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1. Introduction

The 2D incompressible micropolar fluid flow in the whole space is governed by the following equations (cf. [14])8̂<̂
:
@tu� .�C �/�uC u � ruCrPD 2�r �! in D�RC,

@t! � ��! C u � r! C 4�! D 2�r � u in D�RC,

r � uD 0 in D�RC,

(1.1)

with the initial data

ujtD0 D u0, !jtD0 D !
0, (1.2)

where D D R2, u D .u1, u2/ is the velocity field, P is the pressure, scalar ! denotes the microrotation field. Non-negative constants
�, �, � stand for the viscosity coefficients, � is the Newtonian kinematic viscosity, � is the microrotation viscosity and � is called as the
angular viscosity. r D . @
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Here, the density of the fluid is assumed to be 1.
The 2D micropolar fluid motion is a special case of the corresponding 3D motion, that is,

.x, c0/ 2R
3,

�
u1.x, c0/, u2.x, c0/, 0

�
! u.x/,

�
0, 0,!3.x, c0/

�
! !.x/.

The 3D micropolar fluid model, firstly introduced by Eringen in [9], is an essential generalization of the known Navier–Stokes/Euler
model in the sense that the microstructure of the fluid is taken into account. It may better represent the fluids consisting of randomly
oriented particles in a medium, for example, liquid crystals made up of dumbbell molecules.

There have been many works concerning the existence and uniqueness problems of the micropolar fluid model, for example,
[4, 12, 13, 16, 17, 19, 21] and reference therein, especially in the 2D whole space case, the uniqueness of the global weak solutions
and the global wellposedness of the smooth solution have been obtained in [13] when � > 0 and � > 0. Dong and Zhang in [8]
showed the global wellposedness of the smooth solution in the 2D whole space when � D 0 and � > 0.

The Graduate School of China Academy of Engineering Physics, P.O. Box 2101, Beijing, 100088, China
*Correspondence to: Liutang Xue, The Graduate School of China Academy of Engineering Physics, P.O. Box 2101, Beijing, 100088, China.
†E-mail: xue_lt@163.com

1
7

6
0

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760–1777

Received 6 January 2011 Published online 10 August 2011 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/mma.1491
MOS subject classification: 76D03, 76D09, 35Q35

Wellposedness and zero microrotation
viscosity limit of the 2D micropolar fluid
equations

Liutang Xue*†

Communicated by W. Sprößig

In this paper, we consider the 2D micropolar fluid equations in the whole space R2. We prove the global wellposedness
of the system with rough initial data and show the vanishing microrotation viscosity limit in the case of zero kinematic
viscosity or zero angular viscosity. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: micropolar fluid; vanishing viscosity limit; global wellposedness



L. XUE

When the microrotation viscosity � equals to zero, then Equation (1.1) reduces to the following system8̂<̂
:
@tuC u � ru� ��uCrPD 0

@t! C u � r! � ��! D 0

divuD 0.

(1.3)

Note that the equations of the velocity field in Equation (1.1) reduce to the incompressible Navier–Stokes/Euler system and are irrele-
vant with the microrotation field. Thus, the size of the microrotation viscosity may allow us to measure, in a certain sense, the deviation
of flows of micropolar fluids from that of the Navier–Stokes/Euler model. In [16], Payne and Straughan proved the local convergence
result when �, � > 0 and showed that the convergence rate is at least O.�/ for the forward in time. Here, the local convergence is meant
that for every t � 0, the solution .u�.t/,!�.t// of Equation (1.1) converges in L2-norm to the solution .u.t/,!.t// of Equation (1.3),
under the same initial data (1.2). In [14], in the case of 2D bounded domain D with homogeneous boundary condition and �, � > 0,
Łukaszewicz moreover proved the global convergence result when � was large enough, that is, the convergence in the above is uniform
in t.

In this paper, we aim at proving the local convergence result of the 2D micropolar fluid systems (1.1)–(1.2) for the limiting cases (i.e.,
� D 0 or � D 0). Compared with both positive cases, the situation is more delicate: when � D 0, we have to consider the term like
� k�u�kL1

t L2 in the convergence part, and it seems hard to get the the appropriate a priori estimate simply from the classical L2 energy

inequality (e.g., Equation (3.2) below); when � D 0, because there is no smoothing effect in the equation of !, we, here, only hope to
get the global wellposedness of the strong solution with the rough initial regularity. Hence, we first consider the global wellposedness
of system (1.1) with rough initial data and obtain some good a priori estimates, and then we show the zero microrotation viscosity limit
of Equations (1.1)–(1.2). Precisely, our results are listed as follows:

Theorem 1.1
(1) Let � > 0, � � 0, � > 0, u0 be a divergence-free vector field belonging to H1 and !0 2 L2. Then the 2D micropolar fluid systems

(1.1)–(1.2) has a unique global solution .u,!/ such that for every � 2 Œ1, 2Œ

u 2 C.RC, H1/\eL�loc.R
C, B1
1,1/, ! 2 C.RC, L2/\eL�loc.R

C, B1
2,1/.

(2) Let � > 0, � � 0, � D 0, u0 be a divergence-free vector field belonging to H1 and !0 2 L2 \ B0
1,1. Then the 2D micropolar fluid

systems (1.1)–(1.2) has a unique global solution .u,!/ such that for every � 2 Œ1, 2Œ

u 2 C.RC, H1/\eL�loc.R
C, B1
1,1/, ! 2 C.RC, L2 \ B0

1,1/.

Theorem 1.2
Let � � 0, � � 0, .u0,!0/ 2…with

… :D

8̂̂<̂
:̂

H1 � H1C�0 , �0 2�0, 1Œ, when � > 0, � D 0,

B2
2,1 � B0

2,1, when � D 0, � > 0,

B2
2,1 �

�
B1

2,1 \ B1
1,1

�
, when � D 0, � D 0,

and .u� ,!�/ and .u,!/ be the corresponding unique global solutions of Equations (1.1)–(1.2) and Equations (1.3)–(1.2), respectively.
Then as �! 0, we have for every T � 0,

.u� ,!�/ �! .u,!/ in L1.Œ0, T�; L2.R2//.

More precisely, we have
ku�.t/� u.t/kL2 Ck!�.t/�!.t/kL2 �8̂<̂

:
C�teexpfCtgef1.�t,z/, when � > 0, � D 0, � > 0,

C.�t/
1
2 eexpfexpfCtggef2.�t,z/, when � D 0, � > 0, � 2�0, �Œ,

C.�t/
1
2�eexpfexpfCtggeexpfexpfC�tgg, when � D 0, � D 0, � 2�0, 1Œ,

where t � 0, z :D � 2�
�C��� , and f1.�t, z/ .z �tC 1, f2.�t, z/ .z �tC 1 are defined in Equations (3.4) and (3.5), respectively, and C is the

absolute constant that may depend on �, � but not depend on �. Here, 1
2� denotes a positive number strictly less than 1

2 and can be

arbitrarily close to 1
2 .

Remark 1.1
We note that when � ¤ � , we get z! 0 as �! 0. Thus f1.�t, z/, f2.�t, z/ asymptotically behave not bad, indeed, for every i, fi.�t, z/! �t.

The proof of Theorem 1.1 mainly relies on the method of applying the hidden structures of the coupling system (1.1), which is a
newly developed method in treating some kind of coupling systems dating from fluid mechanics, e.g. the generalized Boussinesq sys-
tem (cf. [10, 11]), the compressible barotropic fluid equations (cf. [18]) and so on. The proof of Theorem 1.2 mainly bases on the a priori
estimates obtained in Theorem 1.1.
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Now we shall have a short discussion on how the method is used in proving Theorem 1.1. The vorticity 	 :D r � u is an important
physical quantity, and is closely related to the global continuation of the solution (e.g. BKM blowup criterion [2]). Thus firstly, by apply-
ing the curl operator to the equation of u and from r � .r � !/D ��!, we see the coupling system of vorticity	 and microrotation
field ! (

@t	C u � r	� .�C �/�	D�2��!

@t! C u � r! � ��! C 4�! D 2�	.
(1.4)

If one only views �! as a forcing term, then this high order term always plays a bad part and produces difficulty in some cases, and
especially when � D 0, because of its somewhat critical sense, the usual methods fail to obtain the global results. But fortunately, from
the special structural property, we can construct a new interim quantity to avoid this bad term. Indeed, let z 2 R be a number chosen
later, and denote 
z :D	C z!, thus by a direct calculation we find

@t	C u � r	� .�C �/�
z D�.2� C z.�C �//�!,

@t.z!/C u � r.z!/D z��! � 4z�! C 2z�	,

and if � ¤ � C �, we select z such that z.� � � � �/ � 2� D 0, that is, z D � 2�
�C��� (note that when � D 0, it is just the quantity

introduced in [8]), then

@t
z C u � r
z � .�C �/�
z D�4z�! C 2z�	.

In what follows, we shall omit the subscript when there is no ambiguity. Clearly this 
 has very good structures, and by considering the
coupling system of 
 and !, we can get the necessary a priori estimates of	 and finally reach the target.

The paper is organized as follows. Section 2 is devoted to present some preparatory knowledge on Besov spaces, and show some
necessary estimates of smooth solutions of transport-diffusion equation and Stokes system. Then we prove Theorem 1.1 in Section 3
and Theorem 1.2 in Section 4.

2. Preliminaries

2.1. Notations

Throughout this paper the following notations will be used.

˘ The notion X . Y means that there exists a positive harmless constant C0 such that X � C0Y . X � Y means that both X . Y and Y . X
are satisfied.

˘ S denotes the Schwartz class, S 0 the space of tempered distributions, and S 0=P the quotient space of tempered distributions, which
are modulo polynomials.

˘ We use F f orbf to denote the Fourier transform of a tempered distribution f .
˘ For every s 2R, Hs.Rn/ (or PHs.Rn/) is the usual inhomogeneous (or homogeneous) Sobolev space in the L2 framework.
˘ For any pair of operators A and B on some Banach space X , the commutator ŒA, B� is defined by AB� BA.

2.2. Littlewood–Paley decomposition and Besov spaces

To define the Besov space, we need the following dyadic partition of unity (cf. [3]). Choose two non-negative radial functions
�, ' 2 C1.Rn/ be supported respectively in the ball

˚
� 2Rn : j�j � 4

3

�
and the shell

˚
� 2Rn : 3

4 � j�j �
8
3

�
such that

�.�/C
X
j�0

'.2�q�/D 1, 8� 2Rn;
X
q2Z

'.2�q�/D 1, 8� ¤ 0.

For all f 2 S 0.Rn/, we define the nonhomogeneous Littlewood–Paley operators

��1f :D �.D/f ; 8q 2N �qf :D '.2�qD/f and Sqf :D
X

�1�j�q�1

�j f .

The homogeneous Littlewood–Paley operators are defined as follows:

8q 2 Z, P�qf :D '.2�qD/f , PSqf :D
X

j�q�1

P�j f .

Now we introduce the definition of Besov spaces . Let .p, r/ 2 Œ1,1�2, s 2R, the nonhomogeneous Besov space Bs
p,r is defined as the

set of tempered distribution f such that

kfkBs
p,r

:D kf2qsk�qfkLpgq��1k`r <1,

1
7

6
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The homogeneous space PBs
p,r is the set of f 2 S 0.Rn/=P.Rn/ such that

kfkPBs
p,r

:D kf2qsk P�qfkLpgq2Zk`r.Z/ <1.

We point out that for all s 2R, Bs
2,2 D Hs and PBs

2,2 D
PHs.

Next, we introduce two kinds of coupled space–time Besov spaces. The first one L%.Œ0, T�, Bs
p,r/, abbreviated by L%T Bs

p,r , is the set of
tempered distribution f such that

kfkL%T Bs
p,r

:D
		kf2qs

		�qf
		

Lpgq��1k`r

		
L%T
<1.

The second oneeL%.Œ0, T�, Bs
p,r/, abbreviated byeL%T Bs

p,r , is the set of tempered distribution f satisfying

kfkeL%T Bs
p,r

:D
		f2qsk�qfkL%T Lpgq��1

		
`r <1.

Because of the Minkowiski inequality, we immediately obtain

L%T Bs
p,r ,!

eL%T Bs
p,r , if r �  and eL%T Bs

p,r ,! L%T Bs
p,r , if %� r.

We can similarly extend to the homogeneous ones L%T
PBs

p,r andeL%T PBs
p,r .

Berstein’s inequality is fundamental in the analysis involving Besov spaces (see e.g. [3])

Lemma 2.1
Let f 2 La.Rn/, n 2N , 1� a� b�1. Then for every .k, q/ 2N2 there exists a constant C > 0 such that

supj˛jDk

		@˛Sqf
		

Lb � C2q.kCn. 1
a�

1
b //
		Sqf

		
La ,

C�12qk
		�qf

		
La � sup

j˛jDk

		@˛�qf
		

La � C2qk
		�qf

		
La .

2.3. On transport-diffusion equation and Stokes system

In this subsection, we shall collect some useful estimates concerning the smooth solutions of the transport(-diffusion) equation and the
Stokes system, which plays an important role in the existence and the uniqueness part. We consider the following transport(-diffusion)
equation (

@t! C u � r! � ��! C K! D f ,

divuD 0, !jtD0 D !
0,

(2.1)

where � � 0 and K 2R.
First, we consider the basic Lp estimate.

Proposition 2.2
Let u be a smooth divergence-free vector field of Rn and ! be a smooth solution of Equation (2.1). Then for every p 2 Œ1,1�we have

k!.t/kLp � emaxf�K ,0gt
� 			!0

			
Lp
C

Z t

0
kf .�/kLp d�

�
.

Proof
Denotee! :D eKt! andef :D eKtf , then Equation (2.1) reduces to(

@te! C u � re! � ��e! Def ,

divuD 0, e!jtD0 D !
0.

This is just the standard transport(-diffusion) equation, thus from the classical estimate in [5]

ke!.t/kLp �
			!0

			
Lp
C

Z t

0
kef .�/kLp d� ,

we further get

k!.t/kLp � e�Kt
� 			!0

			
Lp
C

Z t

0
eK� kf .�/kLp d�

�
�

(		!0
		

Lp C
R t

0 kf .�/kLp d� if K � 0

e�Kt
� 		!0

		
Lp C

R t
0 kf .�/kLp d�

�
if K < 0.

�

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760–1777
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The following smoothing effect is useful in the main proof.

Proposition 2.3
Let u be a smooth divergence-free vector field of Rn with vorticity 	 D r � u, and ! be a smooth solution of the transport-diffusion
equation (2.1) with � > 0. Then for every % 2 Œ1,1� and p 2 Œ2,1Œwe have

sup
q2N

22q=%
		�q!

		
L%t Lp . ��

1
% emaxf�K ,0gt

�
k!0kLp Ck!kL1t L1 k	kL1

t Lp CkfkL1
t Lp

�
.

Proof
Let q 2N and denote�q! :D !q and�qf :D fq. Then applying�q to the equation, we obtain

@t!qC u � r!q � ��!qC K!q D�Œ�q, u � r�! C fq. (2.2)

From the definition of the dyadic operator, !q is real-valued. Multiplying the upper equation by j!qj
p�2!q and integrating over the

whole space, we find

1

p

d

dt

		!q.t/
		p

Lp C �.p� 1/

Z
R2
jr!q.t, x/j2j!q.t, x/jp�2dxC K

		!q.t/
		p

Lp

D�

Z
R2
Œ�q, u � r�! � j!qj

p�2!q.t, x/dxC

Z
R2

fq � j!qj
p�2!q.t, x/dx

�
� 		Œ�q, u � r�!.t/

		
Lp C

		fq.t/
		

Lp

� 		!q.t/
		p�1

Lp .

By virtue of the generalized Bernstein inequality (cf. [7]), there exists an absolute constant c independent of q such that

d

dt

		!q.t/
		

Lp C c�22q
		!q.t/

		
Lp C K

		!q.t/
		

Lp �
		Œ�q, u � r�!.t/

		
Lp C

		fq.t/
		

Lp .

It directly leads to

		!q.t/
		

Lp � e�c�22qt�Kt
			!0

q

			
Lp
C

Z t

0
e�c�22q.t��/�K.t��/� 		Œ�q, u � r�!.�/

		
Lp C

		fq.�/
		

Lp

�
d�

� emaxf�K ,0gt
�

e�c�22qt
			!0

q

			
Lp
C

Z t

0
e�c�22q.t��/� 		Œ�q, u � r�!

		
Lp C

		fq
		

Lp

�
d�
�

.

Taking the L% norm over Œ0, t� and from the Young’s inequality, we find

k!qkL%t Lp . emaxf�K ,0gt��1=%2�2q=%
�
k!0

qkLp C

Z t

0

�
kŒ�q, u � r�!.�/kLp Ckfq.�/kLp

�
d�
�

. (2.3)

From a simple paraproduct computation, we get (cf. [10])		Œ�q, u � r�!
		

Lp . k	kLp k!kL1 , (2.4)

thus combining with the Bernstein inequality, we have for every q 2N ,

22q=%
		!q

		
L%t Lp . ��

1
% emaxf�K ,0gt

�
k!0kLp Ck	kL1

t Lp k!kL1t L1 CkfqkL1
t Lp

�
.

�

We also have the regularization effect as follows.

Proposition 2.4
Let .s, r/ 2�� 1, 1Œ�Œ1,1�[ f.1, 1/, .�1,1/g, p 2 Œ1,1�, u be a smooth divergence-free vector field and ! be a smooth solution of the
Equation (2.1). Then there exists C > 0 such that for every t 2RC,

k!keL1t Bs
p,r
� CeCU.t/Cmaxf�K ,0gt�			!0

			
Bs

p,r

CkfkeL 1
t Bs

p,r

�
,

where

U.t/ :D

8̂̂<̂
:̂
krukL1

t L1 if s 2�� 1, 1Œ,

kukL1
t B1
1,1

if sD 1, rD 1,

kukL1
t B1
1,1

if sD�1, rD1.1
7

6
4
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Proof
Applying Proposition 2.2 to Equation (2.2), we have for every q� �1

		!q
		

L1t Lp . emaxf�K ,0gt
� 			!0

q

			
Lp
C

Z t

0

		Œ�q, u � r�!.�/
		

Lp d� C
		fq
		

L1
t Lp

�
.

The remaining part is classical (cf. [6] and [1]), and thus we omit it. �

When sD 0, we also have a logarithmic improvement of the upper estimate.

Proposition 2.5
Let .p, r/ 2 Œ1,1�2, u be a smooth divergence-free vector field of Rn and ! be a smooth solution of (2.1). Then for every t � 0

k!keL1t B0
p,r
. emaxf�K ,0gt

�
1C

Z t

0
kru.�/kL1 d�

�� 			!0
			

B0
p,r

CkfkL1
t B0

p,r

�
.

Proof
The proof is from the classical process (cf. [10]) combining with Proposition 2.2 and Proposition 2.4, and we omit it. �

Next we shall consider the regularization effect of the following Stokes system(
@tuC v � ru� ��uCrPD F

divv D 0, ujtD0 D u0,
(2.5)

where v is a smooth divergence-free vector field of Rn and F is a smooth forcing term.

Proposition 2.6
Let s 2�� 1, 1Œ,  2 Œ1,1�, and u be a smooth solution of the Stokes system (2.5). Then for every t � 0, there exists an absolute constant
C > 0 such that

kukL1t Bs
2,1
� Ce

Ckrvk
L1

t L1
� 			u0

			
Bs

2,1

C
�
.1=�/1�

1
� C t1� 1

�
�
kFkeL�t B

s�2C 2
�

2,1

�
.

Remark 2.1
The proof can be carried out in a similar way as obtaining Proposition 4.2 in [11], and we omit it. We note that if F :D F1 C F2, we can
choose different 1 and 2 to match F1, F2, respectively.

3. Proof of Theorem 1.1

The outline of the proof is as follows: first, we give some appropriate a priori estimates, then we prove the uniqueness in a weaker
framework, and at last, we show the existence.

3.1. A priori estimates

Proposition 3.1
Let � � 0, � � 0 and .u,!/ be a solution of the 2D micropolar fluid equations in Equation (1.1) with .u0,!0/ 2 L2 � L2. Then for every
t � 0

ku.t/k2
L2 Ck!.t/k

2
L2 C 2�

Z t

0
kru.�/k2

L2 d� C 2�

Z t

0
kr!.�/k2

L2 d� �
			u0

			2

L2
C
			!0

			2

L2
. (3.1)

Besides, when � D 0, we also get

�

Z t

0
kru.�/k2

L2 d� � C0eC0�t . (3.2)

Proof
Multiplying the first equation of Equation (1.1) by u, the second by !, and integrating in the spatial variable, we have

1

2

d

dt

�
ku.t/k2

L2 Ck!.t/k
2
L2

�
C .�C �/ kru.t/k2

L2 C � kr!.t/k
2
L2 C 4� k!.t/k2

L2

D 2�

Z
R2
.r �!/ � u.t, x/dxC 2�

Z
R2
.r � u/!.t, x/dx

D 4�

Z
R2
.r � u/!.t, x/dx.

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760–1777
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From the Young inequality, we find

4�

Z
.r � u/! � � kr � uk2

L2 C 4� k!k2
L2 � � kruk2

L2 C 4� k!k2
L2 .

It follows that

1

2

d

dt
.ku.t/k2

L2 Ck!.t/k
2
L2/C � kru.t/k2

L2 C � kr!.t/k
2
L2 � 0.

Then integrating in time leads to Equation (3.1). When � D 0, Equation (3.2) is naturally from

4�

Z
.r � u/! �

�

2
kruk2

L2 C 8� k!k2
L2 .

�

Proposition 3.2
Let � � 0, � � 0, .u0,!0/ be a solution of Equation (1.1) with u0 2 H1 and !0 2 L2. Then for every t � 0

kr � u.t/k2
L2 Ck!.t/k

2
L2 � C0e2f1.�t,z/. (3.3)

where C0 is a absolute constant depending only on the data, z :D� 2�
�C��� ,

f1.�t, z/ :D

8̂<̂
:

min
˚
�
4 t, f2.�t, z/

�
if � � �2

�C� , � ¤ �C �

f2.�t, z/ if � < �2

�C� ,
�
4 t if � D �C �,

(3.4)

and

f2.�t, z/ :D g1.z/�tCmaxf0, log jzjg, (3.5)

and

g1.z/ :Dmaxfjz2C 2z� 1j C 2z, jz2C 2z� 1j � 2z � 4g

D

8̂̂̂<̂
ˆ̂:

z2C 4z� 1 if z 2 Œ
p

2� 1,1Œ,

1� z2 if z 2 Œ�1, 0Œ [ �0,
p

2� 1Œ,

�4z� z2 � 3 if z 2 Œ�1�
p

2,�1Œ,

z2 � 5 if z 2 ��1,�1�
p

2Œ.

(3.6)

Besides, when �C � < � , we also have

kr � u.t/k2
L2 Ck!.t/k

2
L2 C .�C �/

Z t

0
kr � u.�/k2

PH1 d� C �

Z t

0
kr!.�/k2

L2 d� � C0e2f2.�t,z/.

Proof
We shall first take the new idea mentioned in the Section 1 to consider this problem. Indeed, we have the following coupling system of

 :D	C z! Dr � uC z! and ! (

@t
 C u � r
 � .�C �/�
 � 2�z
 D � 2�.z2C 2z/!,

@t! C u � r! � ��! C 2�.zC 2/! D 2�
 ,
(3.7)

By using the usual L2 method, we find

1

2

d

dt
.k
.t/k2

L2 Ck!.t/k
2
L2/C .�C �/ kr
.t/k

2
L2 C � kr!.t/k

2
L2

D 2�z k
.t/k2
L2 � 2�.z2C 2z� 1/

Z
R2

 �!.t, x/dx � 2�.zC 2/ k!.t/k2

L2

� �.jz2C 2z� 1j C 2z/ k
.t/k2
L2 C �.jz

2C 2z� 1j � 2z� 4/ k!.t/k2
L2

Hence, we infer

1

2

d

dt

�
k
.t/k2

L2 Ck!.t/k
2
L2

�
C .�C �/kr
.t/k2

L2 C �kr!.t/k
2
L2

��g1.z/.k
.t/k
2
L2 Ck!.t/k

2
L2 /,

1
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6
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where g1.z/ is defined in Equation (3.6). Thus

k
.t/k2
L2 Ck!.t/k

2
L2 C .�C �/

Z t

0
kr
.�/k2

L2 d� C �

Z t

0
kr!.�/k2

L2 d�

�.k	0k2
L2 Ck!

0k2
L2 /maxfz2, 1ge2g1.z/�t ,

and from Equation (3.1)

k	.t/k2
L2 Ck!.t/k

2
L2 Cminf�C �, �g

Z t

0
kr	.�/k2

L2 d� C �

Z t

0
kr!.�/k2

L2 d�

�k
.t/k2
L2 C .1C z2/k!.t/k2

L2 C .�C �/

Z t

0
kr
.�/k2

L2 d� C �.1C z2/

Z t

0
kr!.�/k2

L2 d�

�C0 maxfz2, 1ge2g1.z/�t .

On the other hand, we can consider the coupling system (1.4) of vorticity	 and microrotation field !. Similarly from the L2 method,
we have

1

2

d

dt
.k	.t/k2

L2 Ck!.t/k
2
L2 /C .�C �/ kr	.t/k

2
L2 C � kr!.t/k

2
L2 C 4� k!.t/k2

L2

D 2�

Z
R2
r	 � r!.t, x/dxC 2�

Z
R2
	 �!.t, x/dx.

Because of the Young inequality, we get

2�
ˇ̌̌ Z
r	 � r!dx

ˇ̌̌
� .�C �/ kr	k2

L2 C
�2

�C �
kr!k2

L2 ,

and

2�
ˇ̌̌ Z

	 �!dx
ˇ̌̌
� 4� k!k2

L2 C
�

4
k	k2

L2 .

Thus if � � �2

�C� , we obtain

d

dt
.k	.t/k2

L2 Ck!.t/k
2
L2 /�

�

2
.k	.t/k2

L2 Ck!.t/k
2
L2 /.

Integrating in time yields a part of Equation (3.3).
�

Proposition 3.3
Let � � 0, � � 0, �C � ¤ � and .u0,!0/ be a solution of Equation (1.1) with .r � u0,!0/ 2 L1 � L1. Then for every t � 0

kr � u.t/kL1 Ck!.t/kL1 �
�			r � u0

			
L1
C
			!0

			
L1

�
e2f3.�t,z/,

where zD� 2�
�C��� ,

f3.�t, z/ :D g3.z/�tC log.1C jzj/, (3.8)

and

g3.z/ :Dmaxfjz2C 2zj, 1g Cmaxfz,�z� 2, 0g

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

z2C 3z if z 2 Œ
p

2� 1,1Œ,

zC 1 if z 2 �0,
p

2� 1Œ,

1 if z 2 Œ�2, 0Œ,

�z� 1 if z 2 Œ�
p

2� 1,�2Œ,

z2C z� 2 if z 2 ��1,�
p

2� 1Œ.

(3.9)

Proof
It seems very difficult to get this type estimates simply from the coupling system (1.4), but we can consider the interim system (3.7) to
tackle this problem. Denote

ı1 :Dmaxfz, 0g and ı2 :Dmaxf�z � 2, 0g.
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1
7

6
7



L. XUE

For the equation of 
 , by applying Proposition 2.2, we have

k
.t/kL1 � e2�ı1t
� 			
0

			
L1
C 2�jz2C 2zj

Z t

0
k!.�/kL1 d�

�
.

Similarly, for the equation of !,

k!.t/kL1 � e2�ı2t
� 			!0

			
L1
C 2�

Z t

0
k
.�/kL1 d�

�
.

Combining the upper two estimates, we find

k
.t/kL1 Ck!.t/kL1 �e2�maxfı1,ı2gt
� 			
0

			
L1
C
			!0

			
L1

C 2�maxfjz2C 2zj, 1g

Z t

0

�
k
.�/kL1 Ck!.�/kL1

�
d�
�

.

The Gronwall inequality ensures that

k
.t/kL1 Ck!.t/kL1 �
� 			
0

			
L1
C
			!0

			
L1

�
e2g3.z/�t ,

where g3.z/ (z 2R n f0g) defined in Equation (3.9). Furthermore, from the relationship	D 
 � z!, we obtain

k	.t/kL1 Ck!.t/kL1 �
�				0

			
L1
C
			!0

			
L1

�
.1C jzj/2e2g3.z/�t .

�

Proposition 3.4
(1) Let � � 0, � > 0 and .u,!/ be a solution of Equation (1.1) with .u0,!0/ 2 H1 � L2. Then for every t � 0 and � 2 Œ1, 2Œ, there exists a

constant C > 0 depending only on �, �, � and � such that

kr � ukeL�t B1
2,1
Ck!keL�t B1

2,1
CkukeL�t B1

1,1
� CeCt , (3.10)

and

kukeL1t H1 Ck!keL1t L2 � CeeCt
. (3.11)

(2) Let � � 0, � D 0 and .u,!/ be a solution of Equation (1.1) with .u0,!0/ 2 H1 � .L2 \ B0
1,1/. Then for every t � 0 and � 2 Œ1, 2Œ, there

exists a constant C > 0 depending only on �, �, � such that

kukeL�t B1
1,1
Ck!keL1t B0

1,1
� C expfeCtg, (3.12)

k!keL1t L2 CkukeL1t H1 � CeexpfeCtg. (3.13)

Proof
(1) We first consider the following coupling system to get the desired estimates(

@t	C u � r	� .�C �/�	D�2��!

@t! C u � r! � ��! C 4�! D 2�	.
(3.14)

Denote	q :D�q	, !q :D�q! with q 2N , then for the equation of !, similarly as obtaining Equation (2.3), we have

k!qkL�t L2 . 2�q 2
� ��

1
�

�
k!0

qkL2 C

Z t

0
kŒ�q, u � r�!.�/kL2 d� C 2�k!qkL1

t L2

�
, (3.15)

From Equation (2.4) and the Besov embeddimg we findZ t

0
kŒ�q, u � r�!.�/kL2 d� � k	kL1t L2k!kL1

t L1 . k	kL1t L2k!kL1
t B1

2,1
.

Hence, taking account of Equation (3.3), we infer

k!qkL�t L2 . 2�q 2
� ��

1
�

�
1C ef1.�t,z/k!kL1

t B1
2,1
C ef1.�t,z/�t

�
.

1
7

6
8

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760–1777



L. XUE

Then set � 2 Œ1, 2Œ such that 1� 2
� < 0, and Q1 2N be a number chosen later, we see

k!keL�t B1
2,1
D

X
�1�q<Q1

2qk!qkL�t L2 C
X

q�Q1

2qk!qkL�t L2

. 2Q1 t
1
� k!kL1t L2 C

X
q�Q1

2q.1� 2
� /��

1
�

�
1C ef1.�t,z/k!kL1

t B1
2,1
C ef1.�t,z/�t

�
� C02Q1 t

1
� C C02Q1.1�

2
� /��

1
�

�
1C ef1.�t,z/t

1� 1
�
k!keL�t B1

2,1
C ef1.�t,z/�t

�
.

We can select Q1 2N such that

2Q1.1�
2
� /C0�

�1=�ef1.�t,z/.1C t1� 1
� /Ð 1

2
,

thus for every � 2 Œ1, 2Œ,

k!keL�t B1
2,1
. ��

1
2�� e

�
2�� f1.�t,z/.1C t1� 1

� /
�

2�� t
1
� C 1C �t (3.16)

.� .1C ��
1

2�� /e
�

2�� f1.�t,z/.1C t
1

2�� C �t/.

Now for the equation of	, similarly we have

k	qkL�t L2 . 2�q 2
� .�C �/�

1
�

� 				0
q

			
L2
Ck	kL1t L2k	kL1

t B1
2,1
C 2�22qk!qkL1

t L2

�
.

Note that from Equations (3.15) and (3.16), we find

22qk!kL1
t L2 . ��1.1C ��1/e2f1.�t,z/.1C tC �t/.

Also taking account of Equation (3.3), we infer

k	qkL�t L2 . 2�q 2
�

1C ���2

.�C �/1=�
e2f1.�t,z/

�
1Ck	kL1

t B1
2,1
C tC �t

�
. (3.17)

Similarly let Q2 2N be a number chosen later, we have

k	keL�t B1
2,1
D
X

q<Q2

2qk	qkL�t L2 C
X

q�Q2

2qk	qkL�t L2

� C02Q2 t
1
� ef1.�t,z/C C02Q2.1�

2
� /

1C ���2

.�C �/1=�
e2f1.�t,z/

�
1C t1� 1

� k	keL�t B1
2,1
C tC �t

�
.

Hence, we select Q2 2N such that

2Q2.1�
2
� /C0

1C ���2

.�C �/1=�
e2f1.�t,z/.1C t1� 1

� /Ð 1

2
,

then for every � 2 Œ1, 2Œ

k	keL�t B1
2,1
.
� 1C ���2

.�C �/1=�

� �
2��

e
2C�
2�� f1.1C t1� 1

� /
�

2�� t
1
� C 1C tC �t

. eCt .

(3.18)

In particular, when � D 1, we get

k	kL1
t B1

2,1
.
�

1C
1C ���2

�C �

�
e3f1.�t,z/.1C tC �t/. (3.19)

On the other hand, we can consider the new coupling system (3.7) of 
 and ! to get a similar estimate as Equation (3.19), but because
of that, it will not improve the bound essentially, we here omit it.

Thus by a high–low frequency decomposition, we obtain

krukL1
t L1 � kukL1

t B1
1,1
D k��1ukL1

t L1 C
X
q2N

2q
		�qu

		
L1

t B1
1,1

. t kukL1t L2 Ck	kL1
t B1

2,1

. eCt .
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Then from the equation of	, we get

k	keL1t L2 . e
Ckruk

L1
t L1

�
k	0kL2 Ck�!keL1t PB�2

2,2

�
. e

Ckruk
L1

t L1
�
k	0kL2 Ck!keL1t L2

�
,

where we have used the regularization effect of the transport-diffusion equation (cf. Theorem 1.1 in [7]). From Proposition 2.4, we also
find

k!keL1t L2 . e
Ckruk

L1
t L1
C2ı2�t� 			!0

			
L2
C

Z t

0
k
.�/kL2 d�

�
. eeCt

.

This further leads to

k	keL1t L2 .�,�,� eeCt
.

Therefore,

kukeL1t H1 . k��1ukL1t L2 Ck	keL1t L2 . eeCt
.

(2) When � D 0, we have to consider the new coupling system

@t
 C u � r
 � .�C �/�
 � 2�z
 D�2�.z2C 2z/!,

@t! C u � r! C 2�.zC 2/! D 2�
 ,

where
 D	Cz! and zD� 2�
�C� 2 Œ�2, 0Œ. Note that in this case f1.�t, z/. �tC1 (especially when zD�1, f1 D 0), and f3.�t, z/� �tC1.

Denote 
q :D�q
 for every q 2N , in a similar way as obtaining Equation (3.17), we have

k
qkL�t L2 . 2�q 2
� .�C �/�

1
�

�
1C jzj C ef1.�t,z/k
kL1

t B1
2,1
C �jz2C 2zjk!qkL1

t L2

�
. 2�q 2

� .�C �/�
1
�

�
1C �tC eC�tk
kL1

t B1
2,1

�
.

Furthermore, similarly as obtaining Equation (3.18), we get for every � 2 Œ1, 2Œ

k
keL�t B1
2,1
� C0

�
1C

1

.�C �/1=.2��/

�
e

C0
2�� �t , (3.20)

where C0 is an absolute constant depending on �, �, � . By virtue of the following fact

krukL1
t L1 . t k��1ukL1t L2 Ck	kL1

t B0
1,1

. tCk
kL1
t B0
1,1
Ck!kL1

t B0
1,1

,
(3.21)

and Proposition 2.5, we have

k!.t/kB0
1,1
� k!keL1t B0

1,1
.�

�
eCt C

Z t

0
k!.�/kB0

1,1
d�
�� 			!0

			
B0
1,1

C eCt
�

.

Thus the Gronwall inequality yields

k!.t/kB0
1,1
.� expfeCtg.

By a direct decomposition, we further get

kukeL�t B1
1,1
. k��1ukL�t L2 Ck
keL�t B0

1,1
Ck!keL�t B0

1,1
.� expfeCtg.

Then we can use Proposition 2.4 to infer

k!keL1t L2 .� e
Ckruk

L1
t L1

� 			!0
			

L2
C

Z t

0
k
.�/kL2 d�

�
.� eexpfeCtg,

and

k
keL1t L2 . e
Ckruk

L1
t L1

� 			
0
			

L2
C

Z t

0
k!.�/kL2 d�

�
.� eexpfeCtg.

This estimate, combined with Equation (3.20), leads to

kukeL1t H1 . k��1ukL1t L2 Ck
keL1t L2 Ck!keL1t L2 .� eexpfeCtg.

�

1
7

7
0
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3.2. Uniqueness

Let � � 0, � � 0, we prove the uniqueness of the 2D micropolar fluid equations (1.1) in the following working space

ZT :D L1T H1 \ L1
T B1
1,1 � L1T L2 \ L1

T L1.

Assume that .ui ,! i/ 2ZT are two solutions of Equation (1.1) with initial data .ui,0,! i,0/, iD 1, 2. Denote u :D u1�u2, ! :D !1�!2 and
P :D P1 � P2. Then the difference system writes

@tuC u1 � ru� .�C �/�uCrPD 2�r �! � u � ru2

@t! C u1 � r! � ��! C 4�! D 2�r � u� u � r!2

.u,!/jtD0 D .u
0,!0/.

First, by virtue of Proposition 2.6 (with its remark), we choose 1 D 1 for the term�u � ru2 and 2 for term 2�r �! to get

kukL1t B0
2,1
. e

Ckru1kL1
t L1

� 			u0
			

B0
2,1

C

Z t

0

			u � ru2.�/
			

B0
2,1

d� C
�
1C �t

�
kr �!kL1t B�2

2,1

�
(3.22)

For the integral term of the right-hand side, from a direct computation, we find			u � ru2
			

B0
2,1

�
			u � ru2

			
L2
� kukL2

			ru2
			

L1
.

By a high–low frequency decomposition, we obtain the following logarithmic interpolation inequality (cf. [11])

kukL2 . kukB0
2,1

log
�

eC
1

kukB0
2,1

�
log.eCkukH1/. (3.23)

Hence 			u � ru2
			

B0
2,1

.
			ru2

			
L1

log
�

eCkukH1

�
�
�
kukB0

2,1

�
, (3.24)

where � : RC ! RC is a function defined by �.x/ :D x log.eC 1
x /. Then, for the last term of the right-hand side of Equation (3.22),

from the endpoint case of Proposition 2.4, we infer

kr �!kL1t B�2
2,1
. k!kL1t B�1

2,1

. e
Cku1kL1

t B1
1,1

� 			!0
			

B�1
2,1

C �

Z t

0
kr � u.�/kB�1

2,1
d� C

Z t

0

			u � r!2.�/
			

B�1
2,1

d�
�

.

From a simple computation and Equation (3.23), we obtain			u � r!2
			

B�1
2,1

.
			u !2

			
B0

2,1

. kukL2

			!2
			

L1

. k!2kL1 log.eCkukH1/ �
�
kukB0

2,1

�
.

Thus from x � �.x/,

kr �!kL1t B�1
2,1
. k!0kB�1

2,1
C �

Z t

0
ku.�/kB0

2,1
d� C

Z t

0
k!2.�/kL1�

�
ku.�/kB0

2,1

�
d�

. k!0kB�1
2,1
C

Z t

0

�
1Ck!2.�/kL1

�
�
�
ku.�/kL1t B0

2,1

�
d� .

(3.25)

Denote Z.t/ :D kukL1t B0
2,1
Ck!kL1t B�1

2,1
. Inserting Equations (3.24) and (3.25) into Equation (3.22), we get

Z.t/� f .t/
�

Z.0/C

Z t

0
g.�/�

�
Z.�/

�
d�
�

,

where g.t/ :D 1Cku2.t/kB1
1,1
Ck!2.t/kL1 and f .t/ is an explicit function, which is continuously and increasingly depended on time t

and
		.ui ,! i/

		
Zt

. From

M.x/ :D

Z 1=e

x

1

�.r/
dr D

Z 1=e

x

1

r log.eC 1=r/
drD

Z 1=x

e

1

r log.eC r/
dr, x 2�0, 1=eŒ,
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we know that

M.x/�

Z 1=x

e

1

r log r
drD log.log.1=x//, M.x/�

Z 1=x

e

1

r.1C log r/
dr � log.log.e=x//� 1,

then the classical Osgood Lemma (cf. Theorem 5.2.1 of [3]) can be applied and it ensures the uniqueness result. Moreover, the Lemma
shows the following quantified estimate

�M.Z.T//CM.f .T/Z.0//� f .T/

Z T

0
g.t/dt,

thus

� log
�

log
� 1

Z.T/

��
C log

�
log

� e

f .T/Z.0/

��
� 1� f .T/

Z T

0
g.t/dt.

By a direct computation, we get

Z.0/� a.T/H) Z.T/� b.T/
�

Z.0/
��.T/

, (3.26)

where a, b, � are explicit functions depending continuously on time T and
		.ui ,! i/

		
ZT

(noting that a is from the condition that
f .T/Z.0/ < 1=e and Z.T/ < 1=e).

3.3. Existence

We smooth the data to get the following approximate system8̂<̂
:
@tunC un � run � .�C �/�unCrPn D 2�r �!n

@t!nC un � r!n � ��!nC 4�!n D 2�r � un

divun D 0, .un,!n/jtD0 D .Snu0, Sn!
0/,

(3.27)

Because Snu0, Sn!
0 2 Hs for every s 2 R, from the classical theory of quasi-linear hyperbolic systems (cf. [8, 15]), we can get the local

wellposedness of the approximate system (3.27). We also have a natural continuation criterion as follows: the solution can go beyond
the time T if the quantity krunkL1

T L1 is finite. Then for the both cases, the a priori estimates (3.10) and (3.12) with � D 1 guarantee the

system (3.27) is globally defined. Moreover, we have the following uniform estimates that when � > 0, for every � 2 Œ1, 2Œ,

kunkeL1T H1\eL�T B1
1,1
Ck!nkeL1T L2\eL�T B1

2,1
.�,�,� ,� eeCT

,

and when � D 0, for every � 2 Œ1, 2Œ,

kunkeL1T H1\eL�T B1
1,1
Ck!nkeL1T .L2\B0

1,1/
.�,� eexpfeCT g.

Thus there exists .u,!/ satisfying the above estimates such that .un,!n/ weakly converges to .u,!/ up to the extraction of a
subsequence. Furthermore, from Equation (3.26), if

dn,m :D
			Snu0 � Smu0

			
L1T B0

2,1

C
			Sn!

0 � Sm!
0
			

L1T B�1
2,1

� a.T/,

then we get

kun � umkL1T B0
2,1
Ck!n �!mkL1T B�1

2,1
� b.T/.dn,m/

�.T/,

where a, b, � are the explicit functions introduced in the upper subsection. This means that un is a Cauchy sequence and it converges
strongly to u in L1T B0

2,1. By interpolation, we further obtain the strong convergence of un to u in L2.Œ0, T��R2/. Thus un ˝ un strongly

converges to u˝ u in L1.Œ0, T� � R2/. Meanwhile, because of the weak convergence of !n to ! in L2.Œ0, T� � R2/, we have that un!n

converges weakly to u!. It then suffices to pass to the limit in Equation (3.27) and we finally get that .u,!/ is a solution of the original
system (1.1).

For the continuity-in-time issue, because we have Equations (3.11), (3.12), and (3.13), the proof is standard and we omit it (cf. [1]).
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4. Proof of Theorem 1.2

Let � > 0, .u� ,!�/ be a solution of the following 2D micropolar fluid equations8̂<̂
:
@tu� C u��ru� � .�C �/�u� CrP� D 2�r �!�
@t!� C u��r!� � ��!� C 4�!� D 2�r � u�
divu� D 0, .u� ,!�/jtD0 D .u0,!0/,

(4.1)

and .u,!/ be a solution of the limiting system 8̂<̂
:
@tuC u � ru� ��uCrPD 0

@t! C u � r! � ��! D 0

divuD 0, .u,!/jtD0 D .u0,!0/.

(4.2)

Denote U� :D u� � u, W� :D !� �! andeP� :D P� � P, then the difference system can be written as follows

8̂<̂
:
@tU� C u��rU� � ��U� CreP� D ��u� C 2�r �!� � U��ru

@tW� C u��rW� � ��W� D 2�r � u� � 4�!� � U��r!

divU� D 0, .U� , W�/jtD0 D .0, 0/.

(4.3)

In the sequel, we shall consider the L2 estimates of U� and W� according to different cases of �, � .

4.1. Case � > 0, � D 0, � 2�0,1Œ

because .u0,!0/ 2 H1�H1C�0 with �0 2�0, 1Œ, then from Theorem 1.1, the system (4.1) is uniquely and globally defined, and the solution
satisfies

kr � u�kL1t L2 � C0ef1.�t,z/, k!�kL1t L2 � C0,

where f1.�t, z/ .z �t C 1 is defined by (3.4). For the same initial data .u0,!0/, clearly the system (4.2) is also uniquely and globally
defined, and in particular, from the equation of vorticity	 :Dr � u

@t	C u � r	� ��	D 0,

we have

kukL1t H1 Ck!kL1t L2 � C0;

and in a similar way as obtaining Equation (3.18),

�kuk
L1

t B
1C�0
1,1
. �kukL1

t L2 C �
X
q2N

2q.1C�0/k�q	kL1
t L2

. �tC �
X
q�Q

2q.1C�0/k	0kL2 tC
X
q�Q

2q.�0�1/
�
k	0kL2 Ck	kL1

t L1k	kL1t L2

�
. �t2Q.1C�0/C 2�Q.1��0/.1Ckuk

L1
t B

1C�0
1,1

/,

for a suitably chosen number Q 2N , we get

kuk
L1

t B
1C�0
1,1
. 1C �

1C�0
1��0 t;

and from the classical regularity effect of the transport equation (cf. Proposition 2.1 in [6]), we obtain

k!kL1t H1C�0 � k!
0kH1C�0 e

Ckruk
L1

t B
�0
1,1 . eC� t .

Then from the L2 energy method, we have

1

2

d

dt
.kU�.t/k

2
L2 CkW�.t/k

2
L2/C � krU�.t/k

2
L2

D� �

Z
ru� � rU� C 2�

Z
!�.r � U�/�

Z
.U��ru/ � U�

C 2�

Z
.r � u�/W� � 4�

Z
!�W� �

Z
.U��r!/W� .
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Because of r! 2 L1t H�0 and the Sobolev embedding H�0 ,! L
2

1��0 , we have r! 2 L1t L
2

1��0 and kr!k
L1t L

2
1��0
. eC� t , thus

ˇ̌̌ Z
.U��r!/W�

ˇ̌̌
� kU�k

L
2
�0
kr!k

L
2

1��0
kW�kL2

. kU�k
�0
L2krU�k

1��0
L2 kr!k

L
2

1��0
kW�kL2

� kW�k
2
L2 C

�

4
krU�k

2
L2 C C0

�0

1� �0
�
�

1��0
�0 kU�k

2
L2kr!k

2
�0

L
2

1��0

.

Using the integration by parts, Gagliardo–Nirenberg’s inequality, Sobolev’s inequality (H1 ,! L4) and Young’s inequality, we haveˇ̌̌ Z
.U��ru/ � U�

ˇ̌̌
D
ˇ̌̌ Z

u � .U� � rU�/
ˇ̌̌

� kU�kL4 kukL4 krU�kL2 . kU�k
1=2
L2 krU�k

3=2
L2 �

C0

�3 kU�k
2
L2 C

�

4
krU�k

2
L2 .

Also we can directly get ˇ̌̌
�

Z
ru� � rU�

ˇ̌̌
C
ˇ̌̌
2�

Z
!�.r � U�/

ˇ̌̌
�
�2

�
kru�k

2
L2 C

4�2

�
k!�k

2
L2 C

�

2
krU�k

2
L2 ,

and ˇ̌̌
2�

Z
.r � u�/W�

ˇ̌̌
C
ˇ̌̌
4�

Z
!�W�

ˇ̌̌
� 2�2 kr � u�k

2
L2 C 8�2 k!�k

2
L2 CkW�k

2
L2 .

Thus gathering the upper estimates, we find

d

dt
.kU�.t/k

2
L2 CkW�.t/k

2
L2/

. �2
�

1C
1

�

��
k!�.t/k

2
L2 Ckr � u�k

2
L2

�
C
�

1C
1

�3
C eC�,�0 t

��
kU�.t/k

2
L2 CkW�.t/k

2
L2

�
.

Therefore the Gronwall inequality yields

kU�.t/k
2
L2 CkW�.t/k

2
L2 � C0

�
1C

1

�

�
eC0t=�3

eexpfC�,�0 tgef1.�t,z/.�t/2.

4.2. Case � D 0, � > 0, � 2�0, �Œ

Because .u0,!0/ 2 B2
2,1 � B0

2,1, then from Theorem 1.1 and the result in [20], the system (4.1) and the limiting system (4.2) are both

globally and uniquely defined. Moreover, the corresponding solutions satisfy (noting that in this case, zD 2�
��� > 0)

k	�kL1t L2 Ck!�kL1t L2 C �1=2k	�kL2
t
PH1 C �

1=2k!�kL2
t
PH1 . ef2.�t,z/, (4.4)

and

krukL1t L1 . kukL1t L2 Ckr � ukL1t B0
1,1
. eC0t ,

kr!kL1
t L1 . k!kL1

t L2 Ck.Id���1/!kL1
t B2

2,1

. tC ��1e
Ckruk

L1
t L1 k!0kB0

2,1
. .1C ��1/eexp C0t ,

where	� :Dr � u� and f2.�t, z/�z �tC 1 is defined by Equation (3.5). By using the L2 method, we infer

d

dt

�
kU�.t/kL2 CkW�.t/kL2

�
��k�u�kL2 C 2�kr �!�kL2 CkU�kL2krukL1

C 2�k	�kL2 C 4�k!�kL2 CkU�kL2kr!kL1 .

Thus the Gronwall inequality and Equation (4.4) ensures

kU�.t/kL2 CkW�.t/kL2 . eC� expfexpfC0tgg�
�
k	�kL1

t
PH1 Ck!�kL1

t
PH1 Ck	�kL1

t L2 Ck!�kL1
t L2

�
. eC� expfexpfC0tggef2.�t,z/.�tC .�t/1=2/.

(4.5)1
7

7
4
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4.3. Case � D � D 0, � 2�0, 1Œ

Let .u0,!0/ 2 B2
2,1�.B

1
2,1\B1

1,1/, then the associated solutions .u� ,!�/ and .u,!/ are globally defined. Moreover, we have the following
explicit estimates.

Lemma 4.1
For the solution .u� ,!�/ of the 2D micropolar fluid equation (4.1), we have that for every p 2�2,1Œ

k!�kL1t B1
2,1
. .�t/�

p
2.p�1/ eexpfexpfC0�tggeexpfC0tg. (4.6)

Whereas for the solution .u,!/ of the limiting equation (4.2), we have

kukL1t B1
1,1
. eC0t , k!kL1t B1

1,1
. eexpfC0tg. (4.7)

Clearly, based on this Lemma and in a similar way as obtaining Equation (4.5), we get that for every p 2�2,1Œ

kU�.t/kL2 CkW�.t/kL2 . e
kr.u,!/k

L1
t L1 �

�
k	�kL1

t
PH1 Ck!�kL1

t
PH1 Ck	�kL1

t L2 Ck!�kL1
t L2

�
.
�
.�t/

p�2
2.p�1/ C �t

�
eexpfexpfC0tggeexpfexpfC0�tgg.

Now, it suffices to prove this Lemma.

Proof of Lemma 4.1
We first prove Equation (4.6). From the equation of 
� :D	� � 2!� (noting that zD�2)

@t
� C u��r
� � ��
� C 4�
� D 0,

from Proposition 2.5, Proposition 3.2 and Proposition 3.3, we find that for every q 2N

k�q
�kL1
t Lp . ��12�2q

�
k�q


0kLp Ck	�kL1t Lpk
�kL1
t L1

�
. ��12�2q

�
1C eC0�tt

�
.

By a high–low frequency decomposition, and for every QQ 2N and p 2�1,1Œ, we have

k
�kL1
t B0
1,1
�

X
�1�q�QQ

k�q
�kL1
t L1 C

X
q>QQ

22q=pk�q
�kL1
t Lp

. .1C QQ/tk
�kL1t L1 C
X
q>QQ

2�q.2� 2
p /��1eC0�t.1C t/

. .1C QQ/eC0�ttC 2�
QQ.2� 2

p /��1eC0�t.1C t/.

We choose QQ such that 2
QQ.2� 2

p / � ��1, thus

k
�kL1
t B0
1,1
. .1C log.��

p
2.p�1/ //eC0�t.1C t/. (4.8)

Now, from the equation of !�

@t!� C u��r!� D�4�
� ,

and using Proposition 2.5 and Equation (3.21), we get

k!�.t/kB0
1,1
.
�
k!0kB0

1,1
C �k
�kL1

t B0
1,1

� �
1Ckru�kL1

t L1

�
.
�

1C �k
�kL1
t B0
1,1

� �
1C tCk
�kL1

t B0
1,1
C

Z t

0
k!�.�/kB0

1,1
d�
�

.

The Gronwall inequality yields

k!�.t/kB0
1,1
. .1C log.��

p
2.p�1/ //eexpfC0�tgeC0t .

This combining with Equation (4.8) further leads to

ku�kL1
t B1
1,1
. k��1u�kL1

t L2 Ck
�kL1
t B0
1,1
Ck!�kL1

t B0
1,1

. .1C log.��
p

2.p�1/ //eexpfC0�tgeC0t .
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Hence, from Proposition 2.4 and the following estimation

�k
�kL1
t B1

2,1
. �k��1
�kL1

t L2 C �
X
q2N

2qk�q
�kL1
t L2

. �tC
X
q2N

2�q.1C t/eC0�t . eC0�t.1C t/,

we obtain

k!�kL1t B1
2,1
. e

C0ku�kL1
t B1
1,1

�
k!0
�kB1

2,1
C �k
�kL1

t B1
2,1

�
. ��

p
2.p�1/ eexpfexpfC0�tggeexpfC0tg.

We then treat Equation (4.7). From the equation of vorticity @t	C u � r	D 0, by applying Proposition 2.5 and (3.21), we get

k	.t/kB0
1,1
� k	keL1t B0

1,1
. k	0kB0

1,1

�
1CkrukL1

t L1
�

. 1C tC

Z t

0
k	.�/kB0

1,1
d� .

The Gronwall inequality leads to

k	.t/kB0
1,1
. eC0t .

This further implies that

kukL1t B1
1,1
. k��1ukL1t L2 Ck	kL1t B0

1,1
. eC0t .

Thus from the equation @t! C u � r! D 0 and Proposition 2.4, we have

k!kL1t B1
1,1
. k!0kB1

1,1
e

C0kuk
L1

t B1
1,1 . eexpfC0tg.

�
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