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Abstract

An explicit and computable criterion for strong ergodicity of single-birth processes is
presented. As an application, some sufficient conditions are obtained for strong ergo-
dicity of an extended class of continuous-time branching processes and multi-dimensional
Q-processes by comparison methods respectively. Consequently strong ergodicity of the
Q-process corresponding to the finite-dimensional Schlögl model is proven.
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1. Introduction

Consider a continuous-time, irreducible Markov chain with transition probability matrix
P(t) = (pij (t)) on a countable state space Z+ = {0, 1, 2, . . . } with stationary distribution
(πi > 0 : i ∈ Z+). In the study of the theory of Markov chains, there are traditionally three
types of ergodicity: ordinary ergodicity (or positive recurrence), exponential ergodicity and
strong ergodicity (or uniform ergodicity). The main purpose of the paper is to deal with the last
one: limt→∞ supi |pij (t) − πj | = 0 for single-birth processes. For the readers’ convenience,
we recall some notation and results here.

The Q-matrix of a single-birth process Q = (qij : i, j ∈ Z+) is as follows: qi,i+1 >

0, qi,i+j = 0 for all i ∈ Z+ and j ≥ 2. Throughout the paper, we consider only totally
stable and conservative Q-matrices: qi = −qii = ∑

j 
=i qij < ∞ for all i ∈ Z+. Define
q
(k)
n = ∑k

j=0 qnj for 0 ≤ k < n (k, n ∈ Z+) and

m0 = 1

q01
, mn = 1

qn,n+1

(
1 +

n−1∑
k=0

q(k)n mk

)
, n ≥ 1,

F (n)
n = 1, F (i)

n = 1

qn,n+1

n−1∑
k=i

q(k)n F
(i)
k , 0 ≤ i < n,

d0 = 0, dn = 1

qn,n+1

(
1 +

n−1∑
k=0

q(k)n dk

)
, n ≥ 1.

It is not difficult to check that mn = q−1
01 F

(0)
n + dn for all n ∈ Z+. This notation is used to

describe the uniqueness, recurrence and ergodicity of single-birth processes. First, the process
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is unique if and only if R := ∑∞
n=0 mn = ∞. Next, suppose that the Q-matrix is regular and

irreducible, then the process is recurrent if and only if
∑∞

n=0 F
(0)
n = ∞, and is ergodic if and

only if

d := sup
k∈Z+

[ ∑k
n=0 dn∑k
n=0 F

(0)
n

]
< ∞

(cf. [3, Theorems 3.16 and 4.54] and [4]). The three criteria are all explicit (depending on
the Q-matrix (qij ) only, without using test functions) and computable. This advantage makes
single-birth processes a useful tool studying more complicated processes (cf. [3, Chapters 3
and 4]). Now, it is natural to look for some explicit criterion for strong ergodicity of this class
of processes. In this paper, we have a complete answer as follows.

Theorem 1.1. Let Q = (qij ) be a regular, irreducible single-birth Q-matrix. Then the
Q-process is strongly ergodic if and only if

sup
k∈Z+

k∑
n=0

(F (0)
n d − dn) < ∞. (1.1)

We now discuss strong ergodicity for an extended class of time-continuous branching
processes. The original branching process can be described as follows. Let α > 0 and
(pj : j ∈ Z+) be a probability distribution. Then the process has death rate αip0 : i →
i − 1 (i ≥ 1) and growth rate αipk+1 : i → i + k (k ≥ 1, i ∈ Z+). Note that the process
absorbs at state 0. In [5], an extended class of branching processes with the followingQ-matrix
is introduced:

qij =




q0j , j > i = 0;
−q0, j = i = 0;
rip0, j = i − 1, i ≥ 1;
ripk+1, j = i + k, i, k ≥ 1;
−ri(1 − p1), j = i ≥ 1;
0, otherwise, i, j ∈ Z+;

(1.2)

where ri > 0 for all i ≥ 1 and 0 < q0 := ∑
j≥1 q0j < ∞. The typical case we are interested

in is that q0j = pj or pj+1 (j ≥ 1) and ri is a polynomial with degree θ ≥ 1. Define
M1 = ∑∞

k=1 kpk . Based on the same comparing idea as in [5], some sufficient conditions for
strong ergodicity are obtained as follows.

Theorem 1.2. Let Q = (qij ) an irreducible Q-matrix as given by (1.2). Assume that M1 ≤ 1.
If

∑∞
i=1 i/ri < ∞, then the Q-process is strongly ergodic. The condition can be weakened to∑∞

i=1 1/ri < ∞ provided M1 < 1 and the ri are increasing.

It should be pointed out that for birth–death processes, which are special cases of single-
birth processes, Theorem 1.1 and the second part of Theorem 1.2 have been obtained in [8] and
[6] respectively, using a different approach. See Remark 2.5(i) and Remark 3.1(i) for further
comments.

Now we discuss strong ergodicity of multi-dimensional Q-processes. In [7] and [3, Theo-
rem 4.58], methods which reduce the multi-dimensional problems to one-dimensional problems
are proposed. By keeping this idea in mind, some sufficient conditions for strong ergodicity of
multi-dimensional Q-processes are obtained.
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Theorem 1.3. LetE be a countable set andQ = (q(x, y) : x, y ∈ E) a conservativeQ-matrix.
Suppose that there exists a partition {Ek} of E such that

∑∞
k=0 Ek = E with E0 = {θ} and Ek

(k ≥ 1) being finite, where θ ∈ E is a reference point. Next, suppose that:

(i) if q(x, y) > 0 and x ∈ Ek , then y ∈ ∑k+1
j=0 Ej for all k ≥ 0;

(ii)
∑

y∈Ek+1
q(x, y) > 0 for all x ∈ Ek and all k ≥ 0;

(iii) Ck := sup{q(x) : x ∈ Ek} < ∞ for all k ≥ 0.

Define a conservative Q-matrix Q = (qij : i, j ∈ Z+) as follows:

qij =




sup{∑y∈Ej
q(x, y) : x ∈ Ei}, if j = i + 1;

inf{∑y∈Ej
q(x, y) : x ∈ Ei}, if j < i;

0, other cases of j 
= i.

(1.3)

Moreover, suppose that both (q(x, y)) and (qij ) are irreducible and that (qij ) is regular. If

sup
k∈Z+

k∑
n=0

(F (0)
n d̂ − dn) < ∞ (1.4)

where d̂ := supk∈Z+ dk/F
(0)
k , then the (q(x, y))-process is strongly ergodic.

Theorem 1.3 is rather practical. For example, we can apply it directly to the finite-dimen-
sional Schlögl model. Let S be a finite set andE = Z+S . The model is defined by the following
Q-matrix Q = (q(x, y) : x, y ∈ E):

q(x, y) =




λ1

(
x(u)

2

)
+ λ4, if y = x + eu,

λ2

(
x(u)

3

)
+ λ3x(u), if y = x − eu,

x(u)p(u, v), if y = x − eu + ev,

0, other y 
= x,

(1.5)

q(x) = −q(x, x) =
∑
y 
=x

q(x, y),

where x = (x(u) : u ∈ S), λ1, . . . , λ4 are positive constants, (p(u, v) : u, v ∈ S) is a transition
probability matrix on S and eu is the element in E having value 1 at u and 0 elsewhere (cf. [2]
and [3]). In fact, we have the following conclusion.

Theorem 1.4. TheQ-process corresponding to the finite-dimensional Schlögl model is strongly
ergodic.

The proof of Theorem 1.1 is given in the next section. In addition, Corollary 2.4, which
is devoted to birth–death processes, is presented there. Applying this corollary and making a
comparison of the ‘extended’ branching process with some birth–death processes, we prove
Theorem 1.2 in Section 3. Besides, some examples show that the conditions of Theorem 1.2
are necessary. Then the proofs of Theorems 1.3 and 1.4 are completed.
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2. Proof of Theorem 1.1

The following lemma is the key to proving Theorem 1.1.

Lemma 2.1. Let Q = (qij ) be a regular, irreducible and recurrent single-birth Q-matrix.
Then the equation

yi =
∑
j 
=i

qij

qi
yj + 1

qi
, i ≥ 1; y0 = 0, (2.1)

has a bounded non-negative solution if and only if (1.1) holds. If so,

d = lim
k→∞

∑k
n=0 dn∑k
n=0 F

(0)
n

and the unique solution of (2.1) is as follows:

y0 = 0, y1 = d, yn+1 = yn + F (0)
n y1 − dn, n ≥ 1. (2.2)

Proof. First, assume that (1.1) holds and define (yi) by (2.2). Then, it should be easy to
verify that (yi) is a bounded non-negative solution of (2.1).

Next, let (yi) be a bounded non-negative solution of (2.1) and define vn = yn+1 − yn for
n ≥ 0. From (2.1), it is not difficult to derive

vn = 1

qn,n+1

( n−1∑
k=0

q(k)n vk − 1

)
, n ≥ 1.

By induction, we can easily prove that vn = F
(0)
n v0 − dn for all n ≥ 0. Note that v0 = y1.

From these facts, it follows that

yk+1 =
k∑

n=0

vn =
k∑

n=0

(F (0)
n v0 − dn), k ∈ Z+. (2.3)

Now, on the one hand, by (2.3) and yk+1 ≥ 0, it follows that v0 ≥ ∑k
n=0 dn

/ ∑k
n=0 F

(0)
n for

all k ∈ Z+. Hence v0 ≥ d . On the other hand, by (2.3) again,

yk+1∑k
n=0 F

(0)
n

= v0 −
∑k

n=0 dn∑k
n=0 F

(0)
n

, k ∈ Z+. (2.4)

Note that (yi) is bounded and
∑k

n=0 F
(0)
n → +∞ as k → ∞ (by recurrence). Letting k → ∞

in (2.4), we see that the second part on the right-hand side of (2.4) tends to the limit v0, and
furthermore v0 ≤ d . Hence, we have

y1 = v0 = d = lim
k→∞

∑k
n=0 dn∑k
n=0 F

(0)
n

,

Combining this with (2.3), it follows that the solution (yi) must have the representation (2.2)
and hence is unique. Finally, by the boundedness of (yi) and (2.3), condition (1.1) follows.

The proof of Theorem 1.1 will be completed by using [3, Theorem 4.45] and Lemma 2.1.
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Proof of Theorem 1.1. From [1, §6.3, Proposition 3.3] or [3, Theorem 4.45], we know that
the Q-process is strongly ergodic if and only if the following equation has a bounded non-
negative solution: ∑

j

qij yj ≤ −1, i /∈ H ;
∑
i∈H

∑
j 
=i

qij yj < ∞,

where H is a non-empty finite subset of Z+. Let H = {0}. For single-birth processes, the last
equation is reduced to ∑

j

qij yj ≤ −1, i 
= 0, (2.5)

since
∑

j 
=0 q0j yj = q01y1 < ∞.
Assume that the single-birth process is strongly ergodic. Then there exists a bounded non-

negative solution (ui) of (2.5), i.e.,

ui ≥
∑
j 
=i

qij

qi
uj + 1

qi
, i ≥ 1; u0 ≥ 0.

Denote by (u∗
i ) the minimal non-negative solution of (2.1). By the Comparison Theorem [3,

Theorem 2.6], we have ui ≥ u∗
i for all i ≥ 0. Thus, (u∗

i ) is bounded and (2.1) has a bounded
non-negative solution. By Lemma 2.1, (1.1) holds.

Conversely, let (1.1) hold. Define (yi) by (2.2). By Lemma 2.1, (yi) is a bounded non-
negative solution of (2.1). Clearly (yi) is also a bounded non-negative solution of (2.5). This
implies strong ergodicity by the criterion quoted above.

Corollary 2.2. Let Q = (qij ) be a regular irreducible single-birth Q-matrix. If (1.4) holds,
then the Q-process is strongly ergodic and (2.1) has (uniquely) a bounded non-negative and
increasing solution as follows:

y0 = 0, y1 = d̂, yn+1 = yn + F (0)
n y1 − dn, n ≥ 1 (2.6)

Moreover, d = d̂ = limk→∞(
∑k

n=0 dn)/(
∑k

n=0 F
(0)
n ).

Proof. Note that d ≤ d̂ . So strong ergodicity can be obtained directly by Theorem 1.1. Next,
as in the proof of Lemma 2.1, it can be checked that (yi) in (2.6) is a bounded, non-negative
and increasing solution of (2.1) since (1.4) holds (cf. [3, Lemma 4.56]). This implies the last
assertion by Lemma 2.1. An alternative proof goes as follows. By the definition of d, we have∑k

n=0(F
(0)
n d̂−dn) ≥ (d̂−d)

∑k
n=0 F

(0)
n . Then the assertion follows from the assumption and

since
∑∞

n=0 F
(0)
n = ∞.

Remarks 2.3. (i) There is a non-negative increasing solution to (2.5) if and only if d̂ < ∞ (cf.
[3, Lemma 4.56]).

(ii) Suppose that the process is recurrent and that limk→∞ dk/F
(0)
k = d̂. Then

lim
k→∞

∑k
n=0 dn∑k
n=0 F

(0)
n

= lim
k→∞

dk

F
(0)
k

(by Stolz’s theorem) and hence d ≥ d̂ . So we also have d = d̂.
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We now turn to birth–death processes. The Q-matrix of a birth–death process is as follows:
qi,i+1 = bi, i ≥ 0; qi,i−1 = ai, i ≥ 1 and qij = 0 for all |i − j | ≥ 2. Correspondingly,

F (0)
n = a1 . . . an

b1 . . . bn
, dn = 1

bn
+

n−1∑
i=1

ai+1 . . . an

bi . . . bn
, n ≥ 1.

For a regular recurrent birth–death Q-matrix, we see that

lim
k→∞

dk

F
(0)
k

= lim
k→∞

1

b0

k−1∑
n=0

b0 . . . bn

a1 . . . an+1
= 1

b0

∞∑
n=0

b0 . . . bn

a1 . . . an+1
= d̂.

By Remark 2.3(ii), we have d = d̂ . Note that

sup
k∈Z+

k∑
i=0

(F
(0)
i d − di) =

∞∑
n=1

(
1

an
+

n∑
i=1

bi . . . bn

ai . . . an+1

)
=: S′.

We can obtain the following criterion for strong ergodicity of birth–death processes by Theo-
rem 1.1. The condition given is well known, but used as a sufficient condition for exponential
ergodicity (cf. [1, §6.6, Proposition 6.6] and [3, Corollary 4.51]).

Corollary 2.4. A regular birth–death process is strongly ergodic if and only if

S :=
∞∑
n=1

(
1

an+1
+

n∑
k=1

bk . . . bn

ak . . . an+1

)
< ∞. (2.7)

Note that d ≤ S′ = S + 1/a1 and (1.1), (1.4) and (2.7) are equivalent for birth–death
processes.

Remarks 2.5. (i) Under the restriction of stochastic monotonicity, [8] discusses the uniformly
polynomial convergence for time-continuous Markov chains in terms of Feller transition func-
tions. The convergence means that there exist two constants v > 0 and C > 0 so that
supi,j∈E tv|pij (t) − πj | ≤ C for all t ≥ 0. For a birth–death process, [8] proves that it is
uniformly polynomial convergent if and only if S < ∞. Corollary 2.4 clarifies the equivalence
of uniformly polynomial convergence and strong ergodicity. In fact, by [3, Theorem 4.43], the
chain is strongly ergodic if and only if supi

∑
j |pij (t) − πj | = O(e−ρt ) as t → ∞ for some

ρ > 0 (that is, the chain is uniformly exponential ergodic). Combining this result with the
definition of strong ergodicity, we can easily see that the uniformly polynomial convergence
is equivalent to the strong ergodicity. The techniques in [8] are ineffective for single-birth
processes because the processes are not stochastically monotone in general. This is one of the
motivations for writing this paper.

(ii) For a strongly ergodic birth–death process, by Corollary 2.2, the equation

ai(yi−1 − yi) + bi(yi+1 − yi) = −1, i 
= 0, y0 = 0 (2.8)

has uniquely a bounded non-negative (increasing) solution as follows:

y0 = 0, yi =
i−1∑
k=0

(
1

ak+1
+

∞∑
j=k+1

bk+1 . . . bj

ak+1 . . . aj+1

)
, i ≥ 1.
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By Corollary 2.4, we can easily check that the following examples hold.

Example 2.6. (i) Take an = bn, n ≥ 1. Then the process is strongly ergodic if and only if∑∞
n=1 n/an < ∞.

(ii) Take an = λbn, n ≥ 1, λ > 1. Then the process is strongly ergodic if and only if∑∞
n=1 1/an < ∞.

3. Proofs of Theorem 1.2–1.4

Proof of Theorem 1.2. First, under the assumption, by [5, Theorems 1.2 and 1.3], we know
that the process is unique and recurrent. Let ( = ∑∞

k=1 kpk+1. It is easy to check that
( = M1 + p0 − 1. Hence M1 < 1 ⇐⇒ ( < p0 and M1 = 1 ⇐⇒ ( = p0.

(a) Next, consider the birth–death process (p̄ij (t)) with ai = bi = rip0 for i ≥ 1, where b0 is
some positive constant. By Example 2.6(i) and the assumption, the process (p̄ij (t)) is strongly
ergodic. By Remark 2.5(ii), the equation (2.8) has a unique bounded non-negative solution as
follows: y0 = 0 and

yi = 1

p0

(
i

∞∑
j=i+1

1

rj
+

i∑
j=1

j

rj

)
≤ 1

p0

∞∑
j=1

j

rj
=: c1 < ∞, i ≥ 1. (3.1)

Since yi+1 − yi = ∑∞
j=i+1(rjp0)

−1 for i ≥ 1, yi+1 − yi is decreasing as i → ∞. Thus, on
the one hand, we have

∑
j

qij yj =
∑
j

qij (yj − yi) = qi,i−1(yi−1 − yi) +
∞∑
k=1

qi,i+k(yi+k − yi)

≤ rip0(yi−1 − yi) +
∞∑
k=1

ripk+1k(yi+1 − yi) = rip0(yi−1 − yi) + ri((yi+1 − yi)

≤ ai(yi−1 − yi) + bi(yi+1 − yi) = −1, i 
= 0.

On the other hand, by (3.1), we have
∑∞

i=1 q0iyi ≤ c1q0 < ∞. Combining these facts with [1,
§6.3, Proposition 3.3] or [3, Theorem 4.45], it follows that (pij (t)) is strongly ergodic.

(b) Assume that M1 < 1. Consider the birth–death process (p̂ij (t)) with ai = rip0 and
bi = ri( for i ≥ 1 and b0 being some positive constant. Since ( < p0, by Example 2.6(ii)
and the assumption, the process (p̂ij (t)) is strongly ergodic. Using ‘ri is increasing’, similar
to (a), we can easily prove the second part of Theorem 1.2.

Remarks 3.1. (i) Take ai = bi = rip0 (i ≥ 1) in Example 2.6(i) and ai = λbi = λrip2 (i ≥
1, λ > 1) in Example 2.6(ii) respectively. Then the birth–death processes can be regarded as a
special case of the extended branching processes. In the former case, we have p0 = p2, pj = 0
for j ≥ 2, and so M1 = p1 + 2p2 = p0 + p1 + p2 = 1. In the latter one, p0 = λp2 > p2
and pj = 0 for j ≥ 2, hence M1 < 1. Therefore, by Example 2.6, the sufficient conditions
of Theorem 1.2 are all necessary. We point out that the second part of Theorem 1.2 for the
minimal process has also been proven in [6] by the same technique.

(ii) Let M1 < 1 and ri (i ≥ 1) satisfy
∞∑
i=1

1

ri
< ∞ and

∞∑
j=0

(
(

p0

)j 1

rj+i+2
≤ p0

(p0 − ()ri+1
, i ≥ 1.
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Then the process is strongly ergodic. We need only to replace ‘ri is increasing’ by the last
inequality.

Proof of Theorem 1.3. By [3, Theorems 3.19 and 4.58], the (q(x, y))-process is regular.
Hence (qij ) is a regular, irreducible single-birth Q-matrix. By Corollary 2.2, the (qij )-process
is strongly ergodic. To prove strong ergodicity of the (q(x, y))-process, by [3, Theorem 4.45],
we need only show that the equation∑

y∈E
q(x, y)u(y) + 1 ≤ 0, x 
= θ,

∑
y 
=θ

q(θ, y)u(y) < ∞

has a bounded non-negative solution. For this, by the assumptions and Corollary 2.2, let (uk)
be defined by (2.6), which is a bounded non-negative and increasing solution of (2.1), and take
u(x) = uk for x ∈ Ek, k ≥ 0. Now, for x 
= θ , there exists some (exactly one) k ≥ 1 so that
x ∈ Ek . From this, it is easy to verify that we have constructed a desired solution.

Proof of Theorem 1.4. For x = (x(u) : u ∈ S) ∈ E, put |x| := ∑
u∈S x(u). Take Ek =

{x ∈ E : |x| = k} for all k ∈ Z+. Then conditions (i)–(iii) of Theorem 1.3 hold. Note that the
Q-matrix (qij ) corresponding to (1.5) is a birth–death Q-matrix. Let |S| denote the cardinality
of S. Note that sup{∑u∈S x(u)2 : |x| = k} = k2 and (

∑
u∈S x(u)/|S|)3 ≤ ∑

u∈S x(u)3/|S|.
We have

bk = sup

{ ∑
u∈S

(
λ1

(
x(u)

2

)
+ λ4

)
: |x| = k

}
= λ1

2
(k2 − k) + λ4|S|, (3.2)

ak = inf

{ ∑
u∈S

(
λ2

(
x(u)

3

)
+ λ3x(u)

)
: |x| = k

}

≥ λ2

6

(
inf|x|=k

∑
u∈S

x(u)3 − 3 sup
|x|=k

∑
u∈S

x(u)2
)

+
(
λ3 + λ2

3

)
k

≥ λ2

6

(
k3

|S|2 − 3k2
)

+
(
λ3 + λ2

3

)
k. (3.3)

By (3.2) and (3.3), it is not difficult to check that (2.7) holds. The conclusion follows from
Theorem 1.3.
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