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EXPONENTIAL ERGODICITY
FOR SINGLE-BIRTH PROCESSES
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Abstract

An explicit, computable, and sufficient condition for exponential ergodicity of single-
birth processes is presented. The corresponding criterion for birth–death processes is
proved using a new method. As an application, some sufficient conditions are obtained
for exponential ergodicity of an extended class of continuous-time branching processes
and of multidimensional Q-processes, by comparison methods.
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1. Introduction

Consider a continuous-time, irreducible Markov chain with transition probability matrix
P(t) = (pij (t)) on a countable state space Z+ = {0, 1, 2, . . . } with stationary distribution
(πi > 0 : i ∈ Z+). In the study of the theory of Markov chains, there are traditionally three
types of ergodicity: ordinary ergodicity (or positive recurrence), exponential ergodicity, and
strong ergodicity (or uniform ergodicity). The main purpose of this paper is to deal with the
second of these for single-birth processes, which are also called upwardly skip-free processes
(see [1], [12]): limt→∞ eβt |pij (t) − πj | = 0 for some β > 0.

The Q-matrix of a single-birth process (qij : i, j ∈ Z+) is as follows: qi,i+1 > 0 and
qi,i+j = 0 for all i ∈ Z+ and j ≥ 2. Throughout the paper, we consider only totally stable and
conservative Q-matrices: qi = −qii = ∑

j �=i qij < ∞ for all i ∈ Z+. Define

q(k)
n =

k∑
j=0

qnj for k = 0, . . . , n − 1 (n ∈ Z+)

and

m0 = 1

q01
, mn = 1

qn,n+1

(
1 +

n−1∑
k=0

q(k)
n mk

)
, n ≥ 1,

F (n)
n = 1, F (i)

n = 1

qn,n+1

n−1∑
k=i

q(k)
n F

(i)
k , 0 ≤ i < n,

d0 = 0, dn = 1

qn,n+1

(
1 +

n−1∑
k=0

q(k)
n dk

)
, n ≥ 1.
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Then mn = q−1
01 F

(0)
n + dn for all n ∈ Z+. For birth–death processes (ai, bi), these quantities

take a simple form:

mn = 1

µnbn

µ[0, n], F (0)
n = b0

µnbn

, dn = 1

µnbn

µ[1, n], n ≥ 1,

where µ0 = 1, µi = b0b1 · · · bi−1/a1a2 · · · ai (i ≥ 1), and µ[i, k] = ∑k
j=i µj . The main

advantage of single-birth processes is that the exit boundary consists of at most a single extremal
point and so explicit criteria are expected. We give here the criteria for several classical problems
(see [5], [6], [8], [19], [20]).

First, the process is unique (regular) if and only if R := ∑∞
n=0 mn = ∞. Next, assume that

the Q-matrix is irreducible; then the process is recurrent if and only if
∑∞

n=0 F
(0)
n = ∞. In the

regular case, it is ergodic if and only if d := supk∈Z+(
∑k

n=0 dn)/(
∑k

n=0 F
(0)
n ) < ∞, and it is

strongly ergodic if and only if supk∈Z+
∑k

n=0(F
(0)
n d − dn) < ∞.

The four criteria are all explicit (depending on the Q-matrix (qij ) only, without using test
functions) and computable. This advantage makes single-birth processes a useful tool when
studying more complicated processes (see [5, Chapters 3 and 4] and [16]). Now, it is natural to
look for an explicit criterion of exponential ergodicity for this class of processes. Meanwhile,
there are a number of principal investigations into the exponential ergodicity of birth–death
processes (see [8], [11], [14], [17], [18]) and such a criterion has been obtained recently by
Mu-Fa Chen (see [7, Theorem 3.5]). But the difficulty is that single-birth processes are in general
irreversible. In this paper, we give a partial answer. In fact, Theorem 1.1 is a generalization
of the criterion for birth–death processes. For research on the ergodicity of nonhomogeneous
Markov chains, see [2].

One of the most important problems for possible applications is the bounding of the rate of
convergence (see [7], [11], [12], [14], [17], [18]). So the lower bound of the rate of exponential
convergence for single-birth processes is studied in Theorem 1.1. Denote the rate of exponential
convergence by

α̂ = sup{α : |pij (t) − πj | = O(e−αt ) as t → ∞ for all i, j ∈ Z+}.
Theorem 1.1. Let the single-birth Q-matrix be regular and irreducible. If

q := inf
i≥0

qi > 0 and M := sup
i>0

i−1∑
j=0

F
(0)
j

∞∑
j=i

1

qj,j+1F
(0)
j

< ∞, (1.1)

then the process is exponentially ergodic and α̂ ≥ (4M)−1 ∧ q0. In addition, if q0 ≥
inf i>0 qi then α̂ ≥ (4M)−1. The condition (1.1) is necessary for the exponential ergodicity of
birth–death processes (ai, bi). Equivalently,

δ := sup
i>0

i−1∑
j=0

1

µjbj

∞∑
j=i

µj < ∞. (1.2)

Now we discuss exponential ergodicity for a class of multidimensional Q-processes. In
[5, Theorem 4.58] and [16], a method that reduces the multidimensional problems to one-
dimensional ones is proposed. By keeping the idea in mind, some sufficient conditions for
strong ergodicity of multidimensional Q-processes are obtained.
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Theorem 1.2. Let E be a countable set and let (q(x, y) : x, y ∈ E) be a conservative
Q-matrix. Suppose that there exists a partition {Ek} of E such that

∑∞
k=0 Ek = E with

E0 = {θ}, where θ ∈ E is a reference point. Next, suppose that

(i) if q(x, y) > 0 and x ∈ Ek , then y ∈ ∑k+1
j=0 Ej for all k ≥ 0;

(ii) for all x ∈ Ek and all k ≥ 0, ∑
y∈Ek+1

q(x, y) > 0;

(iii) for all k ≥ 0,
Ck := sup{q(x) : x ∈ Ek} < ∞.

Define a conservative Q-matrix (qij : i, j ∈ Z+) as follows:

qij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sup

{ ∑
y∈Ej

q(x, y) : x ∈ Ei

}
if j = i + 1,

inf

{ ∑
y∈Ej

q(x, y) : x ∈ Ei

}
if j < i,

0, otherwise if j �= i.

Moreover, suppose that both (q(x, y)) and (qij ) are irreducible and that (qij ) is regular. If
M < ∞, where M is as defined in Theorem 1.1, then the (qij )-process and the (q(x, y))-process
are both exponentially ergodic.

The remainder of the paper is organized as follows. In the next section, the proofs of
Theorems 1.1 and 1.2 are given and some examples are illustrated along with some remarks.
As applications, in Section 3, some sufficient conditions for exponential ergodicity for an
extended class of time-continuous branching processes are presented.

2. Proofs of Theorems 1.1 and 1.2

In this section, we present the proofs of Theorems 1.1 and 1.2 in detail.

2.1. Proof of Theorem 1.1

In view of Theorem 4.45(2) of [5], the condition q > 0 is indeed necessary. We divide the
rest of the proof into three parts.

(a) From [5, Theorem 4.45(2)], the single-birth process is exponentially ergodic if and only if,
for some λ with 0 < λ < qi for all i ∈ Z+, the system of inequalities∑

j

qij yj ≤ −λyi − 1, i ≥ 1, (2.1)

has a nonnegative finite solution (yi). We need to construct a solution (gi) to the equation (2.1)
for a fixed λ with 0 < λ < q. First, define an operator

IIi(f ) = 1

fi

i−1∑
j=0

F
(0)
j

∞∑
k=j+1

fk

qk,k+1F
(0)
k

, i ≥ 1.
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This is an analogue of the operator I (f ) used many times in [7]. It indicates a key point in this
proof, which comes from the study of the first eigenvalue. Next, define

ϕi = q−1
01

i−1∑
j=0

F
(0)
j , i ≥ 1.

Then ϕi is increasing in i and ϕ1 = q−1
01 . Let fi = cq10

√
q01ϕi for some c > 1. Then fi is

increasing and f1 = cq10. Finally, define gi = fiIIi(f ). Then gi is increasing and

g1 =
∞∑

k=1

fk

qk,k+1F
(0)
k

≥ f1

q12F
(0)
1

= c > 1.

By Lemma 3.6 of [7], it follows that

gi = cq10
√

q01

i−1∑
j=0

F
(0)
j

∞∑
k=j+1

√
ϕk

qk,k+1F
(0)
k

≤ 2Mcq10√
q01

i−1∑
j=0

F
(0)
j ϕ

−1/2
j+1

≤ 2Mcq10

i−1∑
j=0

F
(0)
j < ∞, i ≥ 1.

Let g0 = 1. Then 1 ≤ gi < ∞ for all i ≥ 0. We now determine λ using (2.1). When i = 1,
we get λ ≤ (c − 1)c−1II1(f )−1. When i ≥ 2, we should have that

λgi ≤
i−1∑
k=0

q
(k)
i F

(0)
k

∞∑
j=k+1

fj

qj,j+1F
(0)
j

− qi,i+1F
(0)
i

∞∑
k=i+1

fk

qk,k+1F
(0)
k

. (2.2)

For this, it suffices that

λgi ≤
i−1∑
k=0

q
(k)
i F

(0)
k

∞∑
j=i

fj

qj,j+1F
(0)
j

− qi,i+1F
(0)
i

∞∑
k=i+1

fk

qk,k+1F
(0)
k

= qi,i+1F
(0)
i

∞∑
k=i

fk

qk,k+1F
(0)
k

− qi,i+1F
(0)
i

∞∑
k=i+1

fk

qk,k+1F
(0)
k

= fi.

In other words, for (2.1), we need only λ ≤ fi/gi = IIi(f )−1 for all i ≥ 2 and
λ ≤ (c − 1)c−1II1(f )−1. Then we can take any λ such that

0 < λ < λ(c) :=
(

c − 1

c
II1(f )−1

)
∧

(
inf
i≥2

IIi(f )−1
)

∧ q, (2.3)

provided the right-hand side of (2.3) is positive or, equivalently, supi≥2 IIi(f ) < ∞. To prove
the last property, define another operator

Ii(f ) = F
(0)
i

fi+1 − fi

∞∑
k=i+1

fk

qk,k+1F
(0)
k

, i ≥ 1,
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which is exactly the one used many times in [7]. By the proportion property, we get

sup
i≥1

IIi(f ) ≤ sup
i≥1

Ii(f ).

By Lemma 3.6 of [7] and the condition M < ∞, it follows that

Ii(f ) = F
(0)
i√

ϕi+1 − √
ϕi

∞∑
k=i+1

√
ϕk

qk,k+1F
(0)
k

≤ 2MF
(0)
i

q01(
√

ϕi+1 − √
ϕi)

√
ϕi+1

≤ 4M

for all i ≥ 1. Therefore, supi≥1 IIi(f ) ≤ 4M < ∞ as required. We have thus constructed a
solution (gi) to (2.1) with 1 ≤ gi < ∞ for all i. This implies the exponential ergodicity of the
single-birth process.

By the definition of F
(0)
i , we have qi,i+1F

(0)
i ≤ q

(i−1)
i

∑i−1
j=0 F

(0)
j for all i ≥ 1. Hence,

inf i≥1 IIi(f )−1 ≤ M−1 ≤ inf i>0 qi , so we can rewrite (2.3) as

0 < λ < λ(c) :=
(

c − 1

c
II1(f )−1

)
∧

(
inf
i≥2

IIi(f )−1
)

∧ q0. (2.4)

So, by (2.4) and the above discussion, we obtain that the exponential convergence rate

α̂ ≥ lim
c→∞ λ(c) = inf

i≥1
IIi(f )−1 ∧ q0 ≥ (4M)−1 ∧ q0.

If q0 ≥ inf i>0 qi then q0 ≥ M−1. Hence, we have α̂ ≥ (4M)−1.
For the remainder of this proof, we consider birth–death processes only.

(b) Let σ0 = inf{t at or following the first jumping time such that Xt = 0}. Suppose that the
process is exponentially ergodic. By [5, Theorem 4.44(2)], there exists a λ with 0 < λ < qi

for all i such that E0eλσ0 < ∞. Define

ei0(λ) =
∫ ∞

0
eλt Pi[σ0 > t] dt, i ∈ Z+.

Then Eieλσ0 = λei0(λ)+1. By [5, p. 148], ei0(λ) < ∞ for all i ≥ 1. Furthermore, Eieλσ0 < ∞
for all i ≥ 1. Note that if the starting point is not 0, then σ0 is equal to the first hitting time:

τ0 = inf{t > 0 : X(t) = 0}.

Then Eieλτ0 < ∞ for all i ≥ 1. Define m
(n)
i = Eiτ

n
0 . The Taylor expansion

∞ > Eie
λτ0 =

∞∑
n=0

λn

n! m
(n)
i (2.5)

leads us to estimate the moments m
(n)
i . By a result due to Wang (see [15, p. 525]), we have

m
(1)
i =

i−1∑
j=0

1

µjbj

∞∑
k=j+1

µk, m
(n)
i = n

i−1∑
j=0

1

µjbj

∞∑
k=j+1

µkm
(n−1)
k , n ≥ 2. (2.6)
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Obviously, m
(n)
k ≥ m

(n)
i if k ≥ i. By (2.6), it follows that

m
(n)
i ≥ n

i−1∑
j=0

1

µjbj

∞∑
k=i

µkm
(n−1)
k ≥ n

( i−1∑
j=0

1

µjbj

∞∑
k=i

µk

)
m

(n−1)
i , n ≥ 2,

and

m
(1)
i ≥

i−1∑
j=0

1

µjbj

∞∑
k=i

µk.

Hence, by induction,

m
(n)
i ≥ n!

( i−1∑
j=0

1

µjbj

∞∑
k=i

µk

)n

, n ≥ 1.

Combining this with (2.5), we have

∞∑
n=1

(
λ

i−1∑
j=0

1

µjbj

∞∑
k=i

µk

)n

< ∞,

which implies that

λ

i−1∑
j=0

1

µjbj

∞∑
k=i

µk < 1.

Taking the supremum over i, we obtain δ ≤ λ−1 < ∞. Hence, the necessity is proved.

(c) To complete the proof of the theorem, it suffices to show that

inf
i

qi = 0 
⇒ δ = ∞. (2.7)

From Proposition 5.13 of [9], we know that, if inf i qi = 0, then the first eigenvalue (spectral
gap) λ1 is 0. For birth–death processes, by Theorem 3.5 of [7], we have (4δ)−1 ≤ λ1 ≤
(
∑∞

j=0 µj )δ
−1, so the proof of (2.7) is trivial.

Remark 2.1. For birth–death processes, Theorem 9.21 of [5] tells us that the first eigenvalue
λ1 coincides with the exponential convergence rate α̂. So Theorem 3.5 of [7] gives us the
estimates of the exponential convergence rate, and at the same time it does indeed give us an
explicit criterion for exponential ergodicity of birth–death processes for the first time. In the
proof of Theorem 1.1, we have presented another proof of the criterion.

Remark 2.2. In the above proof, not only do we prove the exponential ergodicity, but also we
obtain an increasing solution (which is very important) to the equation (2.1) for single-birth
processes. In particular, for a birth–death process, once the process is exponentially ergodic,
an increasing solution to (2.1) is obtained as follows:

g0 = 1, gi = fiIIi(f ) =
i−1∑
j=0

1

µjbj

∞∑
k=j+1

µkfk, i ≥ 1,

where fi = ca1
√

b0ϕi and ϕi = ∑i−1
j=0(µjbj )

−1 for all i ≥ 1 and some c > 1.
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Remark 2.3. Since birth–death processes are special cases of single-birth processes, by (1.2)
and the criterion for strong ergodicity of single-birth processes, it seems that a more reasonable
sufficient condition should be

M̄ := sup
i≥0

i∑
j=0

F
(0)
j

(
d − di

F
(0)
i

)
< ∞.

For birth–death processes, since d − di/F
(0)
i = ∑∞

j=i+1(qj,j+1F
(0)
j )−1 = ∑∞

j=i+1 µj for all

i ≥ 0, it follows that M̄ = M = δ.

Example 2.1. Let qn,n+1 = 1 for all n ≥ 0, q10 = 1, qn,n−2 = 1 for all n ≥ 2, and qij = 0 for
other i �= j . Then the single-birth process is exponentially ergodic and not strongly ergodic.
Moreover, we have α̂ ≥ (4C)−1, where C is given in (2.8), below.

We prove this assertion in detail as follows. Obviously, the process is regular and recurrent.
By computation, we know that {F (0)

n } are Fibonacci numbers:

F (0)
n = 1√

5
[An+1 − (−B)n+1] =: Fn, n ≥ 0,

where A = (
√

5 + 1)/2 and B = (
√

5 − 1)/2. Note that Fibonacci numbers have the property
that

∑n
k=0 Fn = Fn+2 − F1 for n ≥ 0. So dn = Fn+1 − F1 for n ≥ 0. By the facts that

AB = 1, A − B = 1, and A + B = √
5, it is not difficult to show that

A >

∑n
k=0 dk∑n

k=0 F
(0)
k

= Fn+3 − (n + 3)F1

Fn+2 − F1
→ A, n → ∞.

So d = A. In addition, we can prove that dn/F
(0)
n ↑ A, implying that d̂ := supn≥0(dn/F

(0)
n ) =

A = d.
Therefore,

sup
k≥0

k∑
n=0

(F (0)
n d − dn) = sup

k≥0

k∑
n=0

(FnA − Fn+1 + F1)

= sup
k≥0

(
(k + 1) + (1 + B2)(1 − (−B)k+1)√

5(1 + B)

)
= ∞,

which implies that the process is not strongly ergodic. As pointed out by a referee, the absence
of strong ergodicity for the process seems to be well known. This follows from the skip-free
property and from boundedness of the Q-matrix.

Note that Fn ≥ (An+1 − 1)/
√

5 ≥ An/
√

5 for n ≥ 1. Thus,

M ≤ sup
i>0

A(A2 − (−B/A)iB2 − √
5/Ai)

A − 1
≤ A2(A2 + B4 + √

5B) =: C < ∞. (2.8)

So, by Theorem 1.1, it follows that the process is exponentially ergodic and α̂ ≥ (4M)−1 ≥
(4C)−1. In addition,

M̄ = sup
i≥0

(A2 − (−B/A)i+1B2 − √
5/Ai+1)(1 − (−B)i+1)

1 − (−B/A)i+1 ≤ C < ∞.
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Example 2.2. (i) Take an = bn for n ≥ 1. Then the process is exponentially ergodic if and
only if supi>0

∑∞
j=i i/aj < ∞.

(ii) Take an = νbn for n ≥ 1, where ν > 1. Then the process is exponentially ergodic if and only
if supi>0

∑∞
j=i 1/(νj−iaj ) = supi>0

∑∞
j=0 1/(νj ai+j ) < ∞. If, in addition, inf i>0 ai > 0,

then the process must be exponentially ergodic.

2.2. Proof of Theorem 1.2

By Theorems 3.19 and 4.58 of [5], the (q(x, y))-process is regular. At present, (qij ) is a
regular, irreducible single-birth Q-matrix. By Theorem 1.1, the (qij )-process is exponentially
ergodic. To prove exponential ergodicity of the (q(x, y))-process, we need only to show that
the equations ∑

y �=x

q(x, y)(g(y) − g(x)) ≤ −λg(x), x �= θ,

∑
y �=θ

q(θ, y)g(y) < ∞

have a finite solution (g(y)) with g ≥ 1 for some λ > 0. For this, by the assumptions and
Remark 2.2, let (gk) be an increasing solution to (2.1) with gk ≥ 1 for all k ≥ 0, and take
g(x) = gk for x ∈ Ek, k ≥ 0. Now, for x �= θ , there exists exactly one k ≥ 1 such that
x ∈ Ek . Hence, on the one hand, by the definition of (qij ),

∑
y �=x

q(x, y)(g(y) − g(x)) = −
k−1∑
j=0

∑
y∈Ej

q(x, y)(gk − gj ) +
∑

y∈Ek+1

q(x, y)(gk+1 − gk)

≤ −
k−1∑
j=0

qkj (gk − gj ) + qk,k+1(gk+1 − gk)

=
∑
j �=k

qkj (gj − gk)

≤ −λgk = −λg(x)

and, on the other hand,∑
y �=θ

q(θ, y)g(y) =
∑
y∈E1

q(θ, y)g1 = q01g1 < ∞.

We have thus constructed a solution, as desired.

3. Applications

In this section, we discuss exponential ergodicity for an extended class of time-continuous
branching processes. The original branching process can be described as follows. Let α > 0 and
let (pj : j ∈ Z+) be a probability distribution. Then the process has death rate αip0 : i → i−1
(for i ≥ 1) and growth rate αipk+1 : i → i + k (for k ≥ 1, i ∈ Z+). Note that the process
absorbs at state 0. In [10], an extended class of branching processes with the following Q-matrix
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is introduced (see also [3], [4]):

qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0j , j > i = 0,

−q0, j = i = 0,

rip0, j = i − 1, i ≥ 1,

ripk+1, j = i + k, i, k ≥ 1,

−ri(1 − p1), j = i ≥ 1,

0 otherwise for i, j ∈ Z+,

(3.1)

where ri > 0 for all i ≥ 1 and 0 < q0 := ∑
j≥1 q0j < ∞. The typical case we are interested

in is where q0j = pj or pj+1 (j ≥ 1) and ri is a polynomial with degree θ (≥ 1). Define
M1 = ∑∞

k=1 kpk and � = ∑∞
k=1 kpk+1. It is easy to check that � = M1 + p0 − 1. Hence,

M1 < 1 if and only if � < p0, and M1 = 1 if and only if � = p0. Let ν = p0/�.
Based on the same comparison idea as in [10], some sufficient conditions for exponential

ergodicity are obtained as follows.

Theorem 3.1. Let (qij ) be the irreducible Q-matrix given by (3.1). Assume that M1 ≤ 1. If
supi>0

∑∞
j=i i/rj < ∞ and

∞∑
i=1

q0i

∞∑
k=1

√
k

rk
(i ∧ k) < ∞, (3.2)

then the (qij )-process is exponentially ergodic.
In addition, under the same assumption, if

sup
i>0

∞∑
j=i

1

νj−i rj
< ∞,

sup
i>1

νiri√
i

∞∑
k=i+1

√
k

νkrk
≤ 1

ν − 1
, (3.3)

and ∞∑
i=1

q0i

∞∑
k=1

√
kνi∧k

νkrk
< ∞, (3.4)

then the (qij )-process is exponentially ergodic.

Proof. First, under the assumption, byTheorems 1.2 and 1.3 of [10], we know that the process
is unique and recurrent. Next, consider the birth–death process (p̄ij (t)) with ai = bi = rip0
for i ≥ 1 and b0 some positive constant. By Example 2.2(i) and the assumption, the process
(p̄ij (t)) is exponentially ergodic; furthermore, by Remark 2.2, we have the following increasing
solution (gi) to (2.1) for some λ with 0 < λ < q:

g0 = 1, gi = cr1

i−1∑
j=0

∞∑
k=j+1

√
k

rk
, i ≥ 1.

Since

gi+1 − gi = cr1

∞∑
k=i+1

√
k

rk
, i ≥ 1,
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as i → ∞, gi+1 − gi is decreasing. Thus, on the one hand, for i ≥ 1,

∑
j �=i

qij (gj − gi) = qi,i−1(gi−1 − gi) +
∞∑

k=1

qi,i+k(gi+k − gi)

≤ rip0(gi−1 − gi) +
∞∑

k=1

ripk+1k(gi+1 − gi)

= rip0(gi−1 − gi) + ri�(gi+1 − gi)

≤ ai(gi−1 − gi) + bi(gi+1 − gi)

≤ −λgi,

and, on the other hand, by (3.2), we have
∑∞

i=1 q0igi < ∞. By these facts, it follows that
(pij (t)) is exponentially ergodic.

Assume now that M1 < 1. Consider the birth–death process (p̂ij (t)) with ai = rip0,
bi = ri� for i ≥ 1, and b0 some positive constant. Since � < p0, by Example 2.2(ii) and
the assumption, the process (p̂ij (t)) is exponentially ergodic. As above, we have the following
increasing solution (gi) to (2.1):

g0 = 1, gi = cr1

i−1∑
j=0

νj
∞∑

k=j+1

√
k

νk−1rk
, i ≥ 1.

Note that

gi+1 − gi = cr1ν
i+1

∞∑
k=i+1

√
k

νkrk
, i ≥ 1.

By (3.3), we know that gi+1 − gi is decreasing as i → ∞. Thus, it follows similarly that∑
j �=i

qij (gj − gi) ≤ ai(gi−1 − gi) + bi(gi+1 − gi) ≤ −λgi, i ≥ 1.

By (3.3) and (3.4), we have
∑∞

i=1 q0igi < ∞. Putting these facts together, it follows that
(pij (t)) is exponentially ergodic.

From Theorem 3.1, we obtain the following corollary.

Corollary 3.1. Let (qij ) be the irreducible Q-matrix given by (3.1). Assume that M1 ≤ 1.
If δ := supi>0

∑∞
j=i i/rj < ∞ and

∑∞
i=1 iq0i < ∞, then the (qij )-process is exponentially

ergodic.
In addition, under the same assumption, if supi>0

∑∞
j=i 1/νj−i rj < ∞,

√
i/ri is decreasing

in i ≥ 2, and
∑∞

i=1 iq0i < ∞, then the (qij )-process is exponentially ergodic.

Proof. As in the first part of the proof of Theorem 3.1, by Lemma 3.6 of [7], we obtain that

gi ≤ 2(δp−1
0 )ca1

√
b0

i−1∑
j=0

1

µjbj
√

ϕj+1
= 2δcr1

i−1∑
j=0

1√
j + 1

≤ 2δcr1i.

By the assumptions (rather than by (3.2)), we obtain
∑∞

i=1 q0igi < ∞. The first assertion
follows easily. By the assumptions, both (3.3) and (3.4) hold. Thus, the second assertion
follows from Theorem 3.1.
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Example 3.1. Let (qij ) be the irreducible Q-matrix given by (3.1), where ri = iθ and M1 ≤ 1.

(i) By [3] and [20, Theorem 1.2], we know that if M1 = 1 and θ > 2, then the process is
strongly ergodic, and when M1 < 1, the process is strongly ergodic if and only if θ > 1. Note
that, by [3] and [13, Corollary 2.2], if M1 = 1 and 0 < θ ≤ 1, then the process cannot be
strongly ergodic.

(ii) Assume that
∑∞

i=1 iq0i < ∞. By Corollary 3.1, the process is exponentially ergodic
provided that either M1 = 1 and θ ≥ 2, or M1 < 1 but θ ≥ 1

2 .

Remark 3.1. By [5, Corollary 4.49], Theorem 1.4(iii) of [10] tells us that, if M1 < 1,
lim supi→∞ i/ri < ∞ and

∑∞
i=1 iq0i < ∞, then the process is exponentially ergodic. Com-

pared with Corollary 3.1, this result does not need the ‘decreasing’property. However, applying
it in Example 3.1, we obtain only that the process is exponentially ergodic, provided that M1 < 1
and θ ≥ 1.

Remark 3.2. In fact, we can prove that if M1 < 1 and the ri are increasing, then the process
is strongly ergodic if and only if

∑∞
i=1 1/ri < ∞.
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