连续时间向上一致有限程马氏链的稳定性

张余辉

北京师范大学

（河南大学邀请报告，2024年1月10日）

此工作是与赵奕，间艳艳合作完成。

CONTENTS

(1) Background
(2) Ergodicity, strong ergodicity \& Laplace transform
(3) Recurrence \& uniqueness
4) Further work

Background

Stability:

- classical problems (uniqueness(cont.-time), recurrence, ergodicity(exp., strong ergodicity)).
- integral-type functionals: moments and distribution (Laplace transform).

$$
\int_{0}^{\tau_{0}} V(X(t)) \mathrm{d} t
$$

- qualitative and quantitative results.

Background

连续时间向上一致有限程马氏链？
Assume that Q is totally stable and conservative．
There exists such a positive integer $m \geqslant 1$ that

$$
q_{i, i+m}>0, q_{i j}=0(j>i+m), \text { upward. }
$$

（or

$$
\left.q_{i, i-m}>0, q_{i j}=0(0<j<i-m) . \text { downward }\right)
$$

Generally we call them m－birth and m－death respectively．
When $m=1$ ，single birth，single death．
－single birth：Yan \＆Chen（1986），Z．（2001）．［21 papers］
－single death：Z．（2018）［10 papers］
－m－birth \＆m－death：Z．（2023），uniqueness and recurrence．
－2－death：Z．\＆Zhao．（2024＋），invariant measures \＆ergodicity．
－2－birth：Yan，Z．\＆Zhao（2024＋）．

以 $\mathbb{E}_{i} \tau_{0}$ 为例

Given a totally stable，conservative and irreducible Q ．For its minimal process $X(t)$ ，denote

$$
\tau_{0}=\inf \{t>0: X(t)=0\} .
$$

It is well known that $\left(\mathbb{E}_{i} \tau_{0}: i \geqslant 1\right)$ is the minimal nonnegative solution to the equations

$$
x_{i}=\sum_{j \neq i, 0} \frac{q_{i j}}{q_{i}} \cdot x_{j}+\frac{1}{q_{i}}, \quad i \geqslant 1 .
$$

Approximation．Fix n ，define a totally stable and conservative $Q^{(n)}$ on $\{0,1, \cdots, n\}$ ：

$$
q_{i j}^{(n)}= \begin{cases}q_{i j}, & \text { if } 1 \leqslant i, j \leqslant n ; \\ q_{i 0}+\sum_{k>n} q_{i k}, & \text { if } 1 \leqslant i \leqslant n, j=0 .\end{cases}
$$

$\left(\mathbb{E}_{i} \tau_{0}^{(n)}: 1 \leqslant i \leqslant n\right)$ is the minimal nonnegative solution to the equations

$$
x_{i}=\sum_{1 \leqslant j \leqslant n, j \neq i} \frac{q_{i j}}{q_{i}} \cdot x_{j}+\frac{1}{q_{i}}, \quad 1 \leqslant i \leqslant n
$$

以 $\mathbb{E}_{i} \tau_{0}$ 为例

$$
x_{i}=\sum_{1 \leqslant j \leqslant n, j \neq i} \frac{q_{i j}}{q_{i}} \cdot x_{j}+\frac{1}{q_{i}}, \quad 1 \leqslant i \leqslant n
$$

Rewrite the above equation as $x=T^{(n)} x+f^{(n)}$ ，where the elements of $T^{(n)}$ and $f^{(n)}$ have the form

$$
T_{i j}^{(n)}=\frac{q_{i j}}{q_{i}} \mathbb{1}_{\{1 \leqslant i \neq j \leqslant n\}}, \quad f_{i}^{(n)}=\frac{1}{q_{i}} \mathbb{1}_{\{1 \leqslant i \leqslant n\}}, \quad i, j \in \mathbb{Z}_{+} .
$$

Then it is obvious that $T^{(n)}$ and $f^{(n)}$ are increasing in n in the element－wise sense．

$$
\mathbb{E}_{i} \tau_{0}^{(n)} \uparrow \mathbb{E}_{i} \tau_{0} \quad \text { as } \quad n \uparrow+\infty
$$

以 $\mathbb{E}_{i} \tau_{0}$ 为例

$$
x_{i}=\sum_{1 \leqslant j \leqslant n, j \neq i} \frac{q_{i j}}{q_{i}} \cdot x_{j}+\frac{1}{q_{i}}, \quad 1 \leqslant i \leqslant n .
$$

The equations can be rewritten as

$$
(I-\Pi) \mathbf{x}=\mathbf{r},
$$

where I is the $n \times n$ unit matrix， $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{\top}$ and $\mathbf{r}=\left(\frac{1}{q_{1}}, \cdots, \frac{1}{q_{n}}\right)^{\top}$ ．By the irreducibility of Q ，the local embedding chain is transient，

$$
(I-\Pi)^{-1}=\sum_{n=0}^{\infty} \Pi^{n}<\infty \Rightarrow \mathbf{x}=\sum_{n=0}^{\infty} \Pi^{n} \mathbf{r}
$$

there exists exactly a unique solution．The decomposition according to the first time arriving 0 ．

以 $\mathbb{E}_{i} \tau_{0}$ 为例

－Z．F．Wei．Inverse problems for ergodicity of Markov chains．J．Math．Anal． Appl． 505 （2022） 125483.

By Theorem 12 （with $\ell=1$ ），the minimal solution to Eq．（9）is the expectation of return time to state 0 of the $Q^{(n)}$－process and is therefore finite（by the probabilistic description of algebraic ergodicity mentioned in Section 1 and the fact that an irreducible process on finite state space must be ergodic），where $Q^{(n)}$ has the following form：

$$
Q^{(n)}=\left(\begin{array}{ccccc}
-n & 1 & 1 & \cdots & 1 \\
q_{10}+\sum_{k=n+1}^{\infty} q_{1, k} & q_{11} & q_{12} & \cdots & q_{1 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
q_{n 0}+\sum_{k=n+1}^{\infty} q_{n, k} & q_{n 1} & q_{n 2} & \cdots & q_{n n}
\end{array}\right)_{(n+1) \times(n+1)}
$$

Now by Theorem 10，M_{n} is finite．
b）By Theorem 12，$\left(\mathbf{E}_{i} \sigma_{0}^{\ell+1}\right)_{i \geqslant 1}$ is the minimal solution to

$$
x_{i}=\sum_{j \neq i} \frac{q_{i j}}{q_{i}} x_{j}+\frac{(\ell+1)}{q_{i}} \mathbf{E}_{i} \sigma_{0}^{\ell}, \quad i \geqslant 1
$$

以 2 生， $\mathbb{E}_{i} \tau_{0}$ 为例

Consider the 2－birth process．Now let $q_{i}^{(k)}=\sum_{\ell=0}^{k} q_{i \ell}$ for all $0 \leqslant k \leqslant i$ and

$$
\begin{aligned}
& F_{n}^{(n)}=1, \quad F_{i}^{(n)}=\frac{1}{q_{i, i+2}} \sum_{k=n}^{i-1} q_{i}^{(k+1)} F_{k}^{(n)}, \quad i>n \geqslant 0 ; \\
& d_{0}=0, \quad d_{i}=\frac{1}{q_{i, i+2}}\left(1+\sum_{k=0}^{i-1} q_{i}^{(k+1)} d_{k}\right), \quad i \geqslant 1 ; \\
& c_{0}=0, \quad c_{i}=\frac{1}{q_{i, i+2}}\left(-q_{i 1}+\sum_{k=0}^{i-1} q_{i}^{(k+1)} c_{k}\right), \quad i \geqslant 1 .
\end{aligned}
$$

遍历与强遍历准则

Theorem 1 （Regodicity \＆strong ergodicity）

Given a regular and irreducible 2－birth Q－matrix $Q=\left(q_{i j}\right)$ on \mathbb{Z}_{+}．Then

$$
\mathbb{E}_{k} \tau_{0}=\sum_{i=0}^{k-2} c_{i} \cdot \mathbb{E}_{1} \tau_{0}+\sum_{i=0}^{k-2} F_{i}^{(0)} \cdot \mathbb{E}_{2} \tau_{0}-\sum_{i=0}^{k-2} d_{i}, k \geqslant 3
$$

and as $n \rightarrow+\infty$ ，

$$
\begin{aligned}
& \mathbb{E}_{1} \tau_{0}^{(n)}=\frac{F_{n}^{(0)} \sum_{i=0}^{n-1} d_{i}-d_{n} \sum_{i=0}^{n-1} F_{i}^{(0)}}{F_{n}^{(0)} \sum_{i=0}^{n-1} c_{i}-c_{n} \sum_{i=0}^{n-1} F_{i}^{(0)}} \uparrow \quad D_{1}=: \mathbb{E}_{1} \tau_{0}, \\
& \mathbb{E}_{2} \tau_{0}^{(n)}=\frac{d_{n} \sum_{i=0}^{n-1} c_{i}-c_{n} \sum_{i=0}^{n-1} d_{i}}{F_{n}^{(0)} \sum_{i=0}^{n-1} c_{i}-c_{n} \sum_{i=0}^{n-1} F_{i}^{(0)}} \uparrow D_{2}=: \mathbb{E}_{2} \tau_{0} .
\end{aligned}
$$

Moreover，the process is erg．iff D_{1} and D_{2} is finite；str．erg．iff

$$
\sup _{n \geqslant 1}\left(\left(\sum_{i=0}^{n} c_{i}\right) D_{1}+\left(\sum_{i=0}^{n} F_{i}^{(0)}\right) D_{2}-\sum_{i=0}^{n} d_{i}\right)<+\infty
$$

以 2 生， $\mathbb{E}_{i} \tau_{0}$ 为例

Remark

Single birth case：
－Yan \＆Chen（1986），Z．（2003）．

$$
d:=\sup _{n \geqslant 1} \frac{\sum_{i=0}^{n-1} d_{i}}{\sum_{i=0}^{n-1} F_{i}^{(0)}}=\mathbb{E}_{1} \tau_{0} .
$$

－Chen \＆Z．（2014）．

$$
d:=\varlimsup_{n \rightarrow+\infty} \frac{\sum_{i=0}^{n-1} d_{i}}{\sum_{i=0}^{n-1} F_{i}^{(0)}} .
$$

$$
\mathbb{E}_{1} \tau_{0}^{(n)}=\frac{\sum_{i=0}^{n-1} d_{i}}{\sum_{i=0}^{n-1} F_{i}^{(0)}} \uparrow \quad \mathbb{E}_{1} \tau_{0}=d
$$

以 2 生， $\mathbb{E}_{i} \tau_{0}$ 为例

$$
\begin{gathered}
q_{i j}^{(n)}= \begin{cases}q_{i j}, & \text { if } 0 \leqslant i \leqslant n-2,0 \leqslant \\
q_{i j}, & \text { if } i=n-1, n, 1 \leqslant \\
q_{i 0}+q_{i, n+1}, & \text { if } i=n-1, j=0 \\
q_{i 0}+q_{i, n+1}+q_{i, n+2}, & \text { if } i=n, j=0 .\end{cases} \\
x_{i}=\sum_{1 \leqslant j \leqslant n, j \neq i} \frac{q_{i j}}{q_{i}} \cdot x_{j}+\frac{1}{q_{i}}, \quad 1 \leqslant i \leqslant n .
\end{gathered}
$$

Let $w_{i}=x_{i+1}-x_{i}$ for all $i \geqslant 1$ ．

$$
w_{i+1}=\sum_{k=1}^{i} \frac{F_{i}^{(k)}\left(-1+q_{k}^{(1)} x_{2}-q_{k 1} x_{1}\right)}{q_{k, k+2}}, 1 \leqslant i \leqslant n-2
$$

以 2 生， $\mathbb{E}_{i} \tau_{0}$ 为例

Hence for all $j \geqslant m+1$ we have

$$
\begin{aligned}
x_{j} & =\sum_{i=2}^{j-1} w_{i}+x_{2}=x_{2}\left(\sum_{i=1}^{j-2} F_{i}^{(0)}+1\right)+x_{1} \sum_{i=1}^{j-2} c_{i}-\sum_{i=0}^{j-2} d_{i} \\
& =\sum_{i=0}^{j-2} c_{i} \cdot x_{1}+\sum_{i=0}^{j-2} F_{i}^{(0)} \cdot x_{2}-\sum_{i=0}^{j-2} d_{i} .
\end{aligned}
$$

－Rewrite the equation as

$$
\left\{\begin{array}{l}
x_{i}=\sum_{k=1, k \neq i}^{i+2} \frac{q_{i k}}{q_{i}} \cdot x_{k}+\frac{1}{q_{i}}, \quad 1 \leqslant i \leqslant n-2 \\
x_{n-1}=\sum_{k=1}^{n-2} \frac{q_{n-1, k}}{q_{n-1}} \cdot x_{k}+\frac{q_{n-1, n}}{q_{n-1}} \cdot x_{n}+\frac{1}{q_{n-1}} \\
x_{n}=\sum_{k=1}^{n-1} \frac{q_{n k}}{q_{n}} \cdot x_{k}+\frac{1}{q_{n}}
\end{array}\right.
$$

以 2 生， $\mathbb{E}_{i} \tau_{0}$ 为例

－Solving the above equations we could derive that

$$
D^{(n)} \mathbf{x}=\mathbf{h}^{(n)}, \quad \text { i.e. } \quad\left\{\begin{array}{l}
d_{11}^{(n)} x_{1}+d_{12}^{(n)} x_{2}=h_{1}^{(n)}, \\
d_{21}^{(n)} x_{1}+d_{22}^{(n)} x_{2}=h_{2}^{(n)},
\end{array}\right.
$$

where $h_{1}^{(n)}=\sum_{k=0}^{n-1} d_{k}$ and $h_{2}^{(n)}=d_{n}$ ．
－The assertion follows immediately by applying Cramer＇s rule．
－For general $i_{0} \geqslant 1$ ，the method also works．

$$
x_{i}=\frac{1}{q_{i}} \sum_{k \notin\left\{i_{0}, i\right\}} q_{i k} x_{k}+\frac{1}{q_{i}}, \quad i \neq i_{0} .
$$

－For higher moments $\mathbb{E}_{i} \tau_{0}^{\ell}, \ell>1$ ，it can be expressed by lower moments．

Laplace transform of $\tau_{0}, m=2$

- Now we turn to focus on $\mathbb{E}_{i} \mathrm{e}^{-\lambda \tau_{0}}(i \geqslant 0)$ to investigate the distribution of τ_{0}.
- Define $\psi_{i, i_{0}}(\lambda)=1-\mathbb{E}_{i} \mathrm{e}^{-\lambda \xi_{i_{0}}}$.

Lemma (Z.-T. Hou and Q.-F. Guo, 1978)

$\left(\psi_{i, i_{0}}(\lambda): i \geqslant 0\right)$ is the minimal nonnegative solution to:

$$
y_{i}=\sum_{k \neq i, i_{0}} \frac{q_{i k}}{\lambda V(i)+q_{i}} \cdot y_{k}+\frac{\lambda V(i)}{\lambda V(i)+q_{i}}, i \geqslant 0 .
$$

- Here $V \equiv 1, i_{0}=0$.

Laplace transform of $\tau_{0}, m=2$

Let $\tilde{q}_{i}^{(j)}:=q_{i}^{(j)}+\lambda$ for $0 \leqslant j<i$ and let $\tilde{q}_{i}^{(i)}:=q_{i}^{(i)}$. Correspondingly, we define the following notations.

$$
\begin{aligned}
& \tilde{F}_{n}^{(n)}=1, \quad \tilde{F}_{i}^{(n)}=\frac{1}{q_{i, i+2}} \sum_{k=n}^{i-1} \tilde{q}_{i}^{(k+1)} \tilde{F}_{k}^{(n)}, 0 \leqslant n<i, \\
& \tilde{c}_{0}=0, \quad \tilde{c}_{i}=\frac{1}{q_{i, i+2}}\left(-q_{i 1}+\sum_{k=0}^{i-1} \tilde{q}_{i}^{(k+1)} \tilde{c}_{k}\right), i \geqslant 1, \\
& \tilde{d}_{0}=0, \quad \tilde{d}_{i}=\frac{1}{q_{i, i+2}}\left(\lambda+\sum_{k=0}^{i-1} \tilde{q}_{i}^{(k+1)} \tilde{d}_{k}\right), i \geqslant 1,
\end{aligned}
$$

Laplace transform of $\tau_{0}, m=2$

Theorem 2 (Laplace transform)

Assume that the 2-birth Q-matrix $Q=\left(q_{i j}\right)$ is irreducible and the corresponding process is recurrent. Then the following relations holds:

$$
\psi_{i 0}(\lambda)=\sum_{k=0}^{i-2} \tilde{c}_{k} \cdot \psi_{10}(\lambda)+\sum_{k=0}^{i-2} \tilde{F}_{k}^{(0)} \cdot \psi_{20}(\lambda)-\sum_{\ell=0}^{i-2} \tilde{d}_{\ell}, \quad i \geqslant 3
$$

and the Laplace transform of τ_{0} has the representation that

$$
\begin{aligned}
& \mathbb{E}_{1} \mathrm{e}^{-\lambda \tau_{0}}=1-\lim _{n \rightarrow \infty} \frac{\tilde{F}_{n}^{(0)} \sum_{i=0}^{n-1} \tilde{d}_{i}-\tilde{d}_{n} \sum_{i=0}^{n-1} \tilde{F}_{i}^{(0)}}{\tilde{F}_{n}^{(0)} \sum_{i=0}^{n-1} \tilde{c}_{i}-\tilde{c}_{n} \sum_{i=0}^{n-1} \tilde{F}_{i}^{(0)}}, \\
& \mathbb{E}_{2} \mathrm{e}^{-\lambda \tau_{0}}=1-\lim _{n \rightarrow \infty} \frac{\tilde{d}_{n} \sum_{i=0}^{n-1} \tilde{c}_{i}-\tilde{c}_{n} \sum_{i=0}^{n-1} \tilde{d}_{i}}{\tilde{F}_{n}^{(0)} \sum_{i=0}^{n-1} \tilde{c}_{i}-\tilde{c}_{n} \sum_{i=0}^{n-1} \tilde{F}_{i}^{(0)}}, \\
& \mathbb{E}_{0} \mathrm{e}^{-\lambda \sigma_{0}}=\frac{q_{01}}{q_{0}+\lambda} \mathbb{E}_{1} \mathrm{e}^{-\lambda \tau_{0}}+\frac{q_{02}}{q_{0}+\lambda} \mathbb{E}_{2} \mathrm{e}^{-\lambda \tau_{0}} .
\end{aligned}
$$

Example

Example

Given a regular and irreducible single death Q-matrix $Q=\left(q_{i j}\right)$ satisfying:

$$
q_{i, i-1}=a \geqslant 0, \quad q_{i, i+1}=b \geqslant 0, \quad q_{i, i+2}=d>0, \quad i \geqslant 1,
$$

and $q_{i j}=0$ for other $i, j \geqslant 1, i \neq j$. Then the process is recurrent if and only if $a \geqslant b+2 d$ and it is ergodic if and only if $a>b+2 d$. Moreover in the recurent case, starting form $j \geqslant 1$, the moment of the hitting time of 0 has the form:

$$
\mathbb{E}_{j} \tau_{0}=\frac{j}{a-b-2 d}, \quad j \geqslant 1
$$

Therefore the process could not be strongly ergodic.

- It can be regarded both as 2-birth processes and single death process.
- For single death processes, $\mathbb{E}_{j} \tau_{0}=\sum_{k=1}^{j} \sum_{\ell=k}^{\infty} \frac{G_{k}^{(\ell)}}{q_{\ell, \ell-1}}, \quad j \geqslant 1$.

Laplace transform of integral-type functionals, $m=2$

- For general V, the method also works.

$$
x_{i}=\sum_{k \neq i, i_{0}} \frac{q_{i k}}{\lambda V(i)+q_{i}} \cdot x_{k}+\frac{\lambda V(i)}{\lambda V(i)+q_{i}}, i \geqslant 0 .
$$

Theorem 3 (Recurrence)

Assume that the 2 -birth Q-matrix $Q=\left(q_{i j}\right)$ is irreducible. Then recur. iff

$$
\lim _{n \rightarrow \infty} \frac{q_{01} F_{n}^{(0)}-q_{02} c_{n}}{F_{n}^{(0)} \sum_{k=0}^{n-1} c_{k}-c_{n} \sum_{k=0}^{n-1} F_{k}^{(0)}}=0 .
$$

Moreover the return/extinction probability can be obtained by

$$
\begin{aligned}
& \mathbb{P}_{0}\left(\sigma_{0}<\infty\right)=1-\frac{1}{q_{0}} \lim _{n \rightarrow \infty} \frac{q_{01} F_{n}^{(0)}-q_{02} c_{n}}{F_{n}^{(0)} \sum_{k=0}^{n-1} c_{k}-c_{n} \sum_{k=0}^{n-1} F_{k}^{(0)}}, \\
& \mathbb{P}_{1}\left(\sigma_{0}<\infty\right)=1-\lim _{n \rightarrow \infty} \frac{F_{n}^{(0)}}{F_{n}^{(0)} \sum_{k=0}^{n-1} c_{k}-c_{n} \sum_{k=0}^{n-1} F_{k}^{(0)}}, \\
& \mathbb{P}_{2}\left(\sigma_{0}<\infty\right)=1+\lim _{n \rightarrow \infty} \frac{c_{n}}{F_{n}^{(0)} \sum_{k=0}^{n-1} c_{k}-c_{n} \sum_{k=0}^{n-1} F_{k}^{(0)}}, \\
& \mathbb{P}_{i}\left(\sigma_{0}<\infty\right)=1-\lim _{n \rightarrow \infty} \frac{F_{n}^{(0)} \sum_{k=0}^{i-2} c_{k}-c_{n} \sum_{k=0}^{i-2} F_{k}^{(0)}}{F_{n}^{(0)} \sum_{k=0}^{n-1} c_{k}-c_{n} \sum_{k=0}^{n-1} F_{k}^{(0)}}, i \geqslant 3 .
\end{aligned}
$$

Recurrence \& uniqueness

Fix $n \in \mathbb{Z}_{+}$, define the first hitting time of the set $\{n+1, n+2, \cdots\}$:

$$
\begin{aligned}
& \tau_{n+}=\inf \{t>0: X(t) \geqslant n+1\} \\
& \text { recur. } \Leftrightarrow \lim _{n \rightarrow+\infty} \mathbb{P}_{i}\left(\tau_{n+}<\sigma_{0}\right)=0 .
\end{aligned}
$$

Denote $x_{i}:=\mathbb{P}_{i}\left(\tau_{n+}<\sigma_{0}\right), i \geqslant 0$. By the strong Markov property and jump as well as 2 -birth property of the process, it is obtained that

$$
\left\{\begin{array}{l}
x_{0}=\frac{q_{01}}{q_{0}} \cdot x_{1}+\frac{q_{02}}{q_{0}} \cdot x_{2} \\
x_{i}=\sum_{j=1}^{i-1} \frac{q_{i j}}{q_{i}} \cdot x_{j}+\frac{q_{i, i+1}}{q_{i}} \cdot x_{i+1}+\frac{q_{i, i+2}}{q_{i}} \cdot x_{i+2}, \quad 1 \leqslant i \leqslant n-2 \\
x_{n-1}=\sum_{j=1}^{n-2} \frac{q_{n-1, j}}{q_{n-1}} \cdot x_{j}+\frac{q_{n-1, n}}{q_{n-1}} \cdot x_{n}+\frac{q_{n-1, n+1}}{q_{n-1}} \\
x_{n}=\sum_{j=1}^{n-1} \frac{q_{n, j}}{q_{n}} \cdot x_{j}+\frac{q_{n, n+1}+q_{n, n+2}}{q_{n}}
\end{array}\right.
$$

Recurrence \& uniqueness

Theorem 4 (Uniqueness)

Assume that the 2 -birth Q-matrix $\hat{Q}=\left(\hat{q}_{i j}\right)_{i, j \in \mathbb{Z}_{+}}$is totally stable and conservative. Define an irreducible, totally stable and conservative Q-matrix Q on \mathbb{Z}_{+}:

$$
q_{01}=q_{02}=1, q_{0 j}=0, j>2 ; q_{i 0}=1, q_{i j}=\hat{q}_{i-1, j-1}, i, j \geqslant 1, j \neq i .
$$

Then the process determined by \hat{Q} is unique iff

$$
\lim _{n \rightarrow \infty} \frac{F_{n}^{(0)}-c_{n}}{F_{n}^{(0)} \sum_{k=0}^{n-1} c_{k}-c_{n} \sum_{k=0}^{n-1} F_{k}^{(0)}}=0 .
$$

Recurrence \& uniqueness

- uniqueness:

$$
\begin{gathered}
u_{i}=\sum_{j \neq i} \frac{q_{i j}}{1+q_{i}} u_{j}, \quad 0 \leqslant u_{i} \leqslant 1, i \geqslant 0, \\
u=\Pi(1) u .
\end{gathered}
$$

We introduce a fictitious state Δ and define on the enlarged state space $E_{\Delta}=E \cup\{\Delta\}$ a new transition probability matrix

$$
\Pi_{i j}^{\Delta}(1)= \begin{cases}\Pi(1), & i, j \in E \\ \frac{1}{1+q_{i}}, & i \in E, j=\Delta \\ p_{j}, & i=\Delta, j \in E\end{cases}
$$

where $\left(p_{j}, j \in E\right)$ is a positive probability measure.

Theorem

The original Q-process is unique iff the $\Pi^{\Delta}(1)$-chain is recurrent.

Recurrence \& uniqueness

	Δ	0	1	2	3	\cdots
Δ	-1	p_{0}	p_{1}	p_{2}	p_{3}	\cdots
0	1	$-1-q_{0}$	q_{01}	q_{02}	q_{03}	\cdots
1	1	q_{10}	$-1-q_{1}$	q_{12}	q_{13}	\cdots
2	1	q_{20}	q_{21}	$-1-q_{2}$	q_{23}	\cdots
3	1	q_{30}	q_{31}	q_{32}	$-1-q_{3}$	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

Further work

- Exponential moment \& exponential ergodicity: $\left(\mathbb{E}_{i} \mathrm{e}^{\lambda \tau_{0}}-1, i \geqslant 1\right)$ is the minimal nonnegative solution to

$$
x_{i}=\sum_{j \neq i, 0} \frac{q_{i j}}{q_{i}-\lambda} \cdot x_{j}+\frac{\lambda}{q_{i}-\lambda}, i \geqslant 1,
$$

where $0<\lambda<q_{i}$ for all i.
In the single birth case, let $\tilde{q}_{i}^{(k)}=q_{i}^{(k)}-\lambda, \tilde{d}_{i}=\cdots, \tilde{F}_{i}^{(k)}=\cdots$. Now the approximating equation is

$$
\begin{gathered}
x_{i}=\sum_{j=1}^{i-1} \frac{q_{i j}}{q_{i}-\lambda} \cdot x_{j}+\frac{q_{i, i+1}}{q_{i}-\lambda} \cdot x_{i+1}+\frac{\lambda}{q_{i}-\lambda}, 1 \leqslant i \leqslant n-1 \\
x_{n}=\sum_{j=1}^{n-1} \frac{q_{n j}}{q_{n}-\lambda} \cdot x_{j}+\frac{\lambda}{q_{n}-\lambda} .
\end{gathered}
$$

Further work

Then

$$
w_{i}=x_{i+1}-x_{i}=\tilde{F}_{i}^{(0)} x_{1}-\lambda \tilde{d}_{i}, 1 \leqslant i<n
$$

Further

$$
x_{i}=\sum_{k=0}^{i-1}\left(\tilde{F}_{k}^{(0)} x_{1}-\lambda \tilde{d}_{k}\right), 1 \leqslant i \leqslant n
$$

Substituting it into

$$
\left(q_{n}-\lambda\right) x_{n}=\sum_{j=1}^{n-1} q_{n j} x_{j}+\lambda
$$

we have

$$
x_{1}=\frac{\lambda \sum_{k=0}^{n} \tilde{d}_{k}}{\sum_{k=0}^{n} \tilde{F}_{k}^{(0)}}=\mathbb{E}_{1} \mathrm{e}^{\lambda \tau_{0}^{(n)}}-1 .
$$

$$
\exp . \operatorname{ergoc} \Leftrightarrow \exists 0<\lambda<q_{i}(i \geqslant 0) \text { s.t. } \frac{\sum_{k=0}^{n} \tilde{d}_{k}}{\sum_{k=0}^{n} \tilde{F}_{k}^{(0)}} \uparrow \tilde{d}<+\infty .
$$

Further work

- For m-death?

Given a regular and irreducible single death Q-matrix $Q=\left(q_{i j}\right)$ on \mathbb{Z}_{+}. Then it follows that

$$
\mathbb{E}_{i} \tau_{0}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{i} \sum_{\ell=k}^{n} \frac{G_{k}^{(\ell)}}{q_{\ell, \ell-1}}-\sum_{k=1}^{i} G_{k}^{(n+1)} \cdot \frac{\sum_{k=1}^{n} \sum_{\ell=k}^{n} \frac{G_{k}^{(\ell)}}{q_{\ell, \ell-1}}}{\sum_{k=1}^{n+1} G_{k}^{(n+1)}}\right), i \geqslant 1
$$

[Z., Front. Math. China 2018]

$$
\mathbb{E}_{i} \tau_{0}=\sum_{k=1}^{i} \sum_{\ell=k}^{+\infty} \frac{G_{k}^{(\ell)}}{q_{\ell, \ell-1}}, i \geqslant 1
$$

For 2-death?

Further work

- QSD? 2-death?
- Y.-Y. Li \&J.-P. Li. Down/up crossing properties of weighted Markov collision processes. Front. Math. China 2021, 16(2): 525-542.

$$
q_{i j}= \begin{cases}w_{i} b_{j-i+2}, & i \geqslant 2, j \geqslant i-2 \\ 0, & \text { otherwise }\end{cases}
$$

where $b_{j} \geqslant 0(j \neq 2), 0<-b_{2}=\sum_{j \neq 2} b_{j}<+\infty$, $w_{i}>0(i \geqslant 2)$.
They consider the $(\mathbb{S}-2)$-range crossing number of the process until its extinction, i.e., the joint probability distribution of the $|\mathbb{S}|$-dimensional random vector $\left(Y(t)=\left(Y_{i}(t), i \in \mathbb{S}\right)\right.$, where $Y_{i}(t)$ is the $(i-2)$-step crossing number of the process until $X(t)$'s extinction.

$$
\mathbb{S}=\{0,1\},\{k\},\{0,1, k\}(k \geqslant 3),(X(t), Y(t))
$$

Dual method? 2-birth?

Thank you for your attention!

Homepage: http://math0.bnu.edu.cn/~zhangyh/

