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Abstract This note is devoted to the study of the stochastic comparability of jump processes. On
the basis of [2] and [3], it is proved that two jump processes are stochastically comparable if and only
if their g-pairs are comparable. Meanwhile, the result concerning the uniqueness given in [6] is also
improved upon.
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1 Introduction

In the past twenty years or so, the coupling methods developed rapidly and had a very wide
range of applications. It is well known that the order-preserving couplings often play an im-
portant role in various applications. One problem arises naturally: Under what conditions for
marginal processes does there exist an order-preserving Markovian coupling? If so, then the two
marginal processes must be obviously stochastically comparable. Recently, Zhang [1] proved
the converse proposition in the context of jump processes. Hence, it is meaningful to study the
stochastic comparability of jump processes. In fact, the research on this topic has a long history
and some good results have been obtained; refer to [2-5]. The main purpose of this note is to
complete the work of [2] and [3], from which the main ideas of the proofs and the notations
originate. However, for the readers’ convenience, we still recall a few of the notations here.

Suppose that (E,&) is a Polish space endowed with a measurable semi-order < and that
F ={(z1,22) € E X E: 2y < z3} is a measurable closed set on E x E.
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Definition 1.1 A measurable real function f is called monotone if for allz < vy, f(z) < f(y).
Denote by M the set of all bounded monotone functions. A measurable set A is called monotone

if so is its indicator I, denoted by A € M. For two probability measures p1 and ps2, we define
1 < iz, provided for every f € M, juf < paf where i f = [ f() ji(da).

Definition 1.2 Two jump processes Py(t) and Ps(t) are said to be stochastically comparable
if PL(t)f(z1) < Pa(t)f(z2), f € M, z1 < x9,t >0, where Py(t)f(z) = [ Py(t,z,dy)f(y). We
write it as Py (t) < Pa(t) briefly. Two q-pairs (q1(z),q1(z, dy)) and (¢2(z), ¢2(z, dy)) are called
comparable if for all A € M and z1 < xq, either z1,29 € A or x1,29 ¢ A, the following
inequality holds:

M Ta(zy) < Qola(zy), (1.1)

where the operators Q, are defined by Q. f(z) = [qr(z,dy)f(y) — qu(z)f(z), z € E, f € ,€.

Here, denote by & the set of all bounded £-measurable functions.
The first main result of this paper can be stated as follows:

Theorem 1.3  Let (qx(2), qx(z,dy)) (k = 1,2) be two bounded totally stable q-pairs, possibly
non-conservative. Denote by Pi(t) (k = 1,2) the corresponding q-process. Then Py(t) < Pa(t)

if and only if (q1(z),q1(z,dy)) and (q2(2), ¢2(z,dy)) are comparable.

To study the comparability of ¢g-processes with unbounded g¢-pairs, we need some hypotheses
as follows (cf. [3; Hypothesis 5.30]).

Hypothesis 1.4  There exists a sequence of G5 sets {E,,}3° such that E,, T E (n — c0) and
for alln > 1, (1) sup,cp, qr(z) < oo, k = 1,2, (2) The set H,, = {y € E\ E, : there exists
z € E,, such that z < y} € M. Moreover, if H, # 0, then there is a point b,, € H,, so that
x <b, forallz € E,.

In the cases where E = R?, Z¢, R_d|_ or Z‘_i,_ with the ordinary semi-order and where the two
g-pairs are locally bounded, Hypothesis 1.4 is trivial; refer to [3]. The following is the second

main result of this paper.

Theorem 1.5  Let (qr(x), qr(z,dy)) (k = 1,2) be two regular q-pairs. Denote by Py (t) (k =
1,2) the correponding q-process. Under Hypothesis 1.4, Pi(t) < Py(t) if and only if (q1(x),
q1(z,dy)) and (g2(z), g2(z, dy)) are comparable.

In addition, we can improve the result concerning the uniqueness given in [6] for jump

processes. The new conclusion is as follows.

Theorem 1.6 Let (q1(x),q1(z,dy)) be a totally stable and conservative g-pair and (ga2(z),
q2(z,dy)) be a regular q-pair. Suppose that Hypothesis 1.4 holds and qi(z, E\ E,) = qx(z, Hy,),
z€E, k=1,2. If (¢1(z),q1(z,dy)) and (g2(z), g2(z, dy)) are comparable, then (¢1(z),q1(x, dy))
is regular, and furthermore Py (t) < Pu(t).

Because Theorem 1.6 can be derived from the proof of Theorem 1.5 and [6] directly, we

omit the details of its proof in this note.
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2 Proofs

To prove Theorem 1.3, we need two lemmas as follows.

Lemma 2.1 Let Py(zg,dyx) (k = 1,2) be two transition probabilities on (E,E). If Py(z1,dy1)
< Py(zg,dys) for all z1 < xo, then P(x1,dy;) < Py (z2,dys) for all 21 < g and n > 1.

Proof Assume that the conclusion holds for every n < m. By [1; Theorem 2.3], there exists a
coupling transition probability P(z1, z2;dy;, dys) on (EXE,EXE) of Py(z1,dy;) and Py (g, dys)
such that P(zy1,z2; F) =1 for all 1 < z5. Therefore, for every f € M and 21 < 3, we have

P f(ay) — PP () = /E Planaidys,dyn) (PP 1) = P ()

:/FP($1,$2;dy1,dyz)(Pflf(yl) — P"f(y2)) <0.

So the assertion follows, by Definition 1.1 and induction.

For an arbitrarily given point A ¢ E, set En = E U {A} and €5 = (& U {A}).
Let (g(z),q(x,dy)) be a g-pair on (E,E), define a new conservative g-pair (§(x), g(z,dy)) on
(Ea,EA) as follows:

G(z, A) = Ip(z)(q(z, A\{A}) +(g(2) —g(z, B)) 14 (L)), q(z) = Ip(z)a(x), =€ En, A€ En.

Denote by P™%()\) and P™"()) the Laplace transforms of the minimal g-processes determined

by the two g-pairs respectively. By Proof a) of [3; Theorem 3.2], we have the following lemma.
Lemma 2.2 P™2()\) and P™®()\) satisfy P™®(A\)I4(z) = P™™(\)I4(z),AC E, z € E.

Proof of Theorem 1.3 The necessity has been proved by [3; Part (i) of Lemma 5.29]. We
only need to show the sufficiency. For this, we enlarge the state space E to Ea on which the
semi-order < is extended so that A < x for all z € E.

Define two g-pairs (Gx(z), qr(z,dy)) (k = 1,2) on (Ea,EA) as above. Obviously, no matter
whether the original g-pairs are conservative or not, the new g-pairs are bounded, totally stable

and conservative. Denote by M the set of all bounded monotone functions on (Ea,EA). Set
ﬁly‘) =TI+ +Q% (k =1,2) where A > sup,cp q1(x) + sup,cp g2(x). We need to show that

ﬁl(/\)IA(m) < ﬁg(/\)IA(m), z1,o2 € En, @1 <32, A€ M. (2.1)

In the case of A ¢ A, if x; = A, then ﬁfA)IA(xl) =0< ﬁZ()‘)IA(wQ); if ©;1 # A, then
21, T2 € E; besides, because of A ¢ A, we have A € M. For these z; and x5, when-
ever ¢y, x2 € A or x1,22 ¢ A, by (1.1), we have ﬁfA)IA(xl) = Ia(z1) + tla(z1) <
Ta(zo) + %szA(wg) = 132(A)IA($2). Next, if 1 ¢ A and xzo € A, due to the selection of A,
we have ﬁl(A)IA(:cl) = 1qi(z1,4) < 1+ $(g2(z2,A) — g2(x2)) = ﬁZ()\)IA(SCZ). Finally, in the
case of A € A, we have A = EA, and hence ﬁl(A)IA(xl) =1= ﬁy‘)IA(:cz). Therefore,
(2.1) always holds. Note that ﬁ,g'\) (k = 1,2) are two transition probabilities on the Pol-
ish space (EFa,Ea). By Lemma 2.1 and [3; Lemma 5.28], it follows that (]31(/\))’”[,4(;01) <
(ﬁQ()‘))mIA(mz),m > 1. Moreover, because (Gr(z),qdk(z,dy))(k = 1,2) are bounded g-pairs,
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we have Py (t) = exp(tQ,) = e Yoo (X)!m (PISA))"’. Hence, it follows that P;(£)I4(z1) <
ﬁz(t)IA(xz) for all 1,25 € Ea with ;7 < 25 and A € Ma. Thus, by Lemma 2.2, we have
Pi(t)a(zy) < ﬁQ(t)IA(wg) for allzy,z9 € Ewithzy < zyand A € M. Hence, by [3; Lemma

5.28] and Definition 1.2, we deduce that P;(t) < Pa(t).

Proof of Theorem 1.5 The necessity simply follows from the backward Kolmogorov equation;
refer to [4]. To prove the sufficiency, define (cf. [3; Theorem 5.31])

o (¢, B) = qi(z,B), ¢\"(2,{bs}) = ar(e,H,), @€ E,, B€E,NE,

q,(cn)(m) = Ig, (z)qr(z), n>1k=1,2

Then we have sup,cp q,(vn)(a:) = Sup,cp, qr(z) < 0o, m > 1, q,(gn)(ac) = qx(z), q,(gn)(m,A) —

qp(z,A),n — oo,z € E; A € £ k = 1,2. Thus, (q,(cn) (x),q,(c")(sc,dy)) uniquely determines
a g-process, denoted by P,En)(t) (k = 1,2). We need to show that (¢\™(z),¢{™ (z,dy)) and
(qén)(w), qén)(m, dy)) are comparable on the state space (E, U{b,}, (E, U {b,})NE).

Note that the semi-order on F induces a semi-order on (E,U{b,}). Let M,, denote the set
of all bounded monotone functions on (E,, U {b,}, (E, U{b,}) NE). Clearly, if B € M,,, then
b, € B and BUH, € M. And it is not difficult to prove that

Q" Ip(z) = Ulpon, (x), x€ By k=12 (2.2)

For all z1,z9 € E, U{b,} with z; < z2 and B € M,,, if z3 # b,,, then z1, 25 € E,,. Combining
(2.2) with (1.1), whenever 21,25 € Bor 21,22 ¢ B (i.e. 21,29 € E,\ B), we have an)IB(ml) <
an)IB(l'g). If x5 = b, then o € B. Thus, we have an)IB(xl) <0 = Qén)IB(mg) for all
@1 € B. Therefore, (¢\™(x),¢\™ (z,dy)) and (¢{™ (), d\™ (z,dy)) are comparable on (E, U
{bn}, (E, U{b,}) NE). In addition, they are bounded and totally stable g-pairs, possibly non-
conservative. By [7; Proposition 8.1.4], E, is Polish, hence E, U {b,} is Polish. Then, by
Theorem 1.3, we have Pl(n) (t) < PQ(n) (t). Besides, by [3; Lemma 5.14], we know that

lim P\ (t, 2, AN (E, U{b,})) = Pe(t,z,A), a€BE Ac& t>0 k=12 (2.3)

n—oo
Obviously, if A € M, then AN(E,U{b,}) € M,,. Therefore, the assertion follows, by combining
(2.3) with P\ (¢) < P{"(¢).
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