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In this article we study the heat transfer equation with a supercritical
diffusion term of an incompressible fluid in porous media governed by
Darcy’s law. We obtain the global well-posedness for small initial data
belonging to critical Besov spaces and the local well-posedness for arbitrary
initial data. We further show the pointwise blowup criterion.

Keywords: porous media; well-posedness; Besov space; blowup criterion
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1. Introduction

We use Darcy’s law to describe the flow velocity, which reads

v ¼ �kðrpþ g��Þ

where v 2 R
N is the liquid discharge, p is the scalar pressure, � is the liquid

temperature, k is the matrix position-independent medium permeabilities in the
different directions, respectively, divided by the viscosity, g is the acceleration due to
gravity and � 2 R

N is the last canonical vector eN. For brevity, we only consider
k ¼ g ¼ 1.

In this article, we study the system of heat transfer with a fractional diffusion in
an incompressible N (2 or 3), dimensional flow [1]

ðDPM�Þ

@t� þ v � r� þ �jDj�� ¼ 0;

v ¼ �ðrpþ ��Þ; div v ¼ 0;

�ð0; xÞ ¼ �0ðxÞ;

8><>: ð1Þ

where �4 0 is the dissipative coefficient and the differential operator jDj� is given by
jDj� :¼ ð��Þ

�
2. Considering the scaling transform �ðt; xÞ ! �lðt; xÞ :¼ l��1�ðl�t; lxÞ

for l4 0, the system will be divided into three cases: The case �¼ 1 is called the
critical case, the case �4 1 is subcritical and the case �5 1 is supercritical.
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Next by rewriting Darcy’s law we obtain the expression of velocity v only in terms
of temperature � [2,3]. In the 2D case, thanks to the incompressibility, taking the curl
operator first and the r? :¼ ð�@x2 ; @x1Þ operator second on both sides of Darcy’s
law, we have

��v ¼ r?ð@x1�Þ ¼ ð�@x1@x2�; @
2
x1
�Þ;

thus the velocity v can be recovered as

vðt; xÞ ¼ �
1

2�

Z
R

2
ln jx� yj

�
�

@2�

@y2@y1
ðt; yÞ;

@2�

@y21
ðt; yÞ

�
dy x 2 R

2:

Through integration by parts we finally get

vðt; xÞ ¼ �
1

2
ð0; �ðt; xÞÞ þ

1

2�
PV

Z
R

2
Hðx� yÞ�ðt; yÞdy x 2 R

2; ð2Þ

where the kernel Hð�Þ is defined by

HðxÞ ¼

�
2x1x2

jxj4
;
x22 � x21
jxj4

�
:

Similarly, in 3D case, applying the curl operator twice to Darcy’s law, we get

��v ¼ ð�@1@3�;�@2@3�; @
2
1� þ @

2
2�Þ;

where @i :¼ @
@xi
, thus

vðt; xÞ ¼ �
2

3
ð0; 0; �ðt; xÞÞ þ

1

4�
PV

Z
R

3
Kðx� yÞ�ðt; yÞdy x 2 R

3; ð3Þ

where

KðxÞ ¼

�
3x1x3

jxj5
;
3x2x3

jxj5
;
2x23 � x21 � x22
jxj5

�
:

We observe that, in general, each coefficient of vð�; tÞ (with t as parameter) is only the
linear combination of the Calderón–Zygmund singular integral (with the definition
see the sequel) of � and � itself. We write the general version as

v :¼ T ð�Þ ¼ Cð�Þ þ Sð�Þ ð4Þ

where T ¼ ðT kÞ, C ¼ ðCkÞ, S ¼ ðSkÞ, 1 � k � N are all operators mapping scalar
functions to vector-valued functions and Ck equals a constant multiplication
operator whereas Sk means a Calderón–Zygmund singular integral operator.
Especially the corresponding specific forms in 2D or 3D are shown as (2) or (3).

We observe that the system (DPM�) is not more than a dissipative transport-
diffusion equation with non-local divergence-free velocity field (the specific
relationship between velocity and temperature as (4) shows). It shares many
similarities with another flow model – 2D dissipative quasi-geostrophic (QG)
equation, which has been intensively studied by many authors [4–9]. From
a mathematical view, the system (DPM�) is somewhat a generalization of (QG)
equation. Very recently, the system (DPM�) was introduced and investigated
by Córdoba and his group. In [2], the authors obtained some results on strong
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solutions, weak solutions and attractors for the dissipative system (DPM�). For

finite energy they obtained global existence and uniqueness in the subcritical and

critical cases. In the supercritical case, they obtained local results in Hs,

s4 ðN� �Þ=2þ 1 and extended to be global under a small condition �0
�� ��

Hs� c�,
for s4N=2þ 1, where c is a small fixed constant. In [3], they treated the non-

dissipative (�¼ 0) 2D case and obtained the local existence and uniqueness in Hölder

space C� for 05 �5 1 by the particle-trajectory method and gave some blowup

criteria of smooth solutions.
In this article we focus on the supercritical case (05�5 1). Basically using the

method in [7], we give a detailed and slightly different iterative process to derive the

local and global results. Further, we show the pointwise blowup criterion. We state

our main results as follows.

THEOREM 1.1 Let 05�5 1, 1 � p � 1 and s � spc :¼ N
p þ 1� �. We define

Ys;p :¼
Bs
p;1; p51

Bs
1;1 \

_B0
1;1; p ¼ 1;

�
then for �0ðxÞ 2 Ys;p, there exists a positive time T such that the system (DPM�) has a

unique solution � in Cð½0;T Þ;Ys;pÞ \ L
1ð½0;T Þ; _B sþ�

p;1 Þ.
Additionally, if there exists an absolute small constant �4 0 such that

�0
�� ��

_B1��
1;1

� ��;

then one can take T¼1.

THEOREM 1.2 Let T � be a maximal local existence time of � in
~L1T Ys;p \ L

1
T

_B sþ�
p;1 , s � 1þ N

p � �. There exists an absolute constant 	0 4 0 such that

if T �51

. s4 spc ¼ 1þ N
p � �, equally, s � 1þ N

p �
�
r, 9r4 1, then

lim inf
t!T �

ðT � � tÞ
1
r0 r�ðtÞ
�� ��1��r

L1
� 	0; ð5Þ

especially, if s � 1þ N
p , then

lim inf
t!T �

ðT � � tÞ r�ðtÞ
�� ��

L1
� 	0;

. s ¼ spc ¼ 1þ N
p � �, then

lim inf
t!T �

ðT � � tÞ� r�ðtÞ
�� ��2��

L1
� 	0: ð6Þ

Remark 1.1 Compared to the results in [2], our results in Theorem 1.1 are more

generalized and elegant. We obtain the existence in the generalized Besov space

(1 � p � 1) with all possible regularity index (s � spc), and for all these cases only

taking a small assumption on the smallest scaling invariant norm ( �k k _B1��
1;1

) is enough

to extend globally.

Remark 1.2 In fact, from the proof of the Theorem 1.2, we shall see that the claim

also holds if r�ðtÞ
�� ��

L1
is substituted by a smaller norm �ðtÞ

�� ��
_B1
1;1

. But because it
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does not have internal advantage (the regularity indexes of both norms are equal),
we shall still use the clearer and simpler form.

Remark 1.3 For the critical case (�¼ 1) in the critical space ~L1 _B
N
p

p;1 \ L
1 _B

1þN
p

p;1 ,
we can similarly prove the local existence and the pointwise blowup criterion in
terms of (6). Moreover, using the method in [4], we can show r�ðtÞ

�� ��
L1

is uniformly
bounded and from blowup criterion T �¼1. But it seems very hard to obtain the
uniform boundedness in the supercritical case.

Remark 1.4 The method we use can apply to case �¼ 0. But since it is
relatively ordinary and needs an additional statement in Theorem 1.2, we omit it
here.

Notation: Throughout this article, C stands for a constant which may be different
from line to line. The notation X9Y means X � CY.

2. Preliminaries

In this preparatory section, we give the definition of the Besov spaces based on the
Littlewood–Paley decomposition and introduce the Calderón–Zygmund singular
integral and finally we review some important results that will be used in the
following.

We start with the dyadic unity partition. Choose two non-negative radial
functions 
, ’ 2 C1ðRN

Þ be supported respectively in the ball f� 2 R
N : j�j � 4

3g and
the shell f� 2 R

N : 3
4 � j�j �

8
3g such that


ð�Þ þ
X
j�0

’ð2�j�Þ ¼ 1; � 2 R
N;X

j2Z

’ð2�j�Þ ¼ 1; � 6¼ 0:

For every tempered distribution u we define the non-homogeneous Littlewood–Paley
operators

��1u :¼ 
ðDÞu; 8j 2 Z
þ
[ f0g; �ju :¼ ’ð2�jDÞu Sju :¼

X
�1�k�j�1

�ku;

the homogeneous Littlewood–Paley operators can be defined as follows

8j 2 Z; _�ju :¼ ’ð2�jDÞu _Sju :¼
X
k� j�1

_�ku;

where Sj or _Sj is the corresponding low-frequency cutoff operator.
Now we introduce the definition of Besov spaces through the above dyadic

decomposition. Let ðp; qÞ 2 ½1;1�2, s 2 R, the non-homogeneous Besov space Bs
p;q is

the set of tempered distribution u such that

uk kBs
p;q

:¼
�
2js �ju
�� ��

L p

	
‘qðf j��1g\ZÞ

51;

where the ‘q norm denotes the concrete version of Lq norm. For the homo-
geneous case, we first denote by S 0=P the space of tempered distribution
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modulo polynomials. Then the homogeneous space _B s
p;q is the set of distribution

u 2 S0=P such that

uk k _B s
p;q

:¼
�
2js _�ju
�� ��

Lp

�
‘qðZÞ

51:

We point out that if s4 0 then Bs
p;q ¼

_B s
p;q \ L

p, and f
�� ��

Bs
p;q
� f
�� ��

Lpþ f
�� ��

_B s
p;q
.

Next we define the two kinds of coupled space-time Besov spaces. The first one

Lrð½0;T �;Bs
p;qÞ, abbreviated by Lr

TB
s
p;q, is defined in the usual sense. The second one,

Chemin–Lerner’s space-time space ~Lrð½0;T �;Bs
p;qÞ, abbreviated by ~Lr

TB
s
p;q, is the set

of tempered distribution u satisfying

uk k ~Lr
T
Bs
p;q

:¼
�
2js �ju
�� ��

Lr
T
Lp

	
‘q
51:

Due to Minkowiski’s inequality, we immediately obtain the following embeddings:

Lr
TB

s
p;q ,!

~Lr
TB

s
p;q; if q � r;

~Lr
TB

s
p;q ,!Lr

TB
s
p;q; if r � q:

The homogeneous ones Lrð½0;T �; _B s
p;qÞ and

~Lrð½0;T�; _B s
p;qÞ can similarly extend.

We next introduce the classical Berstein’s inequality [10].

LEMMA 2.1 Let B be a ball, R be a ring, 0 � a � b � 1. Then 8k 2 Z
þ
[ f0g,

8l4 0 there exists a constant C4 0 such that

sup
j�j¼k

@�f
�� ��

Lb� ClkþNð
1
a�

1
bÞ f
�� ��

La if suppF f 	 lB;

C�1lk f
�� ��

La� sup
j�j¼k

@�f
�� ��

La� Clk f
�� ��

La if suppF f 	 lR:

Similar inequalities hold for the fractional derivative jDj�.

The next lemma also concerns the Fourier supported functions (see e.g. [7]).

LEMMA 2.2 Let R be a ring and ð�; t; lÞ 2 ð0;1Þ3. Then there exists two positive

constants C, c such that

e�tjDj
�

f
�� ��

Lp� Ce�ctl
�

f
�� ��

Lp if suppF f 	 lR:

The classical Calderón–Zygmund singular integrals are operators of the form

Tcz f ðxÞ :¼ PV

Z
R

N

�ðy0Þ

jyjN
fðx� yÞdy ¼ lim

	!0

Z
jyj4	

�ðy0Þ

jyjN
fðx� yÞdy;

where � is defined on the unit sphere of R
N, S

N�1, is integrable with zero average

and where y0 :¼ y
jyj 2 S

N�1. Clearly, the definition is meaningful for Schwartz functions.

Moreover if � 2 C1ðS
N�1
Þ, Tcz is L

p bounded, 15 p51.
The general version (4) of the relationship between v and � is in fact ensured by the

following result (see e.g. [11]).

LEMMA 2.3 Let m 2 C1ðRN
n f0gÞ be a homogeneous function of degree 0, and

Tm be the corresponding multiplier operator defined by ðTm f Þ^ ¼ mf̂, then
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there exist a 2 C and � 2 C1ðSN�1
Þ with zero average such that for any Schwartz

function f,

Tm f ¼ afþ PV
�ðx0Þ

jxjN
� f:

Remark 2.1 Since ��v ¼ ð�@1@N�; . . . ;�@N�1@N�; @
2
1� þ � � � þ @

2
N�1�Þ, the Fourier

multiplier of the operator T is rather clear. In fact, each component of its multiplier

is the linear combination of the term like
�i�j
j�j2

, i; j 2 f1; 2; . . . ;Ng, which of course

belongs to C1ðRN
n f0gÞ and is homogeneous of degree 0.

Next for the transport-diffusion equation

ðTD�Þ
@t� þ v � r� þ �jDj�� ¼ f
�ð0; xÞ ¼ �0ðxÞ

�
where � is the unknown scalar function, we have the following regularization

effect estimates.

PROPOSITION 2.4 Let s 2 ð�1; 1Þ, � 2 ½0; 1Þ, ð p; rÞ 2 ½1;1�2, f 2 L1
locðR

þ; _B s
p;1Þ and

v be a divergence-free vector field belonging to L1
locðR

þ;LipðRN
ÞÞ. We consider a

smooth solution � of the equation (TD�), then there exists a constant C depending

only on s and � such that for each t 2 R
þ

�
1
r �k k ~Lr

t
_B
sþ�r
p;1

� CeCVðtÞ
�
�0
�� ��

_B s
p;1

þ f
�� ��

L1
t

_B s
p;1

	
; ð7Þ

where VðtÞ :¼
R t
0 rvð
Þ
�� ��

L1
d
.

Besides, if v ¼ Cð�Þ þ Sð�Þ as (4) shows, then for all s� 1 we also have

�
1
r �k k ~Lr

t
_B
sþ�r
p;1

� CeC
~VðtÞ
�
�0
�� ��

_B s
p;1

þ f
�� ��

L1
t

_B s
p;1

	
, ð8Þ

where eVðtÞ :¼
R t
0

�
rvð
Þ
�� ��

L1
þ r�ð
Þ
�� ��

L1

	
d
.

Remark 2.2 The proof relies on the para-differential calculus combined with the

Lagrangian coordinate method and two key commutator estimates. We here omit

the proof, and for details see [4,7]. We just point out that the most fundamental and

important result in the proof is a short-time estimate, that is, if VðtÞ � C0, where C0 is

a chosen absolute constant, then

�
1
r �k k ~Lr

t
_B
sþ�r
p;1

9
X
j2Z

ð1� 2�ct2
j�

Þ
1
r2js �0j

��� ���
Lp
þ f
�� ��

L1
t

_B s
p;1

þ
X
j2Z

2js
Z t

0

½ _�j; v � r��ð
Þ
�� ��

Lpd
: ð9Þ

We also notice that the limitation in s only comes from the estimate of the

commutator term
P

j2Z 2js ½ _�j; v � r��
�� ��

Lp , and especially the upper bound of

s from the estimate of the term
P

j2Z

P
jk�jj�4 2

js _�j

�
_�kv � r _Sk�1�

	�� ��
Lp . Thus for

our specific relationship between v and �, one can breakthrough the ordinary

limitation of s with a necessary modification.
The important maximal principle for (TD�) equation is shown in [12].
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PROPOSITION 2.5 Let v be a smooth divergence-free vector field and f be a smooth

function. Assume that � is the smooth solution of (TD�) equation with �� 0, 0 � � � 2,

then for p 2 ½1;1� we have

�ðtÞ
�� ��

Lp� �0
�� ��

Lpþ

Z t

0

fð
Þ
�� ��

Lpd
:

At last we recall a commutator estimate [13].

LEMMA 2.6 Let �1 5 1, �2 5 1, ð p; rÞ 2 ½1;1�2, 1
r þ

1
r0 ¼ 1 and v be a divergence-

free vector field in R
N. In addition, assume that

�1 þ �2 þNminð1; 1=pÞ4 0 and �1 þN=p4 0:

Then we have X
j2Z

2jð�1þ�2þ
N
p�1Þ ½ _�j; v � r��

�� ��
L1
t L

p 9 vk k
~Lr
t

_B
N
pþ�1
p;1

�k k
~Lr0
t

_B
N
pþ�2
p;1

:

3. Proof of Theorem 1.1

3.1. Local existence

The proof is based on the iterative method and Proposition 2.4. First, we obtain

the global linear approximate solutions to the approximate system of (1) in the

work spaces, then we show the uniform bounds of the solution sequence for some

positive time T independent of the parameter n and further that the sequence is

of Cauchy under an appropriate topology, which are enough to pass to the limit in

the approximate system to get the local result.

Step 1: Global linear approximate solutions.
The approximate linear scheme is as follows: set �0ðt; xÞ :¼ e��tjDj

�

�0ðxÞ,
v0 :¼ Cð�0Þ þ Sð�0Þ, and �nþ1 is the solution of the system

@t�nþ1 þ vn � r�nþ1 þ �jDj
��nþ1 ¼ 0;

vn :¼ Cð�nÞ þ Sð�nÞ;
�nþ1ð0; xÞ ¼ �

0ðxÞ 2 Ys;p:

8<:
Since for r 2 ½1;1�, from Lemma 2.2

�0k k ~Lr
loc

�
R
þ; _B

sþ�r
p;1

	 ¼X
j2Z

2jðsþ
�
rÞ e��
jDj

� _�j�
0ðxÞ

�� ��
Lrð½0;t�;LpÞ

9
X
j2Z

2jðsþ
�
rÞ e�c�
2

j�
��� ���

Lr
t

_�j�
0ðxÞ

�� ��
Lp 9 �0

�� ��
_B s
p;1

;

where s 2 R, t 2 R
þ. Especially, for our special use s � spc , the upper estimate

is satisfied and if we let r¼ 1, s ¼ 1� �, p ¼ 1 and r ¼ 1, s¼ 0, p ¼ 1 in, we have

�0k kL1
loc
ðRþ; _B1

1;1
Þ9 �0

�� ��
_B1��
1;1

;

�0k k ~L1
Rþ

_B0
1;1

9 �0
�� ��

_B0
1;1

:
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Further, for s � 1þ N
p � �4 0, then

�0k k ~L1
Rþ

Bs
p;1
¼ 2�s ��1�0k kL1ðRþ;LpÞþ

X
j�0

2js �j�0
�� ��

LrðRþ;LpÞ

9 e��tjDj
�

�0
�� ��

L1ðRþ;LpÞ
þ �0k k ~L1ðRþ; _B s

p;1
Þ

9 �0
�� ��

Lpþ �0
�� ��

_B s
p;1

� �0
�� ��

Bs
p;1

:

Thus

�0k kL1
loc
ðRþ; _B sþ�

p;1
Þþ �0k k ~L1

Rþ
Ys;p

¼ �0k kL1
loc
ðRþ; _B sþ�

p;1
Þþ

�0k k ~L1
Rþ

Bs
p;1

�0k k ~L1
Rþ
ðBs
1;1
\ _B0
1;1
Þ

(
9

�0
�� ��

Bs
p;1

;

�0
�� ��

Bs
1;1
\ _B0
1;1

;

8<:
hence �0 2 ~L1ðRþ;Ys;pÞ \ L

1
locðR

þ; _B sþ�
p;1 Þ.

Then suppose for some n 2 Z
þ
[ f0g we have �n 2 ~L1ðRþ;Ys;pÞ \ L

1
locðR

þ; _B sþ�
p;1 Þ,

we shall deduce that �nþ1 also belongs to this space.
For all s � spc ¼ 1þ N

p � �, we directly have L1
locðR

þ; _B sþ�
1;1Þ ,! L1

locðR
þ; _B1

1;1Þ,

where ,! denotes continuous embedding, thus �n 2 L1
locðR

þ; _B1
1;1Þ. From Remark 2.1

the Fourier multiplier of the operator T : �n! vn has singularity only at the origin

point, thus it maps _B1
1;1 into _B1

1;1, we further have vn 2 L1ðR
þ; _B1

1;1Þ. Then using

Proposition 2.4 we obtain for any t 2 R
þ

�nþ1
�� ��

~Lr
t

_B
sþ�r
p;1

�CeC
~VðtÞ �0
�� ��

_B s
p;1

9 e
Cð vnk kL1

t
_B1
1;1
þ �nk kL1

t
_B1
1;1
Þ

�0
�� ��

_B s
p;1

9 �0
�� ��

_B s
p;1

;

ð10Þ

where the estimate holds for all s4 �1, which contains our choice s � spc , and

especially,

�nþ1
�� ��

~L1
Rþ

_B0
1;1

9 �0
�� ��

_B0
1;1

:

Due to the fact that �nþ1 satisfies a standard transport-diffusion equation, from

Lemma 2.5. �nþ1ðtÞ
�� ��

Lp� �0ðxÞ
�� ��

Lp , 8p 2 ½1;1�, and a high–low frequency decom-

position leads for all s � spc

�nþ1
�� ��

~L1
Rþ

Bs
p;1

9 ��1�nþ1
�� ��

L1ðRþ;LpÞ
þ �nþ1
�� ��

~L1ðRþ; _B s
p;1
Þ

9 �0
�� ��

Lpþ �0
�� ��

_B s
p;1

9 �0
�� ��

Bs
p;1

; ð11Þ

thus �nþ1 2 ~L1ðRþ;Ys;pÞ \ L
1
locðR

þ; _B sþ�
p;1 Þ.

Hence, the standard mathematical induction method concludes 8n 2 Z
þ
[ f0g

�n 2 ~L1ðRþ;Ys;pÞ \ L
1
locðR

þ; _B sþ�
p;1 Þ:
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Step 2: Uniform bounds.
To begin with, we set VnðtÞ :¼ rvnk kL1

t L
1 and �nðtÞ :¼ �nk kL1

t
_B1
1;1

. Then we intend

to obtain the uniform bounds of (vn; �n)n2N (with respect to n) for some positive time

T independent of n. For this purpose, we divide into two parts concerning the

regularity index s.

. First case: Subcritical index s4 spc ¼ 1þ N
p � �.

In this case we notice that there exists r 4 1 such that s � 1þ N
p �

�
r. Then from the

fact VnðtÞ9�nðtÞ, the Hölder’s inequality and estimate (7) (s ¼ 1� �
r 5 1, p ¼ 1)

we have

�nðtÞ � t
1
r0 �nk kLr

t
_B1
1;1
� Ct

1
r0 �0
�� ��

_B
1��r
1;1

eC�n�1ðtÞ ð12Þ

where r0 is the dual number of r.

Then we deduce that there exists some eCð¼ 2C0�Þ, �4 0 such that for all n 2 Z
þ
[ f0g

t
1
r0 �0
�� ��

_B
1��r
1;1

� �) �nðtÞ � eC: ð13Þ

We also use the ordinary mathematical induction to prove. First for all t satisfying

t
1
r0 �0
�� ��

_B
1��r
1;1

� �, where � is a small constant chosen later, we have

�0ðtÞ ¼ e��
jDj
�

�0
�� ��

L1
t

_B1
1;1

� t
1
r0 e��
jDj

�

�0
�� ��

Lr
t

_B1
1;1

� C1t
1
r0 �0
�� ��

_B
1��r
1;1

� C1�:

Furthermore from (12), we iterate forward as follows

�1ðtÞ � C2t
1
r0 �0
�� ��

_B
1��r
1;1

eC3�0ðtÞ � C2�e
C3C1� � 2C0�;

�2ðtÞ � C2�e
C3�1ðtÞ � C2�e

C32C
0� � 2C0�;

where C0 :¼ maxfC1;C2g and where both the last inequalities in the upper two

estimates hold as long as � is small enough such that minfeC3C1�; e2C3C
0�g � 2. We also

note that C1;C2;C3 are absolute constants independent of n. Thus for this � andeC ¼ 2C0�, a standard induction argument will conclude the statement.

Moreover, since we have bounded uniformly the quantity �nðtÞ, as estimating (10)

and (11), we have

�nk k ~Lr
T

_B
sþ�r
p;1

þ �nk k ~L1
T
Ys;p
� C �0

�� ��
Ys;p
; ð14Þ

where C is independent of the parameter n and where

T :¼ sup


t4 0 : t

1
r0 �0
�� ��

_B
1��r
1;1

� �
�
:

. Second case: Critical index s ¼ spc ¼ 1þ N
p � �.

The critical case is somewhat more subtle in proof. The key is to obtain the

uniform boundedness of VnðtÞ (�nðtÞ) for some positive time T. We use the induction

method to complete the proof.
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From the Remark 2.2, if for some n 2 Z
þ
[ f0g the condition VnðtÞ � C0 is satisfied,

then applying the estimate (9) (s ¼ 1� �, r¼ 1, p ¼ 1) we have

�nþ1ðtÞ9
X
j2Z

ð1� 2�ct2
j�

Þ2jð1��Þ �0j

��� ���
L1
þ
X
j2Z

2jð1��Þ ½ _�j; vn � r��nþ1
�� ��

L1
t L
1 ;

where �0j :¼ _�j�
0. From Lemma 2.6 (taking �1 ¼ �2 ¼ 1� �

2 5 1, p ¼ 1, r¼ 2),

the second term of the right-hand side can be estimated asX
j2Z

2jð1��Þ ½ _�j; vn � r��nþ1
�� ��

L1
t L
1 9 vnk k ~L2

t
_B
1��

2
1;1

�nþ1
�� ��

~L2
t

_B
1��

2
1;1

9 �nk k ~L2
t

_B
1��

2
1;1

�nþ1
�� ��

~L2
t

_B
1��

2
1;1
:

ð15Þ

Hence we get

�nþ1ðtÞ9
X
j2Z

ð1� 2�ct2
j�

Þ2jð1��Þ �0j

��� ���
L1
þ �nk k ~L2

t
_B
1��

2
1;1

�nþ1
�� ��

~L2
t

_B
1��

2
1;1

:

Also by virtue of (9) (s ¼ 1� �, r = 2, p ¼ 1), we obtain

�nþ1
�� ��

~L2
t

_B
1��

2
1;1

9
X
j2Z

ð1� 2�ct2
j�

Þ
1
22jð1��Þ �0j

��� ���
L1
þ
X
j2Z

2jð1��Þ ½ _�j; vn � r��nþ1
�� ��

L1
t L
1

9
X
j2Z

ð1� 2�ct2
j�

Þ
1
22jð1��Þ �0j

��� ���
L1
þ �nk k ~L2

t
_B
1��

2
1;1

�nþ1
�� ��

~L2
t

_B
1��

2
1;1

:

Combining these two estimates, we get

�nþ1ðtÞ þ �nþ1
�� ��

~L2
t

_B
1��

2
1;1

�C4

X
j2Z

ð1� 2�ct2
j�

Þ
1
22jð1��Þ �0j

��� ���
L1

þ C4 �nk k ~L2
t

_B
1��

2
1;1

�nþ1
�� ��

~L2
t

_B
1��

2
1;1

: ð16Þ

For n¼ 0, since �0k k ~L2
Rþ

_B
1��

2
1;1

þ�0ð1Þ9 �0
�� ��

_B1��
1;1

9Ys;p, we can choose a sufficiently

small t such that

C4 �0k k ~L2
t

_B
1��

2
1;1

�
1

2
and V0ðtÞ � C5�0ðtÞ � C0: ð17Þ

Since from the Lebesgue dominated convergence theorem,

lim
t!0þ

X
j2Z

ð1� 2�ct2
j�

Þ
1
22jð1��Þ �0j

��� ���
L1
¼ 0; ð18Þ

thus the smallness of t can also be expressed in the following sense: Let �4 0 be an

sufficiently small absolute constant chosen later, denoted by

T :¼ sup
n
t4 0 : C4

X
j2Z

ð1� 2�ct2
j�

Þ
1
22jð1��Þ �0j

��� ���
L1
� �

o
; ð19Þ
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then for all t � T, the estimates (17) are satisfied. Thus from (16), we obtain

�1ðtÞ þ �1k k ~L2
t

_B
1��

2
1;1

� 2�:

We next iterate forward, and since V1ðtÞ � C5�1ðtÞ � 2C5� and

C4 �1k k ~L2
t

_B
1��

2
1;1

� 2C4�, as long as �4 0 is sufficiently small (precisely s.t.

2C5� �C0, 2C4��
1
2 and (17) holds), we have

C4 �1k k ~L2
t

_B
1��

2
1;1

�
1

2
and V1ðtÞ � C0:

Thus we can use (16) again and get

�2ðtÞ þ �2k k ~L2
t

_B
1��

2
1;1

� 2�:

We also note that C4 and C5 are absolute constants independent of n. For this

suitable � (also n independent), by induction we have 8n 2 Z
þ
[ f0g and 8t � T

�nðtÞ þ �nk k ~L2
t

_B
1��

2
1;1

� 2�: ð20Þ

In a similar way as estimating (10) and (11), we have

�nk k ~Lr
T

_B
s
p
cþ
�
r

p;1

þ �nk k ~L1
T
Y

s
p
c ;p
� C �0

�� ��
Y

s
p
c ;p

: ð21Þ

Until now, for both cases we have obtained the uniform estimates of �n in the

work spaces. Next, for all s � spc we treat the corresponding problem for the velocity

vn. Since the operator T : �n! vn maps the homogeneous _B s
p;1 into itself, naturally

we have 8s � spc and 8p 2 ½1;1�

vnk k ~Lr
T

_B
sþ�r
p;1

9 �nk k ~Lr
T

_B
sþ�r
p;1

9 �0
�� ��

Ys;p
:

Furthermore, in a similar way as estimating (11) and due to the Lp bounded property

of T we obtain for p 2 ð1;1Þ

vnk k ~L1
T
Bs
p;1
� ��1vnk kL1

T
Lp þ vnk k ~L1

T
_B s
p;1

9 �nk kL1
T
Lp þ �nk k ~L1

T
_B s
p;1

9 �0
�� ��

Lpþ �0
�� ��

_B s
p;1

9 �0
�� ��

Bs
p;1

;

and similarly for p ¼ 1,

vnk k ~L1
T
Bs
1;1

9 vnk kL1
T
L1 þ vnk k ~L1

T
_B s
1;1

9 �nk k ~L1
T

_B0
1;1
þ �nk k ~L1

T
_B s
1;1

9 �0
�� ��

Bs
1;1
\ _B0
1;1

;
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and for p¼ 1, we cannot bound the quantity vnk k ~L1
T
Bs
1;1

uniformly, but alteratively

from the Calderón–Zygmund theorem and the embedding Bs
1;1 ,!Lp1 for all p1 4 1

we have

vnk k ~L1
T

_B s
1;1
þ vnk kL1

T
Lp1� �nk k ~L1

T
_B s
1;1
þ �nk kL1

T
Lp1

9 �nk k ~L1
T
Bs
1;1
9 �0
�� ��

Bs
1;1

:

Step 3: Strong convergence
We shall prove that ð�n; vnÞn2N is a Cauchy sequence in ~L1t

_B0
1;1. Notice that for

all s � spc , Ys;p ,! _B0
1;1 ( p ¼ 1, obvious; p51,Ys;p ,!B

N
p

p;1 ,!
_B
N
p

p;1 ,!
_B0
1;1).

For n;m 2 Z
þ
[ f0g, n4m, let �n;m :¼ �nþ1 � �mþ1 and vn;m :¼ vn � vm, then the

difference function satisfies

@t�
n;m þ vn � r�

n;m þ �jDj��n;m ¼ �vn;m � r�mþ1;
�n;mð0; xÞ ¼ 0:

�
From the estimate (7), we deduce

�n;mk k ~L1t
_B0
1;1

9 eC�nðtÞ

Z t

0

vn;m � r�mþ1ð
Þ
�� ��

_B0
1;1

d
: ð22Þ

Thanks to Bony’s decomposition, we have (see e.g. [6,7])

vn;m � r�mþ1
�� ��

_B0
1;1

9 vn;mk k _B0
1;1

�mþ1
�� ��

_B1
1;1

; ð23Þ

and since the operator T : �n�1;m�1! vn;m continuously maps _B1
1;1 into _B1

1;1, then

vn;m � r�mþ1ð
Þ
�� ��

_B0
1;1

9 �n�1;m�1
�� ��

_B0
1;1

�mþ1
�� ��

_B1
1;1

:

Thus we obtain

�n;mk k ~L1t
_B0
1;1

9 eC�nðtÞ �n�1;m�1
�� ��

L1t
_B0
1;1

�mþ1ðtÞ:

Taking advantage of (13) and (20) (for all n,�nðtÞ � const � �), one can further

choose � sufficiently small such that

�n;mk k ~L1t
_B0
1;1
� � �n�1;m�1

�� ��
~L1t

_B0
1;1

;

with �5 1. By iteration we have

�n;mk k ~L1t
_B0
1;1
� �mþ1 �n�m � �0k k ~L1t

_B0
1;1
� C�mþ1 �0

�� ��
_B0
1;1

:

Thus ð�nÞn2Zþ[f0g is of Cauchy in ~L1t
_B0
1;1, hence there exist � 2 ~L1t

_B0
1;1 and

v :¼ Cð�Þ þ Sð�Þ 2 ~L1t
_B0
1;1 such that ð�n; vnÞ strongly converges to ð�; vÞ in ~L1t

_B0
1;1.

Using Fatou’s lemma, from the uniform estimates in Step 2 we get

� 2 ~L1t Ys;p \ L
1
t

_B sþ�
p;1 ;

v 2 L1
t

_B sþ�
p;1 \

~L1t Ys;p, p 2 ð1;1�

~L1t
_B s
1;1 \

~L1t Lp1 , p ¼ 1; 8p1 4 1:

(
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This information allow us to pass to limit in the equation.
The continuity in time issue, that is � 2 C0

tYs;p, is a standard process and one can

refer to [2] for a detailed proof.

Step 4: Uniqueness
We prove the uniqueness issue in the space YT :¼ ~L1T

_B0
1;1 \ L

1
T

_B1
1;1, where T is

arbitary possible finite constant. Also notice that for all s � spc the space
~L1T Ys;p \ L

1
T

_B sþ�
p;1 is continuously embedded in YT.

Let ð�; vÞ; ð�0; v0Þ 2 YT be two solutions of the system (DPM�) with the same

initial data, and denote ð��; �vÞ :¼ ð� � �0; v� v0Þ, then the difference equation

becomes

@t�� þ v � r�� þ �jDj��� ¼ ��v � r�0;
��ð0; xÞ ¼ 0:

�
Also using Proposition 2.4 and the estimate as (23), we have

��k k ~L1
T

_B0
1;1

9 e
C �k k

L1
T

_B1
1;1

Z T

0

��k k ~L1t
_B0
1;1

�0ðtÞ
�� ��

_B1
1;1

dt:

Then Gronwall’s inequality ensures ��k k ~L1
T

_B0
1;1
¼ 0, thus ð�; vÞ ¼ ð�0; v0Þ.

3.2. Global existence

Now we intend to prove that for appropriate sufficiently small initial data the system

(DPM�) generates a global solution.
We notice that in order to obtain global result for small data we use the iterative

process only once. From the natural blowup criterion in the iterative procedure,

it suffices to bound a priori the quantity VðtÞ :¼ rvk kL1
t L
1 for all t 2 R

þ.
We apply Proposition 2.4 (s¼1� �, r¼ 1, p¼1), then

VðtÞ � C �k kL1
t

_B1
1;1
� C��1 �0

�� ��
_B1��
1;1

eCVðtÞ:

Since Vð0Þ¼0 and V(t) is continuous in time, using the standard continuity method

(in a spirit as obtaining (12)), we shall conclude that there exist two absolute

constants �C, �4 0 such that

�0
�� ��

_B1��
1;1

� ��) VðtÞ � C �0
�� ��

_B1��
1;1

; 8t 2 R
þ:

We also note that C ¼ const � ��1 is an absolute constant independent of t. Thus this

means the global result.

4. Proof of Theorem 1.2

As a byproduct of the local existence part, we prove the blowup criteria.
For the s4 spc¼1þ

N
p � � case, due to the local existence theory and especially

(13), if T �51, then necessarily we have

lim inf
t!T �

ðT � � tÞ
1
r0 �ðtÞ
�� ��

_B
1��r
1;1

� 	0; ð24Þ
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where 	0 is an absolute positive constant, otherwise the solution can continue past

T �. Next, by a direct decomposition and using maximal principle Proposition 2.5

and Bernstein’s inequality, we have for t5T �

�ðtÞ
�� ��

_B
1��r
1;1

¼
X
j�M

2jð1�
�
rÞ _�j�ðtÞ
�� ��

L1
þ
X
j4M

2jð1�
�
rÞ _�j�ðtÞ
�� ��

L1

9
X
j�M

2jð1�
�
rÞ �ðtÞ
�� ��

L1
þ
X
j4M

2�j
�
r _�jr�ðtÞ
�� ��

L1

9 2Mð1�
�
rÞ �0
�� ��

L1
þ2�M

�
r r�ðtÞ
�� ��

L1

choosing appropriate M such that 2Mð1�
�
rÞ �0
�� ��

L1
� 2�M

�
r r�ðtÞ
�� ��

L1
, then

�ðtÞ
�� ��

_B
1��r
1;1

9 r�ðtÞ
�� ��1��r

L1
;

thus we can rewrite the blowup criterion (24) to get the desired result

lim inf
t!T �

ðT � � tÞ
1
r0 r�ðtÞ
�� ��1��r

L1
� 	00:

For the critical case s ¼ spc , similarly, if T �51, then from (19) we necessarily

have

lim inf
t!T �

X
j2Z

ð1� e�cðT
��tÞ2j� Þ

1
22jð1��Þ _�j�ðtÞ

�� ��
L1
� 	0:

By Lebesgue dominated convergence theorem, it leads to a direct blowup criterion

�k k ~L1
T �

_B1��
1;1
¼ 1. Further, using mean value theorem, maximal principle and

Bernstein’s inequality, we get

	0� lim inf
t!T �

(X
j�M

ð1� e�cðT
��tÞ2j� Þ

1
22jð1��Þ _�j�ðtÞ

�� ��
L1

þ
X
j4M

ð1� e�cðT
��tÞ2j� Þ

1
22jð1��Þ _�j�ðtÞ

�� ��
L1

)

9 lim inf
t!T �

(X
j�M

ðT � � tÞ
1
22jð1�

�
2Þ �0
�� ��

L1
þ
X
j4M

2�j� _�jr�ðtÞ
�� ��

L1

)

9 lim inf
t!T �

(
ðT � � tÞ

1
22Mð1�

�
2Þ �0
�� ��

L1
þ2�M� r�ðtÞ

�� ��
L1

)
:

Also choosing suitable M such that both last terms nearly equals, we obtain the

desired result

lim inf
t!T �

ðT � � tÞ� r�ðtÞ
�� ��2��

L1
� 	00:
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