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Abstract

In this paper we present some necessary conditions for the uniqueness, recurrence,
and ergodicity of a class of multidimensional Q-processes, using the dual Yan—Chen
comparison method. Then the coupling method is used to study the multidimensional
processes in a specific space. As applications, three models of particle systems are
illustrated.
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1. Introduction

Some stochastic models for linear master equations of several variables were introduced
in [11], [14], and [22]. In probability language, these models correspond to certain mul-
tidimensional Q-processes which satisfy the forward Kolmogorov equation. Naturally, it
would be interesting to study the following three classical problems relating to this class
of multidimensional Q-processes: determination of their uniqueness, their recurrence, and
their ergodicity. However, as we know, for multidimensional Q-processes it is more difficult
to study these problems directly than it is for one-dimensional Q-processes (see [16] and
[22]). In [21], Yan and Chen proposed a method which reduces the multidimensional problems
to one-dimensional ones. Yan and Chen’s main idea was to compare the multidimensional
Q-processes with a single-birth process. Typical examples of applications to keep in mind are
Schlogl’s model and the Brusselator model. For convenience, we present their results on the
uniqueness of multidimensional Q-processes here (see [8, Theorem 3.19]).

Theorem 1.1. Let E be a countable setand let Q = (q(x,y): x,y € E) be atotally stable and
conservative Q-matrix. Suppose that there exists a partition { Ex} of E such that | J{—y Ex = E
and the following conditions hold:

(1) ifq(x,y) >0andx € Ey theny € UI;:(I) E; forallk > 0;
(i1) ZyEEkH q(x,y) > Oforallx € Ey and all k > 0;

(iii) Cy :=sup{g(x): x € Ex} < ooforallk > 0, whereq(x) = —q(x,x) = Zy#xq(x, y).
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Define a totally stable and conservative Q-matrix (q;j: i, j € Z) as follows:

sup{Y yep, 4 (x. y):x € Ei} ifj=i+1,
qgij = inf{ZyeEj qx,y):x € E;} ifj<i,
0 ifj>i+1,

and gi = —qii = Z/#i qij. If the (gij)-process is unique then so is the (q(x, y))-process.

Using the comparison method, Yan and Chen presented some sufficient and much more
practicable conditions for the uniqueness, recurrence, and ergodicity of this class of multi-
dimensional Q-processes in [21]. Recently, in [13] and [26], Mao and Zhang obtained some
sufficient conditions for exponential ergodicity and strong ergodicity in the same way. However,
in the study of the Brusselator model we know that this method is valid only in the determination
of uniqueness, not recurrence or ergodicity. Fortunately, the dual comparison method can be
used to study the necessary condition for the (strong) ergodicity of the Brusselator model.

Keeping this ‘new’ idea in mind, we aim to obtain some necessary conditions for the
uniqueness, recurrence, and ergodicity of the class of Q-processes considered in this paper.
Our main results are the following three theorems.

Theorem 1.2. Let E be a countable set and let Q = (q(x, y): x,y € E) be atotally stable and
conservative Q-matrix. Suppose that there exists a partition { E} of E such that U/fi() Ey=FE
and the following conditions hold:

(1) ifg(x,y) >0andx € Ey theny € UI;J:“(]) E; forallk > 0;

(i1) inf{X:yeEk+1 qg(x,y): x € Ex} > 0forallk > 0;
(iil) Cr :=sup{g(x): x € Ex} < oo forallk > 0.

Define a totally stable and conservative Q-matrix (q;j: i, j € Z) as follows:

inf{}_ g qtx.y):x € Ei} ifj=i+]1,
qij = ySup{Yyep, ¢ (x. ¥): x € Ei} i <, (1.1)
0 ifj>i+1,

and q; = —qi; = Zﬁéi qgij. If the (q(x, y))-process is unique then so is the (q;j)-process.

Theorem 1.3. Let the assumptions of Theorem 1.2 hold and suppose that Ey = {0}, where
0 € E is a reference point. Define a Q-matrix (qj: i, j € Z4) asin (1.1). Moreover, suppose
that both (q(x,y)) and (g;;) are irreducible and that (q(x,y)) is regular. If the (q(x, y))-
process is recurrent then so is the (q;;)-process.

Theorem 1.4. Let the assumptions of Theorem 1.2 hold and suppose both that Eo = {0}, where
0 € Eisareference point, and that Ey is finite for allk > 1. Definea Q-matrix (q;;: i, j € Z4)
as in (1.1). Moreover, suppose that both (q(x, y)) and (g;;) are irreducible and that (q(x, y))
is regular. Define T = inf{r > 0: X (¢t) = 0}, where X (t) denotes the (q(x, y))-process.

1. Choose an x; € E; suchthat f; := E,; T = min,cg; Ex t. If f; is an increasing function of i
and the (q(x, y))-process is ergodic or strongly ergodic, then the (g;;)-process is also ergodic
or, respectively, strongly ergodic.
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2. Choose some A € (0,inf cg g(x)) andanx; € E; suchthat g; :== E,, e = minycr; Ex e,
If gi is an increasing function of i and the (q(x, y))-process is exponentially ergodic, then the
(gij)-process is also exponentially ergodic.

The (g;;)-process defined in (1.1) is in fact a single-birth process (also called an upwardly
skip-free process or a birth—death process with catastrophe), i.e. (1.1) defines a single-birth
Q-matrix. For single-birth processes there are explicit criteria for uniqueness, recurrence, and
ergodicity. (For details, we refer the reader to [1]-[5], [8], [13], [15], [26]-[28].) In other
words, necessary conditions on the (g;;)-process in the above theorems are explicitly known.

Two other points should be mentioned. First, in view of [8, Theorem 4.45(2)], in Theo-
rem 1.4.2 the implicit condition inf,cg g(x) > 0 is indeed necessary for exponential ergod-
icity. Second, Theorem 1.3 has been proved previously (see [18, Theorem 1.6]). Here, for
convenience, we present and prove the result again.

The remainder of the paper is organized as follows. We will prove Theorems 1.2-1.4 and
present some corollaries in the next section. In Section 3 the multidimensional Q-processes in
a specific space are studied using coupling methods. Finally, some applications are illustrated,
in Section 4.

2. Proofs
First we present the proofs of Theorems 1.2—1.4 in detail. Then two corollaries are obtained.

Proof of Theorem 1.2. To prove the uniqueness of the (g;;)-process, by the uniqueness
criterion it suffices to show that the equation

A +gwi =Y gjwj,  0<w; <1,i20, @.1)
J#
has only the trivial solution. Suppose that (2.1) has a nontrivial solution w = {w;: i > 0}.

By [8, Theorem 3.16, Proof a)], w; is increasing in i. Let w(x) = w; if x € E;. Then w(x),
x € E, is nonzero. For x € E;, i > 0, we have

i1
D q, @) —wE) =Y Y g, i —w)+ Y g, y)(wigs — wi)
y#xX J=0y€eE; YEEit
i1
> Z%’j(wj — wi) + gi,i+1 (Wit — w;)
j=0
= Zqz'j(wj — w;)
J#
= Aw;
= Aw(x),

that is,
A+ gwE) <Y gl w(i)., 0=<wkx) <1, xekE.
y#X
According to the comparison lemma [8, Lemma 3.14] and the uniqueness criterion, this shows
that the (¢ (x, y))-process is not unique. The statement of the theorem follows by contraposition.
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Proof of Theorem 1.3. To prove the recurrence of the (g;;)-process, it suffices to show that
the equation
hi = Thj,  0<h; <1,i>0, 22)
20
where !
qij
ij = g0 (1 = 87) 7=+ Ligi=0) 8
l

has only the trivial solution. Suppose that (2.2) has a nontrivial solution {#; : i > 0}, which is
equivalent to supposing that

ho = 1, hi = Tjhj, >0, (2.3)
j#0
has a nonnegative, bounded solution. By [8, Theorem 4.54, Proof a)], &; is increasing in i. Let
h(x) = h; if x € E;. Then h(x), x € E, is nonzero. For x € E;, i > 1, we have
i—1

D g —hx) =" gy hj—h) + Y qx.y)(hiy — hy)

y#x,0 Jj=ly€eE; yeE; 1

v

i—1
> Y " qijhj = hi) + giiv1(higr — hi)
j=1

=" qijhy — hy)
J#i,0

= giohi

> q(x, 0)h(x),

D q@. ) (h(y) —h©) = > q@.y)(h(y) —h©) = Y _ q@®.y)(h — ho) =0.

y#0 YEE] YEE]

The last equality is obtained from the fact that 7; = kg = 1 in (2.3). From the above results,
we have

h@O)=1,  h(x) <) T(x, Mh(y), x€E,

y#0
where

(x, y)
(x,y) = l{q(x)aéO}(l - 3xy)qu;) + 1{q(x)=0} 5xy~

Note that /1 (x) is bounded. According to the comparison lemma [8, Lemma 3.14], the equation
f) =) N »Nfe), 0=<fx) <1, xek,
y#0

has a nontrivial solution, meaning that the (g (x, y))-process is not recurrent. The statement of
the theorem follows by contraposition.

Proof of Theorem 1.4. First we prove assertion 1. Let u(x) = Ey 7. Itis already known that
ZV#Xq(x, y)u(y) —u(x)) = —1 for all x # 6 and that u(¢) = 0. Thus, for x; € E; such
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that f; is increasing in i (where f; = u(x;) for alli > 0), we obtain

—1= " g, D) —ubx)
VX
i—1

=Yg @) —uG)) + Y g, y)wy) — uxi))

J=0y€eE; yEEit1
+ Y gl )W) — ux)
YEE;, y#x;

i—1
>3 g ) — D))+ Y g, ) @) — ulxi)

j=0y€E; YEEit1
i—1

ZZC]ij(fj_ﬁ)+Qi,i+l(fi+l_fi)» i>1.
j=0

That is,

fo=0, Y ai(fi—fo<-1, i=L (2.4)

J#i

If the (g (x, y))-process is ergodic then it follows from [8, Theorem 4.44] that u(x) < o0;
furthermore, f; < co. Hence, the conclusion follows from [8, Theorem 4.45] and (2.4). If the
(q(x, y))-process is strongly ergodic then it follows from [8, Theorem 4.44] that sup, .y u(x) <
oo; furthermore, sup;. f; < oo. Therefore, by [8, Theorem 4.45] and (2.4), we see that the
(gij)-process is strongly ergodic.

Now we prove the second assertion. Let v(x) = E,e’. If the (g(x, y))-process is
exponentially ergodic then v(x) < oo, Zy#xq(x, y)(w(y) — v(x)) = —Av(x) for some
A € (0,infyecp g(x)) and all x # O, and v(f) = 1. Note that we choose x; € E; such
that g; is increasing in i (where g; = v(x;) foralli > 0). We find that go = 1, that 1 < g; < 00
for alli > 1, and that

—rgi = —dv(x) = Y q(xi, ») () = v(x)
YFEXi
i—1

=Y > g e —v@) + > gl NOG) — v(x)

J=0y€eE; VEEit1
+ Y g NOG) — v(x)
YEEi, y#x;

i—1

> Y G @) —veE) + Y g, i) — vx)
j=0y€E; YEEit1
i—1

> Z%‘j(gj — &)+ qii+1(8i+1 — &)
j=0

= qij(gj — &) i>1
J#i

Thus, from [8, Theorem 4.45] it follows that the (g;;)-process is exponentially ergodic.
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From Theorem 1.4, we can obtain the following two corollaries.

Corollary 2.1. Let E be a countable setandlet Q = (q(x, y): x,y € E) be atotally stable and
conservative Q-matrix. Denote the (q(x, y))-process by X (t). Define t = inf{t > 0: X () =
0}, where 0 € E is a reference point. Let F(x) =Eytand Ex = {x € E: F(x) € (k—1, k]},
k > 0. Suppose that conditions (i)—(iii) of Theorem 1.1 hold and that E}, is finite for all k > 0.
Define the same Q-matrix (q;;) as in (1.1). Moreover, suppose that both (q(x, y)) and (q;;)
are irreducible and that (q(x, y)) is regular. If the (q(x, y))-process is ergodic (or strongly
ergodic), then so is the (q;;)-process.

Corollary 2.2. Let the conditions of Corollary 2.1 be satisfied with F (x) = E, 1 replaced by
F(x) = Ey e, A € (0,inf eg q(x)). If the (q(x, y))-process is exponentially ergodic then
so is the (g;j)-process.

Let f; := F(x;) = min,cg; F'(x). Then, by the definition of E;, we see that f; is increasing
in i. The above corollaries thus follow immediately from Theorem 1.4.
3. Coupling methods

In this section we consider multidimensional Q-processes in the specific configuration space
E = (Zﬁ)s , where k € N and S is a given set. We denote a generic configuration by x =
((x1 (@), xo0(m), ..., xx(u)): u € S) € E. Define the reference point 6 = ((0,0,...,0): u €
S)andlet E, = {x € E: |x| = n}, n > 0, where |x| = ), ¢ Zf-czlxi(u). Let |S| denote
the cardinality of S. For |S| = oo, when determining the existence of Q-processes we only
consider the multidimensional Q-processes in £, = {x € E: |x] < co}. Note that £ = E,
for | S| < oo.

We will study the class of multidimensional Q-processes using coupling methods. Our first
result is as follows.

Theorem 3.1. Let Q = (q(x,y): x,y € E) be a totally stable, conservative, and irreducible
Q-matrix. Suppose that the following conditions hold:

() ifg(x,y) >0andx € Ex then y € U?o:k—l Ejforallk > 0;
(ii) Z},EEk_] q(x,y) > 0 for some x € Ex and all k > 1;
(iii) inf{ZyeEk+1 q(x,y): x € Ex} > OQforallk > 0.
Define a conservative birth—death Q-matrix (a;, b;) as follows:

ai=SuP{ Z CI(X,)’)WEEi}, i>1,

YEE;

bizinf{ > q(x,y):eri}, i>0.

YEEi+

Moreover, assume that both Q-matrices are regular. If the (q(x,y))-process is ergodic,
exponentially ergodic, or strongly ergodic, then so, respectively, is the birth—death process.

Proof. Denote the (g (x, y))-process and the birth—death process by

X(t) = (X1 (u), Xor (), ..., Xy (u)): w € §) and  Y(1),
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respectively. Define
T =inf{t > 0: X(¢r) =6} =inf{r > 0: |X(¢)| = 0}, ™ =inf{r > 0: Y(r) = 0}.

In the following we construct a coupling Q-matrix for (¢(x, y)) and (a;, b;). Note that both
marginal Q-matrices are regular. Hence, their coupling Q-matrices

0= (G(x,isy,j): (x,i), (v, j) € E x Zy)

are all totally stable, conservative, and regular (see [7], [9], and [24]). As in [25], it is easily
verified that the marginality is equivalent to the following conditions:

o

Y oat iy, =gy, y#x

j=0 3.1
> G iy. §) = aijs j#i

yeE

Let F := {(x,i) € E X Z4+: |x] > i}. Our aim is to construct the Q- process Z(t) =
(X (1), Y(t)) on E x Z whose transition probability function, P(t) = P(t; -, -; -), satisfies

P(t;x,i; F) =1, t>0, (x,i) € F. 3.2)

Similar to [8, Theorem 5.26], it can be proved that (3.2) is equivalent to the condition that Q
satisfy
q(x,i; F®) = Z q(x,i;y,j)=0, (x,i) € F. 3.3)
() Iyl<i}
Forx € E, andi > 0, let

q(x,y) . o
Z qxX, D) Nbj | =————— ifyeE,s1and j =i+ 1,
2€En41 ZZGEn-H (x,2)
( q(x,z) — ) S ICIS) ifye Epy1and j =i,
z€E,41 ZEEn+1 q(x Z)
+
(bi q(x, Z)) ify=xand j=i+1,
Z€En+1
( q(x, z)/\a,) (. y) ifye E,jand j =i —1,
eEn > ek,  4(x.2)
qgx, iy, j) = (x gy o
q(x 7)) —a; ifye E,_1and j =1,
z2€E,_1 ZZGEn |q(x 2)
+
ai — q(x z)) ify=xand j=i—-1,
z€E,
q(x,y) ify e E,, withm >n+2
and j =1,
q(x,y) ifyeE,,y#x,and j =1,
0 otherwise,
unless (y, j) = (x,1),

(34)
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and for (x,i) € E X Zy letg(x,i) = —q(x,i;x,i) = Z(y’/)#(x’i) q(x,i;y,j). Itiseasy to
verify that the Q-matrix defined by (3.4) satisfies (3.1) and (3.3). It is thus a coupling Q-matrix
and (3.2) holds for the transition probability function of the corresponding coupling Q-process,
ie.

PUNIX() =Y} =1, 120, (x,i) € F.

Furthermore, from the right continuity of paths it follows that P("*i){|X O=Y@®):t >0} =1
for (x,i) € F. It then follows that P®-*D{r > ¢*} = 1. Hence, we see that E, v > Ejt*
and E, e** > Ey e*” forall x € E, and by [8, Theorem 4.44] the assertion holds.

Our second, dual, result is as follows.

Theorem 3.2. Let Q = (q(x,y): x,y € E) be a totally stable, conservative, and irreducible
Q-matrix. Suppose that the following conditions hold:

(1) ifg(x,y) >0andx € Ey theny € Ulj:(l) E; forallk > 0;
(i) Z},eEH] q(x,y) > 0 for some x € Ex and all k > 0;
(iii) inf{XzyeEki1 q(x,y): x € Ex} > Oforallk > 1.

Define a conservative birth—death Q-matrix (a;i, b;) as follows:

ai:inf{ Z q(x,y):er,-}, i>1,

yEE;

bi:sup{ Z q(x,y):er,-}, i >0.

YEEit1

Moreover, assume that both Q-matrices are regular. If the birth—death process is ergodic,
exponentially ergodic, or strongly ergodic, then so, respectively, is the (q(x, y))-process.
Proof. Let F :={(x,i) € ExZ4: |x| <i}. Byreplacingm >n+2by0<m <n—1in
the seventh case in (3.4), with x € E,, and i > 0, we construct the coupling Q-matrix Q such
that
Gx,is F = > G(x.iiy, j)=0,  (x,i)€F.
{0 1y1>J}

As in the previous proof, we can prove that this condition is equivalent to
P(t;x,i; F)=1, t>0, (x,i) € F,

where P(t) = P(t;-,-; -) is the transition probability function of the coupling Q-process
Z(t) = (X(t), Y(¢)). Hence, we have

PUIX( Y@y =1, 120, (x,i) € F.

From the right continuity of paths it follows that PED(X ()] < Y(#):t > 0} = 1 for
(x,i) € F. Thus, P* V{7 < ¢*} = 1 and we have E, t < E|y| * and E, e** < E|,e** for
all x € E. The result then follows from [8, Theorem 4.44].

In applying the coupling method, we have had to use birth—death processes to preserve some
specific ‘order’ of state space. In applying the comparison method in Section 2, we constructed a
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single-birth process which seems to be more versatile than the birth—death processes. However,
we have to verify that f; and/or g; are increasing functions of i. The two methods thus have
their different advantages.

Note that an alternative proof of Theorem 3.2 can be found in [26], since it is a special case
of [26, Theorem 1.3]. See the proof there for details.

4. Applications

The first application is to the finite-dimensional Schlogl model (see [8]). Let S be a finite
set and let E = Zi, the configuration space, have elements x = (x(u): u € §). The model is
defined by the Q-matrix Q = (g¢(x, y): x,y € E) with

M(x(zu))—}—M ify =x+ey,,

q(x,y) = )\z(“f) Fax@) ify=x—e,

x(w)p(u, v) ify=x—ey+ey,
0 otherwise, unless y = x,

and g(x) = —q(x,x) = Zy?&x q(x,y). Here (p(u,v): u,v € §) is a transition probability
matrix on S, A, ..., A4 are positive constants, and e, is the element of E having the value 1
at u and the value 0 elsewhere. This model was introduced by Schlogl [17] as a typical model
of a nonequilibrium system; see [11] and [8] for related references. It was shown in [8], as an
example of Corollary 4.49 there, that the model is exponentially ergodic. Actually, it is strongly
ergodic, which was shown for the first time in [26].

Theorem 4.1. The Q-process corresponding to the finite-dimensional Schlogl model is strongly
ergodic.

Proof. 1t can be shown that the process is regular (see [21]). In fact, it is easy to check that
the birth—-death Q-matrix defined in Theorem 3.2 satisfies

> = —5 —3k A3+ — )k, b= — (k" —k)+ r4lS], k> 1.
ak_6<|S|2 Tttt 3 k=7 ) + A4lS|

From the above inequality, we easily see that the birth—death process is regular and that
o 1 oo
Do D M <R @.1
i=0 Hibi j=i+l

where o = 1 and w; = boby ---bj_1/ajay---a;, i > 1. This means that the birth—death
process is strongly ergodic (see [10], [23], and [26]), and the assertion follows from Theorem 3.2.

The second application is to the Brusselator model (see [8]), which is a typical model of
a reaction-diffusion process with several species. Let S be a finite or numerable set and let
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E = (Z3)3. The model is described by the Q-matrix Q = (¢(x, y): x, y € E) with

Aa(u) ify=x+ ey,
Aab(u)xy (u) ify=x—ey +eu,
x1(u) .

A fy= — ey,

q(‘x’ y) — 3< 2 )xz(u) 1 y X + eul €u2
Aaxi(u) ify=x—ey,
X (u) pr(u, v) ify=x—eu+ew, k=1,2, withv # u,
0 otherwise, unless y = x,

and g(x) = —q(x,x) = Zy# q(x,y). Here a and b are positive functions, Ag, ..., A4 are

positive constants, pi(u, v), k = 1, 2, is the transition probability on S, and

1 ifv=wuandj=1,
0 otherwise.

eui(v’j) = {

The model’s ergodicity was proved in [12] in the case in which S is a singleton, and the current
authors proved that the model is not strongly ergodic and that super-Poincaré inequalities do
not hold for it in [19] and [20]. For general finite S, the model’s exponential ergodicity was
proved in [6]. Here we demonstrate the following result.

Theorem 4.2. Assume thata =), ga(u) < oo. Then the Q-process corresponding to the
Brusselator model on E is not strongly ergodic.

Proof. It can be shown that the process is regular (see [21]). Consider the birth—death
Q-matrix in Theorem 3.1 with

a; = hgi, 1>1, b = a, i=>0.

It is not difficult to check that this birth—death process is regular but that (4.1) fails. This
means that the birth—death process is not strongly ergodic (see [10], [23], and [26]). Thus, by
Theorem 3.1, the process is not strongly ergodic.

Note that the birth—death process is exponentially ergodic, since it satisfies

i—1 0
S_ugZ(ujbj)_l > j <00
1> . . .

Jj=0 J=i

(see [10]).
The third application is to epidemic processes (see [1]). Let E = Zi. The process is defined
by the Q-matrix Q = (g((m, n), (m’, n’)): (m,n), (m’, n’) € E) with

o if m',n') = @m +1,n),
ym if m',n") = (m — 1, n),
B if (m',n') = (m,n+1),
Sn if m',n') = (m,n—1),

emn ifm' ,n)=m—-1,n+1),

q((m,n), (m',n)) =

0 otherwise, unless (m, n) = (m’, n'),
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and

q((m,m)) = —q((m,n), (m,n) = Y q((m,n),(m',n")),
(m’,n")#(m.n)

where «, y, B, 8, and ¢ are nonnegative constants. Assume that y and § are strictly positive.
The process is regular and positive recurrent when « 4+ 8 > 0 (see [1] and also [16]). Our result
on this process is as follows.

Theorem 4.3. Assume that o + B, y, and 6 are strictly positive. Then the epidemic process is
exponentially ergodic and not strongly ergodic.

Proof. Let Ey = {(m,n) € E: m +n =k}, k > 0. It is obvious that the Q-matrix corre-
sponding to the epidemic processes satisfies the conditions of Theorem 3.1 and Theorem 3.2.
We first prove that the epidemic process is exponentially ergodic. Let

aj = inf{ Z g((m,n), (m',n")): (m,n) € Ei},

(m',n')eE;

bi = sup{ Z q((m, n), (m’, n')): (m,n) € Ei}.
(m’,n")eE;4
Then
a =y A8, i>1, bi=a+pB, i>0.

This type of birth—death matrix has just been seen in the proof of Theorem 4.2. As mentioned,
the birth—death process is exponentially ergodic. Thus, the assertion follows from Theorem 3.2.

We now prove that the epidemic process is not strongly ergodic. Let

a; = SUP{ Y q(m,n), (m',n)): (m,n) € Ei},

(m',n")eE;_

bi = inf{ Z q((m,n), (m',n')): (m,n) € Ei}.
(m',n")eE;
Then
ap=(yVei, izl bi=a+pB, i=0.
This is again the same type of birth—death matrix as in the proof of Theorem 4.2. From there

we know that the birth—death process is not strongly ergodic. Thus, the assertion follows from
Theorem 3.1.
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