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Abstract This note is devoted to the study of the stochastic comparability of jump processes. On

the basis of [2] and [3], it is proved that two jump processes are stochastically comparable if and only

if their q-pairs are comparable. Meanwhile, the result concerning the uniqueness given in [6] is also

improved upon.
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1 Introduction

In the past twenty years or so, the coupling methods developed rapidly and had a very wide

range of applications. It is well known that the order-preserving couplings often play an im-

portant role in various applications. One problem arises naturally: Under what conditions for

marginal processes does there exist an order-preserving Markovian coupling? If so, then the two

marginal processes must be obviously stochastically comparable. Recently, Zhang [1] proved

the converse proposition in the context of jump processes. Hence, it is meaningful to study the

stochastic comparability of jump processes. In fact, the research on this topic has a long history

and some good results have been obtained; refer to [2{5]. The main purpose of this note is to

complete the work of [2] and [3], from which the main ideas of the proofs and the notations

originate. However, for the readers' convenience, we still recall a few of the notations here.

Suppose that (E; E) is a Polish space endowed with a measurable semi-order � and that

F = f(x1; x2) 2 E � E : x1 � x2g is a measurable closed set on E �E.
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De�nition 1.1 A measurable real function f is called monotone if for all x � y, f(x) � f(y).

Denote byM the set of all bounded monotone functions. A measurable set A is called monotone

if so is its indicator IA, denoted by A 2M. For two probability measures �1 and �2, we de�ne

�1 � �2; provided for every f 2M, �1f � �2f where �kf =
R
f(x)�k(dx).

De�nition 1.2 Two jump processes P1(t) and P2(t) are said to be stochastically comparable

if P1(t)f(x1) � P2(t)f(x2); f 2 M; x1 � x2; t � 0; where Pk(t)f(x) =
R
Pk(t; x; dy)f(y). We

write it as P1(t) � P2(t) brie
y. Two q-pairs (q1(x); q1(x; dy)) and (q2(x); q2(x; dy)) are called

comparable if for all A 2 M and x1 � x2, either x1; x2 2 A or x1; x2 =2 A, the following

inequality holds:


1IA(x1) � 
2IA(x2); (1.1)

where the operators 
k are de�ned by 
kf(x) =
R
qk(x; dy)f(y) � qk(x)f(x); x 2 E; f 2 bE .

Here, denote by bE the set of all bounded E-measurable functions.

The �rst main result of this paper can be stated as follows:

Theorem 1.3 Let (qk(x); qk(x; dy)) (k = 1; 2) be two bounded totally stable q-pairs, possibly

non-conservative. Denote by Pk(t) (k = 1; 2) the corresponding q-process. Then P1(t) � P2(t)

if and only if (q1(x); q1(x; dy)) and (q2(x); q2(x; dy)) are comparable.

To study the comparability of q-processes with unbounded q-pairs, we need some hypotheses

as follows (cf. [3; Hypothesis 5.30]).

Hypothesis 1.4 There exists a sequence of G� sets fEng
1
1 such that En " E (n!1) and

for all n � 1, (1) supx2En qk(x) < 1; k = 1; 2, (2) The set Hn = fy 2 E n En : there exists

x 2 En such that x � yg 2 M. Moreover, if Hn 6= ;, then there is a point bn 2 Hn so that

x � bn for all x 2 En.

In the cases where E = Rd; Zd; Rd

+ or Zd+ with the ordinary semi-order and where the two

q-pairs are locally bounded, Hypothesis 1.4 is trivial; refer to [3]. The following is the second

main result of this paper.

Theorem 1.5 Let (qk(x); qk(x; dy)) (k = 1; 2) be two regular q-pairs. Denote by Pk(t) (k =

1; 2) the correponding q-process. Under Hypothesis 1:4; P1(t) � P2(t) if and only if (q1(x);

q1(x; dy)) and (q2(x); q2(x; dy)) are comparable.

In addition, we can improve the result concerning the uniqueness given in [6] for jump

processes. The new conclusion is as follows.

Theorem 1.6 Let (q1(x); q1(x; dy)) be a totally stable and conservative q-pair and (q2(x);

q2(x; dy)) be a regular q-pair. Suppose that Hypothesis 1:4 holds and qk(x;E nEn) = qk(x;Hn),

x 2 E; k = 1; 2. If (q1(x); q1(x; dy)) and (q2(x); q2(x; dy)) are comparable, then (q1(x); q1(x; dy))

is regular, and furthermore P1(t) � P2(t).

Because Theorem 1.6 can be derived from the proof of Theorem 1.5 and [6] directly, we

omit the details of its proof in this note.
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2 Proofs

To prove Theorem 1.3, we need two lemmas as follows.

Lemma 2.1 Let Pk(xk; dyk) (k = 1; 2) be two transition probabilities on (E; E). If P1(x1; dy1)

� P2(x2; dy2) for all x1 � x2, then Pn
1 (x1; dy1) � Pn

2 (x2; dy2) for all x1 � x2 and n � 1.

Proof Assume that the conclusion holds for every n � m. By [1; Theorem 2.3], there exists a

coupling transition probability P (x1; x2; dy1; dy2) on (E�E; E�E) of P1(x1; dy1) and P2(x2; dy2)

such that P (x1; x2;F ) = 1 for all x1 � x2. Therefore, for every f 2M and x1 � x2, we have

Pm+1
1 f(x1)� Pm+1

2 f(x2) =

Z
E�E

P (x1; x2; dy1; dy2)
�
Pm

1 f(y1)� Pm

2 f(y2)
�

=

Z
F

P (x1; x2; dy1; dy2)
�
Pm

1 f(y1)� Pm

2 f(y2)
�
� 0:

So the assertion follows, by De�nition 1.1 and induction.

For an arbitrarily given point 4 =2 E, set E4 = E [ f4g and E4 = �(E [ f4g).

Let (q(x); q(x; dy)) be a q-pair on (E; E), de�ne a new conservative q-pair (~q(x); ~q(x; dy)) on

(E4; E4) as follows:

~q(x;A) = IE(x)
�
q(x;Anf4g)+(q(x)�q(x;E))IA(4)

�
; ~q(x) = IE(x)q(x); x 2 E4; A 2 E4:

Denote by Pmin(�) and ePmin(�) the Laplace transforms of the minimal q-processes determined

by the two q-pairs respectively. By Proof a) of [3; Theorem 3.2], we have the following lemma.

Lemma 2.2 Pmin(�) and ePmin(�) satisfy Pmin(�)IA(x) = ePmin(�)IA(x); A � E; x 2 E:

Proof of Theorem 1:3 The necessity has been proved by [3; Part (i) of Lemma 5.29]. We

only need to show the su�ciency. For this, we enlarge the state space E to E4 on which the

semi-order � is extended so that 4 � x for all x 2 E.

De�ne two q-pairs (~qk(x); ~qk(x; dy)) (k = 1; 2) on (E4; E4) as above. Obviously, no matter

whether the original q-pairs are conservative or not, the new q-pairs are bounded, totally stable

and conservative. Denote by M4 the set of all bounded monotone functions on (E4; E4). SeteP (�)
k

= I + 1
�
e
k (k = 1; 2) where � � supx2E q1(x) + supx2E q2(x). We need to show that

eP (�)
1 IA(x1) � eP (�)

2 IA(x2); x1; x2 2 E4; x1 � x2; A 2M4: (2.1)

In the case of 4 =2 A, if x1 = 4, then eP (�)
1 IA(x1) = 0 � eP (�)

2 IA(x2); if x1 6= 4, then

x1; x2 2 E; besides, because of 4 =2 A, we have A 2 M. For these x1 and x2, when-

ever x1; x2 2 A or x1; x2 =2 A, by (1.1), we have eP (�)
1 IA(x1) = IA(x1) +

1
�

1IA(x1) �

IA(x2) +
1
�

2IA(x2) = eP (�)

2 IA(x2): Next, if x1 =2 A and x2 2 A, due to the selection of �,

we have eP (�)
1 IA(x1) =

1
�
q1(x1; A) � 1 + 1

�
(q2(x2; A) � q2(x2)) = eP (�)

2 IA(x2): Finally, in the

case of 4 2 A, we have A = E4, and hence eP (�)
1 IA(x1) = 1 = eP (�)

2 IA(x2). Therefore,

(2.1) always holds. Note that eP (�)
k

(k = 1; 2) are two transition probabilities on the Pol-

ish space (E4; E4). By Lemma 2.1 and [3; Lemma 5.28], it follows that ( eP (�)
1 )mIA(x1) �

( eP (�)
2 )mIA(x2);m � 1: Moreover, because (~qk(x); ~qk(x; dy)) (k = 1; 2) are bounded q-pairs,
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we have ePk(t) = exp(te
k) = e��t
P1

m=0
(�t)m

m! ( eP (�)
k

)m: Hence, it follows that eP1(t)IA(x1) �eP2(t)IA(x2) for all x1; x2 2 E4 with x1 � x2 and A 2 M4. Thus, by Lemma 2.2, we have

P1(t)IA(x1) � eP2(t)IA(x2) for allx1; x2 2 E withx1 � x2 andA 2 M: Hence, by [3; Lemma

5.28] and De�nition 1.2, we deduce that P1(t) � P2(t).

Proof of Theorem 1:5 The necessity simply follows from the backward Kolmogorov equation;

refer to [4]. To prove the su�ciency, de�ne (cf. [3; Theorem 5.31])

q
(n)
k

(x;B) = qk(x;B); q
(n)
k

(x; fbng) = qk(x;Hn); x 2 En; B 2 En \ E ;

q
(n)
k

(x) = IEn(x)qk(x); n � 1; k = 1; 2:

Then we have supx2E q
(n)
k

(x) = supx2En qk(x) < 1; n � 1; q
(n)
k

(x) ! qk(x); q
(n)
k

(x;A) !

qk(x;A); n ! 1; x 2 E; A 2 E ; k = 1; 2: Thus, (q
(n)
k

(x); q
(n)
k

(x; dy)) uniquely determines

a q-process, denoted by P
(n)
k

(t) (k = 1; 2): We need to show that (q
(n)
1 (x); q

(n)
1 (x; dy)) and

(q
(n)
2 (x); q

(n)
2 (x; dy)) are comparable on the state space (En [ fbng; (En [ fbng) \ E).

Note that the semi-order on E induces a semi-order on (En[fbng). LetMn denote the set

of all bounded monotone functions on (En [ fbng; (En [ fbng) \ E). Clearly, if B 2 Mn, then

bn 2 B and B [Hn 2M. And it is not di�cult to prove that



(n)
k

IB(x) = 
kIB[Hn(x); x 2 En; k = 1; 2: (2.2)

For all x1; x2 2 En [ fbng with x1 � x2 and B 2Mn, if x2 6= bn, then x1; x2 2 En. Combining

(2.2) with (1.1), whenever x1; x2 2 B or x1; x2 =2 B (i.e. x1; x2 2 En nB), we have 

(n)
1 IB(x1) �



(n)
2 IB(x2). If x2 = bn, then x2 2 B. Thus, we have 


(n)
1 IB(x1) � 0 = 


(n)
2 IB(x2) for all

x1 2 B. Therefore, (q
(n)
1 (x); q

(n)
1 (x; dy)) and (q

(n)
2 (x); q

(n)
2 (x; dy)) are comparable on (En [

fbng; (En [ fbng) \ E). In addition, they are bounded and totally stable q-pairs, possibly non-

conservative. By [7; Proposition 8.1.4], En is Polish, hence En [ fbng is Polish. Then, by

Theorem 1.3, we have P
(n)
1 (t) � P

(n)
2 (t). Besides, by [3; Lemma 5.14], we know that

lim
n!1

P
(n)
k

(t; x;A \ (En [ fbng)) = Pk(t; x;A); x 2 E; A 2 E ; t � 0; k = 1; 2: (2.3)

Obviously, if A 2M, then A\(En[fbng) 2Mn. Therefore, the assertion follows, by combining

(2.3) with P
(n)
1 (t) � P

(n)
2 (t).
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