Sufficient and Necessary Conditions for Stochastic Comparability of Jump Processes

Yuhui Zhang
Department of Mathematics, Beijing Normal University, Beijing 100875, P. R. China
E-mail: zhoumk@bnu.edu.cn

Abstract

This note is devoted to the study of the stochastic comparability of jump processes. On the basis of [2] and [3], it is proved that two jump processes are stochastically comparable if and only if their q-pairs are comparable. Meanwhile, the result concerning the uniqueness given in [6] is also improved upon.

Keywords Stochastically comparable, Totally stable, Conservative, Uniqueness
1991MR Subject Classification 60J25

1 Introduction

In the past twenty years or so, the coupling methods developed rapidly and had a very wide range of applications. It is well known that the order-preserving couplings often play an important role in various applications. One problem arises naturally: Under what conditions for marginal processes does there exist an order-preserving Markovian coupling? If so, then the two marginal processes must be obviously stochastically comparable. Recently, Zhang [1] proved the converse proposition in the context of jump processes. Hence, it is meaningful to study the stochastic comparability of jump processes. In fact, the research on this topic has a long history and some good results have been obtained; refer to [2-5]. The main purpose of this note is to complete the work of [2] and [3], from which the main ideas of the proofs and the notations originate. However, for the readers' convenience, we still recall a few of the notations here.

Suppose that (E, \mathcal{E}) is a Polish space endowed with a measurable semi-order \leq and that $F=\left\{\left(x_{1}, x_{2}\right) \in E \times E: x_{1} \leq x_{2}\right\}$ is a measurable closed set on $E \times E$.

[^0]Definition 1.1 A measurable real function f is called monotone if for all $x \leq y, f(x) \leq f(y)$. Denote by \mathcal{M} the set of all bounded monotone functions. A measurable set A is called monotone if so is its indicator I_{A}, denoted by $A \in \mathcal{M}$. For two probability measures μ_{1} and μ_{2}, we define $\mu_{1} \leq \mu_{2}$, provided for every $f \in \mathcal{M}, \mu_{1} f \leq \mu_{2} f$ where $\mu_{k} f=\int f(x) \mu_{k}(d x)$.

Definition 1.2 Two jump processes $P_{1}(t)$ and $P_{2}(t)$ are said to be stochastically comparable if $P_{1}(t) f\left(x_{1}\right) \leq P_{2}(t) f\left(x_{2}\right), f \in \mathcal{M}, x_{1} \leq x_{2}, t \geq 0$, where $P_{k}(t) f(x)=\int P_{k}(t, x, d y) f(y)$. We write it as $P_{1}(t) \leq P_{2}(t)$ briefly. Two q-pairs $\left(q_{1}(x), q_{1}(x, d y)\right)$ and $\left(q_{2}(x), q_{2}(x, d y)\right)$ are called comparable if for all $A \in \mathcal{M}$ and $x_{1} \leq x_{2}$, either $x_{1}, x_{2} \in A$ or $x_{1}, x_{2} \notin A$, the following inequality holds:

$$
\begin{equation*}
\Omega_{1} I_{A}\left(x_{1}\right) \leq \Omega_{2} I_{A}\left(x_{2}\right), \tag{1.1}
\end{equation*}
$$

where the operators Ω_{k} are defined by $\Omega_{k} f(x)=\int q_{k}(x, d y) f(y)-q_{k}(x) f(x), x \in E, f \in{ }_{b} \mathcal{E}$. Here, denote by ${ }_{b} \mathcal{E}$ the set of all bounded \mathcal{E}-measurable functions.

The first main result of this paper can be stated as follows:
Theorem 1.3 Let $\left(q_{k}(x), q_{k}(x, d y)\right)(k=1,2)$ be two bounded totally stable q-pairs, possibly non-conservative. Denote by $P_{k}(t)(k=1,2)$ the corresponding q-process. Then $P_{1}(t) \leq P_{2}(t)$ if and only if $\left(q_{1}(x), q_{1}(x, d y)\right)$ and $\left(q_{2}(x), q_{2}(x, d y)\right)$ are comparable.

To study the comparability of q-processes with unbounded q-pairs, we need some hypotheses as follows (cf. [3; Hypothesis 5.30]).

Hypothesis 1.4 There exists a sequence of G_{δ} sets $\left\{E_{n}\right\}_{1}^{\infty}$ such that $E_{n} \uparrow E(n \rightarrow \infty)$ and for all $n \geq 1$, (1) $\sup _{x \in E_{n}} q_{k}(x)<\infty, k=1,2$, (2) The set $H_{n}=\left\{y \in E \backslash E_{n}\right.$: there exists $x \in E_{n}$ such that $\left.x \leq y\right\} \in \mathcal{M}$. Moreover, if $H_{n} \neq \emptyset$, then there is a point $b_{n} \in H_{n}$ so that $x \leq b_{n}$ for all $x \in E_{n}$.

In the cases where $E=\mathbf{R}^{d}, \mathbf{Z}^{d}, \mathbf{R}_{+}^{d}$ or \mathbf{Z}_{+}^{d} with the ordinary semi-order and where the two q-pairs are locally bounded, Hypothesis 1.4 is trivial; refer to [3]. The following is the second main result of this paper.

Theorem 1.5 Let $\left(q_{k}(x), q_{k}(x, d y)\right)(k=1,2)$ be two regular q-pairs. Denote by $P_{k}(t)(k=$ $1,2)$ the correponding q-process. Under Hypothesis $1.4, P_{1}(t) \leq P_{2}(t)$ if and only if $\left(q_{1}(x)\right.$, $\left.q_{1}(x, d y)\right)$ and $\left(q_{2}(x), q_{2}(x, d y)\right)$ are comparable.

In addition, we can improve the result concerning the uniqueness given in [6] for jump processes. The new conclusion is as follows.

Theorem 1.6 Let $\left(q_{1}(x), q_{1}(x, d y)\right)$ be a totally stable and conservative q-pair and ($q_{2}(x)$, $\left.q_{2}(x, d y)\right)$ be a regular q-pair. Suppose that Hypothesis 1.4 holds and $q_{k}\left(x, E \backslash E_{n}\right)=q_{k}\left(x, H_{n}\right)$, $x \in E, k=1,2 . \operatorname{If}\left(q_{1}(x), q_{1}(x, d y)\right)$ and $\left(q_{2}(x), q_{2}(x, d y)\right)$ are comparable, then $\left(q_{1}(x), q_{1}(x, d y)\right)$ is regular, and furthermore $P_{1}(t) \leq P_{2}(t)$.

Because Theorem 1.6 can be derived from the proof of Theorem 1.5 and [6] directly, we omit the details of its proof in this note.

2 Proofs

To prove Theorem 1.3, we need two lemmas as follows.
Lemma 2.1 Let $P_{k}\left(x_{k}, d y_{k}\right)(k=1,2)$ be two transition probabilities on (E, \mathcal{E}). If $P_{1}\left(x_{1}, d y_{1}\right)$ $\leq P_{2}\left(x_{2}, d y_{2}\right)$ for all $x_{1} \leq x_{2}$, then $P_{1}^{n}\left(x_{1}, d y_{1}\right) \leq P_{2}^{n}\left(x_{2}, d y_{2}\right)$ for all $x_{1} \leq x_{2}$ and $n \geq 1$.

Proof Assume that the conclusion holds for every $n \leq m$. By [1; Theorem 2.3], there exists a coupling transition probability $P\left(x_{1}, x_{2} ; d y_{1}, d y_{2}\right)$ on $(E \times E, \mathcal{E} \times \mathcal{E})$ of $P_{1}\left(x_{1}, d y_{1}\right)$ and $P_{2}\left(x_{2}, d y_{2}\right)$ such that $P\left(x_{1}, x_{2} ; F\right)=1$ for all $x_{1} \leq x_{2}$. Therefore, for every $f \in \mathcal{M}$ and $x_{1} \leq x_{2}$, we have

$$
\begin{aligned}
P_{1}^{m+1} f\left(x_{1}\right)-P_{2}^{m+1} f\left(x_{2}\right) & =\int_{E \times E} P\left(x_{1}, x_{2} ; d y_{1}, d y_{2}\right)\left(P_{1}^{m} f\left(y_{1}\right)-P_{2}^{m} f\left(y_{2}\right)\right) \\
& =\int_{F} P\left(x_{1}, x_{2} ; d y_{1}, d y_{2}\right)\left(P_{1}^{m} f\left(y_{1}\right)-P_{2}^{m} f\left(y_{2}\right)\right) \leq 0
\end{aligned}
$$

So the assertion follows, by Definition 1.1 and induction.
For an arbitrarily given point $\triangle \notin E$, set $E_{\triangle}=E \cup\{\triangle\}$ and $\mathcal{E}_{\triangle}=\sigma(\mathcal{E} \cup\{\triangle\})$. Let $(q(x), q(x, d y))$ be a q-pair on (E, \mathcal{E}), define a new conservative q-pair $(\tilde{q}(x), \tilde{q}(x, d y))$ on $\left(E_{\triangle}, \mathcal{E}_{\triangle}\right)$ as follows:
$\tilde{q}(x, A)=I_{E}(x)\left(q(x, A \backslash\{\triangle\})+(q(x)-q(x, E)) I_{A}(\triangle)\right), \quad \tilde{q}(x)=I_{E}(x) q(x), \quad x \in E_{\triangle}, A \in \mathcal{E}_{\triangle}$.
Denote by $P^{\text {min }}(\lambda)$ and $\widetilde{P}^{\text {min }}(\lambda)$ the Laplace transforms of the minimal q-processes determined by the two q-pairs respectively. By Proof a) of [3; Theorem 3.2], we have the following lemma.

Lemma 2.2 $P^{\text {min }}(\lambda)$ and $\widetilde{P}^{\text {min }}(\lambda)$ satisfy $P^{\min }(\lambda) I_{A}(x)=\widetilde{P}^{\min }(\lambda) I_{A}(x), A \subset E, x \in E$.
Proof of Theorem 1.3 The necessity has been proved by [3; Part (i) of Lemma 5.29]. We only need to show the sufficiency. For this, we enlarge the state space E to E_{Δ} on which the semi-order \leq is extended so that $\triangle \leq x$ for all $x \in E$.

Define two q-pairs $\left(\tilde{q}_{k}(x), \tilde{q}_{k}(x, d y)\right)(k=1,2)$ on $\left(E_{\triangle}, \mathcal{E}_{\triangle}\right)$ as above. Obviously, no matter whether the original q-pairs are conservative or not, the new q-pairs are bounded, totally stable and conservative. Denote by \mathcal{M}_{\triangle} the set of all bounded monotone functions on $\left(E_{\triangle}, \mathcal{E}_{\triangle}\right)$. Set $\widetilde{P}_{k}^{(\lambda)}=I+\frac{1}{\lambda} \widetilde{\Omega}_{k}(k=1,2)$ where $\lambda \geq \sup _{x \in E} q_{1}(x)+\sup _{x \in E} q_{2}(x)$. We need to show that

$$
\begin{equation*}
\widetilde{P}_{1}^{(\lambda)} I_{A}\left(x_{1}\right) \leq \widetilde{P}_{2}^{(\lambda)} I_{A}\left(x_{2}\right), \quad x_{1}, x_{2} \in E_{\triangle}, x_{1} \leq x_{2}, A \in \mathcal{M}_{\triangle} \tag{2.1}
\end{equation*}
$$

In the case of $\triangle \notin A$, if $x_{1}=\triangle$, then $\widetilde{P}_{1}^{(\lambda)} I_{A}\left(x_{1}\right)=0 \leq \widetilde{P}_{2}^{(\lambda)} I_{A}\left(x_{2}\right)$; if $x_{1} \neq \triangle$, then $x_{1}, x_{2} \in E$; besides, because of $\triangle \notin A$, we have $A \in \mathcal{M}$. For these x_{1} and x_{2}, whenever $x_{1}, x_{2} \in A$ or $x_{1}, x_{2} \notin A$, by (1.1), we have $\widetilde{P}_{1}^{(\lambda)} I_{A}\left(x_{1}\right)=I_{A}\left(x_{1}\right)+\frac{1}{\lambda} \Omega_{1} I_{A}\left(x_{1}\right) \leq$ $I_{A}\left(x_{2}\right)+\frac{1}{\lambda} \Omega_{2} I_{A}\left(x_{2}\right)=\widetilde{P}_{2}^{(\lambda)} I_{A}\left(x_{2}\right)$. Next, if $x_{1} \notin A$ and $x_{2} \in A$, due to the selection of λ, we have $\widetilde{P}_{1}^{(\lambda)} I_{A}\left(x_{1}\right)=\frac{1}{\lambda} q_{1}\left(x_{1}, A\right) \leq 1+\frac{1}{\lambda}\left(q_{2}\left(x_{2}, A\right)-q_{2}\left(x_{2}\right)\right)=\widetilde{P}_{2}^{(\lambda)} I_{A}\left(x_{2}\right)$. Finally, in the case of $\triangle \in A$, we have $A=E_{\triangle}$, and hence $\widetilde{P}_{1}^{(\lambda)} I_{A}\left(x_{1}\right)=1=\widetilde{P}_{2}^{(\lambda)} I_{A}\left(x_{2}\right)$. Therefore, (2.1) always holds. Note that $\widetilde{P}_{k}^{(\lambda)}(k=1,2)$ are two transition probabilities on the Polish space $\left(E_{\triangle}, \mathcal{E}_{\triangle}\right)$. By Lemma 2.1 and [3; Lemma 5.28], it follows that $\left(\widetilde{P}_{1}^{(\lambda)}\right)^{m} I_{A}\left(x_{1}\right) \leq$ $\left(\widetilde{P}_{2}^{(\lambda)}\right)^{m} I_{A}\left(x_{2}\right), m \geq 1$. Moreover, because $\left(\tilde{q}_{k}(x), \tilde{q}_{k}(x, d y)\right)(k=1,2)$ are bounded q-pairs,
we have $\widetilde{P}_{k}(t)=\exp \left(t \widetilde{\Omega}_{k}\right)=e^{-\lambda t} \sum_{m=0}^{\infty} \frac{\left(\lambda t t^{m}\right.}{m!}\left(\widetilde{P}_{k}^{(\lambda)}\right)^{m}$. Hence, it follows that $\widetilde{P}_{1}(t) I_{A}\left(x_{1}\right) \leq$ $\widetilde{P}_{2}(t) I_{A}\left(x_{2}\right)$ for all $x_{1}, x_{2} \in E_{\Delta}$ with $x_{1} \leq x_{2}$ and $A \in \mathcal{M}_{\triangle}$. Thus, by Lemma 2.2 , we have $P_{1}(t) I_{A}\left(x_{1}\right) \leq \widetilde{P}_{2}(t) I_{A}\left(x_{2}\right)$ for all $x_{1}, x_{2} \in E$ with $x_{1} \leq x_{2}$ and $A \in \mathcal{M}$. Hence, by [3; Lemma 5.28] and Definition 1.2, we deduce that $P_{1}(t) \leq P_{2}(t)$.

Proof of Theorem 1.5 The necessity simply follows from the backward Kolmogorov equation; refer to [4]. To prove the sufficiency, define (cf. [3; Theorem 5.31])

$$
\begin{gathered}
q_{k}^{(n)}(x, B)=q_{k}(x, B), \quad q_{k}^{(n)}\left(x,\left\{b_{n}\right\}\right)=q_{k}\left(x, H_{n}\right), \quad x \in E_{n}, B \in E_{n} \cap \mathcal{E}, \\
q_{k}^{(n)}(x)=I_{E_{n}}(x) q_{k}(x), \quad n \geq 1, k=1,2 .
\end{gathered}
$$

Then we have $\sup _{x \in E} q_{k}^{(n)}(x)=\sup _{x \in E_{n}} q_{k}(x)<\infty, n \geq 1, q_{k}^{(n)}(x) \rightarrow q_{k}(x), q_{k}^{(n)}(x, A) \rightarrow$ $q_{k}(x, A), n \rightarrow \infty, x \in E, A \in \mathcal{E}, k=1,2$. Thus, $\left(q_{k}^{(n)}(x), q_{k}^{(n)}(x, d y)\right)$ uniquely determines a q-process, denoted by $P_{k}^{(n)}(t)(k=1,2)$. We need to show that $\left(q_{1}^{(n)}(x), q_{1}^{(n)}(x, d y)\right)$ and $\left(q_{2}^{(n)}(x), q_{2}^{(n)}(x, d y)\right)$ are comparable on the state space $\left(E_{n} \cup\left\{b_{n}\right\},\left(E_{n} \cup\left\{b_{n}\right\}\right) \cap \mathcal{E}\right)$.

Note that the semi-order on E induces a semi-order on $\left(E_{n} \cup\left\{b_{n}\right\}\right)$. Let \mathcal{M}_{n} denote the set of all bounded monotone functions on $\left(E_{n} \cup\left\{b_{n}\right\},\left(E_{n} \cup\left\{b_{n}\right\}\right) \cap \mathcal{E}\right)$. Clearly, if $B \in \mathcal{M}_{n}$, then $b_{n} \in B$ and $B \cup H_{n} \in \mathcal{M}$. And it is not difficult to prove that

$$
\begin{equation*}
\Omega_{k}^{(n)} I_{B}(x)=\Omega_{k} I_{B \cup H_{n}}(x), \quad x \in E_{n}, k=1,2 . \tag{2.2}
\end{equation*}
$$

For all $x_{1}, x_{2} \in E_{n} \cup\left\{b_{n}\right\}$ with $x_{1} \leq x_{2}$ and $B \in \mathcal{M}_{n}$, if $x_{2} \neq b_{n}$, then $x_{1}, x_{2} \in E_{n}$. Combining (2.2) with (1.1), whenever $x_{1}, x_{2} \in B$ or $x_{1}, x_{2} \notin B$ (i.e. $x_{1}, x_{2} \in E_{n} \backslash B$), we have $\Omega_{1}^{(n)} I_{B}\left(x_{1}\right) \leq$ $\Omega_{2}^{(n)} I_{B}\left(x_{2}\right)$. If $x_{2}=b_{n}$, then $x_{2} \in B$. Thus, we have $\Omega_{1}^{(n)} I_{B}\left(x_{1}\right) \leq 0=\Omega_{2}^{(n)} I_{B}\left(x_{2}\right)$ for all $x_{1} \in B$. Therefore, $\left(q_{1}^{(n)}(x), q_{1}^{(n)}(x, d y)\right)$ and $\left(q_{2}^{(n)}(x), q_{2}^{(n)}(x, d y)\right)$ are comparable on $\left(E_{n} \cup\right.$ $\left.\left\{b_{n}\right\},\left(E_{n} \cup\left\{b_{n}\right\}\right) \cap \mathcal{E}\right)$. In addition, they are bounded and totally stable q-pairs, possibly nonconservative. By [7; Proposition 8.1.4], E_{n} is Polish, hence $E_{n} \cup\left\{b_{n}\right\}$ is Polish. Then, by Theorem 1.3, we have $P_{1}^{(n)}(t) \leq P_{2}^{(n)}(t)$. Besides, by [3; Lemma 5.14], we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{k}^{(n)}\left(t, x, A \cap\left(E_{n} \cup\left\{b_{n}\right\}\right)\right)=P_{k}(t, x, A), \quad x \in E, A \in \mathcal{E}, t \geq 0, k=1,2 . \tag{2.3}
\end{equation*}
$$

Obviously, if $A \in \mathcal{M}$, then $A \cap\left(E_{n} \cup\left\{b_{n}\right\}\right) \in \mathcal{M}_{n}$. Therefore, the assertion follows, by combining (2.3) with $P_{1}^{(n)}(t) \leq P_{2}^{(n)}(t)$.

Acknowledgement The author thanks Professors Mufa Chen, S. Pirogov and Shaoyi Zhang for their helpful suggestions.

References

[1] S Y Zhang. Existence and application of optimal Markovian coupling with respect to non-negative lower semi-continuous functions. Preprint 1998
[2] M F Chen. On coupling of jump processes. Chin Ann of Math, 1991, 12B(4): 385-399
[3] M F Chen. From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 1992
[4] M F Chen. A comment on the book "Continuous-Time Markov Chains" by W J Anderson. Chinese J Appl Prob Stat, 1996, 12(1): 55-59
[5] B M Kirstein. Monotonicity and comparability of time-homogeneous Markov processes with discrete state space. Math Operationsforsch Statist, 1976, 7: 151-168
[6] Y H Zhang. A problem on the uniqueness of jump processes (in Chinese). Chinese J Appl Prob Stat, 1998, 14(1): 45-48
[7] D L Cohn. Measure Theory. Boston: Birkhäuser, 1980

[^0]: Received September 7, 1998, Accepted December 12, 1998
 Research supported in part by DPFIHE(Grant No.96002704), NNSFC(Grant No.19771008), MCSEC, Ying-Tung Fok Educational Foundation and Youth Science Foundation of BNU

