Harmonic mean curvature flow and geometric inequalities

Haizhong Li (Tsinghua University)

Beijing Normal University, Beijing

June 5, 2019
This talk is based on the joint work with Ben Andrews (Australia National University) and Yingxiang Hu (YMSc, Tsinghua University).

OUTLINE

1. Isoperimetric inequality in Euclidean space

2. Alexandrov-Fenchel inequality in Euclidean space

3. Alexandrov-Fenchel inequality in hyperbolic space

4. Main results
ISOOPERIMETRIC INEQUALITY IN \mathbb{R}^n

One of the most well-known geometric inequalities for hypersurfaces in \mathbb{R}^n is \textit{isoperimetric inequality}:

For any bounded domain $\Omega \subset \mathbb{R}^n$ with boundary $\Sigma = \partial \Omega$, we have

$$|\Sigma| \geq \omega_{n-1} \left(\frac{n |\Omega|}{\omega_n} - 1 \right)^{\frac{1}{n-1}},$$

where ω_{n-1} is the area of the unit sphere $S_{n-1} \subset \mathbb{R}^n$. Equality holds iff Ω is a geodesic ball.

Remark. Isoperimetric inequality imposes \textit{NO} convexity assumption on Σ.
One of the most well-known geometric inequalities for hypersurfaces in \mathbb{R}^n is \textit{isoperimetric inequality}:

For any bounded domain $\Omega \subset \mathbb{R}^n$ with boundary $\Sigma = \partial \Omega$, we have

$$|\Sigma| \geq \omega_{n-1} \left(\frac{n|\Omega|}{\omega_{n-1}} \right)^{\frac{n-1}{n}},$$

where ω_{n-1} is the area of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$. Equality holds iff Ω is a geodesic ball.
Isoperimetric inequality in \mathbb{R}^n

One of the most well-known geometric inequalities for hypersurfaces in \mathbb{R}^n is *isoperimetric inequality*:

For any bounded domain $\Omega \subset \mathbb{R}^n$ with boundary $\Sigma = \partial \Omega$, we have

$$|\Sigma| \geq \omega_{n-1} \left(\frac{n|\Omega|}{\omega_{n-1}} \right)^{\frac{n-1}{n}},$$

where ω_{n-1} is the area of the unit sphere $S^{n-1} \subset \mathbb{R}^n$. Equality holds iff Ω is a geodesic ball.

Remark. Isoperimetric inequality imposes NO convexity assumption on Σ.
Let $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ be the principal curvatures of a hypersurface $\Sigma \subset \mathbb{R}^n$.

AF INEQUALITY IN \mathbb{R}^n

Let $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ be the principal curvatures of a hypersurface $\Sigma \subset \mathbb{R}^n$.

Alexandrov-Fenchel inequality:

For any closed convex hypersurface $\Sigma \subset \mathbb{R}^n$, we have

$$
\int_{\Sigma} p_m(\kappa) \, d\mu \geq \omega_{m-l}^{n-1-l} \left(\int_{\Sigma} p_l(\kappa) \, d\mu \right)^{n-1-m},
$$

where $0 \leq l < m \leq n-1$.

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{R}^n

- Let $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ be the principal curvatures of a hypersurface $\Sigma \subset \mathbb{R}^n$.
- The (normalized) m-th mean curvature p_m of Σ is

$$p_0 = 1, \quad p_m(\kappa) = \frac{1}{C^m_{n-1}} \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq n-1} \kappa_{i_1} \cdots \kappa_{i_m}.$$
AF INEQUALITY IN \mathbb{R}^n

- Let $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ be the principal curvatures of a hypersurface $\Sigma \subset \mathbb{R}^n$.

- The (normalized) m-th mean curvature p_m of Σ is

$$p_0 = 1, \quad p_m(\kappa) = \frac{1}{C_{n-1}^m} \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq n-1} \kappa_{i_1} \cdots \kappa_{i_m}.$$

The natural generalization of isoperimetric inequality in \mathbb{R}^n is

Alexandrov-Fenchel inequality:
AF INEQUALITY IN \mathbb{R}^n

- Let $\kappa = (\kappa_1, \cdots, \kappa_{n-1})$ be the principal curvatures of a hypersurface $\Sigma \subset \mathbb{R}^n$.
- The (normalized) m-th mean curvature p_m of Σ is
 \[p_0 = 1, \quad p_m(\kappa) = \frac{1}{C_{n-1}^m} \sum_{1 \leq i_1 < i_2 < \cdots < i_m \leq n-1} \kappa_{i_1} \cdots \kappa_{i_m}. \]

The natural generalization of isoperimetric inequality in \mathbb{R}^n is

Alexandrov-Fenchel inequality:

ALEXANDROV-FENCHEL INEQUALITY IN \mathbb{R}^n

For any closed convex hypersurface $\Sigma \subset \mathbb{R}^n$, we have

\[\int_{\Sigma} p_m(\kappa) d\mu \geq \omega_{n-1}^{\frac{m}{n-1-l}} \left(\int_{\Sigma} p_l(\kappa) d\mu \right)^{\frac{n-1-m}{n-1-l}}, \quad 0 \leq l < m \leq n-1. \]

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{R}^n

Taking $l = 0$, for any closed convex hypersurface $\Sigma \subset \mathbb{R}^n$, we have

$$\int_{\Sigma} p_m(\kappa) d\mu \geq \omega_{n-1} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-1-m}{n-1}}, \quad 1 \leq m \leq n - 1.$$

Equality holds iff Σ is a geodesic sphere.
AF inequality in \mathbb{R}^n

Taking $l = 0$, for any closed convex hypersurface $\Sigma \subset \mathbb{R}^n$, we have

$$\int_{\Sigma} p_m(\kappa) d\mu \geq \omega_{n-1} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-1-m}{n-1}}, \quad 1 \leq m \leq n - 1.$$

Equality holds iff Σ is a geodesic sphere.

Isoperimetric inequality imposes NO convexity assumption, so it is natural to weaken convexity assumption for AF inequality.
Taking $l = 0$, for any closed convex hypersurface $\Sigma \subset \mathbb{R}^n$, we have

$$\int_{\Sigma} p_m(\kappa) d\mu \geq \omega_{n-1} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-1-m}{n-1}}, \quad 1 \leq m \leq n - 1.$$

Equality holds iff Σ is a geodesic sphere.

Isoperimetric inequality imposes NO convexity assumption, so it is natural to weaken convexity assumption for AF inequality.

- A hypersurface Σ is called *starshaped*, if $\langle \partial_r, \nu \rangle > 0$ on Σ, where ν is the unit outward normal of Σ and ∂_r is the radial vector, respectively.
AF INEQUALITY IN \mathbb{R}^n

Taking $l = 0$, for any closed \textit{convex} hypersurface $\Sigma \subset \mathbb{R}^n$, we have

$$\int_{\Sigma} p_m(\kappa) d\mu \geq \omega_{n-1} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-1-m}{n-1}}, \quad 1 \leq m \leq n-1.$$

Equality holds iff Σ is a geodesic sphere.

Isoperimetric inequality imposes \textit{NO} convexity assumption, so it is natural to weaken convexity assumption for AF inequality.

- A hypersurface Σ is called \textit{starshaped}, if $\langle \partial r, \nu \rangle > 0$ on Σ, where ν is the unit outward normal of Σ and ∂r is the radial vector, respectively.

- A hypersurface Σ is called \textit{m-convex}, if $p_i(\kappa) > 0$ for $i = 1, \cdots, m$ everywhere on Σ.
By using the smooth convergence of inverse curvature flows in \mathbb{R}^n by C. Gerhardt (1990) and J. Urbas (1990), Pengfei Guan and Junfang Li proved that

Theorem, P. Guan and J. Li, 2009, Adv. Math.

If hypersurface $\Sigma \subset \mathbb{R}^n (n \geq 3)$ is *star-shaped* and *m-convex*, then

$$\int_{\Sigma} \rho_m(\kappa) d\mu \geq \omega_{n-1} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-1-m}{n-1}}, \quad 1 \leq m \leq n-1.$$

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{R}^n

By using the smooth convergence of inverse curvature flows in \mathbb{R}^n by C. Gerhardt (1990) and J. Urbas (1990), Pengfei Guan and Junfang Li proved that

Theorem, P. Guan and J. Li, 2009, Adv. Math.

If hypersurface $\Sigma \subset \mathbb{R}^n (n \geq 3)$ is star-shaped and m-convex, then

$$\int_{\Sigma} \rho_m(\kappa) d\mu \geq \omega_{n-1} \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-1-m}{n-1}}, \quad 1 \leq m \leq n-1.$$

Equality holds iff Σ is a geodesic sphere.
For $n = 2$, for a simple closed curve γ in \mathbb{H}^2, we have

$$L^2 \geq 4\pi V + V^2,$$

where L is the length of γ and V is the volume of the domain enclosed by γ. Moreover, Equality holds if and only if γ is a circle.
For $n = 2$, for a simple closed curve γ in \mathbb{H}^2, we have

$$L^2 \geq 4\pi V + V^2,$$

where L is the length of γ and V is the volume of the domain enclosed by γ. Moreover, Equality holds if and only if γ is a circle.

For $n \geq 3$, the isoperimetric inequality in \mathbb{H}^n was proved by E. Schmidt (1940), but the explicit expression is rare.
AF INEQUALITY IN \mathbb{H}^n

In 2011, C. Gerhardt established the smooth convergence of inverse curvature flows in hyperbolic space.
AF INEQUALITY IN \mathbb{H}^n

In 2011, C. Gerhardt established the smooth convergence of inverse curvature flows in hyperbolic space.

Problem

Establish an analogue of Alexandrov-Fenchel inequality in \mathbb{H}^n.
AF INEQUALITY IN \mathbb{H}^n

In 2011, C. Gerhardt established the smooth convergence of inverse curvature flows in hyperbolic space.

PROBLEM

Establish an analogue of Alexandrov-Fenchel inequality in \mathbb{H}^n.

Joint with Yong Wei and Changwei Xiong, we apply the inverse curvature flow to obtain

If hypersurface $\Sigma \subset \mathbb{H}^n (n \geq 3)$ is starshaped and 2-convex, then

$$\int_{\Sigma} p_2 \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right) + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{n-3}{n-1}} \right].$$

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{H}^n

The proof of Li-Wei-Xiong’s inequality consists of four steps:
AF INEQUALITY IN \mathbb{H}^n

The proof of Li-Wei-Xiong’s inequality consists of four steps:

- The convergence result of inverse curvature flows $\partial_t X = \frac{p_1}{p_2} \nu$ in \mathbb{H}^n by C. Gerhardt;
The proof of Li-Wei-Xiong’s inequality consists of four steps:

- The convergence result of inverse curvature flows \(\partial_t X = \frac{p_1}{p_2} \nu \) in \(\mathbb{H}^n \) by C. Gerhardt;
- The preservation of 2-convexity along this flow;
AF INEQUALITY IN \mathbb{H}^n

The proof of Li-Wei-Xiong’s inequality consists of four steps:

- The convergence result of inverse curvature flows $\partial_t X = \frac{p_1}{p_2} \nu$ in \mathbb{H}^n by C. Gerhardt;
- The preservance of 2-convexity along this flow;
- The monotonicity of

$$Q(t) = |\Sigma_t|^{-\frac{n-3}{n-1}} \int_{\Sigma} (p_2 - 1),$$

where the 2-convexity of Σ_t plays an essential role;
AF INEQUALITY IN \mathbb{H}^n

The proof of Li-Wei-Xiong’s inequality consists of four steps:

- The convergence result of inverse curvature flows $\partial_t X = \frac{p_1}{p_2} \nu$ in \mathbb{H}^n by C. Gerhardt;
- The preservance of 2-
convexity along this flow;
- The monotonicity of

$$Q(t) = |\Sigma_t|^{-\frac{n-3}{n-1}} \int_{\Sigma} (p_2 - 1),$$

where the 2-
convexity of Σ_t plays an essential role;
- The Sobolev inequality by W. Beckner (1993), which is used to show

$$\lim_{t \to \infty} Q(t) \geq \omega^{\frac{2}{n-1}}_{n-1}.$$
Arising naturally from Li-Wei-Xiong’s inequality, the following Conjecture is still *open*:

\[\text{AF INEQUALITY IN } \mathbb{H}^n \]

Equality holds iff \(\Sigma \) is a geodesic sphere.

Remark. This verifies the Conjecture for the case \(k = 2 \).
AF INEQUALITY IN \mathbb{H}^n

Arising naturally from Li-Wei-Xiong’s inequality, the following Conjecture is still open:

Conjecture

Let $1 \leq k \leq n - 1$. Any *starshaped* and *k-convex* hypersurface $\Sigma \subset \mathbb{H}^n$ satisfies

$$\int_{\Sigma} p_k \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{2}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{2}{k} \frac{n-1-k}{n-1}} \right]^{\frac{k}{2}}.$$

Equality holds iff Σ is a geodesic sphere.
Arising naturally from Li-Wei-Xiong’s inequality, the following Conjecture is still open:

Conjecture

Let \(1 \leq k \leq n - 1 \). Any starshaped and \(k \)-convex hypersurface \(\Sigma \subset \mathbb{H}^n \) satisfies

\[
\int_{\Sigma} p_k \geq \omega_{n-1} \left[\left(\frac{\|\Sigma\|}{\omega_{n-1}} \right)^{\frac{2}{k}} + \left(\frac{\|\Sigma\|}{\omega_{n-1}} \right)^{\frac{2}{k} \frac{n-1-k}{n-1}} \right]^{\frac{k}{2}} .
\]

Equality holds iff \(\Sigma \) is a geodesic sphere.

Remark.

- This verifies the Conjecture for the case \(k = 2 \).
AF INEQUALITY IN \mathbb{H}^n

Arising naturally from Li-Wei-Xiong’s inequality, the following Conjecture is still open:

Conjecture

Let $1 \leq k \leq n - 1$. Any *starshaped* and *k-convex* hypersurface $\Sigma \subset \mathbb{H}^n$ satisfies

$$\int_{\Sigma} p_k \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{2}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{2}{k} \frac{n-1-k}{n-1}} \right]^{\frac{k}{2}}.$$

Equality holds iff Σ is a geodesic sphere.

Remark.

- This verifies the Conjecture for the case $k = 2$.
- With the Li-Wei-Xiong’s inequality and a result of Xu Cheng and Detang Zhou, the Conjecture for $k = 1$ holds for hypersurfaces with *nonnegative Ricci curvature* in \mathbb{H}^n.
To state the recent developments on this Conjecture, we recall the various convexity for hypersurfaces in hyperbolic space.
Convexity in Hyperbolic Space

To state the recent developments on this Conjecture, we recall the various convexity for hypersurfaces in hyperbolic space.

Under stronger convexity assumptions, the inequality in Conjecture is **TRUE**.
Convexity in Hyperbolic Space

To state the recent developments on this Conjecture, we recall the various convexity for hypersurfaces in hyperbolic space.

Under stronger convexity assumptions, the inequality in Conjecture is *TRUE*.

Different from a hypersurface in \mathbb{R}^n, there are *four* different kinds of convexity (in *strictly ascending order*) for a hypersurface (Σ, g) in \mathbb{H}^n:
Convexity in Hyperbolic Space

To state the recent developments on this Conjecture, we recall the various convexity for hypersurfaces in hyperbolic space.

Under stronger convexity assumptions, the inequality in Conjecture is **true**.

Different from a hypersurface in \mathbb{R}^n, there are four different kinds of convexity (in **strictly ascending order** for a hypersurface (Σ, g) in \mathbb{H}^n:

- **(strictly) convex** if $\kappa_i > 0$ for $i = 1, \cdots, n - 1$;
- **nonnegative Ricci curvature** if $\kappa_i \left(\sum_{j \neq i} \kappa_j \right) \geq n - 2$ for $i = 1, \cdots, n - 1$;
- **nonnegative sectional curvature** if $\kappa_i \kappa_j \geq 1$ for $1 \leq i < j \leq n - 1$;
- **horospherical convex (h-convex)** if $\kappa_i \geq 1$ for $i = 1, \cdots, n - 1$.

Remark. The strict convexity is equivalent to $(n - 1)$-convex and starshaped, and hence all these convexity conditions are stronger than m-convex and starshaped.
Convexity in Hyperbolic Space

To state the recent developments on this Conjecture, we recall the various convexity for hypersurfaces in hyperbolic space.

Under stronger convexity assumptions, the inequality in Conjecture is **TRUE**.

Different from a hypersurface in \mathbb{R}^n, there are four different kinds of convexity (in strictly ascending order) for a hypersurface (Σ, g) in \mathbb{H}^n:

- *(strictly) convex* if $\kappa_i > 0$ for $i = 1, \cdots, n - 1$;
- *nonnegative Ricci curvature* if $\kappa_i \left(\sum_{j \neq i} \kappa_j \right) \geq n - 2$ for $i = 1, \cdots, n - 1$;
- *nonnegative sectional curvature* if $\kappa_i \kappa_j \geq 1$ for $1 \leq i < j \leq n - 1$;
- *horospherical convex (h-convex)* if $\kappa_i \geq 1$ for $i = 1, \cdots, n - 1$.

Remark. The strict convexity is equivalent to $(n - 1)$-convex and starshaped, and hence all these convexity conditions are **stronger** than m-convex and starshaped.
In 2014, Yuxin Ge, Guofang Wang and Jie Wu investigated the k-th Gauss-Bonnet curvature L_k on hypersurface (Σ, g) in \mathbb{H}^n,

$$L_k := \frac{1}{2k} \delta_{i_1 j_1}^{i_2 j_2} \cdots \delta_{i_{2k-1} j_{2k-1}}^{i_{2k} j_{2k}} R_{i_1 i_2}^{j_1 j_2} \cdots R_{i_{2k-1} i_{2k}}^{j_{2k-1} j_{2k}},$$

where R_{ij}^{kl} is the Riemannian curvature tensor in the local coordinates w.r.t. the metric g, and the generalized Kronecker delta is defined by

$$\delta_{i_1 j_1}^{i_2 j_2} \cdots \delta_{i_r j_r}^{i_{r+1} j_{r+1}} = \det \begin{pmatrix} \delta_{i_1}^{i_1} & \delta_{i_1}^{i_2} & \cdots & \delta_{i_1}^{i_r} \\ \delta_{i_2}^{i_1} & \delta_{i_2}^{i_2} & \cdots & \delta_{i_2}^{i_r} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{i_r}^{i_1} & \delta_{i_r}^{i_2} & \cdots & \delta_{i_r}^{i_r} \end{pmatrix}. $$
AF INEQUALITY IN \mathbb{H}^n

By using the inverse curvature flows in \mathbb{H}^n, they proved an optimal Sobolev-type inequality for h-convex hypersurfaces in \mathbb{H}^n:

$$\int_{\Sigma} L_k \, d\mu \geq C_{2k}^n (2k)! \omega^{2k} n^{-1} |\Sigma|^{n-1} - 2^{k-n-1}.$$

Equality holds iff Σ is a geodesic sphere.

Remark. For any hypersurface (Σ, g) in \mathbb{H}^n, the Gauss-Bonnet curvature L_k can be expressed by

$$L_k = C_{2k}^n (2k)! \sum_{j=0}^k (-1)^j C_j^k 2^{k-j-2}.$$

For $k=1$, the above inequality coincides with Li-Wei-Xiong's inequality.
AF INEQUALITY IN \mathbb{H}^n

By using the inverse curvature flows in \mathbb{H}^n, they proved an optimal Sobolev-type inequality for h-convex hypersurfaces in \mathbb{H}^n:

Let $2 \leq 2k < n - 1$. Any **h-convex** hypersurface $(\Sigma, g) \subset \mathbb{H}^n$ satisfies

$$\int_{\Sigma} L_k d\mu \geq C_{n-1}^{2k}(2k)! \omega_{n-1}^{\frac{2k}{n-1}} |\Sigma|^{\frac{n-1-2k}{n-1}}.$$

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{H}^n

By using the inverse curvature flows in \mathbb{H}^n, they proved an optimal Sobolev-type inequality for h-convex hypersurfaces in \mathbb{H}^n:

Let $2 \leq 2k < n - 1$. Any h-convex hypersurface $(\Sigma, g) \subset \mathbb{H}^n$ satisfies

$$\int_{\Sigma} L_k d\mu \geq C_{n-1}^{2k}(2k)! \omega_{n-1}^{\frac{2k}{n-1}} |\Sigma| \frac{n-1-2k}{n-1}. $$

Equality holds iff Σ is a geodesic sphere.

Remark. For any hypersurface (Σ, g) in \mathbb{H}^n, the Gauss-Bonnet curvature L_k can be expressed by

$$L_k = C_{n-1}^{2k}(2k)! \sum_{j=0}^{k} (-1)^j C_k^j p_{2k-2j}.$$

For $k = 1$, the above inequality coincides with Li-Wei-Xiong’s inequality.
AF INEQUALITY IN \mathbb{H}^n

The proof of Ge-Wang-Wu’s inequality consists of four ingredients:
AF INEQUALITY IN \mathbb{H}^n

The proof of Ge-Wang-Wu’s inequality consists of four ingredients:

- The convergence result of inverse curvature flows $\partial_t X = \frac{p_{2k-1}}{p_{2k}} \nu$ in \mathbb{H}^n by C. Gerhardt;

- The preservation of h-convexity along the inverse curvature flows;

- The monotonicity of $Q(t) = |\Sigma_t|^{\frac{n-1}{n-2}} - 2k^n - 1 - 2k n - 1 \int \Sigma_L^{k}$, where the h-convexity of Σ plays an essential role;

- The generalized Sobolev inequality by P. Guan and G. Wang (2003), which is used to show $\lim_{t \to \infty} Q(t) \geq C_2^{2k} n - 1 (2k)! \omega_2^{n - 1} n - 1$.

HMCF Haizhong Li THU
AF INEQUALITY IN \mathbb{H}^n

The proof of Ge-Wang-Wu’s inequality consists of four ingredients:

- The convergence result of inverse curvature flows $\partial_t X = \frac{p_{2k-1}}{p_{2k}} \nu$ in \mathbb{H}^n by C. Gerhardt;
- The preservation of h-convexity along the inverse curvature flows;
The proof of Ge-Wang-Wu’s inequality consists of four ingredients:
- The convergence result of inverse curvature flows \(\partial_t X = \frac{p_{2k-1}}{p_{2k}} \nu \) in \(\mathbb{H}^n \) by C. Gerhardt;
- The preservance of \textit{h-convexity} along the inverse curvature flows;
- The monotonicity of

\[
Q(t) = |\Sigma_t|^{-\frac{n-1-2k}{n-1}} \int_{\Sigma} L_k,
\]

where the \textit{h-convexity} of \(\Sigma \) plays an essential role;
AF INEQUALITY IN \mathbb{H}^n

The proof of Ge-Wang-Wu’s inequality consists of four ingredients:

- The convergence result of inverse curvature flows $\partial_t X = \frac{p_{2k-1}}{p_{2k}} \nu$ in \mathbb{H}^n by C. Gerhardt;
- The preservance of h-convexity along the inverse curvature flows;
- The monotonicity of

$$Q(t) = |\Sigma_t|^{\frac{n-1-2k}{n-1}} \int_\Sigma L_k,$$

where the h-convexity of Σ plays an essential role;
- The generalized Sobolev inequality by P. Guan and G. Wang (2003), which is used to show $\lim_{t \to \infty} Q(t) \geq C_{n-1}^{2k} (2k)! \omega_{n-1}^{\frac{2k}{n-1}}$.
AF INEQUALITY IN \mathbb{H}^n

The importance of this inequality is that it can be viewed as the bricks of other geometric inequalities. To observe this, we have

$$\int_{\Sigma} p_{2k} = \frac{1}{(2k)!} C_{2k}^{n-1} \sum_{i=0}^{k} C_k^i \int_{\Sigma} L_i.$$
AF INEQUALITY IN \mathbb{H}^n

The importance of this inequality is that it can be viewed as the bricks of other geometric inequalities. To observe this, we have

$$
\int_{\Sigma} p_{2k} = \frac{1}{(2k)!} C_{n-1}^{2k} \sum_{i=0}^{k} C_k^i \int_{\Sigma} L_i.
$$

They proved AF inequality for curvature integrals in \mathbb{H}^n:

Let $2 \leq 2k \leq n - 1$. Any *h-convex* hypersurface $(\Sigma, g) \subset \mathbb{H}^n$ satisfies

$$
\int_{\Sigma} p_{2k} \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k} \frac{n-1-2k}{n-1}} \right]^k,
$$

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{H}^n

The importance of this inequality is that it can be viewed as the bricks of other geometric inequalities. To observe this, we have

$$\int_{\Sigma} p_{2k} = \frac{1}{(2k)!} C_{n-1}^{2k} \sum_{i=0}^{k} C_k^i \int_{\Sigma} L_i.$$

They proved AF inequality for curvature integrals in \mathbb{H}^n:

Let $2 \leq 2k \leq n - 1$. Any h-convex hypersurface $(\Sigma, g) \subset \mathbb{H}^n$ satisfies

$$\int_{\Sigma} p_{2k} \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k} \frac{n-1-2k}{n-1}} \right]^k,$$

Equality holds iff Σ is a geodesic sphere.
In a recent work joint with Yingxiang Hu, all Ge-Wang-Wu’s inequalities have been extended to hypersurfaces with nonnegative sectional curvature in hyperbolic space.
AF INEQUALITY IN \mathbb{H}^n

In a recent work joint with Yingxiang Hu, all Ge-Wang-Wu’s inequalities have been extended to hypersurfaces with nonnegative sectional curvature in hyperbolic space. In particular, we prove

Theorem, Hu-L., 2019, Calc. Var.

Let $2 \leq 2k \leq n - 1$. Any hypersurface $(\Sigma, g) \subset \mathbb{H}^n$ with *nonnegative sectional curvature* satisfies

$$\int_{\Sigma} p_{2k} \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k} \frac{n-1-2k}{n-1}} \right]^k,$$

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{H}^n

In a recent work joint with Yingxiang Hu, all Ge-Wang-Wu’s inequalities have been extended to hypersurfaces with nonnegative sectional curvature in hyperbolic space. In particular, we prove

Theorem, Hu-L., 2019, Calc. Var.

Let $2 \leq 2k \leq n - 1$. Any hypersurface $(\Sigma, g) \subset \mathbb{H}^n$ with nonnegative sectional curvature satisfies

$$\int_{\Sigma} p_{2k} \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{1}{k} \frac{n-1-2k}{n-1}} \right]^k,$$

Equality holds iff Σ is a geodesic sphere.

Remark. The Conjecture for $k = 2m$ ($2 \leq 2m \leq n - 1$) holds for hypersurfaces with nonnegative sectional curvature in \mathbb{H}^n.

The proof consists of four ingredients:

1. The convergence result of inverse mean curvature flow $\partial_t X = \frac{1}{H} \nu$ in \mathbb{H}^n by C. Gerhardt;
2. The preservation of nonnegative sectional curvature along the IMCF, which is inspired by the recent work of Andrews-Chen-Wei on volume preserving flows in hyperbolic space;
3. The monotonicity of $Q(t) = |\Sigma_t| - n - 1 - 2k_n - 1 \int_{\Sigma} L_k$, where the nonnegative sectional curvature of Σ plays an essential role; this has already been observed by Ge-Wang-Wu;
4. The analysis of $\lim_{t \to \infty} Q(t)$ is the same as Ge-Wang-Wu.
AF INEQUALITY IN \mathbb{H}^n

The proof consists of four ingredients:

- The convergence result of inverse mean curvature flow $\partial_t X = \frac{1}{H} \nu$ in \mathbb{H}^n by C. Gerhardt;

HMCF Haizhong Li THU
The proof consists of four ingredients:

- The convergence result of inverse mean curvature flow \(\partial_t X = \frac{1}{H} \nu \) in \(\mathbb{H}^n \) by C. Gerhardt;
- The preservation of nonnegative sectional curvature along the IMCF, which is inspired by the recent work of Andrews-Chen-Wei on volume preserving flows in hyperbolic space;
AF INEQUALITY IN \mathbb{H}^n

The proof consists of four ingredients:

- The convergence result of inverse mean curvature flow $\partial_t X = \frac{1}{H} \nu$ in \mathbb{H}^n by C. Gerhardt;
- The preservance of nonnegative sectional curvature along the IMCF, which is inspired by the recent work of Andrews-Chen-Wei on volume preserving flows in hyperbolic space;
- The monotonicity of $Q(t) = |\Sigma_t|^{-\frac{n-1-2k}{n-1}} \int_{\Sigma} L_k$, where the nonnegative sectional curvature of Σ plays an essential role; This has already been observed by Ge-Wang-Wu;
AF inequality in \mathbb{H}^n

The proof consists of four ingredients:

- The convergence result of inverse mean curvature flow $\partial_t X = \frac{1}{H} \nu$ in \mathbb{H}^n by C. Gerhardt;
- The preservance of nonnegative sectional curvature along the IMCF, which is inspired by the recent work of Andrews-Chen-Wei on volume preserving flows in hyperbolic space;
- The monotonicity of $Q(t) = |\Sigma_t|^{-\frac{n-1-2k}{n-1}} \int_{\Sigma} L_k$,
 where the nonnegative sectional curvature of Σ plays an essential role; This has already been observed by Ge-Wang-Wu;
- The analysis of $\lim_{t \to \infty} Q(t)$ is the same as Ge-Wang-Wu.
AF INEQUALITY IN \mathbb{H}^n

In 2014, Guofang Wang and Chao Xia used the quermassintegral preserving curvature flows to prove AF inequality for curvature integrals in \mathbb{H}^n:
AF INEQUALITY IN \mathbb{H}^n

In 2014, Guofang Wang and Chao Xia used the quermassintegral preserving curvature flows to prove AF inequality for curvature integrals in \mathbb{H}^n.

Let $1 \leq k \leq n - 1$. If $\Omega \subset \mathbb{H}^n$ is a bounded domain with $\Sigma = \partial \Omega$ h-convex, then

$$\int_{\Sigma} p_k \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^\frac{2}{k} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^\frac{2}{k} \frac{n-1-k}{n-1} \right]^\frac{k}{2},$$

Equality holds iff Σ is a geodesic sphere.
AF INEQUALITY IN \mathbb{H}^n

In 2014, Guofang Wang and Chao Xia used the quermassintegral preserving curvature flows to prove AF inequality for curvature integrals in \mathbb{H}^n:

Let $1 \leq k \leq n - 1$. If $\Omega \subset \mathbb{H}^n$ is a bounded domain with $\Sigma = \partial \Omega$ h-convex, then

$$\int_{\Sigma} p_k \geq \omega_{n-1} \left[\left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{2}{k}} + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{\frac{2}{k} \frac{n-1-k}{n-1}} \right]^\frac{k}{2} ,$$

Equality holds iff Σ is a geodesic sphere.

Remark. The Conjecture for $1 \leq k \leq n - 1$ holds for h-convex hypersurfaces in \mathbb{H}^n.
Now we present our main results.

Let $0 < 2k < n - 1$. If Σ is a strictly convex hypersurface in H^n, then

$$\int_{\Sigma} p^{n-1-2k} \omega^{n-1} \leq \int_{\Sigma} p^{n-1} \omega^{n-1} \left[1 - \left(\int_{\Sigma} p^{n-1} \omega^{n-1}\right)^{\frac{1}{n-1}}\right]^{-2(k-n)}.$$

Equality holds iff Σ is a geodesic sphere.
Now we present our main results.

The first result is

Let $0 < 2k < n - 1$. If Σ is a *strictly convex* hypersurface in \mathbb{H}^n, then

$$
\frac{\int_\Sigma p_{n-1-2k}}{\omega_{n-1}} \leq \frac{\int_\Sigma p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int_\Sigma p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k.
$$

Equality holds iff Σ is a geodesic sphere.
With the help of this AF inequality, we apply the inverse mean curvature flow to prove

Let $n - 1 > 2$. If Σ is a *strictly convex* hypersurface in \mathbb{H}^n, then

$$
\int_{\Sigma} p_{n-1} \geq |\Sigma| \left[1 + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^{\frac{n-1}{2}}.
$$

Equality holds iff Σ is a geodesic sphere.
With the help of this AF inequality, we apply the inverse mean curvature flow to prove

Let $n - 1 > 2$. If Σ is a *strictly convex* hypersurface in \mathbb{H}^n, then

$$
\int_{\Sigma} \rho_{n-1} \geq |\Sigma| \left[1 + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^{\frac{n-1}{2}}.
$$

Equality holds iff Σ is a geodesic sphere.

Remark. This verifies the Conjecture mentioned above for the case $k = n - 1$.
HARMONIC MEAN CURVATURE FLOW

Here we give the proofs of Theorems A & B.
HARMONIC MEAN CURVATURE FLOW

Here we give the proofs of Theorems A & B. The proof is the classical method for proving geometric inequalities by establishing the monotonicity properties along a suitable curvature flow, and the smooth convergence of this flow.
HARMONIC MEAN CURVATURE FLOW

Here we give the proofs of Theorems A & B.

The proof is the classical method for proving geometric inequalities by establishing the monotonicity properties along a suitable curvature flow, and the smooth convergence of this flow.

The key difference from the previous work is that we choose the *contracting curvature flow* in \mathbb{H}^n.
Here we give the proofs of Theorems A & B.

The proof is the classical method for proving geometric inequalities by establishing the monotonicity properties along a suitable curvature flow, and the smooth convergence of this flow.

The key difference from the previous work is that we choose the *contracting curvature flow* in \mathbb{H}^n.

Given a smooth hypersurface Σ_0 in \mathbb{H}^n, parametrized by an embedding $X_0 : M^{n-1} \to \mathbb{H}^n$. The harmonic mean curvature flow (HMCF) is a family of embeddings $X : M^{n-1} \times [0, T) \to \mathbb{H}^n$ satisfying

$$
\frac{\partial}{\partial t} X(x, t) = - \frac{p_{n-1}}{p_{n-2}} (x, t) \nu(x, t),
$$

$$
X(\cdot, 0) = X_0(\cdot).
$$

\[\text{HMCF Haizhong Li THU}\]
Ben Andrews first proved the smooth convergence results for the flow of h-convex hypersurfaces in hyperbolic space, with speed given by functions with argument $\kappa_i - 1$, in particular the \textit{(shifted) harmonic mean curvature flow};
HARMONIC MEAN CURVATURE FLOW

- Ben Andrews first proved the smooth convergence results for the flow of h-convex hypersurfaces in hyperbolic space, with speed given by functions with argument $\kappa_i - 1$, in particular the *(shifted)* harmonic mean curvature flow;

- Later, Guoyi Xu proved the smooth convergence of the HMCF for strictly convex hypersurfaces in hyperbolic space;
Ben Andrews first proved the smooth convergence results for the flow of h-convex hypersurfaces in hyperbolic space, with speed given by functions with argument \(\kappa_i - 1 \), in particular the \((\text{shifted}) \) harmonic mean curvature flow;

Later, Guoyi Xu proved the smooth convergence of the HMCF for strictly convex hypersurfaces in hyperbolic space;

Recently, Hao Yu proved the smooth convergence for a general class of contracting curvature flows in hyperbolic space.
Ben Andrews first proved the smooth convergence results for the flow of h-convex hypersurfaces in hyperbolic space, with speed given by functions with argument $\kappa_i - 1$, in particular the \textit{(shifted) harmonic mean curvature flow};

Later, Guoyi Xu proved the smooth convergence of the HMCF for strictly convex hypersurfaces in hyperbolic space;

Recently, Hao Yu proved the smooth convergence for a general class of contracting curvature flows in hyperbolic space.

A major ingredient in the proof of the smooth convergence of the HMCF is the pinching estimate. That is, if the initial hypersurface Σ is strictly convex, then along the HMCF the evolving hypersurface Σ_t satisfies

$$\kappa_{n-1}(x, t) \leq C\kappa_1(x, t), \quad \forall (x, t) \in M \times [0, T^*)$$

where $\kappa_1 \leq \cdots \leq \kappa_{n-1}$ and C depends only on Σ.

Recall that the inner radius ρ_- and outer radius ρ_+ of a bounded domain Ω_t with boundary Σ_t in \mathbb{H}^n is defined by
Recall that the inner radius ρ_- and outer radius ρ_+ of a bounded domain Ω_t with boundary Σ_t in \mathbb{H}^n is defined by

$$
\rho_-(t) := \sup \{ \rho : B_\rho(p) \text{ is enclosed by } \Omega_t \text{ for some } p \in \mathbb{H}^n \},
$$

$$
\rho_+(t) := \inf \{ \rho : B_\rho(p) \text{ encloses } \Omega_t \text{ for some } p \in \mathbb{H}^n \},
$$
HARMONIC MEAN CURVATURE FLOW

Recall that the inner radius ρ_- and outer radius ρ_+ of a bounded domain Ω_t with boundary Σ_t in \mathbb{H}^n is defined by

$$\rho_-(t) := \sup \{ \rho : B_\rho(p) \text{ is enclosed by } \Omega_t \text{ for some } p \in \mathbb{H}^n \},$$

$$\rho_+(t) := \inf \{ \rho : B_\rho(p) \text{ encloses } \Omega_t \text{ for some } p \in \mathbb{H}^n \},$$

By the contracting property of the HMCF, together with the pinching estimate, we prove that the inner radius and outer radius is comparable as it shrinks to a point.
HARMONIC MEAN CURVATURE FLOW

Recall that the inner radius ρ_- and outer radius ρ_+ of a bounded domain Ω_t with boundary Σ_t in \mathbb{H}^n is defined by

$$
\rho_-(t) := \sup \{\rho : B_\rho(p) \text{ is enclosed by } \Omega_t \text{ for some } p \in \mathbb{H}^n\},
$$

$$
\rho_+(t) := \inf \{\rho : B_\rho(p) \text{ encloses } \Omega_t \text{ for some } p \in \mathbb{H}^n\},
$$

By the contracting property of the HMCF, together with the pinching estimate, we prove that the inner radius and outer radius is comparable as it shrinks to a point.

Let Σ_t be a solution of the HMCF on a maximal time interval $[0, T^*)$. There exist positive constants C and η, depending only on the initial hypersurface Σ, such that

$$
\rho_+(t) \leq C \rho_-(t), \quad \forall t \in [T^* - \eta, T^*).
$$
QUERMASSINTEGRALS IN \mathbb{H}^n

For a convex domain $\Omega \subset \mathbb{H}^n$, the quermassintegrals are defined by

$$W_r(\Omega) := \frac{(n - r)\omega_{r-1} \cdots \omega_0}{n\omega_{n-2} \cdots \omega_{n-r-1}} \int_{\mathcal{L}} \chi(L \cap \Omega) dL, \quad r = 1, \ldots, n-1,$$

where \mathcal{L}_r is the space of r-dim totally geodesic subspaces L in \mathbb{H}^n, and dL is the natural measure on \mathcal{L}_r which is invariant under the isometry group of \mathbb{H}^n. The function χ is defined to be 1 if $L \cap \Omega \neq \emptyset$ and to be 0 otherwise. Furthermore, we set $W_0(\Omega) = |\Omega|$ and $W_n(\Omega) = \omega_{n-1}/n$.
For a convex domain $\Omega \subset \mathbb{H}^n$, the quermassintegrals are defined by

$$W_r(\Omega) := \frac{(n-r)\omega_{r-1} \cdots \omega_0}{n\omega_{n-2} \cdots \omega_{n-r-1}} \int_{\mathcal{L}} \chi(L \cap \Omega) dL, \quad r = 1, \cdots, n-1,$$

where \mathcal{L}_r is the space of r-dim totally geodesic subspaces L in \mathbb{H}^n, and dL is the natural measure on \mathcal{L}_r which is invariant under the isometry group of \mathbb{H}^n. The function χ is defined to be 1 if $L \cap \Omega \neq \emptyset$ and to be 0 otherwise. Furthermore, we set $W_0(\Omega) = |\Omega|$ and $W_n(\Omega) = \omega_{n-1}/n$.

In \mathbb{R}^n, the quermassintegrals coincide with the curvature integrals up to a constant multiple. However, the quermassintegrals and the curvature integrals in \mathbb{H}^n do not coincide. They are closely related by

$$\int_{\Sigma} p_k = n \left(W_{k+1}(\Omega) + \frac{k}{n-k+1} W_{k-1}(\Omega) \right), \quad k = 1, \cdots, n-1.$$
PROOF OF THEOREM A – LIMITING BEHAVIOR

Since W_k is monotone under the set inclusion, i.e.,

$$W_k(\Omega_1) \leq W_k(\Omega_2), \quad \text{if } \Omega_1 \subset \Omega_2,$$

we prove the following asymptotic behavior along the HMCF.
Proof of Theorem A – Limiting Behavior

Since W_k is monotone under the set inclusion, i.e.,

$$W_k(\Omega_1) \leq W_k(\Omega_2), \quad \text{if } \Omega_1 \subset \Omega_2,$$

we prove the following asymptotic behavior along the HMCF.

Let Σ be a strictly convex hypersurface in \mathbb{H}^n. Let $\Sigma_t, \ t \in [0, T^*)$ be the solution of the HMCF with the initial hypersurface Σ. Then we have

$$\lim_{t \to T^*} \int_{\Sigma_t} p_j = \begin{cases}
0, & 0 \leq j \leq n-2; \\
\omega_{n-1}, & j = n-1,
\end{cases}$$
To prove Theorem A, we only need to find suitable monotone quantities along the HMCF.
To prove Theorem A, we only need to find suitable monotone quantities along the HMCF.
To prove the AF inequality

\[\frac{\int_{\Sigma} p_{n-1} - 2k}{\omega_{n-1}} \leq \frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k, \]
PROOF OF THEOREM A – MONOTONICITY

To prove Theorem A, we only need to find suitable monotone quantities along the HMCF.

To prove the AF inequality

\[\frac{\int_{\Sigma} p_{n-1} - 2k}{\omega_{n-1}} \leq \frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k, \]

we consider the functional

\[P_k(t) := \left(\frac{\int_{\Sigma_t} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{n-1-2k}{n-1}} \left\{ \frac{\int_{\Sigma_t} p_{n-1} - 2k}{\omega_{n-1}} - \left(\frac{\int_{\Sigma_t} p_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma_t} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k \right\}. \]
PROOF OF THEOREM A – MONOTONICITY

Now we verify that $P_k(t)$ is monotone increasing along the HMCF.
PROOF OF THEOREM A – MONOTONICITY

Now we verify that $P_k(t)$ is monotone increasing along the HMCF.

We first prove the case $k = 1$, i.e.,

$$\frac{\int_{\Sigma} p_{n-3}}{\omega_{n-1}} \leq \frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right].$$
Proof of Theorem A – Monotonicity

Now we verify that $P_k(t)$ is monotone increasing along the HMCF.

We first prove the case $k = 1$, i.e.,

$$\frac{\int \Sigma p_{n-3}}{\omega_{n-1}} \leq \frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right].$$

Along the HMCF, we have

$$\frac{d}{dt} \int \Sigma p_{n-1} = -(n - 1) \int \Sigma p_{n-1},$$

and

$$\frac{d}{dt} \int \Sigma p_{n-3} = -2 \int \Sigma p_{n-1} - (n - 3) \int \Sigma \frac{p_{n-1}p_{n-4}}{p_{n-2}} \geq -2 \int \Sigma p_{n-1} - (n - 3) \int \Sigma p_{n-3}.$$
Then we have

\[
\frac{d}{dt} \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right) = -(n-1) \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right),
\]
Proof of Theorem A – Monotonicity

Then we have

\[
\frac{d}{dt} \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right) = -(n-1) \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right),
\]

and

\[
\frac{d}{dt} \left[\frac{\int \Sigma p_{n-3}}{\omega_{n-1}} - \frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \left(1 - \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right) \right] \geq -(n-3) \left[\frac{\int \Sigma p_{n-3}}{\omega_{n-1}} - \frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \left(1 - \left(\frac{\int \Sigma p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right) \right].
\]
Proof of Theorem A – Monotonicity

Then we have

\[
\frac{d}{dt} \left(\frac{\int \sum p_{n-1}}{\omega_{n-1}} \right) = -(n - 1) \left(\frac{\int \sum p_{n-1}}{\omega_{n-1}} \right),
\]

and

\[
\frac{d}{dt} \left[\frac{\int \sum p_{n-3}}{\omega_{n-1}} - \frac{\int \sum p_{n-1}}{\omega_{n-1}} \left(1 - \left(\frac{\int \sum p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right) \right]
\geq -(n - 3) \left[\frac{\int \sum p_{n-3}}{\omega_{n-1}} - \frac{\int \sum p_{n-1}}{\omega_{n-1}} \left(1 - \left(\frac{\int \sum p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right) \right].
\]

Therefore, we have

\[
\frac{d}{dt} P_1(t) \geq 0.
\]

By the limiting behavior of \(\int \sum p_j\), we have \(\lim_{t \to T^*} P_1(t) = 0\).
PROOF OF THEOREM A – MONOTONICITY

Thus we get $P_1(0) \leq \lim_{t \to T^*} P_1(t) = 0$, i.e.,

$$\left(\frac{\int p_{n-1}}{\omega_{n-1}} \right)^{-\frac{n-3}{n-1}} \left[\frac{\int p_{n-3}}{\omega_{n-1}} - \frac{\int p_{n-1}}{\omega_{n-1}} \left(1 - \left(\frac{\int p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right) \right] \leq 0,$$
Proof of Theorem A – Monotonicity

Thus we get $P_1(0) \leq \lim_{t \to T^*} P_1(t) = 0$, i.e.,

$$\left(\frac{\int \sum p_{n-1}}{\omega_{n-1}}\right)^{-\frac{n-3}{n-1}} \left[\frac{\int \sum p_{n-3}}{\omega_{n-1}} - \frac{\int \sum p_{n-1}}{\omega_{n-1}} \left(1 - \left(\frac{\int \sum p_{n-1}}{\omega_{n-1}}\right)^{-\frac{2}{n-1}}\right)\right] \leq 0,$$

which is equivalent to

$$\frac{\int \sum p_{n-3}}{\omega_{n-1}} \leq \frac{\int \sum p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int \sum p_{n-1}}{\omega_{n-1}}\right)^{-\frac{2}{n-1}}\right].$$
Proof of Theorem A – Monotonicity

We prove the case $k \geq 2$ by induction.
PROOF OF THEOREM A – MONOTONICITY

We prove the case $k \geq 2$ by induction.

Assume that it holds for $k - 1$, i.e.,

$$\left(\frac{\int_{\Sigma} p_{n-1} - 2(k-1)}{\omega_{n-1}} \right) \leq \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^{k-1} ,$$

then we show that it also holds for k, i.e.,

$$\frac{\int_{\Sigma} p_{n-1} - 2k}{\omega_{n-1}} \leq \frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k .$$
PROOF OF THEOREM A – MONOTONICITY

By the variational formula along the HMCF and Newton-MacLaurin inequality, we have

\[
\frac{d}{dt} \int_\Sigma p_{n-1-2k} = -2k \int_\Sigma p_{n-2k} \frac{p_{n-1}}{p_{n-2}} - (n - 1 - 2k) \int_\Sigma p_{n-2-2k} \frac{p_{n-1}}{p_{n-2}}
\]

\[
\geq -2k \int_\Sigma p_{n+1-2k} - (n - 1 - 2k) \int_\Sigma p_{n-1-2k}
\]

\[
= -2k \left(\frac{\int_\Sigma p_{n-1-2(k-1)}}{\omega_{n-1}} \right) - (n - 1 - 2k) \left(\frac{\int_\Sigma p_{n-1-2k}}{\omega_{n-1}} \right).
\]
PROOF OF THEOREM A – MONOTONICITY

By the variational formula along the HMCF and Newton-MacLaurin inequality, we have

\[
\frac{d}{dt} \int_{\Sigma} p_{n-1-2k} = -2k \int_{\Sigma} \frac{p_{n-1}}{p_{n-2}} - (n - 1 - 2k) \int_{\Sigma} \frac{p_{n-2-2k}}{p_{n-2}} \\
\geq -2k \int_{\Sigma} p_{n+1-2k} - (n - 1 - 2k) \int_{\Sigma} p_{n-1-2k} \\
= -2k \left(\frac{\int_{\Sigma} p_{n-1-2(k-1)}}{\omega_{n-1}} \right) - (n - 1 - 2k) \left(\frac{\int_{\Sigma} p_{n-1-2k}}{\omega_{n-1}} \right).
\]
PROOF OF THEOREM A – MONOTONICITY

For simplicity, we take

\[x(t) = \frac{\int \Sigma p_{n-1}}{\omega_{n-1}}, \quad y(t) = \frac{\int \Sigma p_{n-1 - 2k}}{\omega_{n-1}}. \]
Proof of Theorem A – Monotonicity

For simplicity, we take

\[x(t) = \frac{\int \sum p_{n-1}}{\omega_{n-1}}, \quad y(t) = \frac{\int \sum p_{n-1-2k}}{\omega_{n-1}}. \]

Combining with induction on \(k - 1 \), we have

\[\frac{d}{dt} y = \frac{d}{dt} \left(\frac{\int \sum p_{n-1-2k}}{\omega_{n-1}} \right) \geq -2k \left(\frac{\int \sum p_{n-1-2(k-1)}}{\omega_{n-1}} \right) - (n - 1 - 2k) \left(\frac{\int \sum p_{n-1-2k}}{\omega_{n-1}} \right) \]

\[\geq -2kx \left(1 - x \frac{2}{n-1} \right)^{k-1} - (n - 1 - 2k)y. \]

and \(\frac{d}{dt} x = -(n - 1)x \).
PROOF OF THEOREM A – MONOTONICITY

A direct calculation gives

\[
\frac{d}{dt} \left[y - x \left(1 - x^{-\frac{2}{n-1}} \right)^k \right] \geq -(n - 1 - 2k) \left[y - x \left(1 - x^{-\frac{2}{n-1}} \right)^k \right],
\]

and hence \(\frac{d}{dt} P_k(t) \geq 0 \).
Proof of Theorem A – Monotonicity

A direct calculation gives

\[
\frac{d}{dt} \left[y - x \left(1 - x^{-\frac{2}{n-1}} \right)^k \right] \geq -(n - 1 - 2k) \left[y - x \left(1 - x^{-\frac{2}{n-1}} \right)^k \right],
\]

and hence \(\frac{d}{dt} P_k(t) \geq 0 \). By the limiting behavior of \(\int_{\Sigma_t} p_j \), we get

\[
\left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{n-1-2k}{n-1}} \left\{ \frac{\int_{\Sigma} p_{n-1-2k}}{\omega_{n-1}} - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k \right\}
\]

\[= P_k(0) \leq \lim_{t \to T^*} P_k(t) = 0,\]
Proof of Theorem A – Monotonicity

A direct calculation gives

\[
\frac{d}{dt} \left[y - x \left(1 - x^{-\frac{2}{n-1}} \right)^k \right] \geq -(n - 1 - 2k) \left[y - x \left(1 - x^{-\frac{2}{n-1}} \right)^k \right],
\]

and hence \(\frac{d}{dt} P_k(t) \geq 0 \). By the limiting behavior of \(\int_{\Sigma} p_j \), we get

\[
\left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{n-1-2k}{n-1}} \left\{ \frac{\int_{\Sigma} p_{n-1-2k}}{\omega_{n-1}} - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k \right\}
\]

\[= P_k(0) \leq \lim_{t \to T^*} P_k(t) = 0, \]

which is equivalent to

\[
\frac{\int_{\Sigma} p_{n-1-2k}}{\omega_{n-1}} \leq \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^k.
\]
Now we give the proof of Theorem B.
Proof of Theorem B

Now we give the proof of Theorem B. Here we use the inverse mean curvature flow (IMCF).

\[
\begin{aligned}
\frac{\partial}{\partial t} X(x, t) &= \frac{1}{H(x, t)} \nu(x, t), \\
X(\cdot, 0) &= X_0(\cdot),
\end{aligned}
\]
Now we give the proof of Theorem B. Here we use the inverse mean curvature flow (IMCF).

\[
\begin{align*}
\frac{\partial}{\partial t} X(x, t) &= \frac{1}{H(x, t)} \nu(x, t), \\
X(\cdot, 0) &= X_0(\cdot),
\end{align*}
\]

First, the strict convexity is preserved along the IMCF, so the following inequality in Theorem A holds on the evolving hypersurfaces:

\[
\frac{\int_{\Sigma} p_{n-3}}{\omega_{n-1}} \leq \frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right].
\]

Proof of Theorem B

By the variational formula along the IMCF and Newton-MacLaurin inequality, we have
Proof of Theorem B

By the variational formula along the IMCF and Newton-MacLaurin inequality, we have

\[
\frac{d}{dt} \left(\frac{|\Sigma_t|}{\omega_{n-1}} \right) = \frac{|\Sigma_t|}{\omega_{n-1}},
\]

Hence, we consider the monotone increasing (we omit the proof) functional

\[
Q(t) := \left(\frac{|\Sigma_t|}{\omega_{n-1}} \right) - 1 \left(\frac{|\Sigma_t|}{\omega_{n-1}} - \int \Sigma_{t \omega_{n-1}} \right) \left(1 - \int \Sigma_{t \omega_{n-1}} - 2 \right) \left(\frac{|\Sigma_t|}{\omega_{n-1}} \right)^{\frac{n-1}{2}}.
\]
Proof of Theorem B

By the variational formula along the IMCF and Newton-MacLaurin inequality, we have

\[
\frac{d}{dt} \left(\frac{|\Sigma_t|}{\omega_{n-1}} \right) = \frac{|\Sigma_t|}{\omega_{n-1}},
\]

\[
\frac{d}{dt} \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right) = \frac{1}{\omega_{n-1}} \int_{\Sigma} \frac{p_{n-2}}{p_1} \leq \frac{\int_{\Sigma} p_{n-3}}{\omega_{n-1}}
\]

\[
\leq \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma} p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right].
\]
Proof of Theorem B

By the variational formula along the IMCF and Newton-MacLaurin inequality, we have

\[
\frac{d}{dt} \left(\frac{\left| \Sigma_t \right|}{\omega_{n-1}} \right) = \frac{\left| \Sigma_t \right|}{\omega_{n-1}},
\]

\[
\frac{d}{dt} \left(\frac{\int_{\Sigma} \rho_{n-1}}{\omega_{n-1}} \right) = \frac{1}{\omega_{n-1}} \int_{\Sigma} \frac{\rho_{n-2}}{p_1} \leq \frac{\int_{\Sigma} \rho_{n-3}}{\omega_{n-1}}
\]

\[
\leq \left(\frac{\int_{\Sigma} \rho_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma} \rho_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right].
\]

Hence, we consider the monotone increasing (we omit the proof) functional

\[
Q(t) := \left(\frac{\left| \Sigma_t \right|}{\omega_{n-1}} \right)^{-1} \left[\frac{\left| \Sigma_t \right|}{\omega_{n-1}} - \left(\frac{\int_{\Sigma_t} \rho_{n-1}}{\omega_{n-1}} \right) \left[1 - \left(\frac{\int_{\Sigma_t} \rho_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right] \right]^{\frac{n-1}{2}}
\]
Proof of Theorem B

Now we analyze the asymptotics of $Q(t)$ as $t \to \infty$.

<table>
<thead>
<tr>
<th>Iso. ineq. in Euclidean space</th>
<th>AF ineq. in Euclidean space</th>
<th>AF ineq. in hyperbolic space</th>
<th>Main results</th>
</tr>
</thead>
</table>

HMCF Haizhong Li THU
Proof of Theorem B

Now we analyze the asymptotics of $Q(t)$ as $t \to \infty$. We have $|\Sigma_t| = |\Sigma| e^t$. The convergence result of Gerhardt gives

$$h_i^j = \left(1 + O(e^{-\frac{t}{n-1}})\right) \delta_i^j, \quad \text{on } \Sigma_t.$$
Proof of Theorem B

Now we analyze the asymptotics of $Q(t)$ as $t \to \infty$. We have $|\Sigma_t| = |\Sigma| e^t$. The convergence result of Gerhardt gives

$$h_i^j = \left(1 + O(e^{-\frac{t}{n-1}})\right) \delta_i^j, \quad \text{on } \Sigma_t.$$

As p_{n-1} is homogeneous of degree $n - 1$, we get

$$p_{n-1}(h_i^j) = \left(1 + O(e^{-\frac{t}{n-1}})\right)^{n-1} = 1 + O(e^{-\frac{t}{n-1}}), \quad \text{on } \Sigma_t.$$

and

$$\frac{\int_{\Sigma_t} p_{n-1}}{\omega_{n-1}} = \frac{|\Sigma_t|}{\omega_{n-1}} \left(1 + O(e^{-\frac{t}{n-1}})\right) = O(e^t), \quad \text{on } \Sigma_t.$$
Proof of Theorem B

It follows that

\[Q(t) = 1 - \left(\frac{\int \Sigma_t p_{n-1}}{|\Sigma_t|} \right) \left[1 - \left(\frac{\int \Sigma_t p_{n-1}}{\omega_{n-1}} \right)^{-\frac{2}{n-1}} \right]^\frac{n-1}{2} \]

\[= 1 - \left(1 + O(e^{-\frac{t}{n-1}}) \right) \left(1 + O(e^{-\frac{2t}{n-1}}) \right)^\frac{n-1}{2} \]

\[= 1 - \left(1 + O(e^{-\frac{t}{n-1}}) \right) \left(1 + O(e^{-\frac{2t}{n-1}}) \right) \]

\[= O(e^{-\frac{t}{n-1}}), \]

which gives \(\lim_{t \to \infty} Q(t) = 0. \)
PROOF OF THEOREM B

It follows that

\[Q(t) = 1 - \left(\frac{\int_{\Sigma_t} p_{n-1}}{|\Sigma_t|} \right) \left[1 - \left(\frac{\int_{\Sigma_t} p_{n-1}}{\omega_{n-1}} \right)^{-2} \right]^{\frac{n-1}{2}} \]

\[= 1 - \left(1 + O(e^{-\frac{t}{n-1}}) \right) \left(1 + O(e^{-\frac{2t}{n-1}}) \right)^{\frac{n-1}{2}} \]

\[= 1 - \left(1 + O(e^{-\frac{t}{n-1}}) \right) \left(1 + O(e^{-\frac{2t}{n-1}}) \right) \]

\[= O(e^{-\frac{t}{n-1}}), \]

which gives \(\lim_{t \to \infty} Q(t) = 0 \). Together with monotonicity of \(Q(t) \), we get

\[Q(0) \leq Q(t) \leq \lim_{t \to \infty} Q(t) = 0, \]

which is equivalent to

\[\int_{\Sigma} p_{n-1} \geq |\Sigma| \left[1 + \left(\frac{|\Sigma|}{\omega_{n-1}} \right)^{-2} \right]^{\frac{n-1}{2}}. \]

Thank you for your attention!