Acta Mathematica Sinica, English Series 2000, Jan., Vol.16, No.1, p. 99-102

Acta Mathematica Sinica, English Series © Springer-Verlag 2000

Sufficient and Necessary Conditions for Stochastic Comparability of Jump Processes

Yuhui Zhang

Department of Mathematics, Beijing Normal University, Beijing 100875, P. R. China E-mail: zhoumk@bnu.edu.cn

Abstract This note is devoted to the study of the stochastic comparability of jump processes. On the basis of [2] and [3], it is proved that two jump processes are stochastically comparable if and only if their q-pairs are comparable. Meanwhile, the result concerning the uniqueness given in [6] is also improved upon.

Keywords Stochastically comparable, Totally stable, Conservative, Uniqueness 1991MR Subject Classification 60J25

1 Introduction

In the past twenty years or so, the coupling methods developed rapidly and had a very wide range of applications. It is well known that the order-preserving couplings often play an important role in various applications. One problem arises naturally: Under what conditions for marginal processes does there exist an order-preserving Markovian coupling? If so, then the two marginal processes must be obviously stochastically comparable. Recently, Zhang [1] proved the converse proposition in the context of jump processes. Hence, it is meaningful to study the stochastic comparability of jump processes. In fact, the research on this topic has a long history and some good results have been obtained; refer to [2–5]. The main purpose of this note is to complete the work of [2] and [3], from which the main ideas of the proofs and the notations originate. However, for the readers' convenience, we still recall a few of the notations here.

Suppose that (E, \mathcal{E}) is a Polish space endowed with a measurable semi-order \leq and that $F = \{(x_1, x_2) \in E \times E : x_1 \leq x_2\}$ is a measurable closed set on $E \times E$.

Received September 7, 1998, Accepted December 12, 1998

Research supported in part by DPFIHE(Grant No.96002704), NNSFC(Grant No.19771008), MCSEC, Ying-Tung Fok Educational Foundation and Youth Science Foundation of BNU

Definition 1.1 A measurable real function f is called monotone if for all $x \leq y$, $f(x) \leq f(y)$. Denote by \mathcal{M} the set of all bounded monotone functions. A measurable set A is called monotone if so is its indicator I_A , denoted by $A \in \mathcal{M}$. For two probability measures μ_1 and μ_2 , we define $\mu_1 \leq \mu_2$, provided for every $f \in \mathcal{M}$, $\mu_1 f \leq \mu_2 f$ where $\mu_k f = \int f(x) \mu_k(dx)$.

Definition 1.2 Two jump processes $P_1(t)$ and $P_2(t)$ are said to be stochastically comparable if $P_1(t)f(x_1) \leq P_2(t)f(x_2), f \in \mathcal{M}, x_1 \leq x_2, t \geq 0$, where $P_k(t)f(x) = \int P_k(t, x, dy)f(y)$. We write it as $P_1(t) \leq P_2(t)$ briefly. Two q-pairs $(q_1(x), q_1(x, dy))$ and $(q_2(x), q_2(x, dy))$ are called comparable if for all $A \in \mathcal{M}$ and $x_1 \leq x_2$, either $x_1, x_2 \in A$ or $x_1, x_2 \notin A$, the following inequality holds:

$$\Omega_1 I_A(x_1) \le \Omega_2 I_A(x_2), \tag{1.1}$$

where the operators Ω_k are defined by $\Omega_k f(x) = \int q_k(x, dy) f(y) - q_k(x) f(x)$, $x \in E$, $f \in {}_b \mathcal{E}$. Here, denote by ${}_b \mathcal{E}$ the set of all bounded \mathcal{E} -measurable functions.

The first main result of this paper can be stated as follows:

Theorem 1.3 Let $(q_k(x), q_k(x, dy))$ (k = 1, 2) be two bounded totally stable q-pairs, possibly non-conservative. Denote by $P_k(t)$ (k = 1, 2) the corresponding q-process. Then $P_1(t) \leq P_2(t)$ if and only if $(q_1(x), q_1(x, dy))$ and $(q_2(x), q_2(x, dy))$ are comparable.

To study the comparability of q-processes with unbounded q-pairs, we need some hypotheses as follows (cf. [3; Hypothesis 5.30]).

Hypothesis 1.4 There exists a sequence of G_{δ} sets $\{E_n\}_1^{\infty}$ such that $E_n \uparrow E(n \to \infty)$ and for all $n \ge 1$, (1) $\sup_{x \in E_n} q_k(x) < \infty$, k = 1, 2, (2) The set $H_n = \{y \in E \setminus E_n : \text{there exists} x \in E_n \text{ such that } x \le y\} \in \mathcal{M}$. Moreover, if $H_n \neq \emptyset$, then there is a point $b_n \in H_n$ so that $x \le b_n$ for all $x \in E_n$.

In the cases where $E = \mathbf{R}^d$, \mathbf{Z}^d , \mathbf{R}^d_+ or \mathbf{Z}^d_+ with the ordinary semi-order and where the two q-pairs are locally bounded, Hypothesis 1.4 is trivial; refer to [3]. The following is the second main result of this paper.

Theorem 1.5 Let $(q_k(x), q_k(x, dy))$ (k = 1, 2) be two regular q-pairs. Denote by $P_k(t)$ (k = 1, 2) the corresponding q-process. Under Hypothesis 1.4, $P_1(t) \leq P_2(t)$ if and only if $(q_1(x), q_1(x, dy))$ and $(q_2(x), q_2(x, dy))$ are comparable.

In addition, we can improve the result concerning the uniqueness given in [6] for jump processes. The new conclusion is as follows.

Theorem 1.6 Let $(q_1(x), q_1(x, dy))$ be a totally stable and conservative q-pair and $(q_2(x), q_2(x, dy))$ be a regular q-pair. Suppose that Hypothesis 1.4 holds and $q_k(x, E \setminus E_n) = q_k(x, H_n)$, $x \in E, k = 1, 2$. If $(q_1(x), q_1(x, dy))$ and $(q_2(x), q_2(x, dy))$ are comparable, then $(q_1(x), q_1(x, dy))$ is regular, and furthermore $P_1(t) \leq P_2(t)$.

Because Theorem 1.6 can be derived from the proof of Theorem 1.5 and [6] directly, we omit the details of its proof in this note.

2 Proofs

To prove Theorem 1.3, we need two lemmas as follows.

Lemma 2.1 Let $P_k(x_k, dy_k)$ (k = 1, 2) be two transition probabilities on (E, \mathcal{E}) . If $P_1(x_1, dy_1) \leq P_2(x_2, dy_2)$ for all $x_1 \leq x_2$, then $P_1^n(x_1, dy_1) \leq P_2^n(x_2, dy_2)$ for all $x_1 \leq x_2$ and $n \geq 1$.

Proof Assume that the conclusion holds for every $n \leq m$. By [1; Theorem 2.3], there exists a coupling transition probability $P(x_1, x_2; dy_1, dy_2)$ on $(E \times E, \mathcal{E} \times \mathcal{E})$ of $P_1(x_1, dy_1)$ and $P_2(x_2, dy_2)$ such that $P(x_1, x_2; F) = 1$ for all $x_1 \leq x_2$. Therefore, for every $f \in \mathcal{M}$ and $x_1 \leq x_2$, we have

$$P_1^{m+1}f(x_1) - P_2^{m+1}f(x_2) = \int_{E \times E} P(x_1, x_2; dy_1, dy_2) \left(P_1^m f(y_1) - P_2^m f(y_2) \right)$$
$$= \int_F P(x_1, x_2; dy_1, dy_2) \left(P_1^m f(y_1) - P_2^m f(y_2) \right) \le 0.$$

So the assertion follows, by Definition 1.1 and induction.

For an arbitrarily given point $\triangle \notin E$, set $E_{\triangle} = E \cup \{\triangle\}$ and $\mathcal{E}_{\triangle} = \sigma(\mathcal{E} \cup \{\triangle\})$. Let (q(x), q(x, dy)) be a q-pair on (E, \mathcal{E}) , define a new conservative q-pair $(\tilde{q}(x), \tilde{q}(x, dy))$ on $(E_{\triangle}, \mathcal{E}_{\triangle})$ as follows:

$$\tilde{q}(x,A) = I_E(x) \big(q(x,A \setminus \{ \triangle \}) + (q(x) - q(x,E)) I_A(\triangle) \big), \quad \tilde{q}(x) = I_E(x) q(x), \quad x \in E_{\triangle}, A \in \mathcal{E}_{\triangle}.$$

Denote by $P^{\min}(\lambda)$ and $\tilde{P}^{\min}(\lambda)$ the Laplace transforms of the minimal q-processes determined by the two q-pairs respectively. By Proof a) of [3; Theorem 3.2], we have the following lemma.

Lemma 2.2 $P^{\min}(\lambda)$ and $\widetilde{P}^{\min}(\lambda)$ satisfy $P^{\min}(\lambda)I_A(x) = \widetilde{P}^{\min}(\lambda)I_A(x), A \subset E, x \in E$.

Proof of Theorem 1.3 The necessity has been proved by [3; Part (i) of Lemma 5.29]. We only need to show the sufficiency. For this, we enlarge the state space E to E_{\triangle} on which the semi-order \leq is extended so that $\triangle \leq x$ for all $x \in E$.

Define two q-pairs $(\tilde{q}_k(x), \tilde{q}_k(x, dy))(k = 1, 2)$ on $(E_{\triangle}, \mathcal{E}_{\triangle})$ as above. Obviously, no matter whether the original q-pairs are conservative or not, the new q-pairs are bounded, totally stable and conservative. Denote by \mathcal{M}_{\triangle} the set of all bounded monotone functions on $(E_{\triangle}, \mathcal{E}_{\triangle})$. Set $\widetilde{P}_k^{(\lambda)} = I + \frac{1}{\lambda} \widetilde{\Omega}_k (k = 1, 2)$ where $\lambda \geq \sup_{x \in E} q_1(x) + \sup_{x \in E} q_2(x)$. We need to show that

$$\widetilde{P}_1^{(\lambda)} I_A(x_1) \le \widetilde{P}_2^{(\lambda)} I_A(x_2), \qquad x_1, x_2 \in E_{\triangle}, \, x_1 \le x_2, \, A \in \mathcal{M}_{\triangle}.$$

$$(2.1)$$

In the case of $\Delta \notin A$, if $x_1 = \Delta$, then $\widetilde{P}_1^{(\lambda)}I_A(x_1) = 0 \leq \widetilde{P}_2^{(\lambda)}I_A(x_2)$; if $x_1 \neq \Delta$, then $x_1, x_2 \in E$; besides, because of $\Delta \notin A$, we have $A \in \mathcal{M}$. For these x_1 and x_2 , whenever $x_1, x_2 \in A$ or $x_1, x_2 \notin A$, by (1.1), we have $\widetilde{P}_1^{(\lambda)}I_A(x_1) = I_A(x_1) + \frac{1}{\lambda}\Omega_1I_A(x_1) \leq I_A(x_2) + \frac{1}{\lambda}\Omega_2I_A(x_2) = \widetilde{P}_2^{(\lambda)}I_A(x_2)$. Next, if $x_1 \notin A$ and $x_2 \in A$, due to the selection of λ , we have $\widetilde{P}_1^{(\lambda)}I_A(x_1) = \frac{1}{\lambda}q_1(x_1, A) \leq 1 + \frac{1}{\lambda}(q_2(x_2, A) - q_2(x_2)) = \widetilde{P}_2^{(\lambda)}I_A(x_2)$. Finally, in the case of $\Delta \in A$, we have $A = E_{\Delta}$, and hence $\widetilde{P}_1^{(\lambda)}I_A(x_1) = 1 = \widetilde{P}_2^{(\lambda)}I_A(x_2)$. Therefore, (2.1) always holds. Note that $\widetilde{P}_k^{(\lambda)}(k = 1, 2)$ are two transition probabilities on the Polish space $(E_{\Delta}, \mathcal{E}_{\Delta})$. By Lemma 2.1 and [3; Lemma 5.28], it follows that $(\widetilde{P}_1^{(\lambda)})^m I_A(x_1) \leq (\widetilde{P}_2^{(\lambda)})^m I_A(x_2), m \geq 1$. Moreover, because $(\widetilde{q}_k(x), \widetilde{q}_k(x, dy))(k = 1, 2)$ are bounded q-pairs,

we have $\widetilde{P}_k(t) = \exp(t\widetilde{\Omega}_k) = e^{-\lambda t} \sum_{m=0}^{\infty} \frac{(\lambda t)^m}{m!} (\widetilde{P}_k^{(\lambda)})^m$. Hence, it follows that $\widetilde{P}_1(t)I_A(x_1) \leq \widetilde{P}_2(t)I_A(x_2)$ for all $x_1, x_2 \in E_{\triangle}$ with $x_1 \leq x_2$ and $A \in \mathcal{M}_{\triangle}$. Thus, by Lemma 2.2, we have $P_1(t)I_A(x_1) \leq \widetilde{P}_2(t)I_A(x_2)$ for all $x_1, x_2 \in E$ with $x_1 \leq x_2$ and $A \in \mathcal{M}_{\triangle}$. Hence, by [3; Lemma 5.28] and Definition 1.2, we deduce that $P_1(t) \leq P_2(t)$.

Proof of Theorem 1.5 The necessity simply follows from the backward Kolmogorov equation; refer to [4]. To prove the sufficiency, define (cf. [3; Theorem 5.31])

$$q_k^{(n)}(x,B) = q_k(x,B), \quad q_k^{(n)}(x,\{b_n\}) = q_k(x,H_n), \qquad x \in E_n, B \in E_n \cap \mathcal{E},$$
$$q_k^{(n)}(x) = I_{E_n}(x)q_k(x), \qquad n \ge 1, k = 1, 2.$$

Then we have $\sup_{x\in E} q_k^{(n)}(x) = \sup_{x\in E_n} q_k(x) < \infty, n \ge 1, q_k^{(n)}(x) \to q_k(x), q_k^{(n)}(x, A) \to q_k(x, A), n \to \infty, x \in E, A \in \mathcal{E}, k = 1, 2$. Thus, $(q_k^{(n)}(x), q_k^{(n)}(x, dy))$ uniquely determines a q-process, denoted by $P_k^{(n)}(t) (k = 1, 2)$. We need to show that $(q_1^{(n)}(x), q_1^{(n)}(x, dy))$ and $(q_2^{(n)}(x), q_2^{(n)}(x, dy))$ are comparable on the state space $(E_n \cup \{b_n\}, (E_n \cup \{b_n\}) \cap \mathcal{E})$.

Note that the semi-order on E induces a semi-order on $(E_n \cup \{b_n\})$. Let \mathcal{M}_n denote the set of all bounded monotone functions on $(E_n \cup \{b_n\}, (E_n \cup \{b_n\}) \cap \mathcal{E})$. Clearly, if $B \in \mathcal{M}_n$, then $b_n \in B$ and $B \cup H_n \in \mathcal{M}$. And it is not difficult to prove that

$$\Omega_k^{(n)} I_B(x) = \Omega_k I_{B \cup H_n}(x), \qquad x \in E_n, \, k = 1, 2.$$
(2.2)

For all $x_1, x_2 \in E_n \cup \{b_n\}$ with $x_1 \leq x_2$ and $B \in \mathcal{M}_n$, if $x_2 \neq b_n$, then $x_1, x_2 \in E_n$. Combining (2.2) with (1.1), whenever $x_1, x_2 \in B$ or $x_1, x_2 \notin B$ (i.e. $x_1, x_2 \in E_n \setminus B$), we have $\Omega_1^{(n)} I_B(x_1) \leq \Omega_2^{(n)} I_B(x_2)$. If $x_2 = b_n$, then $x_2 \in B$. Thus, we have $\Omega_1^{(n)} I_B(x_1) \leq 0 = \Omega_2^{(n)} I_B(x_2)$ for all $x_1 \in B$. Therefore, $(q_1^{(n)}(x), q_1^{(n)}(x, dy))$ and $(q_2^{(n)}(x), q_2^{(n)}(x, dy))$ are comparable on $(E_n \cup \{b_n\}, (E_n \cup \{b_n\}) \cap \mathcal{E})$. In addition, they are bounded and totally stable q-pairs, possibly non-conservative. By [7; Proposition 8.1.4], E_n is Polish, hence $E_n \cup \{b_n\}$ is Polish. Then, by Theorem 1.3, we have $P_1^{(n)}(t) \leq P_2^{(n)}(t)$. Besides, by [3; Lemma 5.14], we know that

$$\lim_{n \to \infty} P_k^{(n)}(t, x, A \cap (E_n \cup \{b_n\})) = P_k(t, x, A), \qquad x \in E, A \in \mathcal{E}, t \ge 0, k = 1, 2.$$
(2.3)

Obviously, if $A \in \mathcal{M}$, then $A \cap (E_n \cup \{b_n\}) \in \mathcal{M}_n$. Therefore, the assertion follows, by combining (2.3) with $P_1^{(n)}(t) \leq P_2^{(n)}(t)$.

Acknowledgement The author thanks Professors Mufa Chen, S. Pirogov and Shaoyi Zhang for their helpful suggestions.

References

- [1] S Y Zhang. Existence and application of optimal Markovian coupling with respect to non-negative lower semi-continuous functions. Preprint 1998
- [2] M F Chen. On coupling of jump processes. Chin Ann of Math, 1991, 12B(4): 385-399
- [3] M F Chen. From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 1992
- M F Chen. A comment on the book "Continuous-Time Markov Chains" by W J Anderson. Chinese J Appl Prob Stat, 1996, 12(1): 55-59
- B M Kirstein. Monotonicity and comparability of time-homogeneous Markov processes with discrete state space. Math Operationsforsch Statist, 1976, 7: 151–168
- [6] Y H Zhang. A problem on the uniqueness of jump processes (in Chinese). Chinese J Appl Prob Stat, 1998, 14(1): 45-48
- [7] D L Cohn. Measure Theory. Boston: Birkhäuser, 1980