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Abstract: Some sufficient conditions for the F-Sobolev inequality for symmetric
forms are presented in terms of new Cheeger’s constants. Meanwhile, an estimate of
the F'-Sobolev constants is obtained.
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1 Introduction

The F-Sobolev inequality is a generalization of the logarithmic Sobolev inequality. The
latter is initiated by [1] in 1976 and it has attracted a great deal of research in the past
two decades. Refer to the survey articles [2] and [3]. Very recently, the inequality has been
studied in [4] and [5) for general symmetric forms. The method used in the two papers is the
Cheeger’s technique for unbounded operators developed in [6]. But the proofs are different
and a detailed comparison about them is presented in [4]. The purpose of this paper is to
study the F-Sobolev inequality for general symmetric forms by combining the proofs of [4]
with some techniques in [5].

Let (E, £, 7) be a measurable probability space satisfying {(z,z) : z € E} € £ x £ and
denote by L?(r) the usual real L?-space with norm || - [|. The symmetric form (D, D(D))
considered here on L?(r) is as follows:

DU = 5 [ Ide dn)f(e) - Fwllote) = )

f, g€ D(D) = {f € L*(x) : D({, f) < oo},

where J is a symmetric measure on Ex E: J(dz,dy) = J(dy, dz). Without loss of generality,
assume that J({(z,z) :z € E}) =0.

Let F € C(0,00) be such that inf;>9tF(t) > —oo and F(t) > 0 for large t. We say
that the F-Sobolev inequality with dimension p € (2, 0] (denoted by FS(p)) holds for the

(1.1)
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symmetric form (D, D(D)) if there exist two constants C; > 0, C2 > 0 such that

(PP ORGP <OD(f, )+ Co,  FEDWD), Ifll=1  (12)

holds, where 7(f) = / fdr. In particular, we call the inequality tight (denoted by T FS(p))

if (1.2) holds for C2 = 0 and the reciprocal of the smallest possible Cy is denoted by o which
is called the F-Sobolev constant.

The inequality is a general version of Sobolev inequality and logarithmic Sobolev in-
equality. When F' =1, (1.2) is just the classical Sobolev inequality with dimension p

r([fP NP < oD(f )+ Cy FeDD), |Ifll = 1. (1.3)

When F = log and p = 00, (1.2) becomes the defective logarithmic Sobolev inequality

w(f*log f*) <C\D(f, )+ Co,  fE€DD), Ifll =1,
which is equivalent to the usual logarithmic Sobolev inequality

n(f?log f°) <CD(f,f),  feDD)|fll =1, (1.4)
whenever Poincaré inequality
n(f2) = a(f)* <MD, f),  feD(D)
holds where A; is the speciral gap.

We now look for a new Cheeger’s constant which is hoped to best describe FS(p).
Following [4] and [5], take and fix a non-negative and symmetric function r € £ x £ such
that

JO(dz, B)[n(dz) < 1, 7-a.8., (1.5)

where J(®) (dz, dy) = I (e y)=>0 I (dz, dy) /r(z, y)"‘, a > 0. We adopt the convention that
r® = 1 for all r > 0. Replacing J with J® in (1.1), we have the symmetric forms
(D) D(D()) generated by J(@). Suppose that F satisfies the following conditions:
F € C[0,00), F is increasing, F(0) = 1, F’ is piecewise continuous and
-0 , (1.6)
t>0 F(t)
where Fi denote the right- and left-derivatives of . Define

(1/2) A ¢
£ = inf J (A x A®) + én(4) , 5>0
n(A)>0 (A)(P-V/PF(x(A)-1)(p—2)/(2p)
= J(A x A°)

n(Af>0 T(A)P-2 /P F(x(A)-1)(p-2)/p’

Clp,er) = (Tl)z(p 1)/19(1)T;+ ;101)2/P(1%2+61)2(p—1)/p.

Put £° := lims_, €% = infs-0 &°. Some sufficient conditions are presented as follows.

Theorem 1.1 Under (1.6), the following conclusions hold:

(1) If there exists some § > 0 such that €8 > 0, then FS(p) holds for C, = 4C(p, c1)(2+
5)(66)_2 and Cy = C44;

(2) If €° > 0, then TFS(p) holds and k > o > (€°)%/(8C(p,c1)).



NO. 2 WANG F. et al. F-SOBOLEV INEQUALITY FOR GENERAL SYMMETRIC FORMS 135

Remark 1.1 In particular, if F(r) = 1 +logtr = 1 + max{0,logr},p = oo and £ > 0
for some 6 > 0 in Theorem 1.1, then the logarithmic Sobolev inequality (1.4) holds and
k>0 > A/[1+16infs50(2 + 8) (A1 + 8)(€°)72]. See [4, Theorem 1.1].

To prove Theorem 1.1, consider the following general symmetric form as in [4]:
— 1
DU,9) = 5 [ Jda, dif@) - Fl@) - 9] + [ K(de) f@)o),

f, 9 € D(D):={f € L*(n) : D(£,f) < o0},

where J is the same as before and K is a measure. Choose a non-negative, symmetric

(1.7)

function 7 € £ x £ and a non-negative function s € £ such that
[JV(dz, E) + KM (dz)]/x(dz) < 1, T-a.s, (1.8)
where J(®)(dz, dy) is defined as J®)(dz, dy) but replacing r with 7, and K(®)(dz) =
I{s(z)=>01 K (dz)/s(z)®, a > 0. As in (1.7), we have the symmetric forms (ﬁ(a),D(—D_(a)))
generated by (J(®, K(®). Define A\}® = inf{—ﬁ(a)(f, f) : lIfll = 1}. Next, set
P JUD (A x A°) + KU/D(A)
&= T E(r(A) e D@

Now we can state another main result of the paper.

Theorem 1.2 Set o(F) = inf{D(f, f)/n (|f|2P/®=DF(s2))*"?77 . (| f|( = 1}. Then

e J(A x A°) + K(A) > o(F) > £*2

x(A)>0 T(A)P=D/PF(x(A)~1)e-2/p = 4C(p,e1)(2 — /\8(1))' (1.9)

Remark 1.2 Theorem 1.2 is an extension of 4, Theorem 2.1] which is in the case of p = co.
As pointed out in [4], Theorem 1.2 is true in the general case, i.e., 7 is a reference measure

(See [5]).

2 Proofs

In this section, the proofs of the two theorems are presented in details.

Proof of Theorem 1.2. Put Ep(f) = n{(|f|?P/*=2) F(f?)). The first inequality is obtained
directly by computing D(f, f)/Er(f)P~2/? for f = I4/+/7(A) with 7(A) > 0.
a) To prove the second inequality, we need more notations (this is the part a) of the
proof of [4, Theorem 2.1]).
When K (dz) # 0, it is convenient to enlarge the space E by letting E* = EU {oc}. For
any f € £, define f* = fIg € £*. Next, define a symmetric measure J*@) on E* x E* by
J@ (), Ce€ExE,
JH(C) = { K(®(A), C = A x {co} or {00} x A, A€ E,
0, C = {00} x {c0}.
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Then, we have J*(®)(dz, dy) = J*(®)(dy,dz) and
[ 19 e By 1@ + KO = [ O ) @)
E Et

D= [ IOl - @)
E*xE*

1 o a
E/Mﬂ )(dz, dy)| £ (y) —f(w)|+/ K (dz)|f ()|
:%/E T (de, dy)| f* (y) — £* (2)].

Note that if we set r*(z,y) = 7(z,y), r*(z,00) = r*(00,z) = s(z) for all z,y € E and
7*(00,00) = 0, then J*(®)(dz, dy) can be also expressed by Loz )= >0y " (dz, dy) 7 (2, y)*.

b) Following [4] and [5], take @(t) = t(P=1/(»=2)  /F(t} and 5(t) = p(t?). Note that ¢ is
a strictly increasing function and so is 5. Moreover,

! 2 (42
¢'(t) = /=D /F(2) [i ;+ ;};,((tt)) ] n'(t) = 2"t(t) [g _; + t;(g)) ,

except a finite number of points on each finite interval. By (1.6), we have /() < con(t)/t =
cot?/ 7= /F(t2) where ¢y := 2(p — 1)/(p — 2) + ¢;. Given s < ¢, label the discontinuous
points in [s,t] by s = ¢; < --- < t,, = t. Then, by the Mean Value Theorem and the
monotonicity of n(t)/t, there exist 0; € (t;,ti+1) such that

m—1
0 < n(t) Z[n (tiv1) — n(t)] = Zn'(oi)(tm —t)
m— 91, m—1
z; i ) (tiv1 —t:) < c ; tiv1 — i) —Czn(t)(t s).
¢) Let f >0, ||f]| = 1 and set g* = cp(f*2) Then by b), we have |g*(y) — g*(z)| <
el f*y) - f* (:1:)|——(M Thus, by Cauchy-Schwarz inequality and (1.8), we have

F@ Vi
= 5/ T/ (dz, dy)|g* (y) - ¢* ()]

<Gl ramairo - r@p]”| [0 wres e
+f*(z)P/(P*2>\/W]2]I/2 |
= DU [ 10 2D ) + 20 @2 ()
(1@ VFEQ?) - 1@ e F(f*(z)?))z]]w
= SVDU, D [4Er(f) = 2D (410D F(73), golte- ) ET)]
< e/ (2 = VDU, 1) Er(£). (2.1)

d) Define h(t) = n(f** > t), Ay = {g* > t} = {¢(f*?) > t}. Then h(t) < I m(Ay) =
m(f*? > ¢71(t)) = hop~!(t), where ¢! denotes the inverse function of . By the definition
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of £*, we have

ol = [ / I (4, x AS)ds

p/(p—1)
| |

> ¢*p/(p—1) [/w m(4,) P VP F(r(A) 1) P-2/ @R gy

p/(p-1)
o |

= /(1) { / ” h(s)P=1/P F(R(s) 1) P2/ (5)ds
0

o p/(p—1)
> g*p/(p—l) [/ h(t)(p"l)/pF(t)(p‘2)/(2p)cp’(t)dt}
0

}P/(P—l)

o0
= pi’ lg*p/(p—l)/o R(£)(P—V/p p()(P=D/(2P) (1)

dt

rort 1/(p-1)
. / h(s)(”_l)/”F(s)(p'2)/(2p)cp’(s)ds]
LJo

o0)
> ___g*p/(p—l)/ h(t)(p—l)/”F(t)(p'?)/(?”)cp’(t)
0

dt

[ t
. h(t)(p—l)/p/ F(s)(p—2)/(2p)cpl(s)ds

1/(p-1)
| )

D oo t 1/(p~1)
= p__Ig*p/(p%) /0 R(t)F(£)(P~2/2P) o (1) [/0 F(s)P=2/P  (5)ds dt.
Next, by (1.6) and the absolute continuity of F', we can obtain

t
/ F(s)#=D/20) ol (s)ds > et P DE-DR@@-D/2 ¢ >0,
0

where ¢3 = (‘;—;—:—; + %cl)/q%; + %icl) > —2—(51)_—13 Hence,

I*p/(p—nZP_PiTc;/(p—l)Fp/(p—l)/o h(t)tl/(p—z) /F(_t)cp'(t)dt

f-2
= p——p coy/ e/ /dw/ t1/#=2) /R ()¢ (t)dt.
- 0

By (1.6) and the absolute continuity of F once again, we can derive

/ tl/(p_g) /F(t)(p’(t)dt > C47‘p/(p_2)F(T), r >0,
0

- (E5 500/ G a) >
where04—(p_2+201 / p_2+c1 >2.Thus,

*°/ (=) 2p_ficé/(p—l)c4£*p/(p—1)/dﬂf*zp/(p—z)p(f*z)

__P 1cé/(p_l)q{*p/(p_l)EF(f)- (2.2)

e) Combining (2.1) with (2.2), we get
- (r—1)/ (D)—
[2el/ Ve o0 Ep(n)] 7 < eay/(2 - VDU DER(S)

p—
That is,
D(f, f) S ( P )2(p—1)/p ' c'g’/”cﬁ("“”/”g*‘z _ £+ '
Ep(f)e-2/p = \p-1 a@-N0)  4C@m,a)2 - XY
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So the second inequality of Theorem 1.2 holds. The proof is completed.

Proof of Theorem 1.1. Let (1.5) holds for some symmetric function r. Fix § > 0 and take
K (dz) = dn(dz). Next, take ¥ = (1 + é)r and s = 1 + J so that (1.8) holds. Then
¢ = ¢ @) 6
Vv1i+e 0 (1+6)

Therefore, for the symmetric form (D, D(D)) given in (1.1), by Theorem 1.2, we have
DULN+S o (EP/1+9) (&)

o) = I B (eI 2 ICm )@ -/ +0) s

where ¢s = 4C(p,c1)(2 + &). Then we have

w(|fPP/ =D F(f2) D < os(€0)PD(S, S +6),  feDD) Ifl=1. (2.3)
By (2.3), it is easily seen that Theorem 1.1(i) holds and C; = cs(€9)72, Cy = C14. Let
6§ — 0in (2.3). Then it follows that TFS(p) holds and o > (£°)%/(8C(p,c1))- Take
f =14//7(A) (x(A) > 0) and compute D(f, f)/Er(f)?~2/P. We have ¢ < . The proof
is completed. By the way, the estimate for the F-Sobolev constant can be obtained by
taking K be zero-measure in (1.9) directly.

- b

Remark 2.1 Note that it is easily proven that
JOA/Z (A x A°)
& = inf .
n(A)>0 m(A)P-1)/p F(n(A)~1)(P=2)/(2p)
So the qualitative conclusion of Theorem 1.1(ii) is obtained by [5, Theorem 1.1].
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