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Wellposedness and zero microrotation
viscosity limit of the 2D micropolar fluid
equations
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In this paper, we consider the 2D micropolar fluid equations in the whole space R2. We prove the global wellposedness
of the system with rough initial data and show the vanishing microrotation viscosity limit in the case of zero kinematic
viscosity or zero angular viscosity. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction
The 2D incompressible micropolar fluid flow in the whole space is governed by the following equations (cf. [14])

du— (W +K)Au+u-Vu+VP=2%V xw in DxRT,
0w —yAw +u-Vo + dkw =2V x u in DxRT, (1.1)
V-u=0 in DxRT,

with the initial data
Ult=o = U0, ®lt=0 = &°, (1.2)

where D = R2, u = (uy,uy) is the velocity field, P is the pressure, scalar w denotes the microrotation field. Non-negative constants
v, k, y stand for the viscosity coefficients, v is the Newtonian kinematic viscosity, « is the microrotation viscosity and y is called as the
angular viscosity. V = (%, %), and

3U1+3U2 V.u_8u1+8uz wa:(aw 80)).

x| S ax;' axg

Here, the density of the fluid is assumed to be 1.
The 2D micropolar fluid motion is a special case of the corresponding 3D motion, that is,

(x,c0) € R3,  (u1(x, o), u2(x,¢0),0) — u(x), (0,0,w3(x,c0)) = w(x).

The 3D micropolar fluid model, firstly introduced by Eringen in [9], is an essential generalization of the known Navier-Stokes/Euler
model in the sense that the microstructure of the fluid is taken into account. It may better represent the fluids consisting of randomly
oriented particles in a medium, for example, liquid crystals made up of dumbbell molecules.

There have been many works concerning the existence and uniqueness problems of the micropolar fluid model, for example,
[4,12,13,16,17,19, 21] and reference therein, especially in the 2D whole space case, the uniqueness of the global weak solutions
and the global wellposedness of the smooth solution have been obtained in [13] when v > 0 and y > 0. Dong and Zhang in [8]
showed the global wellposedness of the smooth solution in the 2D whole space when y = 0and v > 0.
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When the microrotation viscosity « equals to zero, then Equation (1.1) reduces to the following system

otu+u-Vu—vAu+VP=0
dtw +u-Vo —yAw =0 (1.3)
divu = 0.

Note that the equations of the velocity field in Equation (1.1) reduce to the incompressible Navier-Stokes/Euler system and are irrele-
vant with the microrotation field. Thus, the size of the microrotation viscosity may allow us to measure, in a certain sense, the deviation
of flows of micropolar fluids from that of the Navier-Stokes/Euler model. In [16], Payne and Straughan proved the local convergence
result when v, y > 0 and showed that the convergence rate is at least O(k) for the forward in time. Here, the local convergence is meant
that for every t > 0, the solution (u (t), w (t)) of Equation (1.1) converges in L?-norm to the solution (u(t), w(t)) of Equation (1.3),
under the same initial data (1.2). In [14], in the case of 2D bounded domain D with homogeneous boundary condition and v,y > 0,
Lukaszewicz moreover proved the global convergence result when v was large enough, that is, the convergence in the above is uniform
int.

In this paper, we aim at proving the local convergence result of the 2D micropolar fluid systems (1.1)-(1.2) for the limiting cases (i.e.,
v = 0 or y = 0). Compared with both positive cases, the situation is more delicate: when v = 0, we have to consider the term like
K || Aug ||L:L2 in the convergence part, and it seems hard to get the the appropriate a priori estimate simply from the classical L? energy
inequality (e.g., Equation (3.2) below); when y = 0, because there is no smoothing effect in the equation of w, we, here, only hope to
get the global wellposedness of the strong solution with the rough initial regularity. Hence, we first consider the global wellposedness
of system (1.1) with rough initial data and obtain some good a priori estimates, and then we show the zero microrotation viscosity limit
of Equations (1.1)—(1.2). Precisely, our results are listed as follows:

Theorem 1.1
() Letk > 0,v > 0,y > 0, u° be a divergence-free vector field belonging to H' and w® € L2. Then the 2D micropolar fluid systems
(1.1)-(1.2) has a unique global solution (u, w) such that for every o € [1, 2]

ueC®RY HYNIZ (RT,BL, ), weC®T, )Nl (RT,B],).

loc

(2)Letx > 0,v > 0,y = 0, u° be a divergence-free vector field belonging to H' and w° € L2 N BY ;. Then the 2D micropolar fluid
systems (1.1)—(1.2) has a unique global solution (u, w) such that for every o € [1, 2]

ueC®* H)NIL.(RT,BL, 1), @eC®RT,12NBY ).

loc oo,1

Theorem 1.2
Letv >0,y >0, (u°,w°) e IT with

H' x H'*€, ¢4 €]0,1, when v >0,y =0,

m:=J B3, xBY,, when v=0,y>0,

B%’1 X (B;’1 N B<1>o,1) , when v=0,y=0,

and (uy, wx) and (u, w) be the corresponding unique global solutions of Equations (1.1)—(1.2) and Equations (1.3)-(1.2), respectively.
Then as k — 0, we have for every T > 0,

(Ui, o) —> (U, @) in L%°([0, T]; L2(R)).

More precisely, we have
llue (O —u® |2 + e () — O] 2 =

Crte®PiCtigh (kt2), when v>0,y=0, k>0,
C(Kt)%eeXp{eXp{Ct}}efZ("r'z), when v =0, y>0, «€]0,y],
Clict) 2~ ePlexpiCtgexplexp{Chtl}  \when v =0, y =0, k €]0,1],

wheret > 0,z:= —H_ZT"_),, and fi(kt, z) Sz kt+ 1, fh(xt, z) Sz kt + 1 are defined in Equations (3.4) and (3.5), respectively, and C is the
absolute constant that may depend on v, y but not depend on «. Here, %— denotes a positive number strictly less than % and can be
arbitrarily close to .

Remark 1.1
We note thatwhen v # y, we getz — 0as«x — 0.Thus f; (kt, 2), f>(kt, z) asymptotically behave not bad, indeed, for every i, fi(«t, z) — «t.

The proof of Theorem 1.1 mainly relies on the method of applying the hidden structures of the coupling system (1.1), which is a
newly developed method in treating some kind of coupling systems dating from fluid mechanics, e.g. the generalized Boussinesq sys-
tem (cf. [10, 111), the compressible barotropic fluid equations (cf. [18]) and so on. The proof of Theorem 1.2 mainly bases on the a priori
estimates obtained in Theorem 1.1.
|
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Now we shall have a short discussion on how the method is used in proving Theorem 1.1. The vorticity Q2 := V X u is an important
physical quantity, and is closely related to the global continuation of the solution (e.g. BKM blowup criterion [2]). Thus firstly, by apply-
ing the curl operator to the equation of u and from V x (V x w) = —Aw, we see the coupling system of vorticity €2 and microrotation
field w

024+ u-VQ — (v +Kk)AQ = -2kAw

(1.4)
0w +u-Vo — yAw + 4w = 2k Q.

If one only views Aw as a forcing term, then this high order term always plays a bad part and produces difficulty in some cases, and
especially when y = 0, because of its somewhat critical sense, the usual methods fail to obtain the global results. But fortunately, from
the special structural property, we can construct a new interim quantity to avoid this bad term. Indeed, let z € R be a number chosen
later, and denote I'; := Q + zw, thus by a direct calculation we find

QL +u-VQ—(v+k)AT; = -2« + z(v + k) Aw,
0t(zw) + u-V(zw) = zyAw — dzkw + 22k R,

2K
v+Kk—y

and if y # v + k, we select z such that z(y — v — k) — 2k = 0O, thatis,z = —
introduced in [8]), then

(note that when y = 0, it is just the quantity

0z 4+u- VI, — (v +k)Al; = —dzkw + 22k Q.

In what follows, we shall omit the subscript when there is no ambiguity. Clearly this I has very good structures, and by considering the
coupling system of I and w, we can get the necessary a priori estimates of Q2 and finally reach the target.

The paper is organized as follows. Section 2 is devoted to present some preparatory knowledge on Besov spaces, and show some
necessary estimates of smooth solutions of transport-diffusion equation and Stokes system. Then we prove Theorem 1.1 in Section 3
and Theorem 1.2 in Section 4.

2. Preliminaries

2.1. Notations
Throughout this paper the following notations will be used.

& The notion X < Y means that there exists a positive harmless constant Cp such that X < CpY. X ~ Y meansthatbothX <YandY < X
are satisfied.

o S denotes the Schwartz class, S’ the space of tempered distributions, and S’ /P the quotient space of tempered distributions, which
are modulo polynomials.

& We use Ff or f to denote the Fourier transform of a tempered distribution f.

o Foreverys e R, H*(R") (or HS(R”)) is the usual inhomogeneous (or homogeneous) Sobolev space in the L2 framework.

¢ For any pair of operators A and B on some Banach space X, the commutator [A, B] is defined by AB — BA.

2.2. Littlewood-Paley decomposition and Besov spaces

To define the Besov space, we need the following dyadic partition of unity (cf. [3]). Choose two non-negative radial functions
X, ¢ € C®°(R") be supported respectively in the ball { € R": |§| < 3} and the shell {£ e R": 3 < |£| < §} such that

AE+Y @79 =1, VEEeR; Y @Q79%)=1, VEHO

j=0 qeZ
For all f € S’(R"), we define the nonhomogeneous Littlewood-Paley operators

Aif:=y(D)f; VgeN  Agf =2 ID)f and Spf:= > Aff.
—1<j=<g—1

The homogeneous Littlewood-Paley operators are defined as follows:

VaeZ, Agf:=9Q27ID)f, Sif:= Y  Af.
j=q—1

Now we introduce the definition of Besov spaces . Let (p, r) € [1,0]?, s € R, the nonhomogeneous Besov space Bfa,r is defined as the
set of tempered distribution f such that

Ifllgs, := 2% 1 Agflip tq=—1ller < 00,

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760-1777
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The homogeneous space Bf:,,, is the set of f € S’(R™)/P(R™) such that
IFllgs, = 2% | Agfllir}qez ller(z) < 00

We point out that for all s € R, BS , = H and B , = H*.
Next, we introduce two kinds of coupled space-time Besov spaces. The first one L9(][0, T],Bf,,,), abbreviated by L$35

5, is the set of
tempered distribution f such that

”f”L‘f’B;,, = [ 142% | Aqf|| p}a=—1ller HL$ < 00.

The second oneTQ([O, T}, B},,), abbreviated byf‘;’B;,’,, is the set of tempered distribution f satisfying

”f”T]QB;” = ”{2q5”Aqf”L$Lp}qZ—‘l ”ZI < Q.
Because of the Minkowiski inequality, we immediately obtain

1985, — T[98 ifo=r.

S if r=p and T?Bfg’, (N L?Bs

pr

We can similarly extend to the homogeneous ones L985,  and 1955, .

Berstein’s inequality is fundamental in the analysis involving Besov spaces (see e.g. [3])

Lemma 2.1
Letf € L9(R"),n € N, 1 < a < b < co.Then for every (k, q) € N2 there exists a constant C > 0 such that

1

supjaf—k | 3%Sqf | 1» < C274F G0 |sof |,

€12 Aqf 0 = sup [ 8t = C2 | Agf].
|o|=k

2.3. On transport-diffusion equation and Stokes system

In this subsection, we shall collect some useful estimates concerning the smooth solutions of the transport(-diffusion) equation and the
Stokes system, which plays an important role in the existence and the uniqueness part. We consider the following transport(-diffusion)
equation

0w +u-Vo —kAw + Ko =T,

(2.1)
divu=0, o= = P,

wherek > 0and K € R.
First, we consider the basic LP estimate.

Proposition 2.2
Let u be a smooth divergence-free vector field of R” and @ be a smooth solution of Equation (2.1). Then for every p € [1, oc] we have

o+ [ 1@l dr),

ol < em Kok |0

Proof "
Denote @ := eKlw and f := ek!f, then Equation (2.1) reduces to

)@ +u-Va —kAD =F,

divu=0, @|=¢= .

This is just the standard transport(-diffusion) equation, thus from the classical estimate in [5]

@0l < [o°], + [ o,

we further get

ool = ([o7],, + [ 1ol ar)

@l + Jo 1@l de if K>0
e (o0, + fo If @l dr) if K <o.
O

. ______________________________________________________________________________________________________|
Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760-1777




L. XUE
I ——

The following smoothing effect is useful in the main proof.

Proposition 2.3
Let u be a smooth divergence-free vector field of R" with vorticity 2 = V x u, and w be a smooth solution of the transport-diffusion
equation (2.1) with k > 0. Then for every o € [1,00] and p € [2, oo we have

2 -1 —K,03t (0
su§2 ale “AquLfLP <k Qemax{ } (”w llr + ”C‘)HL?"LOo ||Q||L;Lp + ”f”L;Lp )
ge

Proof
Let g € N and denote Agw := wq and A4f := f5. Then applying A4 to the equation, we obtain

Otwg + u- Vg —kAwg + Kog = —[Ag,u- V]w + f4. (2.2)

From the definition of the dyadic operator, wq is real-valued. Multiplying the upper equation by |a)q|p_2wq and integrating over the
whole space, we find

1d _
bt |wg®]7, +x(p—1) /RZ [V (t,X)|? [wg (t, ) P~2dx + K |wq (D ||},
=— / [Ag u-V]w - |wglP2wq(t,x)dx + / fy - lwglP~2wq(t, x)dx
R2 R2
<(I18q.u-Vio® | + [fa®] ) s |-
By virtue of the generalized Bernstein inequality (cf. [7]), there exists an absolute constant ¢ independent of g such that
d 2
T log®] + 2% |wg®) |5 + K [0q®]p < [[[Agq u-Vie®) |, + [ O] -

It directly leads to

t
log®],» < g ng ) +/o e_CKzzq(t_t)_K(t_r)( [[Agqu-Vio@)|, + [fa(0)]p )dr
t
< et (gt o3| [ g0 Tl + [l ).

Taking the L2 norm over [0, t] and from the Young's inequality, we find
t
lgllioas < emKOI /0220l (605 + / (114, u- Vio@llr + If(0)llir)dr ). (23)
0

From a simple paraproduct computation, we get (cf. [10])
[[Ag,u-Vio|,, S 12w lollee, (2.4)

thus combining with the Bernstein inequality, we have for every g € N,

2 -1 —K,0 0
2 ale Ha)q”LQ[Lp <k QemaX{ }t(Hw llr + ||Q||L;Lp ”C‘)”L;"’Loo + ||fq||L:Lp)~

We also have the regularization effect as follows.

Proposition 2.4
Let (s,r) €] — 1,1[x[1,00] U {(1,1),(=1,00)}, p € [1, 00], u be a smooth divergence-free vector field and @ be a smooth solution of the
Equation (2.1). Then there exists C > 0 such that forevery t e R,

- CU(t)+max{—K,0}t 0
lol1zeogs, < Ce (o

B;S),r + ”f”’z? B;S),r)'

where
“VU”L;LOO if sel-11]
u(t) .= ”u”L;BJX” if s=1,r=1,
“u”L;B’éoA if s=-1,r=oc0c.

. ______________________________________________________________________________________________________|
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Proof
Applying Proposition 2.2 to Equation (2.2), we have for every g > —1

t
e 0 ([of],+ [ 1180u-Tho)] e + [y, )

g ”L?"Lp
The remaining part is classical (cf. [6] and [1]), and thus we omit it. O

When s = 0, we also have a logarithmic improvement of the upper estimate.

Proposition 2.5
Let (p, r) € [1, 00]%, u be a smooth divergence-free vector field of R” and w be a smooth solution of (2.1). Then for every t > 0

t
—K,
lolioogs, < €™ FO¥(1 4+ /0 IVl de) (o, + 1l )

Proof
The proof is from the classical process (cf. [10]) combining with Proposition 2.2 and Proposition 2.4, and we omit it. O

Next we shall consider the regularization effect of the following Stokes system

otu+v-Vu—vAu+VP=F
divw =0, ul=¢=1u",

where v is a smooth divergence-free vector field of R” and F is a smooth forcing term.

Proposition 2.6
Lets €] —1,1[, p € [1,00], and u be a smooth solution of the Stokes system (2.5). Then for every t > 0, there exists an absolute constant
C > 0 such that

ClIVvll, 1,00 0
lullpops, = e ( u

(1) 7B £

F _ ;).
N IFL, ot

Remark 2.1
The proof can be carried out in a similar way as obtaining Proposition 4.2 in [11], and we omit it. We note that if F := F; + F», we can
choose different p1 and p; to match Fy, F,, respectively.

3. Proof of Theorem 1.1

The outline of the proof is as follows: first, we give some appropriate a priori estimates, then we prove the uniqueness in a weaker
framework, and at last, we show the existence.

3.1. Apriori estimates

Proposition 3.1
Letv > 0,y > 0 and (u,w) be a solution of the 2D micropolar fluid equations in Equation (1.1) with (1%, »°) € L? x 2. Then for every
t>0

2 2 ‘ 2 ! 2 2 2

a1 + 1001 +2 [ 19ulE de+ 27 [ 190mlf dr < o], + o, 1)

Besides, when v = 0, we also get
t
K / [Vu()|I%, dr < Coe“or". (3.2)
0

Proof
Multiplying the first equation of Equation (1.1) by u, the second by w, and integrating in the spatial variable, we have

1d

Sdrt (||U(f)||fz + ||a)(t)||fz) + 0 +6) [Vu® 5 + 7 Vo)1 + 4 @]l

=2k /1;2 (V xw)-u(t,x)dx + 2« /RZ(V X U)w(t, x)dx

= 4/{/ (V x uw)w(t, x)dx.
R2

. ______________________________________________________________________________________________________|
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From the Young inequality, we find
4k /(V X U)o < K[|V xullfy + e o7 <« | VUl + 4 o] -

It follows that

1d
5 qeMOIE + lo®lE) +v I Vu® I +y Vo) <o.
Then integrating in time leads to Equation (3.1). When v = 0, Equation (3.2) is naturally from

K
4 [(v X U)w < 5 IVul?, + 8k wl|?, .

O
Proposition 3.2
Letv >0,y > 0, (u®, w°) be a solution of Equation (1.1) with u® € H! and w° € L2. Then for every t > 0
IV < u@®IIf; + lo®]F; < Coe® . (33)
where (g is a absolute constant depending only on the data, z := — v+2,f_y,
min {5t,f(kt,2)} if y=> %,y £v 4k
fi(kt,z) == { fr(kt, 2) if oy <% (3.4)
st if y=v+u«
and
f2(kt, 2) := g1(2)kt + max{0, log |z|}, (3.5)
and
g1(@) =max{|z? +2z—1|+2z,|22 +2z—1|—2z—4}
224+4z-1 if ze[V/2-1,00]
1—22 if ze[-1,0[U]0,v/2—1], (3.6)
| -4z-22-3 if ze[-1-42,-1],
725 if ze]—o0,—1—+/2].

Besides, when v 4+ k < y, we also have
t t P
IV x u@® s + o@©]2 + (v + ) /o IV x u(o)]2,dr + v /0 Vo) Padr < Goe2(<12).

Proof
We shall first take the new idea mentioned in the Section 1 to consider this problem. Indeed, we have the following coupling system of
N'=Q+zo=Vxu+zwandw

3L 4+ u-VI — (v +k)AT — 2kzl’ = — 2k(2 + 22)w,

(3.7)
0tw +u-Vo —yAw + 2k (z + 2)w = 2T,

By using the usual L2 method, we find
1d

Ea(llr(t)llfz + @) + 0 + ) [VTOIIE + v Vo1

= 2%z |T(t)|7 — 2(2% + 22— 1) /RZ I o(t,x)dx — 22+ 2) [lo(®) | %
<k(Z2+22-11+22) ITO)% +x (22 + 22— 1| =2z - 4) |00},
Hence, we infer
1d ) ,
55( ITOI% + llo®] ) + O+ OIVTOI7 + 7 Vo 1}
<kg1@ (T O + llo®ll}2),

. ______________________________________________________________________________________________________|
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where g1 (2) is defined in Equation (3.6). Thus

t t
ITOP + 0@ + 0 + 1) /0 IVE (o) [ade + /O Vo ()| de
<(I1201% + |°%) max{z?, 1}e291 O«
and from Equation (3.1)
2 2 t 2 t 2
12012 + o, +minfy + &, y} /0 V(D) odr + /O IVo(0)|%de
t t
<IPOI + (1 + D) o®] + © + ) /0 IVT(@)2de + y(1 +2) /0 V(o) 2 de
<Comax{z2, 1}e291 @kt

On the other hand, we can consider the coupling system (1.4) of vorticity Q and microrotation field . Similarly from the L? method,
we have

1d
Ea(llﬁ(t)llfz +lo®IE) + 0 +©) [VROIE + 7 [ Vo@) |72 + 4 @)
:2/</ VQ~ch(t,x)dx+2K/ Q- w(t,x)dx.
R2 R2
Because of the Young inequality, we get
2
2/(. / va. Va)dx‘ < W+ IVRIZ + —— Vo,
V4K

and

K
2K’ f S2~a)dx‘ <4 o] + : el

. 2 .
Thusif y > 55, we obtain

d
a(llﬂ(l‘)llfz + @) < g(”Q(t)”fz +o@I)-

Integrating in time yields a part of Equation (3.3).

O
Proposition 3.3
Letv >0,y >0,v +« # y and (u°, w?) be a solution of Equation (1.1) with (V x u?, w?) € L% x L%, Then for every t > 0
1V xu® oo + 0@l = (|V x| +]e0] ) e,
where z = _u+2TK—y'
f3(kt,z) := g3(2)kt + log(1 + |z]), (3.8)
and
g3(2) :=max{|z? + 2z|,1} + max{z,—z — 2,0}
7243z if ze[v2—1,00],
z+1 if z€]0,v/2—1], (3.9)
=11 if ze[-2,0],
—z—1 if ze[-v/2-1,-2]
724z7-2 if ze]—oo,—+v2—1[.
Proof

It seems very difficult to get this type estimates simply from the coupling system (1.4), but we can consider the interim system (3.7) to
tackle this problem. Denote

81:=max{z,0} and §;:=max{—z—2,0}.
. ______________________________________________________________________________________________________|
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For the equation of T, by applying Proposition 2.2, we have
t
IT©le <0 ([r] -+ 26122+ 221 [ (o) loo ).
Lo° 0

Similarly, for the equation of w,

forole =5 o]+ 26 [ 170l o).
Combining the upper two estimates, we find
IOl + o) 0o <e* ™83 ( o] 4+ o]
+ 2 max{|22 + 22|, 1} /Ot (IT@ e + (@) 00 )dr).
The Gronwall inequality ensures that

IPOle + 0@l = (|10  + ] . )@,

|-

where g3(2) (z € R \ {0}) defined in Equation (3.9). Furthermore, from the relationship 2 = I' — zw, we obtain

120 +lo®lie < ([9°] o, + [0°] ., ) 0+ le2e2

Proposition 3.4
(1)Letv > 0,y > 0 and (u, w) be a solution of Equation (1.1) with (% »®) € H' x L2. Then for every t > 0 and o € [1, 2], there exists a
constant C > 0 depending only on k, v, y and o such that
— — — ct
[V xul 18}, + ol 08}, + lull g, = Ce™, (3.10)
and

Ct
lullzeepn + lloligee 2 < Ce® . (3.11)

(2)Letv >0,y = 0 and (u, ) be a solution of Equation (1.1) with (u°, w°) € H' x (L2 N B ;). Then for every t > 0 and o € [1,2[, there
exists a constant C > 0 depending only on «, v, o such that

lulgog, | + ol < Cexpie}, (3.12)

Ct
leollzeo 2 + llullgop < Ce&Ple, (3.13)

Proof
(1) We first consider the following coupling system to get the desired estimates

02+ u-VQ — (v +k)AQ = —2kAw (3.14)
dtw +u-Vo — yAw + dkw = 2kQ. '
Denote Qg := AgQ, wq := Agqw with g € N, then for the equation of w, similarly as obtaining Equation (2.3), we have
g2 _1 t
foalig <279y~ (108lla + [ 1Bgu- Vot lade + 2l ) 3.15)

From Equation (2.4) and the Besov embeddimg we find

t
/0 lAq u-Vio(D)ll2de < |2l po2l0ll 100 < 12102l 1 -
Hence, taking account of Equation (3.3), we infer

g2 1
lwgllyg;2 $27 %0y~ (1 +e’“(""z)IIwIIL;r,ﬂ21 +€f'(Kt’Z)Kt).
. ______________________________________________________________________________________________________|
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Thenseto € [1,2[ such that 1 — = < 0,and Q € N be a number chosen later, we see
“w“m;,, = 2. 2logligie+ Y Vlwgligi
—1=g<Q q=Q:
<205 loollieorz + Y 2907 Ny~ (1 S Bl +ef‘(’“z)/<t)
q=Q

<C2t7 + G2 (1=3) )~ o(1+e’1(’“z)t ||a)|| ), ef1(’“'z)/ct).

We can select Q € N such that

—_

201(1 )COV 1/o f1(KtZ)(1+t1 ;7) E

thus forevery o € [1, 2],
lolos, < y et kD (1 4 1752 % b7 41 4kt (3.16)
<o (1 4y 70)er s KD (1 4 175 4 1),
Now for the equation of 2, similarly we have

—g2 1
IRallgz $2795 0+ 077 (|29

o+ 122 121151, + 2622 gl 2 ).
Note that from Equations (3.15) and (3.16), we find

290l Sy +y e DA 4t 4 k).
Also taking account of Equation (3.3), we infer

1 —2
|9l <2795 Y~
{ (v +K)1/U

Similarly let Q; € N be a number chosen later, we have

IQ0zey, = D 291 ligi2 + D 2Rl
" g<Q 9>Q

o2fi (lct,z)(1 + 1Rl +t+ Kt). (3.17)
52,1

Q2 k filkt2) 00-2) 1KY ofeto) -1
< (o2 27 e + Co2*? ekt (1 +t 70 [|Q]7e +t+/ct).
(v +x)1/e t Bos

Hence, we select Q; € N such that

20:0-3¢, 1TV antan g by n ]
(v +K)/o 2’
then forevery o € [1,2]
1 -2
[€2l7o g1 5(&)2 TN (14 675) 2% 7 41+t 4t
¢ B2p (v + K)o (3.18)
5 eCt_
In particular, when o = 1, we get
‘I _2
1205, < (1+ 7’:3( )R D + e+ k). (3.19)

On the other hand, we can consider the new coupling system (3.7) of " and w to get a similar estimate as Equation (3.19), but because
of that, it will not improve the bound essentially, we here omit it.
Thus by a high-low frequency decomposition, we obtain

IVull oo < lullgg = 1Al + 3 27 | Aqul g

geN

A

tlullgorz + 19015,

eCt .

A
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Then from the equation of 2, we get

<e

ClIVull 2
||Q||T;>°L2 = L’LOO(

0 —_ .
19°1,2 + 1 A@lg2052)

~

clvul, 0
<Se L1202 + IIwIITgoLz),

where we have used the regularization effect of the transport-diffusion equation (cf. Theorem 1.1 in [7]). From Proposition 2.4, we also
find

<

\% 2
ol < IVl #2826 ) g
Lf LZ ~

t
oCt
L2+/0 Iz dr ) < e

This further leads to
Ct
”Q”ZOOLZ Skwy e .
Therefore,
Ct
lullzeon S A 1ullipop2 + [|R0e0 2 S €.
(2) When y = 0, we have to consider the new coupling system
3L 4+ u- VI — (v 4+ k)AT — 2kzl" = —2(2 + 22)o,
dtw +u-Vo + 2k(z+ 2)w = 2«T,
2K

where I’ = Q+zwandz = — ;55 € [-2,0[. Note thatin this case f1 («t, z) < kt+1 (especially whenz = —1,f; = 0), and f3(kt, z) ~ kt+1.
Denote I'q := AqI" for every g € N, in a similar way as obtaining Equation (3.17), we have

—g2 _1
ITqlioz $279 (v + 1)@ (1 + 1z + 1Ty +K|22+22|||a)q||L;L2)
< 2795 (v +K)_% (1 +Kt+eCKt||F||LlB;1).

Furthermore, similarly as obtaining Equation (3.18), we get for every o € [1,2]

(€]

Tz g, < Co(1 + e, (3.20)

1
v+ K)1/(2—0))
where Cy is an absolute constant depending on «, v, 0. By virtue of the following fact
IVullyio0 S tA1ulizorz + 1RA150 -
- .
St+ ||1-‘||L;ng1 + ”a)”Lngo,l ’

and Proposition 2.5, we have

t
< folegn,, e (¢ ) (o
loOllgs, | < lollgeegs, , S (¢ + fo lo@llgg, , d){ |l

Thus the Gronwall inequality yields

R ecr)_
BOO,1

lo®lg0_ | <e expie.

By a direct decomposition, we further get
~ < ~ [~ < Ct
lulpg_, S IA<ulligiz + Tl ge, | +lelpe_ | S exple).

Then we can use Proposition 2.4 to infer

CllVu
”(I)HTOOLZ <. e I ”LJLOO ( Hwo
t

‘ exp{eCt}
g, Tl dr) Sce™Pie,

and

t
A ([ro],+ [ ol de) s ePie.
L2 0 ~

IT iz S

This estimate, combined with Equation (3.20), leads to

Ct
lullzoom < IA-1tllgor2 + ITIggopz + 0llgoe2 Sic P,

O
I ——
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3.2. Uniqueness

Letv > 0, y > 0, we prove the uniqueness of the 2D micropolar fluid equations (1.1) in the following working space

Zr=L1PH' NL}BL,, x LPL>NLIL™.

Assume that (U, ') € Z7 are two solutions of Equation (1.1) with initial data (u"?, '?),i = 1,2.Denote u:= u' —u?, w := ' —w? and
P:= P! — P2, Then the difference system writes
du+u'-Vu—(v+K)Au+VP=2%V xw—u-Vu?
dew + u' -Vw—yAw+4Ka)=2KV><u—u-Va)2
(U, a))|t=0 = (uor wo)-
First, by virtue of Proposition 2.6 (with its remark), we choose p; = 1 for the term —u - Vu? and pa for term 2V x w to get
4\ t
lulloge 5 eI ¥ oo ( Huo . / Hu . VUZ(I)H L, dr+ (14t) [V x 0] cog2 ) (3.22)
t 2,00 Bz,oo 0 5’20o t 2,00
For the integral term of the right-hand side, from a direct computation, we find
Hu -Vu? o = Hu -Vu? H <|lull2 Vu? H .
8 oo 2 Lo
By a high-low frequency decomposition, we obtain the following logarithmic interpolation inequality (cf. [11])
1
lullz < lullgg_ log (e + ———) log(e + lully). (3.23)
B oo lullg
L, 00
Hence
Hu.VuZ < HVUZH log (e+ ull ),u(||u|| 0 ) (3.24)
0 ~ Lo Bz,oo !

2,00

where 11 : RT — R7 is a function defined by .(x) := xlog(e + )1(). Then, for the last term of the right-hand side of Equation (3.22),
from the endpoint case of Proposition 2.4, we infer

IV x @lypop2 S lolpopr,

1
S eC”u “Ll]BLOJ ( Hwo

; dr).

Broo

t t
+/</ IV xu(t)|g= dr—|—/ Hu~Va)2(r)
0 200 0

B300
From a simple computation and Equation (3.23), we obtain

Hu~Vw2 2

o]
Lo°

< w?[lie Tog(e + [lullyr) lullgg  )-

SHuw

_ < lullp2
B30 By oo

Thus from x < u(x),

o0

t t
0 2
||wa||L§>oBZ1 <o ”Bz_,1 +K/o ””(7)”83 dr—l—/(; [l (‘[)”Loo/,L(HU(‘L')”Bg’ )dt 25

t
S 160y, + [ (4 TPl )l o).

Denote Z(t) := ||u||L?oBgoo + ”“’”L?OB;;o‘ Inserting Equations (3.24) and (3.25) into Equation (3.22), we get

t
20 <10(20) + [ g@n@m)er),

where g(t) := 1+ ||u? ®)llgr T+ lw?(t)|| oo and f(t) is an explicit function, which is continuously and increasingly depended on time t

and | (ui,a)i)|}zt. From

1/e 1 1/e 1 1/x 1
M(X) .2[ mdrzL mdrzj; mdf, XE]O,1/€[,

. ______________________________________________________________________________________________________|
Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 1760-1777




L. XUE
I ——

we know that

M@s[”

then the classical Osgood Lemma (cf. Theorem 5.2.1 of [3]) can be applied and it ensures the uniqueness result. Moreover, the Lemma
shows the following quantified estimate

1/x
dr =log(log(1/x)), M(x)> / ;dr >log(log(e/x)) — 1,

rlogr r(1+logr)

;
—M(Z(T)) + M(f(T)Z(0)) = £(T) /0 g(t)dt,

thus

—log (log (%)) + log (log (%)) —1<f(T) [OTg(t)dr.

By a direct computation, we get
2(0) < a(T) = Z(T) < b(T)(2(0))"", (3.26)

where a,b,y are explicit functions depending continuously on time T and [ (u/, )| 2, (noting that a is from the condition that
f(T)Z(0) <1/eand Z(T) < 1/e).

3.3. Existence

We smooth the data to get the following approximate system

OtUn + Un - Vup — (v + k) Aup + VP, = 2kV X wp
dtwp + Up - Vo, — YAwn + dkwp = 26V X Up (3.27)
divup =0, (U, wn)|t=0 = (Spu®, Sp®),

Because S,u®, S,w® € H* for every s € R, from the classical theory of quasi-linear hyperbolic systems (cf. [8, 15]), we can get the local
wellposedness of the approximate system (3.27). We also have a natural continuation criterion as follows: the solution can go beyond
the time T if the quantity | Vu, ||L1TLOO is finite. Then for the both cases, the a priori estimates (3.10) and (3.12) with 0 = 1 guarantee the

system (3.27) is globally defined. Moreover, we have the following uniform estimates that when y > 0, for every o € [1, 2],

T
||Un||T?<>H1 ﬂT{TyB]xm + ”w””TCT’OLzﬂT‘TTB;J Skvy.o e,

and when y =0, forevery o € [1,2],

exp{e’}

”un”T?O,I-H QT?B"OOJ + ||wn||T$°(L2mBgo’1) Sk, €

Thus there exists (u,w) satisfying the above estimates such that (up, w,) weakly converges to (u,w) up to the extraction of a
subsequence. Furthermore, from Equation (3.26), if

Spu® — Spu + Sh0° — Sma®

0
[7°By00

<a(l),

dnm =
' L7°B3 3o

then we get
-
lun — Um||L<T>Oggloo + [lwn — wm”gogzéo = b(T)(dn,m)y( ),

where g, b, y are the explicit functions introduced in the upper subsection. This means that u,, is a Cauchy sequence and it converges
strongly tou in L(?OB(z),oo' By interpolation, we further obtain the strong convergence of uy, to uin L2([0, T] x R?). Thus u, ® uj, strongly
converges to u ® u in L'([0, T] x R?). Meanwhile, because of the weak convergence of wp, to w in L2([0, T] x R?), we have that u,w,
converges weakly to uw. It then suffices to pass to the limit in Equation (3.27) and we finally get that (u, @) is a solution of the original
system (1.1).
For the continuity-in-time issue, because we have Equations (3.11), (3.12), and (3.13), the proof is standard and we omit it (cf. [1]).

_____________________________________________________________________________________________________
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4, Proof of Theorem 1.2

Let k > 0, (ux, wi ) be a solution of the following 2D micropolar fluid equations

Oty + U VU — (v + k) Aug + VP =2V X wy
0twr + UV, — VAWK + dkwye = 26V X Uy (4.1)
divu, =0, (Ug, @) |r=0 = (WO, @?),

and (u, w) be a solution of the limiting system

otu+u-Vu—vAu+VP=0
dtw +u-Vo —yAw =0 (4.2)
divu=0, (U,o)lt=0= (U w°).

Denote Uy := uy — u, Wy :== o — @ and ﬁ,c := Py — P, then the difference system can be written as follows

U + Ue. VU — VAU + VP = kAl + 2kV X 0 — Ue.Vu
0tWy + ue. VWi — yAW,e = 2V X Uy — 4k — U Vo (4.3)
divU, =0, (Ui, Wie)lt=0 = (0,0).

In the sequel, we shall consider the L2 estimates of U, and W, according to different cases of v, y.

4.1. Casev >0,y =0,k €]0,00[

because (u°, w?) € H' x H1 €0 with ¢y €]0, 1], then from Theorem 1.1, the system (4.1) is uniquely and globally defined, and the solution
satisfies

f1(kt,2)
I’

IV > Uglloop2 < Coe lwklliger2 < Cos

where f;(kt,z) <; kt + 1 is defined by (3.4). For the same initial data (u%, »?), clearly the system (4.2) is also uniquely and globally
defined, and in particular, from the equation of vorticity Q2 := V xu

0t +u-VQ —vAQ =0,
we have
lull oy + llevllpger2 = Co

and in a similar way as obtaining Equation (3.18),

1
vlull e S ViUl +v Y 290FOAQ
LtBoo,1 t X t
qE

Svt+v Y 20F Q0 pe 4+ 3 29D (10 + 1213 0o | Rerz )
gq=<Q q=>Q
< v12007F€0) 4 3700 (1 4 lu| | 14ep),
LtBooA

for a suitably chosen number Q € N, we get
1+€g
< T—€g ¢t
Il greo S 140708
and from the classical regularity effect of the transport equation (cf. Proposition 2.1 in [6]), we obtain
ClVull 1 0
lwll eom+eo < 0l 1+ € ftfoon < eV,
Then from the L2 energy method, we have
1d
2dt
=—K / Vue - VU, + ZK/Q)K(V X Ug) —/(UK.VU) - Ug

(U ON1% + W O11%) + v VU7

+2/</(V X U )Wy —4K/0)KWK —/(UK.Va))WK.

. ______________________________________________________________________________________________________|
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2 2
Because of Vo € LY°H® and the Sobolev embedding H < LT=<¢0, we have Vo € LY°LT=% and ||V || o T S et thus
(L T—¢€0

' / (U Vo)W

<|U Vo W,
=1 xIIL% [ IILﬁII el

1—
S MU IVUl 2 CIVoll 2 [Wiell,2
L L1—¢€0

Ie

€0
1—¢€o

v _l=<0 2
= Wil + S IVUElE: + Cog——v™ 0 U2Vl 0,
L T—¢€0

Using the integration by parts, Gagliardo-Nirenberg’s inequality, Sobolev’s inequality (H' — [#) and Young’s inequality, we have

‘/(UK.VU)-UK =‘/u-(UK-VUK)

1

2 3
< Uklles lullps IVUeell2 < Uk ”Lz/ VUl

@ v
2 0
7 < o3 WUl + 5 19Ul

Also we can directly get

442

2
K v
[ / Vi - VU = IVuelfz + = llolifz + 5 VUl

+ ‘ZK/wK(V X Ug)

and

<22 |V xucllf + 86 ol + Wil -

'ZK/(VXUK)WK + ’4K/Q)KWK

Thus gathering the upper estimates, we find

d
E(IIUK(t)IIfz + [WeO1172)
1 1
2 2 2 Cu,eqt 2 2
i (14 2 ) (loc O + 1V x el ) + (14 =5 + o) (10O + IWe 11 )-
Therefore the Gronwall inequality yields

1
||UK (t)”fz + ”WK (Z‘)”f2 < CO('l + ;)eCOt/v3eeXp{Cu,sot}ef1 (kt.z) (Kt)z.

4.2. Casev =0,y >0,k €]0,y[

Because (u®,0®) € B3, x BY,, then from Theorem 1.1 and the result in [20], the system (4.1) and the limiting system (4.2) are both

. . . . . . . _ 2
globally and uniquely defined. Moreover, the corresponding solutions satisfy (noting that in this case, z = y_"K > 0)

19 ligor + Nl lligorz + 21l 20 + ¥ Pl 2 S 26, (4.4)
and

IVullysoroe < flulligorz + IV X ull cogo < €,
t t Le™Boo,n

Vol 00 < Il + 10d = ANl

1, IVl 00

Stty lo®llg, < (1 4y 1eHP,

where Q =V x uy and fo(kt,z) ~; kt + 1 is defined by Equation (3.5). By using the L2 method, we infer

d
E(HUK(O”LZ + Wi ®l.2) =llAuicllz + 26|V x @i |2 + (Uil 2l Vull oo
+ 2c (|l 2 + x|l 2 + Ukl 2Vl oe.

Thus the Gronwall inequality and Equation (4.4) ensures

C Cot
1Ue @z + IWe Oz 5 € PO (@i + ol + I1Rll2 + o2 s
s eCy exp{exp{CO‘}}efz(Kt,z) (Kt + (Kt)1/2).
. ______________________________________________________________________________________________________|
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4.3. Casev =y =0,k ¢€]0,1]

Let (u®, @°) € B3, x (B} ,NBL ,), then the associated solutions (ux, i) and (u, ») are globally defined. Moreover, we have the following
explicit estimates.

Lemma 4.1
For the solution (uy, w,) of the 2D micropolar fluid equation (4.1), we have that for every p €]2, oo[

p
lle ||L?°B;1 < (kct)” 26— gexplexp{Cokt}} gexpiCot} (4.6)

Whereas for the solution (u, ) of the limiting equation (4.2), we have
Cot Cot
lullgog_, S€“ llollpog <P, (47)
Clearly, based on this Lemma and in a similar way as obtaining Equation (4.5), we get that for every p €]2, oo[

IV U,
e N (Il + ol + IRl + oz )

IUe Oz + W (Ol2 <
< ((ct) 251 4 ct)emPlexpiCont} gerplexpiCort),
Now, it suffices to prove this Lemma.

Proof of Lemma 4.1
We first prove Equation (4.6). From the equation of Ty := Q, — 2wy (noting that z = —2)

0T + ue. Ve — kAT + 4k =0,
from Proposition 2.5, Proposition 3.2 and Proposition 3.3, we find that for every g € N
1AqTellyir 567272 (1860 up + 1% ll010 Tl 3100 )
<1272 (14 o),
By a high-low frequency decomposition, and for every Q € N and p €]1, o[, we have

ITellgo | = Z 1AqTell 1100 + ZZZQ/pHAqFK”L;LP

—1=9<Q a>Q
~ —_a(h—2y) _
< (1 + QT flporoo + Y 277Dk (1 4 1)
q>Q

< (14 Qeorte 4 270C70) T elort (1 1,

~ 52— 2

We choose O such that 22?75 ~ =1 thus
__p
ITellige < (1+log(k ™ 26=1))e k(1 + ). (4.8)
tFoo,1
Now, from the equation of w,
0ty + Ue. Vo, = —4kTy,

and using Proposition 2.5 and Equation (3.21), we get
loxOllgs, < (I0%lg, , +&ITelyg, ) (1+1V0eli00 )

< (14 xlTelygg,, ) (14 4+ ITellggo, +[0r o (0)lgy_ dt)-
The Gronwall inequality yields
loe(®lg,, < (1+log(k™ 7= ))exPiCorteCor
This combining with Equation (4.8) further leads to
ol , S NA=uelye +ITelge, |+ loclyg

p

< (1 + log(k 261 ))e@xP{Cokth oCot
. ______________________________________________________________________________________________________|
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Hence, from Proposition 2.4 and the following estimation

K”FK”L;B;1 SK”Aflrlc”Lng + K Z Zq”AqFK”L\]LZ
geN

Skt4 Y 27901 + 1)e Kt < K1 4 1),
geN

we obtain

Colluecll 11 0
Jology, <" 4t (1l +lTelyey)

< T eoxP{exp{Coxt}} gexp{Cot}
We then treat Equation (4.7). From the equation of vorticity ;2 + u- VQ = 0, by applying Proposition 2.5 and (3.21), we get
— 0
120N, , < I2ege | S 1200, (1+1Vully,0)
t
S14+t+ / [2(7)]|go  dr.
0 oo,1
The Gronwall inequality leads to
< Cot
I20g, , < e
This further implies that
Cot
lulpogy, S IA-tullipops + 12l 00 | S €.
Thus from the equation d;w + u- Vw = 0 and Proposition 2.4, we have

Collull1 g1
lolleog  Slolllg_ e ot 5 e,
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