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Abstract This is one of a series of papers exploring the stability speed of
one-dimensional stochastic processes. The present paper emphasizes on the
principal eigenvalues of elliptic operators. The eigenvalue is just the best
constant in the L2-Poincaré inequality and describes the decay rate of the
corresponding diffusion process. We present some variational formulas for the
mixed principal eigenvalues of the operators. As applications of these formulas,
we obtain case by case explicit estimates, a criterion for positivity, and an
approximating procedure for the eigenvalue.
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1 Introduction

This paper is a continuation of [5] in which the stability speed was carefully
studied in the discrete situation (birth–death processes) and partially in the
continuous one (diffusions). For a large part of the study, the description of the
problem is equivalent to that of the Poincaré-type inequalities or the principal
eigenvalue. On the last two topics, there are a great number of publications
(cf. [4,7] and references therein for the background and motivation of the study
on these topics). However, to save the space here, most of the references are
not repeated in this paper. Consider a finite interval (0,D) for a moment. We
are interested in some typical Sturm-Liouville eigenvalue problems. Accord-
ing to the Dirichlet (denoted by code ‘D’) and Neumann (denoted by code ‘N’)
boundaries at the left- or right-endpoint, we have four cases of boundary
condition: DD, ND, DN, and NN. In the diffusion context, the DD- and NN-
cases are largely handled in [1–5,8,9]. The present paper is mainly devoted to
the ND- and DN-cases. As will be seen in the next section, the classification
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for the boundaries is also meaningful when D = ∞.
This paper is organized as follows. In the next section, we focus on the

ND-case. First, we introduce several variational formulas for the eigenvalue.
As a consequence, we obtain the basic estimates, a criterion for positivity, an
approximating procedure, and improved estimates for the eigenvalue. As far as
we know, most of these results, except Theorem 2, have not yet appeared in
the literature. The proofs of them are sketched in Section 3. From [5; Section
10], we know that the DN-case and the ND-case are dual to each other. Thus,
as a dual to the ND-case, it is natural to study the DN-case, to which Section
4 is devoted, partial results come from the duality but some of them are not
and need direct proofs. The main extension to the earlier study is that here
we do not assume the uniqueness of the processes, instead of which we adopt
the maximal extension of the Dirichlet form or the maximal process. Finally,
some supplement to [2,3,9] in the NN-case (i.e., the ergodic case) is presented in
Section 5. The complete proofs of the results presented in this paper are quite
technical and long. However, a large part of them are parallel to [5] and so
we omit mostly the ‘translation’ from the discrete situation to the continuous
one. Instead, we emphasis on the difference between them (Lemmas 1–6, for
instance), and illustrate a little of the translation for the reader’s reference. We
may leave the details to our homepage or publish them elsewhere.

The basic estimates are also studied in [10] in terms of H-transform.
Some examples of the study are illustrated in [7; Section 5]. The most

powerful application of the improved estimates presented in the paper is given
by [6] where the lower and upper bounds are quite close to or almost coincide
with each other.

Here, we discuss briefly about the problem on the whole line. First, we
consider the ND-case. Then one may regard the whole line R as a limit of
[M,∞) as M decreases to −∞. Thus, the mixed eigenvalue problem on line is
known by what we are studying in the paper. Next, consider the DD-case, one
may split R into two parts: (−∞, 0) and (0,∞). The case with ND-boundaries
on (0,∞) is studied in Sections 2 and 3. Besides, the case with DN-boundaries
on (−∞, 0) is simply a reverse of the ND-case on (0,∞). Therefore, the behavior
of the original operator on the whole line should be clear. However, there
is an interesting point here. On (0,∞), we use the minimal Dirichlet form
but on (−∞, 0) we adopt the maximal one. Thus, the domain of the original
Dirichlet form on the whole line may be neither the maximal nor the minimal
one. Therefore, it is essentially different from DD- or NN-cases on the whole
line we have studied in [5,7,8].

To conclude this section, we mention that in a more general context, for the
Poincaré-type inequalities, the DN-case was completed earlier (cf. [4; Chapter
6]), the basic estimates for the ND-case in the discrete situation was given by
[5; Theorem 8.5], from which one can write down easily the continuous version.
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2 ND-case

Define

C [0,D] = {f : f is continuous on [0,D]},
C k(0,D) = {f : f has continuous derivatives of order k on (0,D)}, k � 1.

Here and in what follows, when D = ∞, the notation C [0,D] simply means
C [0,D). The convention should be clear in other cases and we will not mention
time by time. Let

L = a(x)
d2

dx2
+ b(x)

d
dx

be an elliptic operator on an interval (0,D) (D � ∞). Set

C(x) =
∫ x

0

b(u)
a(u)

du.

Throughout this paper, we need the following hypothesis (which is trivial in
the discrete situation):

The functions a, b are Borel measurable on [0,D] and a is positive

on [0,D], b/a and eC/a are locally integrable on [0,D]. (2.1)

Note that for continuous functions a and b, hypothesis (2.1) is reduced to the
condition a > 0 only. In this section, we consider the ND-boundaries only.
More precisely, as usual, the Dirichlet boundary condition at D means that
g(D) = 0 when D <∞. When D = ∞, it is natural to take ‘limx→∞ g(x) = 0’
as a boundary condition. However, this is not pre-assumed but proved later (cf.
Lemma 6 below). Therefore, the code ‘ND’ is still meaningful even if D = ∞.

Throughout this section, we work on the following mixed principal
eigenvalue:

λ0 = inf{D(f) : μ(f2) = 1, f ∈ CK [0,D], f(D) = 0 if D <∞}, (2.2)

where

μ(f) :=
∫ D

0
fdμ,

CK[0,D] = {f : f ∈ C 1(0,D) ∩ C [0,D], f has compact support},

D(f) =
∫ D

0
af ′2dμ, μ(dx) =

eC(x)

a(x)
dx.

Besides μ, throughout the paper, we often use another measure:

ν(dx) = e−C(x)dx.
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When D < ∞, λ0 coincides with the minimal solution λ to the following
eigenequation:

Lf = −λf, f ′(0) = 0, f(D) = 0 if D <∞.

To state our results, we need some notation. Define

I(f)(x) = −e−C(x)

f ′(x)

∫ x

0
fdμ (single integral form),

II(f)(x) =
1

f(x)

∫
(x,D)∩supp(f)

ν(ds)
∫ s

0
fdμ, x ∈ supp(f)

(double integral form),

R(h)(x) = −(ah2 + bh+ ah′)(x) (differential form).

The domains of the three operators defined above are, respectively, as follows:

FI = {f : f ∈ C 1(0,D) ∩ C [0,D], f |(0,D) > 0, f ′|(0,D) < 0},
FII = {f : f ∈ C [0,D], f |(0,D) > 0},

H = {h : h ∈ C 1(0,D) ∩ C [0,D], h(0) = 0, h|(0,D) < (resp. �) 0

if ν(0,D) < (resp. =)∞}, ν(α, β) :=
∫ β

α
dν.

These sets are used for the lower estimates of λ0. For the upper bounds, some
modifications are needed to avoid the non-integrability problem, as shown
below:

F̃I = {f : f ∈ C 1(x0, x1) ∩ C [x0, x1], f ′|(x0,x1) < 0 for some

x0, x1 ∈ [0,D) with x0 < x1, and f = f(· ∨ x0)�[0,x1)},
F̃II = {f : ∃ x0 ∈ (0,D) such that f = f�[0,x0) and f ∈ C [0, x0]},

H̃ = {h : ∃ x0 ∈ (0,D) such that h ∈ C 1(0, x0) ∩ C [0, x0], h|(0,x0) < 0,

h|[x0,D] = 0, and h(0) = 0, sup(0,x0)(ah2 + bh+ ah′) < 0}.

Here and in what follows, we adopt the usual convention 1/0 = ∞. The
superscript ‘˜’ means modified. In the formulas of Theorem 1 below, ‘sup inf’
is used for lower bounds of λ0, each test function f produces a lower bound
infx I(f)(x)−1, and so this part is called variational formula for the lower
estimate of λ0. Dually, the ‘inf sup’ is used for upper estimates of λ0. Among
them, the ones expressed by the operator R are easiest to compute in practice,
and the ones expressed by II are hardest to compute but provide better
estimates. Because of ‘inf sup’, a localizing procedure is used for the test
functions to avoid I(f) ≡ ∞ for instance, which is removed out automati-
cally for the ‘sup inf’ part. Each part of Theorem 1 below plays a role in our
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study. Parts (1) and (2) are applied to Theorems 2 and 3, respectively. Part
(3) is a comparison with Proposition 2, which is then used as a dual form of
Theorem 4 (3).

Theorem 1 Under hypothesis (2.1), the following variational formulas hold
for λ0 defined by (2.2).

(1) Single integral forms:

inf
f∈F̃I

sup
x∈(0,D)

I(f)(x)−1 = λ0 = sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1,

(2) Double integral forms:

inf
f∈F̃II

sup
x∈supp(f)

II(f)(x)−1 = λ0 = sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1.

Moreover, if a, b ∈ C [0,D], then we have additionally
(3) differential forms:

inf
h∈H̃

sup
x∈(0,D)

R(h)(x) = λ0 = sup
h∈H

inf
x∈(0,D)

R(h)(x).

Furthermore, the supremum on the right-hand side of the above three formulas
can be attained.

The next result, similar to the discrete case, either extends the domain of λ0,
or adds some additional sets of test functions for operators I and II, respectively.
Besides, as an application of the lower variational formula (Theorem 1 (2)), we
obtain the vanishing property of the eigenfunction (Lemma 6) which leads to
the crucial part (1) of the proposition below. The vanishing property is the
meaning of the Dirichlet boundary at D = ∞ as we expected. A more common
description of λ0 is given by Lemma 2 below.

Proposition 1 Let hypothesis (2.1) hold. Then
(1) we have

λ0 = inf{D(f) : μ(f2) = 1, f ∈ C 1(0,D) ∩ C [0,D] and f(D) = 0} =: λ̃0,

where f(D) = limx→D f(x) in the case of D = ∞.

(2) Moreover, we have

inf
f∈F̃ ′

I

sup
x∈(0,D)

I(f)(x)−1 = λ0 = sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1, (2.3)

inf
f∈F̃II∪F̃ ′

II

sup
x∈supp(f)

II(f)(x)−1 = λ0 = inf
f∈F̃I

sup
x∈supp(f)

II(f)(x)−1, (2.4)

where

F̃ ′
I = {f : ∃ x0 ∈ (0,D), f = f�[0,x0), f ∈ C 1(0, x0) ∩ C [0, x0], f ′|(0,x0) < 0},

F̃ ′
II = {f : f > 0, f ∈ C [0,D], fII(f) ∈ L2(μ)}.



322 Mu-Fa CHEN et al.

Besides, the supremum over {f ∈ FI} in (2.3) can be attained.

The operator R defined below was first introduced in [9; Theorem 2.1] based
on a probabilistic (coupling) technique. Different from R, it is a ‘bridge’ in
proving the duality of the ND- and DN-cases. It also leads to a different
variational formula for λ0 as follows.

Proposition 2 Suppose that a, b ∈ C 1(0,D) ∩ C [0,D] and a > 0 on (0,D).
Set

H = {h : h(0) = 0, h ∈ C 2(0,D) ∩ C [0,D], h|(0,D) < 0}
and define

R(h)(x) = −(ah′ + bh)′(x)
h(x)

.

Then
(1) we have

sup
h∈H

inf
x∈(0,D)

R(h)(x) � λ0

and the equality holds once μ(0,D) = ∞.

(2) In general, we have

λ0 = sup
h∈H∗

inf
x∈(0,D)

R(h)(x), (2.5)

where

H∗ = {h ∈ C 2(0,D) ∩ C [0,D] : h(0) = 0, and h < 0, h′ < −a−1bh on (0,D)}.

Moreover, the supremum in (2.5) can be attained.

Remark 1 (Comparison of R and R) With h = g′/g, we have

−Lg
g

= −(ah2 + bh+ ah′) = R(h).

Next, with h = g′, we have

−(Lg)′

g′
= −(ah′ + bh)′

h
= R(h).

As an application of Theorem 1 (1) to the test function ν(x,D)γ with γ =
1/2 or 1, we obtain the basic estimates and furthermore a criterion as follows.

Theorem 2 (Criterion and basic estimates) Let hypothesis (2.1) hold. Then
λ0 > 0 if and only if

δ := sup
x∈(0,D)

μ(0, x) ν(x,D) <∞, μ(α, β) :=
∫ β

α
dμ.
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More precisely, we have
(4δ)−1 � λ0 � δ−1.

In particular, when D = ∞, we have λ0 = 0 if ν(0,D) = ∞, and λ0 > 0 if∫ ∞

0
μ(0, x)ν(dx) <∞.

The next result is an application of Theorem 1 (2), repeated with f = fn,
starting from the initial function f1, the test function just mentioned before
Theorem 2. The result provides us a way to improve the basic estimates step
by step. In view of the last criterion, for any improvement, one may assume
that δ <∞.

Theorem 3 (Approximating procedure) Let hypothesis (2.1) hold and assume
that δ <∞. Set ϕ(x) = ν(x,D).

(1) Let

f1 =
√
ϕ, fn = fn−1II(fn−1), δn = sup

x∈(0,D)
II(fn)(x), n � 1.

Then δn is decreasing in n and

λ0 � δ−1
n � (4δ)−1, n � 1.

(2) For fixed x0, x1 ∈ [0,D) with x0 < x1, define

fx0,x1
1 = ν(· ∨ x0, x1)�[0,x1), fx0,x1

n = (fx0,x1
n−1 II(fx0,x1

n−1 ))(· ∨ x0)�[0,x1), n � 1,

and let
δ′n = sup

x0,x1 : x0<x1

inf
x<x1

II(fx0,x1
n )(x).

Then δ−1 � δ′n
−1 � λ0 for n � 1.

(3) Define

δn = sup
x0,x1 : x0<x1

‖fx0,x1
n ‖

D(fx0,x1
n )

, n � 1.

Then δ
−1
n � λ0, δn+1 � δ′n for n � 1, and δ1 = δ′1.

The next result comes from the first step of the approximation above.

Corollary 1 (Improved estimates) Let hypothesis (2.1) hold. For λ0, we have

δ−1 � δ′1
−1 � λ0 � δ−1

1 � (4δ)−1,

where

δ1 = sup
x∈(0,D)

1√
ϕ(x)

∫ D

0

√
ϕϕ(· ∨ x) dμ

= sup
x∈(0,D)

(√
ϕ(x)

∫ x

0

√
ϕdμ+

1√
ϕ(x)

∫ D

x
ϕ3/2dμ

)
, (2.6)
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δ′1 = sup
x∈(0,D)

(
μ(0, x)ϕ(x) +

1
ϕ(x)

∫ D

x
ϕ2dμ

)
∈ [δ, 2δ]. (2.7)

3 Partial proofs of results in Section 2

Some preparations are needed to prove our main results. The first six lemmas
below, except Lemma 2, are mainly devoted to describe the eigenfunction of
λ0. These lemmas are essential in our study. Note that their proofs are very
different from the discrete situation. The first one below is taken from
[11; Theorems 1.2.1 and 2.2.1].

Lemma 1 (1) Let hypothesis (2.1) hold. Then, whenever g and g′ are
initially not vanished simultaneously, there exists uniquely a non-zero function
g ∈ C 1[0,D] such that g′ is absolutely continuous on each compact subinterval
of [0,D) and the eigenequation Lg = −λg holds almost everywhere.

(2) Suppose that additionally a and b are continuous on [0,D]. Then g ∈
C 2[0,D] and the eigenequation holds everywhere on [0,D].

In what follows, we call the function g given in Lemma 1 (1) a.e. eigen-
function of λ. Remember we need ‘a.e.’ only in the case where g′′ is used. Of
course, we remove ‘a.e.’ if the eigenequation holds everywhere.

The next result enables us to return to a more common description of the
eigenvalue.

Lemma 2 Let A [α, β] be the set of all absolutely continuous functions on
[α, β]. Define

λ∗ = inf{D(f) : f ∈ A [0,D], ‖f‖ = 1, f has compact
support and f(D) = 0 if D <∞}

Then λ0 = λ∗.

Proof It is obvious that λ∗ � λ0. Next, let g be the a.e. eigenfunction of λ∗.
Then, g ∈ C 1[0,D] by Lemma 1 (1). By making inner product with g on the
both sides of Lg = −λ∗g with respect to μ, it follows that

−(eCgg′)|D0 +D(g) = λ∗‖g‖2.

Since g′(0) = 0 and (gg′)(D) � 0, we have λ∗ � D(g)/‖g‖2. Because g ∈
C 1[0,D], it is clear that D(g)/‖g‖2 � λ0. We have thus obtained that

λ0 � λ∗ � λ0,

and so λ0 = λ∗. There is a small gap in the proof above since in the case of
D = ∞, the a.e. eigenfunction g may not belong to L2(μ) and we have not
yet proved that (gg′)(D) � 0. However, one may avoid this by a standard
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approximating procedure, using [0, pn] instead of [0,D) with pn ↑ D provided
D = ∞ :

lim
n→∞λ

(0,pn)
0 = lim

n→∞ inf{D(f) : f ∈ C [0, pn] ∩ C 1(0, pn), μ(f2) = 1, f |[pn,D] = 0}
= inf{D(f) : μ(f2) = 1, f ∈ CK [0,D], f(D) = 0 if D <∞}
= λ0. �

Clearly, because of hypothesis (2.1), we have λ0 > 0 once D <∞. The next
result is a simple comparison. For given α, β (α < β), denote by λ

(α,β)
0 and

λ
(α,β)
1 , respectively, the principal ND- and NN-eigenvalues (the latter is also

called the first nontrivial eigenvalue or the spectral gap in the ergodic case).
For simplicity, we use ↓ (resp. ↓↓, ↑, ↑↑) to denote decreasing (resp. strictly
decreasing, increasing, strictly increasing).

Lemma 3 (1) For p, q ∈ (0,D) with p < q, we have λ(0,p)
0 > λ

(0,q)
0 . Further-

more, λ(0,pn)
0 ↓↓ λ0 as pn ↑↑ D.

(2) For p ∈ (0,D), we have λ(0,p)
1 > λ

(0,p)
0 .

Proof (a) Let g (�= 0) be an a.e. eigenfunction of λ(0,p)
0 . Then g′(0) = 0,

g(p) = 0, and Lg = −λ(0,p)
0 g a.e. on (0, p) by Lemma 1 (1). Moreover,

λ
(0,p)
0 =

D0,p(g)
‖g‖2

L2(0,p;μ)

, Dα,β(f) =
∫ β

α
af ′2dμ.

By Lemma 2, the proof of the first assertion in part (1) will be done once we
choose a function g̃ ∈ A [0, q] such that g̃′(0) = 0, g̃(q) = 0, and

D0,p(g)
‖g‖2

L2(0,p;μ)

>
D0,q(g̃)

‖g̃‖2
L2(0,q;μ)

(� λ
(0,q)
0 ). (3.1)

To do so, without loss of generality, assume that g|(0,p) > 0 (this is a well-known
property as a reverse of the DN-case for finite intervals, cf. [4; Theorem 3.7]).
Then the required assertion follows for

g̃(x) = (g + ε)�[0,p)(x) +
ε(x− q)
p− q

�[p,q](x), x ∈ [0, q],

once ε is sufficiently small. Actually, by simple calculation, we have

D0,q(g̃) = D0,p(g) +
ε2

(p − q)2

∫ q

p
eC(x)dx,

‖g̃‖2
L2(0,q;μ) = ‖g‖2

L2(0,p;μ) + ε

∫ p

0
(2g + ε)dμ+

ε2

(p− q)2

∫ q

p
(x− q)2dμ.
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Thus, (3.1) holds if and only if

ε

(p− q)2

∫ q

p
eCdx‖g‖2

L2(0,p;μ)

<

(∫ p

0
(2g + ε)dμ+

ε

(p − q)2

∫ q

p
(x− q)2dμ

)
D0,p(g).

Since λ(0,p)
0 = D0,p(g)/‖g‖2

L2(0,p;μ), it suffices to show that

ε

(p − q)2

∫ q

p
eCdx < λ

(0,p)
0

(
2
∫ p

0
gdμ

)
,

which is obvious for sufficiently small ε.
The second assertion in part (1) has just been proved at the end of the last

proof.
(b) Part (2) of the lemma strengthens in the present situation a general

result that λ1 � λ0 proved in [2; Proposition 3.2]. Let g �= constant be an
a.e. eigenfunction of λ(0,p)

1 . Then g′(0) = 0, g′(p) = 0, and Lg = −λ(0,p)
1 g a.e. on

(0, p) by Lemma 1 (1). Moreover,

λ
(0,p)
1 =

D0,p(g)
Var(0,p)(g)

, Var(α,β)(f) =
∫ β

α
f2dμ− μα,β(f)2

μ(α, β)
.

Without loss of generality, assume that g is strictly increasing (cf. [5; Proposi-
tion 6.4]). Then we have

g̃(x) := g(p) − g(x) > 0 on (0, p).

Thus, g̃′(0) = 0, g̃(p) = 0, and moreover,

λ
(0,p)
1 =

D0,p(g̃)
Var(0,p)(g̃)

=
D0,p(g̃)

‖g̃‖2
L2(0,p;μ)

− μ0,p(g̃)2

μ(0,p)

>
D0,p(g̃)

‖g̃‖2
L2(0,p;μ)

� λ
(0,p)
0 . �

Before moving further, let us mention a nice expression of L :

L =
d
dμ

d
dν
,

which can be checked by a simple computation. Next, a large part of the results
in the last section is related to the Poisson equation Lg = −f, a.e., from which
we obtain

d
dν

g(β) − d
dν

g(α) = −
∫ β

α
fdμ, α, β ∈ [0,D], α < β. (3.2)
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Furthermore, if g′(α) = 0, then we have

g(q) − g(p) = −
∫ q

p
ν(dβ)

∫ β

α
fdμ, p, q ∈ [0,D], p < q. (3.3)

Especially, because
d
dν

g(0) = eC(0)g′(0) = 0,

and (3.2), with f = λ0g, it follows that

d
dν

g(s) = −λ0

∫ s

0
gdμ, s ∈ (0,D). (3.4)

Lemmas 4–6 given below consist of the basis of the test functions used in
the definitions of F# and H .

Lemma 4 Let g be a non-zero a.e. eigenfunction of λ0 > 0. Then g is strictly
monotone.

Proof Because λ0 > 0, g cannot be a constant. We need only to prove that
g′ �= 0 on (0,D). Suppose that there is a p ∈ (0,D) such that g′(p) = 0. Then,
by the eigenequation restricted to (0, p), we would have λ0 � λ

(0,p)
1 , where λ(0,p)

1
is the minimal eigenvalue with Neumann boundaries at 0 and p. To see this,
by (3.4), we have μ0,p(g) = 0 since g′(0) = 0 and g′(p) = 0. Here, it is quite
standard to prove the required assertion. By making inner product with g on
the both sides of the eigenequation with respect to μ0,p, it follows that

−(eCgg′)|p0 +D0,p(g) = λ0μ0,p(g2).

Again, because of g′(0) = g′(p) = 0, we obtain λ0 = D0,p(g)/μ0,p(g2). Hence,

λ0 =
D0,p(g)
μ0,p(g2)

=
D0,p(g)

Var(0,p)(g)
(since μ0,p(g) = 0)

� inf
{

D0,p(f)
Var(0,p)(f)

: f ∈ C 1(0, p) ∩ C [0, p], f ∈ L2(0, p;μ), f �= constant
}

= λ
(0,p)
1 .

Now, by Lemma 3, we obtain

λ0 � λ
(0,p)
1 > λ

(0,p)
0 > λ0.

This is a contradiction. �
Lemma 5 The a.e. eigenfunction g of λ0 is either positive or negative every-
where.
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Proof If λ0 = 0, then g must be a constant and so the assertion is obvious.
Now, let λ0 > 0. By Lemma 4, without loss of generality, assume that g′|(0,D) <
0 and g(0) > 0. We need only to prove that g �= 0 on (0,D). If, otherwise,
g(p) = 0 for some p ∈ (0,D), then, since λ(0,p)

0 is the minimal ND-eigenvalue
on (0, p), the eigenequation restricted to (0, p) shows that

λ0 � λ
(0,p)
0 > λ0,

which is a contradiction. �
Because of (3.4), we have I(g)−1 ≡ λ0. This explains where the operator I

comes from. Next, from (3.3), we have

g(x) − g(D) = λ0

∫ D

x
ν(ds)

∫ s

0
gdμ. (3.5)

When D <∞, since g(D) = 0 by our boundary condition, we obtain II(g)−1 ≡
λ0. This explains the meaning of the operator II. To show that the last assertion
holds even for D = ∞, it is necessary to prove that g(∞) = 0. This is impossible
if λ0 = 0 since then g can be an arbitrary non-zero constant.

Lemma 6 Let D = ∞. If λ0 > 0, then its a.e. eigenfunction g satisfies
g(∞) = 0.

Proof Without loss of generality, by Lemmas 4 and 5, assume that g′|(0,D) < 0
and g|[0,D) > 0.

(a) By what we have just seen and the decreasing property of g, we have

g(x) − g(∞)
λ0

=
∫ ∞

x
ν(ds)

∫ s

0
gdμ � g(∞)

∫ ∞

x
ν(ds)

∫ s

0
dμ.

Thus, g(∞) = 0 once ∫ ∞

0
ν(ds)

∫ s

0
dμ = ∞

(which is the uniqueness criterion for the semigroup or the nonexplosive
criterion for the minimal process) since the left-hand side is finite.

(b) Otherwise, we have

M(x) :=
∫ ∞

x
ν(ds)

∫ s

0
dμ <∞, x ∈ (0,D).

Let f = g − g(∞) and suppose that g(∞) > 0. Then f ∈ FII , and moreover,

fII(f)(x) = λ0
−1(g(x) − g(∞)) − g(∞)M(x) = λ−1

0 f(x) − g(∞)M(x).

We arrive at
sup

x∈(0,∞)
II(f)(x) =

1
λ0

− g(∞) inf
x∈(0,∞)

M(x)
f(x)

.
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Since f(∞) = 0 and M(∞) = 0, by Cauchy’s mean value theorem, we have

inf
x∈(0,∞)

M(x)
f(x)

� inf
x∈(0,∞)

M ′(x)
f ′(x)

= inf
x∈(0,∞)

(
− e−C(x)

g′(x)

∫ x

0

eC(u)

a(u)
du

)

� inf
x∈(0,∞)

(
− e−C(x)

g(0)g′(x)

∫ x

0
gdμ

)
(since g′ < 0 and g > 0 on (0,D))

= inf
x∈(0,∞)

1
g(0)

I(g)(x)

=
1

λ0g(0)
> 0.

Inserting this into the previous equation, it follows that

λ0 < inf
x∈(0,∞)

II(f)(x)−1.

But
inf

x∈(0,∞)
II(f)(x)−1 � λ0

is a part of Theorem 1 (2) and will be proved soon below, without using the
properties of the a.e. eigenfunction g. We have thus obtained a contradiction.

�
From now on in this section, we assume that the a.e. eigenfunction (say

g) satisfies g > 0 and g′ < 0 on (0,D), g′(0) = 0, and g(D) = 0 (recall that
g(D) = limx→D g(x) if D = ∞).

Proof of Theorem 1 and Proposition 1 Similar to the proof of [5; Theorem 2.4
and Proposition 2.5], we can prove the assertions by two circle arguments.

To prove the lower estimates, we adopt the following circle arguments:

λ0 � λ̃0

� sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1

= sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1

= sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1 (3.6)

� sup
h∈H

inf
x∈(0,D)

R(h)(x)

� λ0, (3.7)
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λ0 � inf
f∈F̃II∪F̃ ′

II

sup
x∈supp(f)

II(f)(x)−1

= inf
f∈F̃II

sup
x∈supp(f)

II(f)(x)−1 (3.8)

= inf
f∈F̃I

sup
x∈supp(f)

II(f)(x)−1

= inf
f∈F̃I

sup
x∈(0,D)

I(f)(x)−1

= inf
f∈F̃ ′

I

sup
x∈(0,D)

I(f)(x)−1 (3.9)

� inf
h∈H̃

sup
x∈(0,D)

R(h)(x)

� λ0. (3.10)

In fact, most of the proof here are parallel to those in the discrete case (see
[5; Section 2]). Actually, one can follow the cited proofs with some changes
illustrated here. For instance, to prove

λ̃0 � sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1,

following [5; Part I (a) of proof of Theorem 2.4 and Proposition 2.5], let g
(irrelated to the eigenfunction) be a test function of λ̃0 : g ∈ C 1(0,D)∩C [0,D],
g(D) = 0, g′(0) = 0, and μ(g2) = 1. Then for every h with h|(0,D) > 0, we have

1 = μ(g2)

=
∫ D

0

eC(x)

a(x)

(∫ D

x
g′(t)dt

)2

dx

�
∫ D

0

eC(x)

a(x)
dx

∫ D

x

eC(t)

h(t)
g′(t)2dt

∫ D

x

h(s)
eC(s)

ds

(by Cauchy-Schwarz’s inequality)

=
∫ D

0

eC(t)

h(t)
g′(t)2dt

∫ t

0

eC(x)

a(x)
dx

∫ D

x

h(s)
eC(s)

ds (by Fubini’s Theorem)

� D(g) sup
t∈(0,D)

1
h(t)

∫ t

0

eC(x)

a(x)
dx

∫ D

x

h(s)
eC(s)

ds

=: D(g) sup
t∈(0,D)

H(t).

For f ∈ FII satisfying
sup

x∈(0,D)
II(f)(x) <∞,

we specify

h(t) =
∫ t

0
a(s)−1eC(s)f(s)ds.
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Then by Cauchy’s mean value theorem, it follows that

sup
t∈(0,D)

H(t) � sup
x∈(0,D)

1
f(x)

∫ D

x
e−C(s)ds

∫ s

0

eC(u)

a(u)
f(u)du = sup

x∈(0,D)
II(f)(x).

Hence,
inf

x∈(0,D)
II(f)(x)−1 � inf

t∈(0,D)
H(t)−1 � D(g).

Making infimum with respect to g, we obtain the required assertion. We have
also completed the proof of Lemma 6.

As mentioned before Lemma 6, the operators I and II are all from the
eigenequation. Here, we show that so is the operator R. Rewrite the eigen-
equation as

−Lg
g

= λ0

which is meaningful since g > 0. To simplify the left-hand side, in the discrete
case, one uses the ratio g(x + 1)/g(x). However, this is useless in the present
continuous situation. What instead is using the function h = g′/g. Then

−Lg
g

= −(ah2 + bh+ ah′) = R(h).

The conditions g > 0 and g′ < 0 on (0,D) lead to the restraint h < 0 in defining
H . Note that the inverse transform h→ g is unique up to a positive constant:

g(x) = exp
[ ∫ x

0
h(u)du

]
.

The restraint allowing h = 0 in the definition of H is to include the degenerated
case that g′ ≡ 0 when λ0 = 0 (then D = ∞ by hypothesis (2.1)). Clearly, the
use of R is essentially the use of L. For this reason, we make the continuous
condition on a and b once concerning with R. Because of this point, we need
two additional terms in the circle arguments above: the right-hand side of
(3.6) is not less than λ0 and the right-hand side of (3.9) is no more than λ0.
This is rather easy since for the a.e eigenfunction g, we have I(g)−1 ≡ λ0 and
II(g)−1 ≡ λ0 by (3.4), (3.5), and Lemma 6. Actually, the required assertion
was also contained in the corresponding proof of the discrete situation.

As another illustration of the proof when moving from the discrete case to
the continuous one, we consider a proof for the upper estimates. For instance,
we prove that

λ0 � inf
f∈F̃II∪F̃ ′

II

sup
x∈supp(f)

II(f)(x)−1.

Before moving to the details, let us mention that, for the upper estimates
of λ0, we are actually using a comparison between λ0 and λ

(0,x0)
0 . Thus, for

the upper estimates of λ0, we indeed use the restriction on [0, x0] for the test
functions, ignoring their behaviors out of [0, x0].
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Given f ∈ F̃II with f = f�[0,x0) for some x0 ∈ (0,D), let

g = fII(f)�supp(f).

Then g ∈ L2(μ). Since

[eCg′](x) = −
∫ x

0
fdμ on [0, x0),

by the integration by parts formula, we have

D(g) =
∫ D

0
eC(x)g′(x)2dx =

∫ x0

0
fgdμ.

Hence,

D(g) �
∫ x0

0
g2dμ sup

(0,x0)

f

g
= μ(g2) sup

x∈(0,x0)
II(f)(x)−1.

Since g ∈ L2(μ), it follows that

λ0 � D(g)
μ(g2)

� sup
supp(f)

II(f)−1 (3.11)

for every f ∈ F̃II . It remains to show that the same assertion holds for every
f ∈ F̃ ′

II . Recall that in the proof above, the conclusion g ∈ L2(μ) comes from
the finiteness of x0. Otherwise, if x0 = D = ∞, then f ∈ F̃ ′

II means that the
function g = fII(f) is assumed to be in L2(μ), and the proof above still works.
Therefore, we obtain the required assertion.

Hopefully, we have explained enough the difference between the discrete
and the continuous cases. Now, one may follow [5; Proof of Theorem 2.4 and
Proposition 2.5] (quite long and technical) to complete the whole proof. �

Before moving further, let us mention a fact about the localizing procedures
used in Theorem 3 (2). Instead of the approximating to the infinite state space
(D = ∞) by finite ones, it seems more natural to use the truncating procedure
for the test function f : f (n) = f�[0,xn) with xn ↑ ∞. The next result shows that
such a procedure is not practical in general.

Remark 2 Assume that hypothesis (2.1) holds. Let D = ∞, let g be the
eigenfunction of λ0 > 0, and define g(n) = g�[0,xn) for some xn ∈ (0,∞). Then

inf
x∈supp(g(n))

II(g(n))(x) = 0.

In particular, infx∈supp(g(n)) II(g
(n))(x) does not converge to λ0 as xn → ∞.

Proof By definition of g(n), we have
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inf
x∈supp(g(n))

II(g(n))(x) = inf
x∈[0,xn)

1
g(n)(x)

∫ xn

x
e−C(s)ds

∫ s

0
g(n)dμ

= inf
x∈[0,xn)

1
g(x)

∫ xn

x
e−C(s)ds

∫ s

0
gdμ

= inf
x∈[0,xn)

1
g(x)

∫ xn

x
(−λ−1

0 g′(s))ds (by (3.4))

= inf
x∈[0,xn)

1
λ0g(x)

(g(x) − g(xn))

= inf
x∈[0,xn)

1
λ0

(
1 − g(xn)

g(x)

)
= 0 (since g ∈ C [0,D] and g ↓↓). �

Proof of Proposition 2 (1) Let g ∈ C 1(0,D) with g > 0 and g′ < 0 on (0,D),
and let

h(x) = −e−C(x)

∫ x

0
gdμ.

Then h ∈ H∗ and

R(h)(x) = −(ah′ + bh)′(x)
h(x)

=
g′(x)
h(x)

> 0.

This clearly implies that

sup
h∈H∗

inf
x∈(0,D)

R(h)(x) � 0.

(2) Without loss of generality, assume that λ0 > 0. Since a, b ∈ C 1(0,D),
there exists an eigenfunction g such that h := g′ ∈ H∗ and

R(h)(x) = −(Lg)′(x)
g′(x)

≡ λ0.

Thus,
sup
h∈H

inf
x∈(0,D)

R(h)(x) � sup
h∈H∗

inf
x∈(0,D)

R(h)(x) � λ0.

Now, one can complete the proof following that of the discrete case
([5; Proof of Proposition 2.7]). �

To prove Theorem 2, we need the following result.

Lemma 7 Given two nonnegative, measurable, and locally integrable functions
m and n on [0,D], suppose that

∫ D

0
n(y)dy <∞, c := sup

x∈(0,D)

∫ x

0
m(y)dy

∫ D

x
n(y)dy <∞.
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Set

ψ(x) =
∫ D

x
n(y)dy.

Then for every r ∈ (0, 1), we have∫ x

0
m(y)ψr(y)dy � c

1 − r
ψr−1(x), x ∈ (0,D).

Proof Let

M(x) =
∫ x

0
m(y)dy.

Noticing that M ′(x) = m(x) and Mψ � c, we obtain the assertion by using the
integration by parts formula. �
Proof of Theorem 2 To prove the lower estimate, without loss of generality,
assume that δ <∞. Applying Lemma 7 to

m(x) =
eC(x)

a(x)
, n(x) = e−C(x),

we get∫ x

0
ϕr(y)μ(dy) =

∫ x

0
ϕr(y)m(y)dy � δ

1 − r
ϕr−1(x), x ∈ (0,D).

Put f = ϕr. Then f ∈ FI and I(f)(x) � δ/(r − r2). Optimizing the inequality
with respect to r, it follows that

I(f)(x) � inf
0<r<1

δ

r − r2
= 4δ. (3.12)

We have thus proved the lower estimate.
For the upper estimate, we choose the test function as f = ν(x0∨·, x1)�[0,x1)

for some x0, x1 ∈ [0,D) with x0 < x1. Then, the assertion follows by using either
the variational formula for upper estimate given by Theorem 1 (1):

λ0 � inf
f∈F̃I

sup
x∈(0,D)

I(f)(x)−1

or the classical variational formula:

λ−1
0 = λ−1

∗ � sup
x0,x1 : x0<x1

‖fx0,x1
1 ‖

D(fx0,x1
1 )

and then letting x1 → D.
At last, if ν(0,D) = ∞, then we have ν(x,D) = ∞ because of hypothesis

(2.1). Furthermore, μ(0, x)ν(x,D) = ∞ for every x ∈ (0,D). Therefore, δ = ∞
and λ0 = 0. If ∫ ∞

0
μ(0, x)ν(dx) <∞,
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then for each x ∈ (0,D), we have

μ(0, x)ν(x,D) =
∫ D

x
μ(0, x)ν(dt) <

∫ ∞

x
μ(0, t)ν(dt) <

∫ ∞

0
μ(0, x)ν(dx) <∞.

Hence, δ <∞ and λ0 > 0. �
Proof of Theorem 3 and Corollary 1 Simply follow [5; Proof of Theorem 3.2
and Corollary 3.3]. We mention that the proof of ‘δ′1 � 2δ’ and the computation
of δ′1 are not easy. �

4 DN-case

We now turn to study the DN-case. As Section 2, we use the same
notation C [0,D], C k(0,D), and the operator L. The main different point for the
eigenequation Lg = −λ0g is the boundary condition: g(0) = 0 and g′(D) = 0
if D <∞. Now, define

λ0 = inf
{D(f)
μ(f2)

: f ∈ C 1(0,D) ∩ C [0,D], D(f) <∞, f(0) = 0, f �= 0
}
, (4.1)

where

D(f) =
∫ D

0
af ′2dμ, μ(dx) =

eC(x)

a(x)
dx, C(x) =

∫ x

0

b(u)
a(u)

du.

Again, define
ν(dx) = e−C(x)dx.

Here, we have used the hypothesis (2.1). The restraint ‘D(f) <∞’ in (4.1) is to
avoid ∞/∞ since we allow μ(f2) = ∞. Then the restraint ‘f �= 0’ is needed to
avoid 0/0. Note that the restriction on the set CK for test functions disappears
in (4.1). This means that the maximal Dirichlet form or the maximal process is
used here, instead of the minimal one used in Section 2. In other words, we do
not assume the uniqueness of the semigroup, which is different from what we
studied earlier in [1–4,9]. The constant λ0 defined above describes the optimal
constant C = λ−1

0 in the following weighted Hardy inequality :

μ(f2) � CD(f), f(0) = 0.

(See [4; Section 5.2]). In other words, we are studying the weighted Hardy
inequality in this section. To save the notation, we use the same notation λ0,
I, II, R and so on as before, each of them plays a similar role but may have
different meaning in different context.

Before going to our main text, we note that in definition of λ0, one may
replace C 1(0,D) ∩ C [0,D] by A [0,D] as shown by Lemma 2.
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Now, we review some notation defined originally in [3,9] and introduce some
new ones as follows:

I(f)(x) =
e−C(x)

f ′(x)

∫ D

x
fdμ (single integral form),

II(f)(x) =
1

f(x)

∫ x

0
ν(ds)

∫ D

s
fdμ (double integral form),

R(h)(x) = −(ah2 + bh+ ah′)(x) (differential form).

The domains of I, II, and R, respectively, are as follows:

FI = {f : f ∈ C 1(0,D) ∩ C [0,D], f(0) = 0, f ′|(0,D) > 0},
FII = {f : f ∈ C [0,D], f(0) = 0, f |(0,D) > 0},

H =
{
h : h ∈ C 1(0,D) ∩ C [0,D], h|(0,D) > 0,

∫
0+
h(u)du = ∞

}
,

where
∫
0+ means

∫ ε
0 for sufficiently small ε > 0. These sets are used for the

estimates on lower bounds of λ0. For the upper bounds, we have the following
domains:

F̃I = {f : ∃ x0 ∈ (0,D), f ∈ C 1(0, x0) ∩ C [0,D],
f(0) = 0, f = f(· ∧ x0), f ′|(0, x0)> 0},

F̃II = {f : ∃ x0 ∈ (0,D), f ∈ C [0, x0], f(0) = 0, f = f(· ∧ x0), f |(0,x0) > 0},

H̃ =
{
h : ∃ x0 ∈ (0,D), h ∈ C 1(0, x0) ∩ C [0,D], h|(0,x0) > 0,∫

0+
h(u)du = ∞, h|[x0,D] = 0, sup

(0,x0)
(ah2 + bh+ ah′) < 0

}
.

Besides, we also need

F̃ ′
II = {f : f > 0, f ∈ C [0,D], fII(f) ∈ L2(μ)}.

Under hypothesis (2.1), if μ(0,D) = ∞, then λ0 defined by (4.1) is trivial.
Indeed, let

f = �(δ,D] + h�[0,δ],

where h is chosen such that h(0) = 0 and f ∈ C 1(0,D) ∩C [0,D] (for example,
h(x) = −x2 · δ−2 + 2x · δ−1). Then D(f) ∈ (0,∞) and μ(f2) = ∞. It follows
that λ0 = 0.

Otherwise, μ(0,D) < ∞. Then for every f with μ(f2) = ∞, by setting
f (x0) = f(· ∧ x0) ∈ L2(μ), we have

∞ > D(f (x0)) ↑ D(f), ∞ > μ(f (x0)2) → μ(f2) as x0 → D.



Mixed principal eigenvalues in dimension one 337

In other words, for each non-square-integrable function f, both μ(f2) and D(f)
can be approximated by a sequence of square-integrable ones. Hence, we can
rewrite λ0 as follows:

λ0 = inf{D(f) : μ(f2) = 1, f(0) = 0, f ∈ C 1(0,D) ∩ C [0,D]}. (4.2)

In this case, as will be seen soon but not obvious, we also have

λ0 = inf{D(f) : μ(f2) = 1, f(0) = 0, f = f(· ∧ x0),

f ∈ C 1(0, x0) ∩ C [0, x0] for some x0 ∈ (0,D)}
=: λ̃0.

Now, we introduce our main results. Their relations are very much the same
as that indicated in Section 2, except that the test function used in Theorem 5
is ν(0, x)γ but not ν(x,D)γ (γ = 1/2 or 1).

Theorem 4 Let hypothesis (2.1) hold. Assume that μ(0,D) < ∞. Then λ0

defined by (4.1) or (4.2) coincides with λ̃0 and the following variational formulas
hold.

(1) Single integral forms:

inf
f∈F̃I

sup
x∈(0,D)

I(f)(x)−1 = λ0 = sup
f∈FI

inf
x∈(0,D)

I(f)(x)−1.

(2) Double integral forms:

λ0 = inf
f∈F̃I

sup
x∈(0,D)

II(f)(x)−1

= inf
f∈F̃II

sup
x∈(0,D)

II(f)(x)−1

= inf
f∈F̃II∪F̃ ′

II

sup
x∈(0,D)

II(f)(x)−1,

λ0 = sup
f∈FI

inf
x∈(0,D)

II(f)(x)−1 = sup
f∈FII

inf
x∈(0,D)

II(f)(x)−1.

Moreover, if a, b ∈ C [0,D], then we also have
(3) differential forms:

inf
h∈H̃

sup
x∈(0,D)

R(h)(x) = λ0 = sup
h∈H

inf
x∈(0,D)

R(h)(x).

Theorem 5 (Criterion and basic estimates) Let hypothesis (2.1) hold. Then
λ0 defined by (4.1) (or equivalently, λ̃0 provided μ(0,D) <∞) is positive if and
only if

δ := sup
x∈(0,D)

ν(0, x)μ(x,D) <∞.

More precisely, we have
(4δ)−1 � λ0 � δ−1.
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In particular, we have λ0 = 0 if μ(0,D) = ∞, and λ0 > 0 if

D <∞ or
∫ D

0
(a(u)−1eC(u) + e−C(u))du <∞.

Proof The result was proved in [2; Theorem 1.1] except the case that μ(0,D) =
∞, which implies λ0 = 0 (δ = ∞) and so the assertion is trivial. �
Theorem 6 (Approximating procedure) Let hypothesis (2.1) hold. Assume
that μ(0,D) <∞ and δ <∞. Set ϕ(x) = ν(0, x) for x ∈ (0,D).

(1) Define
f1 =

√
ϕ, fn = fn−1II(fn−1), n � 2,

and let
δn = sup

x∈(0,D)
II(fn)(x), n � 1.

Then δn is decreasing in n and

λ0 � δ−1
n � (4δ)−1, n � 1.

(2) For fixed x0 ∈ (0,D), define

f
(x0)
1 = ϕ(· ∧ x0), f (x0)

n = (f (x0)
n−1II(f

(x0)
n−1))(· ∧ x0), n � 2,

and let
δ′n = sup

x0∈(0,D)
inf

x∈(0,D)
II(f (x0)

n )(x).

Then δ′n is increasing in n and

δ−1 � δ′n
−1 � λ0, n � 1.

Next, define

δn = sup
x0∈(0,D)

‖f (x0)
n ‖

D(f (x0)
n )

, n � 1.

Then δn
−1 � λ0, δn+1 � δ′n for every n � 1 and δ1 = δ1.

Corollary 2 (Improved estimates) We have the following estimates:

δ−1 � δ′1
−1 � λ0 � δ−1

1 � (4δ)−1,

where

δ1 = sup
x∈(0,D)

1√
ϕ(x)

∫ D

0
ϕ(x ∧ ·)√ϕ dμ

= sup
x∈(0,D)

(
1√
ϕ(x)

∫ x

0
ϕ3/2dμ+

√
ϕ(x)

∫ D

x

√
ϕ dμ

)
,
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δ′1 = sup
x∈(0,D)

1
ϕ(x)

∫ D

0
ϕ(· ∧ x)2dμ ∈ [δ, 2δ].

Since the proofs of the results above are either known from [2,3] or parallel
to [5], here we make some remarks only.

Remark 3 (1) As mentioned in [5], the original proofs given in [2,3] are still
suitable to support the idea using the maximal Dirichlet form instead of the
uniqueness assumption.

(2) As discussed in the last section, it is natural to extend a and b from
continuous to measurable when using operators I and II only.

(3) About the duality. Recall that

L =
d
dμ

d
dν
.

The dual operator of L is simply defined as

L∗ =
d

dμ∗
d

dν∗
, μ∗ := ν, ν∗ := μ.

For the boundaries, simply exchange the names of Dirichlet and Neumann. The
basic results for these operators are λ0(L) = λ0(L∗) and δ = δ∗, where λ0(L)
and δ are defined in Section 2, and λ0(L∗) and δ∗ are defined in this section by
replacing L with L∗. The proof goes as follows.

(a) Reduce to finite D. By an approximating procedure we have used many
times before, it suffices to prove the assertion for finite D. The point is that for
λ0(L), one needs to consider only the test functions having compact support;
for λ0(L∗), it suffices to consider the test function f = f(·∧x0), where x0 varies
over (0,D).

(b) By a standard smoothing procedure, one may assume that a and b are
smooth.

(c) The identity of λ0(L) and λ0(L∗) is a combination of Proposition 2 (2)
and Theorem 4 (3). The discrete case was given in [5; Section 5]. An alternative
proof of this assertion was presented in [7] based on isospectral. Note that in
the last proof, the finiteness of D is crucial, otherwise, the domains of L and L∗
are essential different unless the Dirichlet form corresponding to L∗ is assumed
to be regular.

(4) When D < ∞, one may simply reverse the variable to obtain one
from the other of between ND- and DN-cases. In this sense, the identity
λ0(L) = λ0(L∗) stated in (3) is quite natural even though the duality is not a
‘reverse transform’. When D = ∞, these two cases are certainly different since
the Dirichlet boundary at 0 is touchable but not the one at ∞. We mention that
the variational formulas and then the approximating procedure in this section
are different from those deduced by the dual approach. It is interesting that
in the discrete situation, the approximating procedure given by Theorem 6 is
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often less powerful than those given by Theorem 3 in terms of duality. Similar
phenomenon happens in the continuous situation as shown in [6] with D <∞.

5 Supplement to NN-case

Everything is the same as those in the last section except the mixed eigenvalue
λ0 is replaced by

λ1 = inf{D(f) : μ(f) = 0, μ(f2) = 1, f ∈ C 1(0,D) ∩ C [0,D]}. (5.1)

Let us repeat that throughout this section, we assume that hypothesis (2.1)
holds and μ(0,D) <∞.

The supplement consists of three parts. The first one is using the maximal
Dirichlet form instead of the uniqueness assumption of the semigroup. The
second one is using the ‘a.e. eigenfunction’ instead of ‘eigenfunction’. These two
parts have already been studied in the previous sections. See also [9] for some
supplement to the original paper. The third part is about the monotonicity of
an approximating procedure which we are going to study below.

Define

f = f − π(f), f1 =
√
ϕ, fn = fn−1II(fn−1), ηn = sup

x∈(0,D)
I(fn)(x),

where π = μ/μ(0,D). Here, our main question is about the monotonicity of
{ηn}. Unlike the sequences {δn} and {δ′n} defined in Theorems 3 and 6, their
monotonicity results from simply twice applications of Cauchy’s mean value
theorem, the method does not work for the sequence {ηn} since each fn can
be zero in (0,D). We were unable to solve this problem for years until the
appearance of the recent paper [5; Section 6], in which the problem was solved
in the discrete context. Note that λ1 > 0 if and only if

δ := sup
x∈(0,D)

ν(0, x)μ(x,D) <∞

by [2; Theorem 3.7], [5; Theorem 6.2], and Theorem 5.

Proposition 3 Let hypothesis (2.1) hold and assume that δ < ∞. Then the
sequence {ηn} defined above (i.e., {η′′n} in [3; Theorem 1.4]) is non-decreasing.

Proof (a) First, we show that f1 ∈ L1(μ). Recall that ϕ(x) = ν(0, x). Clearly,
for arbitrarily fixed x0 ∈ (0,D), we have

μ(
√
ϕ ) =

∫ x0

0

√
ϕ dμ+

∫ D

x0

√
ϕ dμ �

∫ x0

0

√
ϕ dμ+

2δ√
ϕ(x0)

<∞.

Hence,
√
ϕ ∈ L1(μ).
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(b) Define two sequences {hn} and {f̃n} by the same recurrence hn =
hn−1II(hn−1) but different initial condition:

h0 = 1, f̃1 = f1 =
√
ϕ.

We now study {f̃n} first. From [3; Theorem 1.2 (1)], we have known that
f̃2 � 4δf̃1. Assume that f̃n−1 � (4δ)n−2f̃1 for some n � 3. Then

f̃n =
∫ ·

0
ν(dy)

∫ D

y
f̃n−1dμ

� (4δ)n−2

∫ ·

0
ν(dy)

∫ D

y
f̃1dμ

= (4δ)n−2f̃2

� (4δ)n−1f̃1.

By induction, this estimate holds for n � 2. Hence, f̃n ∈ L1(μ) for n � 1 by
(a).

Next, we study the sequence {hn}. Fix x0 ∈ (0,D). For x > x0, we have

h1(x) = h1(x0) +
∫ x

x0

ν(dy)μ(y,D)

� h1(x0) +
1√
ϕ(x0)

f̃2(x)

� h1(x0) +
4δ√
ϕ(x0)

f̃1(x).

By induction, it is not difficult to verify that

hn(x) �
n∑

k=1

(4δ)k√
ϕ(x0)

hn−k
1 (x0)f̃1(x) + hn

1 (x0).

Hence, hn ∈ L1(μ) for n � 1.

(c) Now, we look for the relationship between fn and f̃n. We begin with

f1 = f̃1 =
√
ϕ, f2 =

∫ ·

0
ν(dy)

∫ D

y
f1dμ = f̃2 − π(f1)h1.

By induction, we have, in general,

fn = f̃n −
n−1∑
k=1

hn−kπ(fk), n � 2.

Thus, fn ∈ L1(μ) for every n � 1 by (b).
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(d) We now come to the central part of the proof: showing the monotonicity
of ηn. By definition of fn, we have

ηn = sup
x∈(0,D)

e−C(x)

fn
′(x)

∫ D

x
fn dμ = sup

x∈(0,D)

(∫ D

x
fn dμ

)(∫ D

x
fn−1dμ

)−1

. (5.2)

Thus, ηn � ηn−1 if and only if

∫ D

x
(fn − ηn−1fn−1)dμ � 0, x ∈ [0,D).

That is, ∫ D

x
(fn − ηn−1fn−1)dμ � (π(fn) − ηn−1π(fn−1))μ(x,D),

or equivalently,

S(x) :=
1

μ(x,D)

∫ D

x
(ηn−1fn−1 − fn)dμ � ηn−1π(fn−1) − π(fn) = S(0). (5.3)

This is our key observation and leads to the study on the monotonicity of S.
(e) In view of (5.3), we have reduced our proof to showing non-decreasing

property of S. For this, it is enough to show that

μ(y,D)
∫ D

x
(ηn−1fn−1 − fn)dμ � μ(x,D)

∫ D

y
(ηn−1fn−1 − fn)dμ

for any x, y ∈ [0,D) with x < y. By separating fn and fn−1, the last inequality
is equivalent to the following one:

ηn−1

∫ D

y
μ(du)

∫ y

x
(fn−1(t)− fn−1(u))μ(dt) �

∫ D

y
μ(du)

∫ y

x
(fn(t)− fn(u))μ(dt).

(5.4)
To see this, it suffices to check that

fn(u) − fn(t) � ηn−1(fn−1(u) − fn−1(t)), u � t.

To check the last inequality, consider n � 3 first. Then

fn(u) − fn(t) =
∫ u

t
ν(dy)

∫ D

y
fn−1dμ (by definition of fn)

� ηn−1

∫ u

t
ν(dy)

∫ D

y
fn−2dμ (by (5.2))

= ηn−1(fn−1(u) − fn−1(t)) (by definition of fn−1), u � t.
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It remains to check the required inequality for n = 2. By definition of η1, we
have

e−C(y)

f
′
1(y)

∫ D

y
f1dμ = I(f1)(y) � η1.

It follows that

f2(u)−f2(t) =
∫ u

t
ν(dy)

∫ D

y
f1dμ � η1

∫ u

t
f ′1(y)dy � η1(f1(u)−f1(t)), u � t.

We have thus completed the proof of the monotonicity of {ηn} in the continuous
context. �

The monotonicity of {ηn} means that we can theoretically improve our lower
estimates of λ1 step by step. There is a similar result for the upper estimates
but omitted here. It is regretted that the converges of {η−1

n } to λ1 (as n→ ∞)
remains open. All examples we have ever computed support the convergence.
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