is arbitrary.

There is another choice to show the equality. By Lemma 2.2, we see that the eigenfunction g satisfies that gi > gi∗ for
i ∈ T \{0} providedN < ∞. So g ∈ FI and λ0 = Ii(g)−1 for i ∈ T \{0} (Shao andMao, 2007, Lemma 2.3). Bymaking the infi-
mumwith respect to i ∈ T \ {0} first and then the supremumwith respect to f ∈ FI , we have λ0 > supf∈FI

infi∈T\{0} Ii(f )−1.
There is a small gap in the proof since the eigenfunction g may not belong to L2 when N = ∞. However, one may avoid this
by a standard approximating procedure (according to the approximating idea used in Step 4 below). Combining this with
Step 1 above, the required assertion holds.

Step 3 Prove that supf∈FII
infi∈T\{0} IIi(f )−1 > supw∈W infi∈T\{0} Ri(w).

We first change the form of Ri(w). For w ∈ W , let u with u0 = 0 be a positive function on T \ {0} such that wi = ui/ui∗

for i ∈ T \ {0}, i.e.,

ui =


j∈P(i)

wj for i ∈ T \ {0}, u0 = 0.

Then ui > ui∗ for i ∈ T \ {0} and

Ri(w) =
1
ui


j∈J(i)

qij(ui − uj) + qii∗ (ui − ui∗)


= −

Ωu(i)
ui

. (2.2)

Now we turn to the main text. For any fixed w ∈ W , without loss of generality, assume that R(w) > 0. Let u be a function
mentioned above such that wi = ui/ui∗ and f = uR(w) > 0. Then f ∈ FII and Ωu(i) = −fi. Since ui > ui∗ , by (2.1), we have

j∈Tk∩T (n)

µjfj 6 µkqkk∗(uk − uk∗) < ∞, |k| 6 n.

So f ∈ L1(µ) and

uk − uk∗ >
1

µkqkk∗


j∈Tk

µjfj

by letting n → N . Moreover,

ui >


k∈P(i)

1
µkqkk∗


j∈Tk

µjfj.
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Hence,

inf
i∈T\{0}

Ri(w) = inf
i∈T\{0}

fi
ui

6 inf
i∈T\{0}

IIi(f )−1, i ∈ T \ {0},

and the assertion follows by making the supremum over f ∈ FI first and then over w ∈ W .
Step 4 Prove that supw∈W infi∈T\{0} Ri(w) > λ0.
We first prove that supw∈W infi∈T\{0} Ri(w) > 0. Let f ∈ L1(µ) be a positive function on T \ {0} and h = fII(f ) on

T \ {0}, h0 = 0. Then

hi − hi∗ =
1

µiqii∗


k∈Ti

µkfk.

Put w̄i = hi/hi∗ for i ∈ T \ {0}. By symmetry, we have

−Ωh(i) = qii∗(hi − hi∗) −


j∈J(i)

qjj∗(hj − hj∗) (by j ∈ J(i) iff i = j∗)

=
1
µi


k∈Ti

µkfk −


j∈J(i)

qj∗j
µjqjj∗


k∈Tj

µkfk

=
1
µi


k∈Ti

µkfk −


j∈J(i)


k∈Tj

µkfk

 = fi.

So

Ri(w̄) = −
Ωh(i)
hi

=
fi
hi

> 0, i ∈ T \ {0},

and the required assertion then follows by making the infimum with respect to i ∈ T \ {0} first and then the supremum
with respect to w ∈ W .

By Lemma 2.2, if λ0 > 0 and the maximal layer of the tree N < ∞, then the eigenfunction g satisfies gi > gi∗ for every
i ∈ T \ {0}. Let w̄i = gi/gi∗ . Then w̄ ∈ W and

Ri(w̄) =
−Ωg(i)

gi
= λ0, i ∈ T \ {0}.

So the assertion holds for N < ∞. If N = ∞, then an approximating procedure is used. Let m ∈ N+ and 1 6 m < N + 1.
Then λ

(m)
0 ↓ λ0 as m ↑ N by Lemma 2.1. Noticing the explanation of λ(m)

0 at the beginning of this section and the assertion
we have just shown for N < ∞, we have

λ
(m)
0 = sup

w∈W (m)

inf
i∈T (m)\{0}

Ri(w),

where W (m) = {w : wi > 1, i ∈ T (m), w0 = ∞},R is a modified form of R by replacing qii∗ with q̃ii∗ . So for any ε > 0,
there exists w̄ ∈ W (m) such that

λ
(m)
0 < inf

i∈T (m)\{0}
Ri(w̄) + ε 6 inf

i∈T (m−1)\{0}
Ri(w̄) + ε.

Extend w̄ to T by setting w̄i = w̄i∗ for |i| > m. Noticing qii∗ = q̃ii∗ for |i| < m, we haveRi(w̄) = Ri(w̄) for |i| < m. Since
infi∈T (m−1)\{0} Ri(w̄) → infi∈T\{0} Ri(w̄) asm → ∞, the required assertion follows by lettingm → ∞.

We adopt the following circle to prove the upper bounds of λ0.

λ0 6 inf
f∈ F ′

II∪
FII

sup
i∈T\{0}

IIi(f )−1

6 inf
f∈ FII

sup
i∈T\{0}

IIi(f )−1
= inf

f∈ FI

sup
i∈T\{0}

IIi(f )−1
= inf

f∈ FI

sup
i∈T\{0}

Ii(f )−1

6 inf
w∈ W sup

i∈T\{0}

Ri(w) 6 λ0.

The second inequality above is clear and we only need to prove the remainders.
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Step 5 Prove that λ0 6 inff∈ F ′
II∪

FII
supi∈T\{0} IIi(f )−1.

For f ∈ FII , there exists n ∈ E such that fi = fi∗ for |i| > n+ 1. Let gi = fiIIi(f ) for |i| 6 n and gi = gi∗ for |i| > n+ 1. Then
g ∈ L2(µ) and

gi − gi∗ =
1

µiqii∗


j∈Ti

µjfj1{i:|i|6n}.

Inserting this term into D(g), we have

D(g) =


j∈T\{0}

(gj − gj∗)

k∈Tj

µkfk1{j:|j|6n}

=


k∈T\{0}

µkfk


j∈P(k)

1{j:|j|6n}(gj − gj∗) (since k ∈ Tj iff j ∈ P(k))

=


k∈T\{0}

µkfkgk (since gi = gi∗ for |i| > n + 1).

Since g ∈ L2(µ), we further obtain

D(g) 6


k∈T\{0}

µkg2
k sup

k∈T\{0}

fk
gk

6 µ(g2) sup
k∈T\{0}

IIk(f )−1.

Hence,

λ0 6
D(g)
µ(g2)

6 sup
k∈T\{0}

IIk(f )−1.

This inequality also holds for f ∈ F ′

II since the key point in its proof is g = fII(f ) ∈ L2(µ), which holds also for f ∈ F ′

II . So
the required assertion holds.

Step 6 Prove that inff∈ FII
supi∈T\{0} IIi(f )−1

= inff∈ FI
supi∈T\{0} IIi(f )−1

= inff∈ FI
supi∈T\{0} Ii(f )−1.

(a) We first prove the direction ‘‘6′′. Since FI ⊂ FII , the first inequality is clear. For f ∈ FI , there exists 1 6 n < N + 1
such that fi = fi∗ for |i| > n + 1 and fi > fi∗ for |i| 6 n. Since fi =


k∈P(i)(fk − fk∗) for |i| 6 n, inserting this term into

the denominator of II(f ) and using the proportional property, we have

inf
i∈T\{0}

II(f ) = inf
i∈T (n)\{0}

II(f ) > inf
i∈T\{0}

Ii(f )

and the required assertion holds since f ∈ FI is arbitrary.
(b) Prove the equality.

For f ∈ FII , ∃ n ∈ [1,N + 1) such that fi = fi∗ for |i| > n + 1 and f > 0. Let gi = fiIIi(f ) for 0 < |i| 6 n, g0 = 0 and
gi = gi∗ for |i| > n + 1. Then g ∈ FI and

gi − gi∗ =
1

µiqii∗


j∈Ti

µjfj, |i| 6 n.

Moreover,

µiqii∗(gi − gi∗) 6

j∈Ti

µjgj sup
j∈Ti

fj
gj

=


j∈Ti

µjgj sup
j∈Ti

IIi(f )−1, i ∈ T \ {0}.

Hence,

sup
k∈T\{0}

Ik(g)−1 6 sup
k∈T\{0}

IIk(f )−1.

Then the assertion follows by making the infimum over FI first and then the infimum over FII .
Alternatively, there is another method to prove the equality. Combining with the arguments in Step 5 and Step 6 (a), it

suffices to show that

inf
f∈ FI

sup
k∈T\{0}

Ik(f )−1 6 λ0.

To see this, assume that g is an eigenfunction corresponding to λ
(m)
0 . Then gi > gi∗ for i ∈ T (m). Extend g to the whole space

by letting gi = gi∗ for |i| > m + 1. Then g ∈ FI and

λ
(m)
0 = sup

k∈T (m)\{0}
Ik(g)−1

= sup
k∈T\{0}

Ik(g)−1 > inf
f∈ FI

sup
k∈T\{0}

Ik(f )−1.

Noticing Lemma 2.1, the required assertion then holds by lettingm → ∞.
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Step 7 Prove that inff∈ FII
supi∈T\{0} IIi(f )−1 6 infw∈ W supi∈T\{0}

Ri(w).
First, we change the form ofR. For w ∈ W with wi = 1 for |i| > m+ 1, let g be a positive function on T \ {0} with g0 = 0

such that wi = gi/gi∗ . Then gi > gi∗ for |i| 6 m and gi = gi∗ for |i| > m + 1. Since
j∈J(i)

qijwj < qii∗(1 − w−1
i ) +


j∈J(i)

qij for |i| 6 m,

we haveRi(w) = −Ωg(i)/gi > 0 for |i| 6 m andRi(w) = 0 for |i| > m + 1, where Ω is defined on T (m), corresponding to
Q -matrix (q̃ij) (see the arguments before Lemma 2.1).

Now, we come back to the main assertion. For w ∈ W with wi = 1 for |i| > m+1, let g be the function mentioned above
and

fi =



j∈J(i)

qij(gi − gj) + qii∗(gi − gi∗), |i| 6 m − 1,

q̃ii∗(gi − gi∗), |i| = m,
fi∗ , |i| > m + 1.

Then fi = −Ωg(i) > 0 for |i| 6 m. By (2.1), we have
j∈Λm∩Tk

µjqjj∗(gj∗ − gj) + µkqkk∗(gk − gk∗) =


j∈Tk∩T (m−1)

µjfj, |k| 6 m − 1.

Since

µiqii∗(gi − gi∗) =


j∈Ti

µjfi =


j∈Ti

µjfj, |i| = m,

we have
j∈Λm∩Tk

µjqjj∗(gj∗ − gj) =


j∈Λm∩Tk


i∈Tj

µifi =


j∈(T\T (m−1))∩Tk

µjfj, |k| 6 m.

Hence, for 0 < |k| 6 m, we obtain

µkqkk∗(gk − gk∗) =


j∈Tk∩T (m−1)

µjfj +


j∈Λm∩Tk

µjqjj∗(gj − gj∗) =


j∈Tk

µjfj.

Moreover,

gi =


k∈P(i)

1
µkqkk∗


j∈Tk

µjfj, 0 < |i| 6 m,

andRi(w) = fi/gi = IIi(f )−1 for 0 < |i| 6 m. SinceRi(w) = 0 and fi = fi∗ for |i| > m + 1, we obtain

sup
i∈T\{0}

Ri(w) = sup
i∈T\{0}

IIi(f )−1 > inf
f∈ FII

sup
i∈T\{0}

IIi(f )−1, w ∈ W ,

and the required assertion holds.
Step 8 Prove that infw∈ W supi∈T\{0}

Ri(w) 6 λ0.
Let g with g0 = 0 be an eigenfunction of local first eigenvalueλ

(m)
0 and extend g to T \{0} by setting gi = gi∗ for |i| > m+1.

Put wi = gi/gi∗ for i ∈ T \ {0}. Then w ∈ W . Sincem < ∞, we haveRi(w) = λ
(m)
0 > 0 for i ∈ T (m) \ {0}, andRi(w) = 0 for

T \ T (m). Therefore,

λ
(m)
0 = max

i∈T\{0}
Ri(w)

> inf
w∈ W :wi=1 for |i|>m+1

max
i∈T (m)\{0}

Ri(w)

> inf
w∈ W :∃n>1 such that wi=1 for |i|>n+1

max
i∈T\{0}

Ri(w)

> inf
w∈ W max

i∈T\{0}
Ri(w).

The assertion then follows by lettingm → N . �

Define Ti,j = Ti ∪ Tj. Then TJ(i) = {k : s ∈ J(i) and k ∈ Ts}. Similarly, we have J(Ti) = {k : s ∈ Ti and k ∈ J(s)}. It is obvious
that J(Ti) = TJ(i). Without loss of generality, we adopt convention thatµ (Tk) = 0 if Tk = φ. The proof of Theorem 1.2, which
is an application of Theorem 1.1, is presented as follows.
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Proof of Theorem 1.2. First, we prove that λ−1
0 6


2 supi∈T\{0} Ci


δ. It is easy to see that


j∈Ti

µjfj =


j∈Ti

fj


µ(Tj) −


k∈J(j)

µ(Tk)


=


j∈Ti

µ(Tj)fj −

k∈TJ(j)

µ(Tk)fk∗ (since J(Ti) = TJ(i) and k ∈ J(j) iff j = k∗)

= µ(Ti)fi +

k∈TJ(i)

µ(Tk) (fk − fk∗)

since Ti = {i} ∪ TJ(i)


.

Put fj =
√

ϕj for j ∈ T . Then


j∈Ti

µj
√

ϕj = µ(Ti)
√

ϕi +

k∈TJ(i)

µ(Tk)
√

ϕk −
√

ϕk∗


6 δ

ϕi
−1/2

+


k∈TJ(i)

1
ϕk

√
ϕk −

√
ϕk∗
 .

Since ϕk > ϕk∗ , we obtain
k∈TJ(i)

1
ϕk

√
ϕk −

√
ϕk∗


6

k∈TJ(i)


ϕ

−1/2
k∗ − ϕ

−1/2
k


,

Noticing that TJ(i) = J(Ti) and k ∈ J(j) if and only if k∗
= j, we have

k∈TJ(i)

ϕ
−1/2
k∗ =


k∈J(Ti)

ϕ
−1/2
k∗ =


j∈Ti


k∈J(j)

ϕ
−1/2
j =


j∈Ti

|J(j)|ϕ−1/2
j .

Inserting this term to the inequality above, it holds1


k∈TJ(i)

1
ϕk

√
ϕk −

√
ϕk∗


6

|J(i)| +


k∈TJ(i)

(|J(k)| − 1)

ϕ
−1/2
i .

Hence,
j∈Ti

µj
√

ϕj 6


1 + |J(i)| +


s∈J(i)


k∈Ts

(|J(k)| − 1)


δϕ

−1/2
i = Ciδϕ

−1/2
i .

Since
1

√
ϕi −

√
ϕi∗

=
1

ϕi − ϕi∗

√
ϕi +

√
ϕi∗


= µiqii∗
√

ϕi +
√

ϕi

,

we obtain

Ii(
√

ϕ) =
1

µiqii∗
√

ϕi −
√

ϕi∗
 

j∈Ti

µj
√

ϕj 6 Ciδϕ
−1/2
i

√
ϕi +

√
ϕi∗


6 2Ciδ.

It is clear that
√

ϕ ∈ FI , by Theorem 1.1 (1), we have

λ−1
0 6 inf

f∈FI
sup

i∈T\{0}
Ii(f ) 6 sup

i∈T\{0}
Ii(

√
ϕ) 6


2 sup

i∈T\{0}
Ci


δ.

Now, we prove that λ0 6 δ−1. For i0 ∈ T \ {0}, let f be a function such that

fi =


ϕi if i ∈ P(i0),
ϕi0 if i ∈ Ti0 ,
0 Others.

Then 
j∈Ti

µjfj =


j∈Ti∩Ti0

µjϕi0 +


k∈Ti∩(P(i0)\{0})


j∈Tk

µjϕk.

1 More details are presented in the Appendix.
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Since fi − fi∗ = 1/ (µiqii∗) for i ∈ P(i0) and fi − fi∗ = 0 for i ∈ T \ P(i0). We have

λ−1
0 = sup

g∈ FI

inf
i∈T\{0}

Ii(g) > inf
i∈T\{0}

Ii(f )

= inf
i∈P(i0)

 
j∈Ti∩Ti0

µjϕi0 +


k∈Ti∩(P(i0)\{0})


j∈Tk

µjϕk


= µ(Ti0)ϕi0 , i0 ∈ T \ {0}.

Then the assertion follows by taking the supremum over T \ {0}. �
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Appendix

It is not certain whether


j∈TJ(i)
ϕ

−1/2
j < ∞ or not, so we adopt the following methods to show the required assertion.

It is easy to see
s∈J(i)


k∈Ts

1
ϕk

√
ϕk −

√
ϕk∗


6

s∈J(i)


k∈Ts


ϕ

−1/2
k∗ − ϕ

−1/2
k


= lim

n→N

n
m=|i|+1


k∈Λm∩Ti


ϕ

−1/2
k∗ − ϕ

−1/2
k


.

Since
n

m=|i|+1


k∈Λm∩Ti

ϕ
−1/2
k∗ =

n
m=|i|+1


k∈Λm−1∩Ti

|J(k)|ϕ−1/2
k =

n−1
m=|i|


k∈Λm∩Ti

|J(k)|ϕ−1/2
k

= |J(i)|ϕ−1/2
i +

n−1
m=|i|+1


k∈Λm∩Ti

|J(k)|ϕ−1/2
k ,

we have
s∈J(i)


k∈Ts

1
ϕk

√
ϕk −

√
ϕk∗


6 lim
n→N

n
m=|i|+1


k∈Λm∩Ti


ϕ

−1/2
k∗ − ϕ

−1/2
k


= |J(i)|ϕ−1/2

i + lim
n→N


n−1

m=|i|+1


k∈Λm∩Ti

(|J(k)| − 1) ϕ
−1/2
k −


k∈Λn∩Ti

|J(k)|ϕ−1/2
k



6 |J(i)|ϕ−1/2
i +

N
m=|i|+1


k∈Λm∩Ti

(|J(k)| − 1) ϕ
−1/2
k

= |J(i)|ϕ−1/2
i +


k∈TJ(i)

(|J(k)| − 1) ϕ
−1/2
k ,

and the required assertion holds. �
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