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Abstract

Motivated by the numerical simulation and the study on several 1D models, we consider the locally self-
similar singular solutions for the surface quasi-geostrophic equation with decaying or non-decaying blowup 
profiles. Based on a suitable local Lp-inequality in terms of the profile and the bootstrapping method, we 
show some exclusion results and derive the asymptotic behavior of the possible blowup profiles.
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1. Introduction

In this paper we address the Cauchy problem of the surface quasi-geostrophic (abbr. SQG) 
equation
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⎧⎪⎨
⎪⎩

∂t θ + u · ∇θ = 0,

u = (u1, u2) = (−R2θ,R1θ),

θ |t=0 = θ0,

(1.1)

where (x, t) ∈ R2 × R+, Ri = ∂i |D|−1 (i = 1, 2) is the usual Riesz transform, θ : R2 → R is 
a scalar field understood as temperature or density field, and u : R2 → R2 is the velocity field 
of R2. The SQG equation arises from the geostrophic study of the highly rotating flow (cf. [17]) 
and is viewed as a 2D simple model sharing much formal analogy with the 3D Euler equations 
(cf. [8]). It is known for some time that the SQG equation associated with smooth initial data 
generates a local smooth solution, e.g., for θ0 ∈ Hs(R2), s > 2, there exists a unique solution 
θ ∈ C([0, T [; Hs(R2)) with some T > 0 and u is expressed as

u(x, t) = p.v.

∫
R2

K⊥(x − z)θ(z, t)dz, (1.2)

with K⊥(z) := 1
2π

z⊥
|z|3 , ∀z �= 0; moreover, if additionally θ0 ∈ Lp(R2) with p ∈ [1, ∞], the so-

lution also satisfies θ ∈ L∞([0, T [; Lp(R2)) with ‖θ‖L∞([0,T [;Lp(R2)) ≤ ‖θ0‖Lp(R2) (e.g. [14, 
Proposition 6.2]). In recent years there have been intense mathematical works on the SQG 
equation and its dissipative cases (one can see [2] for a long list of references), but so far the fun-
damental problem: whether the local smooth solutions remain regular forever or develop blowup 
singularity at finite time, remains completely open.

Some numerical simulation was also made to understand the issue of finite-time blowup. It 
was suggested by [15,18,13], and very recently by [19,20] that the finite-time singularity formula-
tion for the SQG equation is possible to happen, via a self-similar cascade of filament instabilities 
of geometrically decreasing spatial and temporal scales. Other past numerical studies [8,9,16]
mainly focused on the flow of a closing saddle geometry, and through a much higher resolution 
than [9,16], Scott in [19] pointed out that the self-similar type filament instability mentioned 
above was also potentially important in this scenario.

Motivated by the numerical work, we here mainly focus on the self-similar singular solution 
for the SQG equation (1.1), i.e., the solution of the form

θ(x, t) = 1

(T − t)
α

1+α

�

(
x − x0

(T − t)
1

1+α

)
, ∀(x, t) ∈ D × ]0, T [, (1.3)

where α > −1, x0 ∈ D, D ⊂ R2 is the blowup region, T > 0 is the finite blowup time, �(·) is 
the stationary profiles of θ , and the solution θ is regular enough on (R2 \D) ×]0, T [. If D =R2, 
the self-similar solution (1.3) is referred to as the globally self-similar solution; while if D �R2, 
(1.3) is called the locally self-similar solution. For the globally self-similar solution (1.3), the 
velocity field u is also globally self-similar satisfying that

u(x, t) = 1

(T − t)
α

1+α

U

(
x − x0

(T − t)
1

1+α

)
, ∀(x, t) ∈R2 × ]0, T [, (1.4)

with U(·) the velocity profile. In terms of (�, U), we formally get
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{
α

1+α
� + 1

1+α
y · ∇� + U · ∇� = 0,

U =R⊥� = (−R2�,R1�).
(1.5)

The self-similar singularity is an important and popular type of finite-time singularities that 
have been abundantly studied for Navier–Stokes/Euler equations, reaction–diffusion equations, 
dispersive equations and so on, and one can see the recent review paper [12] for more introduc-
tions. For the globally self-similar solution (i.e. D = R2 in (1.3)) of the SQG equation, Chae in 
[5,6] based on the transport formula of θ represented by the back to label map, proved that � ≡ 0
for all α > −1 under the assumption � ∈ Lp1 ∩ Lp2(R2) with p1, p2 ∈ ]0,∞] and p1 < p2, 
which excludes the profiles with decaying asymptotics. One can see Cannone and Xue [3] for a 
similar result which relied on the local Lp-inequality of profiles and the bootstrapping method. 
However, there is not much work on the self-similar solution of SQG equation with profiles 
having non-decaying asymptotics, and the more physical locally self-similar solution was also 
not much addressed. Noting that for the Burgers equation ∂tθ + θ∂xθ = 0, x ∈ R, and the CCF 
equation (cf. [10])

∂t θ + H(θ) ∂xθ = 0, x ∈ R, H the usual Hilbert transform, (1.6)

which can be viewed as the 1D models of the SQG equation, recent studies [12,11] reveal that 
the finite-time singularities of both systems are of locally self-similar type and the associated 
blowup profiles have some growing asymptotics near infinity, thus the corresponding scenario 
for the SQG equation is also worthwhile to investigate.

In this paper we consider the locally self-similar solution of the SQG equation, and show 
some excluding results and derive the spatially asymptotic behavior of possible profiles. Our 
main result is as follows.

Theorem 1.1. Assume that D ⊃ Bρ(x0), ρ > 0, and θ ∈ C([0, T [; Hs(R2)) ∩ L∞([0, T [;
L1(R2)), s > 2 is the locally self-similar singular solution for the SQG equation which satis-
fies (1.3) on D × ]0, T [ for α > −1 with profile � ∈ C1

loc(R
2). Let p ∈ ]1,∞[ be fixed, and 

additionally suppose that for some r ≥ p + 1, 0 ≤ γ < r − p,

∫
|y|≤L

|�(y)|r dy � Lγ , ∀L � 1. (1.7)

Then either � ≡ 0, or the index α admitting nontrivial profiles belongs to 2−γ
r

≤ α ≤ 2
p

, and the 

profile corresponding to each α ∈ [ 2−γ
r

, 2
p
[ satisfies

∫
|y|≤L

|�(y)|p dy ∼ L2−pα, ∀L � 1. (1.8)

As a consequence of Theorem 1.1, we have the following result about the profile with spatially 
decaying or non-decaying asymptotics.

Theorem 1.2. Assume that D ⊃ Bρ(x0), ρ > 0, and θ ∈ C([0, T [; Hs(R2)) ∩ L∞([0, T [;
L1(R2)), s > 2 is the locally self-similar singular solution for the SQG equation which satis-
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fies (1.3) on D × ]0, T [ for α > −1 with profile � ∈ C1
loc(R

2). The following statements hold 
true.

(1) If there is some μ > 0 so that |�(y)| � 1
|y|μ for all |y| � 1, then we necessarily have � ≡ 0

on R2.
(2) If there is some number σ ∈ [0,1[ so that

1 � |�(y)| � |y|σ , ∀|y| � 1, (1.9)

then the index α admitting nontrivial profiles belongs to −σ ≤ α ≤ 0, and each profile cor-
responding to such an α satisfies that for every p ∈ ]1,∞[,∫

|y|≤L

|�(y)|p dy ∼ L2−pα, ∀L � 1. (1.10)

The method of proving Theorem 1.1, similarly as [3], is from the local Lp-inequality of the 
profile � and the bootstrapping method. We first derive a suitable basic local Lp-inequality 
(2.12) from the local Lp-equality (2.1) of the original quantity θ , and then we start with (2.12) by 
appropriately choosing l1, l2, and we iteratively improve the upper bound on 

∫
|y|≤L

|�(y)|pdy

by a careful analysis according to the scope of α and (1.7), so that we eventually obtain the 
desired result. In the process, the term U(1)(y) appearing in the right-hand-side of (2.12) needs 
to be well estimated again and again, and we tackle this point in Lemma 2.2. For Theorem 1.2, 
we suitably select the values of p, r , γ so that the assumption (1.7) is satisfied, and thus we can 
apply Theorem 1.1 to obtain Theorem 1.2.

The use of local inequalities of self-similar profiles in showing the exclusion results has al-
ready appeared in the contexts of self-similar solutions of Euler equations [7,1,21], and also the 
previous work [3], but here the local Lp-inequality (2.12) is derived in a slightly different man-
ner. The reason is that if D �= R2, the formula (1.4) in general no longer holds in the domain 
D × ]0, T [ and we also do not have the explicit expression formula of U in terms of � (see also 
Remark 1.5 below), while both counterparts were obtained and employed in the local inequalities 
of [7,1,21,3]. In order to overcome this difficulty, we observe that in the local equality (2.1) we 
only need to treat the velocity u defined by (1.2) in a small region Bρ

4
(x0) × ]0, T [, and we can 

divide the whole integral region of (1.2) into Bρ(x0) and R2 \Bρ(x0) to estimate the contribution 
respectively: for the inner part we can use the self-similar scenario (1.3) to get a good bound; 
while for the outer part, we can simply apply the conservation of ‖θ(t)‖L1 and the support prop-
erty to control it. It turns out that the local Lp-inequality (2.12) derived in this way is sufficient 
for our purpose here.

A few remarks are listed as follows.

Remark 1.3. From (1.10), we can expect that the typical possible asymptotics of the nontrivial 
profiles at the case −1 < α ≤ 0 is |�(y)| ∼ |y|−α , ∀|y| � 1, which thanks to (1.3) further implies 
|θ(x, t)| ∼ |x − x0|−α for x ∈ D \ {x0} and t sufficiently close to T . Such a scenario clearly is 
consistent with the blowup criterion 

∫ T

0 ‖∇θ(t)‖L∞dt = ∞ for T > 0 the first blowup time. We 
also see that the uniform-in-t bound of ‖θ(t)‖Cβ(R2), β ∈ ]0,1[ (which of course has not been 
a priori proved so far) is sufficient to exclude the locally self-similar scenario (1.3) with typical 
asymptotics of profiles at the case 0 ≤ α < β , but still can not deal with the case β ≤ α < 1.
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Remark 1.4. According to the numerical simulation [19] and the work [11] on the CCF equation 
(1.6), the blowup scenario more likely to happen is of the peaked self-similar structure:

θ(x, t) = A0 − 1

(T − t)
α

1+α

�

(
x − x0

(T − t)
1

1+α

)
, ∀(x, t) ∈ D × ]0, T [, (1.11)

where A0 := ‖θ0‖L∞ and x0, T , α, �, D are as above. By virtue of Remark 2.1 below, we indeed 
can repeat the proof of Theorem 1.1 to achieve the same conclusion for the profile � in (1.11).

Remark 1.5. Under the assumption of Theorem 1.2-(2) with D =R2, and additionally assuming
that � ∈ C2

loc(R
2) and |∇�(y)| � |y|σ1−1, ∀|y| � 1 with some σ1 ∈ ]0,1[, one can use the 

method of [21, Lemma 2.1] or [1, Lemma 2.1] to show that the formula (1.4) holds, and the 
profile U on D =R2 is given by

U(y) = p.v.

∫
|z|≤M

K⊥(y − z)�(z)dz +
∫

|z|≥M

(K⊥(y − z) − K⊥(z))�(z)dz + (C1,C2) (1.12)

where M > 0, C1, C2 are some pure numbers, and K⊥(z) = 1
2π

(−z2,z1)

|z|3 , ∀z �= 0. But it is not 
clear whether or not we can get a similar result for the locally self-similar scenario (1.3) with 
D = Bρ(x0) �R2.

The plan of this paper is as follows: we show the local energy inequality of profile � and also 
Lemma 2.2 concerning the estimate of U(1) in the section 2, and then we prove Theorems 1.1
and 1.2 in the sections 3 and 4 respectively.

Throughout this paper, C stands for a constant which may be different from line to line, X � Y

means that there is a harmless constant C such that X ≤ CY , and X ∼ Y means that X � Y and 
Y � X simultaneously. We use Br(x) := {y ∈R2 : |y − x| ≤ r} to denote the ball of R2.

2. Local Lp-inequality in terms of the profile

We start with the local Lp-equality of the original qualities (θ, u)

∫
R2

|θ |pχ(x, t2)dx −
∫
R2

|θ |pχ(x, t1)dx

=
t2∫

t1

∫
R2

|θ |p∂tχ(x, t)dxdt +
t2∫

t1

∫
R2

|θ |pu · ∇χ(x, t)dxdt,

(2.1)

where χ ∈ C∞
c (R2 × ]0, T [) and 0 < t1 < t2 < T . Since θ ∈ C([0, T [; Hs(R2)), s > 2 is smooth 

enough, we can derive (2.1) simply from the approximation (if needed) and the integration by 
parts, and one can see [4] for a similar result concerning the weak solution θ under less regular 
conditions.



L. Xue / J. Differential Equations 261 (2016) 5590–5608 5595
Without loss of generality we assume x0 = 0. Let φ ∈ C∞
c (R2) be a test function such that 

supp φ ⊂ B1(0), φ ≡ 1 on B 1
2
(0) and 0 ≤ φ ≤ 1. Set φR(·) = φ( ·

R
) for R > 0, and χ(x, t) ≡

φρ
4
(x), then (2.1) reduces to

∫
R2

|θ(x, t2)|pφρ
4
(x)dx −

∫
R2

|θ(x, t1)|pφρ
4
(x)dx =

t2∫
t1

∫
R2

|θ |pu(x, t) · ∇φρ
4
(x)dxdt. (2.2)

Since Bρ(0) ⊂ D and θ is expressed as (1.3) on D × ]0, T [, we see that for all 0 < t1 < t2 < T ,

∫
R2

|θ(x, ti)|pφρ
4
(x)dx = 1

(T − ti )
αp

1+α

∫
R2

∣∣∣∣�
(

x

(T − ti )1/(1+α)

)∣∣∣∣
p

φρ
4
(x)dx

= 1

(T − ti )
αp−2
1+α

∫
R2

|�(y)|p φρ
4

(
y(T − ti )

1
1+α

)
dy

= l
αp−2
i

∫
R2

|�(y)|p φρ
4
(yl−1

i )dy,

(2.3)

with li = (T − ti )
− 1

1+α , i = 1, 2. Taking advantage of (1.2), we decompose u as

u(x, t) = p.v.

∫
R2

K⊥(x − z)θ(z, t)φρ(z)dz +
∫
R2

K⊥(x − z)θ(z, t)
(
1 − φρ(z)

)
dz

:= u(1)(x, t) + u(2)(x, t),

(2.4)

where u(1) according to (1.3) satisfies

u(1)(x, t) = 1

(T − t)
α

1+α

p.v.

∫
R2

K⊥(x − z)�

(
z

(T − t)
1

1+α

)
φρ(z)dz

= 1

(T − t)
α

1+α

p.v.

∫
R2

K⊥
(

x

(T − t)
1

1+α

− z̃

)
�(z̃)φρ

(
z̃(T − t)

1
1+α

)
dz̃

= 1

(T − t)
α

1+α

U(1)

(
x

(T − t)
1

1+α

, t

)
,

(2.5)

with

U(1)(y, t) := p.v.

∫
2

K⊥ (y − z̃) �(z̃)φρ

(
z̃(T − t)

1
1+α

)
dz̃. (2.6)
R
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Inserting (1.3) and (2.4)–(2.5) into the right-hand-side term of (2.2), we find

∣∣∣∣∣∣∣
t2∫

t1

∫
R2

|θ |pu(x, t) · ∇φρ
4
(x)dxdt

∣∣∣∣∣∣∣
≤

t2∫
t1

1

(T − t)
(p+1)α

1+α

∫
R2

∣∣∣∣∣�
(

x

(T − t)
1

1+α

)∣∣∣∣∣
p ∣∣∣∣∣U(1)

(
x

(T − t)
1

1+α

, t

)∣∣∣∣∣ |∇φρ
4
(x)|dxdt

+
t2∫

t1

1

(T − t)
pα

1+α

∫
R2

∣∣∣∣∣�
(

x

(T − t)
1

1+α

)∣∣∣∣∣
p

|u(2)(x, t)| |∇φρ
4
(x)|dxdt (2.7)

≤
t2∫

t1

1

(T − t)
(p+1)α−2

1+α

∫
R2

|�(y)|p |U(1) (y, t) ||∇φρ
4
(y(T − t)

1
1+α )|dydt

+ C

ρ2

t2∫
t1

1

(T − t)
pα−2
1+α

∫
R2

|�(y)|p |∇φρ
4
(y(T − t)

1
1+α )|dydt,

where in the last line we used the estimate that for every x ∈ Bρ
4
(0),

|u(2)(x, t)| ≤
∫
R2

1

|x − z|2 |θ(z, t)| |1 − φρ(z)|dz

≤ C

∫
|z|≥ ρ

2

1

|z|2 |θ(z, t)|dz ≤ C

ρ2
‖θ(·, t)‖L1 ≤ C

ρ2
‖θ0‖L1 .

(2.8)

In (2.7), by using the support property of ∇φρ and integrating on the t -variable, and denoting

B(t) :=
{
t : ρ

8

1

|y| ≤ (T − t)
1

1+α ≤ ρ

4

1

|y|
}

, (2.9)

we further deduce that for every 0 < t1 < t2 < T ,

∣∣∣∣∣∣∣
t2∫

t1

∫
R2

|θ |pu(x, t) · ∇φρ
4
(x)dxdt

∣∣∣∣∣∣∣
≤ Cρ

t2∫
t1

∫
ρ
l ≤|y|≤ ρ

l

|�(y)|p|U(1)(y, t)|
|y|2−(p+1)α

1B(t) dydt + Cρ

t2∫
t1

∫
ρ
l ≤|y|≤ ρ

l

|�(y)|p
|y|2−pα

1B(t) dydt
8 1 4 2 8 1 4 2
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≤ Cρ

∫
ρ
8 l1≤|y|≤ ρ

4 l2

|�(y)|pU(1)(y)

|y|2−(p+1)α
dy + Cρ

∫
ρ
8 l1≤|y|≤ ρ

4 l2

|�(y)|p
|y|3−(p−1)α

dy, (2.10)

with 1B(t) denoting the standard indicator function on B(t), and U(1)(y) defined by

U(1)(y) :=
t2∫

t1

|U(1)(y, t)|1B(t) dt

=
t2∫

t1

∣∣∣∣∣∣∣p.v.

∫
R2

K⊥ (y − z̃) �(z̃)φρ

(
z̃(T − t)

1
1+α

)
dz̃

∣∣∣∣∣∣∣ 1B(t) dt.

(2.11)

Gathering (2.2), (2.3) and (2.10) leads to

∣∣∣∣∣∣∣l
αp−2
2

∫
R2

|�(y)|pφρ
4
(yl−1

2 )dy − l
αp−2
1

∫
R2

|�(y)|pφρ
4
(yl−1

1 )dy

∣∣∣∣∣∣∣
≤ Cρ

∫
ρ
8 l1≤|y|≤ ρ

4 l2

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy + Cρ

∫
ρ
8 l1≤|y|≤ ρ

4 l2

|�(y)|p
|y|3−(p−1)α

dy,

(2.12)

where li = (T − ti )
− 1

1+α , i = 1, 2, and U(1)(y) is given by (2.11).

Remark 2.1. Denoting θ̃ := A0 − θ , we see that ∂t θ̃ +u · ∇ θ̃ = 0 with u =R⊥θ =R⊥(A0 + θ̃ ). 
By multiplying both sides of the equation with |θ̃ |p−2θ̃φρ/4 and integrating on R2 × [t1, t2], we 
can get an Lp-equality of θ̃ similar to (2.2). We then decompose u =R⊥θ =R⊥(θ̃ + A0) as

u(x, t) = p.v.

∫
R2

K⊥(x − z)θ̃(z, t)φρ(z)dz +
∫
R2

K⊥(x − z)θ(z, t)
(
1 − φρ(z)

)
dz

+ A0 p.v.

∫
R2

K⊥(x − z)φρ(z)dz

:= ũ(1)(x, t) + ũ(2)(x, t) + ũ(3)(x, t);

the terms ũ(1) and ũ(2) can be estimated exactly as (2.5) and (2.8) respectively, whereas thanks 
to the zero-average property of K⊥ on the circle, the term ũ(3) has the following upper bound

|ũ(3)(x, t)| = A0

∣∣∣∣∣∣∣p.v.

∫
2

K⊥(x − z)
(
φρ(z) − φρ(x)

)
dz

∣∣∣∣∣∣∣

R
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≤ A0

2π

∫
|x−z|≤ρ

1

|x − z|2 |x − z|‖∇φρ‖L∞dz ≤ CA0.

Thus similarly as above, we can obtain an inequality analogous to (2.12) with a slightly differ-
ent Cρ .

Before ending this section, we include an auxiliary lemma concerning the term U(1)(y), which 
is of great use in the sequel.

Lemma 2.2. Assume that U(1)(y) is defined by (2.11), and � ∈ C1
loc(R

2) satisfies that for some 
r ≥ p + 1 and b ≥ 0,

∫
|y|�L

|�(y)|r dy � Lb, ∀L � 1. (2.13)

Then we have

∫
L≤|y|≤2L

|U(1)(y)|r dy � Lb−r(1+α), ∀L � 1. (2.14)

Proof of Lemma 2.2. Noting that B(t) =
{
t ∈ [t1, t2] : T − (ρ/4)1+α

|y|1+α ≤ t ≤ T − (ρ/8)1+α

|y|1+α

}
, we 

use the Minkowski inequality and Calderón–Zygmund theorem to get

⎛
⎜⎝ ∫

L≤|y|≤2L

|U(1)(y)|rdy

⎞
⎟⎠

1/r

≤

⎛
⎜⎜⎜⎝

∫
L≤|y|≤2L

⎛
⎜⎜⎜⎝

T − (ρ/8)1+α

|y|1+α∫
T − (ρ/4)1+α

|y|1+α

∣∣∣∣∣∣∣p.v.

∫
R2

K⊥ (y − z̃) �(z̃)φρ

(
z̃(T − t)

1
1+α

)
dz̃

∣∣∣∣∣∣∣ dt

⎞
⎟⎟⎟⎠

r

dy

⎞
⎟⎟⎟⎠

1/r

≤
T − (ρ/8)1+α

(2L)1+α∫
T − (ρ/4)1+α

L1+α

⎛
⎜⎝ ∫

L≤|y|≤2L

∣∣∣∣∣∣∣p.v.

∫
R2

K⊥ (y − z̃) �(z̃)φρ

(
z̃(T − t)

1
1+α

)
dz̃

∣∣∣∣∣∣∣
r

dy

⎞
⎟⎠

1/r

dt

≤ C

T − (ρ/16)1+α

L1+α∫
T − (ρ/4)1+α

⎛
⎜⎝ ∫

R2

∣∣∣�(z)φρ

(
z(T − t)

1
1+α

)∣∣∣r dz

⎞
⎟⎠

1/r

dt
L1+α
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≤ C

T − (ρ/16)1+α

L1+α∫
T − (ρ/4)1+α

L1+α

⎛
⎜⎜⎝

∫
|z|≤ρ(T −t)

− 1
1+α

|�(z)|r dz

⎞
⎟⎟⎠

1/r

dt

≤ Cρ1+α

L1+α

⎛
⎜⎝ ∫

|z|≤16L

|�(z)|r dz

⎞
⎟⎠

1/r

≤ Cρ1+αL
b
r
−(1+α). �

3. Proof of Theorem 1.1

We divide the proof into three steps according to the value of α.
Step 1: first we show that

� ≡ 0 on R2, for all −1 < α <
2 − γ

r
. (3.1)

By virtue of (1.7), (2.3) and Hölder’s inequality, we get that as l2 → ∞,

l
αp−2
2

∫
R2

|�(y)|pφρ
4
(yl−1

2 )dy ≤ l
αp−2
2

∫
|y|≤ ρ

4 l2

|�(y)|p dy

≤ Cl
αp−2
2

⎛
⎜⎝ ∫

|y|≤ ρ
4 l2

|�(y)|r dy

⎞
⎟⎠

p/r

l
2(1− p

r
)

2

≤ Cl
(α+ γ

r
− 2

r
)p

2 −→ 0.

Thus by choosing l2 → ∞ and ρ8 l1 = L � 1 in (2.12), and using the support property of φρ
4

, we 
obtain

1

L2−αp

∫
|y|≤L

|�(y)|p dy ≤ C

∫
|y|≥L

|�(y)|pU(1)(y)

|y|2−(p+1)α
dy + C

∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy, (3.2)

where we have suppressed the dependence on the constant ρ. By applying the dyadic decom-
position, Hölder’s inequality and Lemma 2.2 (noting that (2.13) holds with b = γ ), we infer 
that

∫
|y|≥L

|�(y)|pU(1)(y)

|y|2−(p+1)α
dy

≤ C

∞∑
k=0

1

(2kL)2−(p+1)α

∫
k k+1

|�(y)|p U(1)(y)dy
2 L≤|y|≤2 L
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≤ C

∞∑
k=0

1

(2kL)2−(p+1)α

⎛
⎜⎝ ∫

|y|∼2kL

|�(y)|rdy

⎞
⎟⎠

p/r ⎛
⎜⎝ ∫

|y|∼2kL

|U(1)(y)|rdy

⎞
⎟⎠

1/r

(2kL)2(1− p+1
r

)

≤ C

∞∑
k=0

1

(2kL)2−(p+1)α
(2kL)

pγ
r

+ γ
r
−α+1− 2(p+1)

r ≤ CL
(p+1)(γ−2)

r
−1+pα, (3.3)

where we used the fact that (p+1)(γ−2)
r

− 1 +pα < 0, equivalently, α <
r−(γ−2)

pr
+ 2−γ

r
, which is 

ensured for all −1 < α <
2−γ

r
. For the second term of the right-hand-side of (3.3), we similarly 

get

∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy ≤
∞∑

k=0

1

(2kL)3−(p−1)α

∫
2kL≤|y|≤2k+1L

|�(y)|p dy

≤ C

∞∑
k=0

1

(2kL)3−(p−1)α

⎛
⎜⎝ ∫

|y|∼2kL

|�(y)|r dy

⎞
⎟⎠

p/r

(2kL)2(1− p
r
)

≤ C

∞∑
k=0

(2kL)−1+(p−1)α+ pγ
r

− 2p
r ≤ CL−1+(p−1)α+ (γ−2)p

r , (3.4)

where the last inequality is guaranteed by the fact that −1 + (p − 1)α + (γ−2)p
r

= (p −
1)(α + γ−2

r
) − r−(γ−2)

r
< 0 for all −1 < α <

2−γ
r

. Gathering (3.2)–(3.4), and noticing that 

−α + (γ−2)p
r

<
(p+1)(γ−2)

r
for all α ∈ ]−1,

2−γ
r

[, we have that for all L � 1,

∫
|y|≤L

|�(y)|p dy ≤ CLa0 , with a0 := (p + 1)(γ − 2)

r
+ 1. (3.5)

If a0 < 0, we conclude that �(y) ≡ 0 for all y ∈R2; we also note that if r = p + 1, the condition 
on γ becomes 0 ≤ γ < 1, which leads to a0 < 0, thus in the following the scope of r needed to 
consider is r > p + 1. Otherwise, for a0 ≥ 0, by using (1.7) and the interpolation inequality, we 
see that

∫
|y|≤L

|�(y)|p+1 dy ≤ C

⎛
⎜⎝ ∫

|y|≤L

|�(y)|p dy

⎞
⎟⎠

δ ⎛
⎜⎝ ∫

|y|≤L

|�(y)|r dy

⎞
⎟⎠

1−δ

≤ CLa0δ+γ (1−δ), with δ := r − p − 1

r − p
∈ ]0,1[.

(3.6)

By arguing as (3.3), we apply the Hölder inequality and Lemma 2.2 with r = p + 1, b = a0δ +
γ (1 − δ) to find
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∫
|y|≥L

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy

≤
∞∑

k=0

1

(2kL)2−(p+1)α

⎛
⎜⎝ ∫

|y|∼2kL

|�|p+1dy

⎞
⎟⎠

p
p+1

⎛
⎜⎝ ∫

|y|∼2kL

|U(1)|p+1dy

⎞
⎟⎠

1
p+1

≤ C

∞∑
k=0

1

(2kL)2−(p+1)α
(2kL)a0δ+γ (1−δ)−(1+α)

≤ C

∞∑
k=0

(2kL)a0−(2−pα)−(a0−γ )(1−δ)−1. (3.7)

Noticing that a0 − (2 − pα) < 0 from (3.3), and thanks to γ < r − p,

a1 := (a0 − γ )(1 − δ) + 1 =
(

(γ − 2)(p + 1)

r
+ 1 − γ

)
1

r − p
+ 1

=
(

−γ (r − p − 1)

r
− 2(p + 1)

r
+ 1 + (r − p)

)
1

r − p
(3.8)

= (r − p − 1)(r + 2 − γ )

r(r − p)
>

(p + 2)(r − p − 1)

r(r − p)
,

we see that a0 − (2 − pα) − a1 < 0, and thus

∫
|y|≥L

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy ≤ CLa0−(2−pα)−a1 . (3.9)

By virtue of the dyadic decomposition and (3.5), we obtain

∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy ≤
∞∑

k=0

1

(2kL)3−(p−1)α

∫
|y|∼2kL

|�(y)|p dy

≤ C

∞∑
k=0

(2kL)a0−(2−pα)−(1+α) ≤ CLa0−(2−pα)−(1+α),

(3.10)

where the last equality is implied by the fact that a0 < 2 − pα and 1 + α > 0. Inserting (3.9) and 
(3.10) into (3.2) leads to∫

|y|≤L

|�(y)|p dy ≤ CLa0−b0 , with b0 := min {a1,1 + α} > 0. (3.11)

If a0 − b0 < 0, the proof is finished. Otherwise, for a0 − b0 ≥ 0, similarly as obtaining (3.6), 
(3.7), (3.9) and (3.10), we get
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∫
|y|≤L

|�(y)|p+1 dy ≤ CL(a0−b0)δ+γ (1−δ),

and

∫
|y|≥L

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy ≤ C

∞∑
k=0

(2kL)a0−(2−pα)−(a0−γ )(1−δ)−1−b0δ

≤ CLa0−(2−pα)−a1−b0δ,

(3.12)

and ∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy ≤ CLa0−(2−pα)−b0−(1+α). (3.13)

If b0 = a1, i.e., a1 ≤ 1 + α, then from (3.2), (3.12) and (3.13), we deduce

∫
|y|≤L

|�(y)|p dy ≤ CLa0−a1(1+δ), (3.14)

which implies � ≡ 0 on R2 if a0 −a1(1 + δ) < 0, otherwise for all a1(1 + δ) ≥ a0, we can repeat 
this process for many times to obtain that for n ∈N,

∫
|y|≤L

|�(y)|p dy ≤ CLa0−a1(1+δ+δ2+···+δn); (3.15)

thus noting that 1 + δ + · · · + δn = 1−δn+1

1−δ
→ 1

1−δ
= r − p as n → ∞, and from (3.5), (3.8),

a0 − a1(r − p) = (p + 1)(γ − 2)

r
+ 1 − (r − (p + 1))(r − (γ − 2))

r

= −(r − p − γ ) < 0,

(3.16)

we infer that there exists some number n ∈N (depending only on p, γ , r) so that the power index 
a0 − a1(1 + δ + · · · + δn) < 0, which thanks to (3.15) implies � ≡ 0 on R2. If b0 = 1 + α < a1, 
then we have

∫
|y|≤L

|�(y)|p dy ≤
{

CLa0−2(1+α), if a1 ≥ (1 + α)(2 − δ),

CLa0−a1−(1+α)δ, if a1 < (1 + α)(2 − δ),
(3.17)

thus if the power index of L on the right-hand-side is negative, the proof is over; otherwise, 
denoting by m0 ∈N+ the smallest integer such that

m0(1 + α)(1 − δ) > a1 − (1 + α), (3.18)
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which implies that m0(1 + α) + (1 + α)δ ≤ a1 + m0(1 + α)δ < (m0 + 1)(1 + α), by reiterating 
the above process for (m0 − 1)-times, then (3.12) and (3.13) respectively reduce to

∫
|y|≥L

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy ≤ CLa0−(2−pα)−a1−m0(1+α)δ, (3.19)

and ∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy ≤ CLa0−(2−pα)−(m0+1)(1+α), (3.20)

which combined with (3.2) yield

∫
|y|≤L

|�(y)|p dy ≤ CLa0−b1 , (3.21)

with b1 := a1 + m0(1 + α)δ; then it suffices to treat the case a0 − b1 ≥ 0, and similarly as above, 
denoting by m1 ∈N the smallest integer such that

m1(1 + α)(1 − δ) > a1 − b1(1 − δ) − (1 + α), (3.22)

which guarantees that b1 + m1(1 + α) + (1 + α)δ ≤ a1 + (b1 + m1(1 + α))δ < b1 + (m1 +
1)(1 + α), and through repeating the above process for m1-times (at the worst situation) once 
again, we find

∫
|y|≥L

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy ≤ CLa0−(2−pα)−a1−(b1+m1(1+α))δ, (3.23)

and ∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy ≤ CLa0−(2−pα)−b1−(m1+1)(1+α), (3.24)

and thus ∫
|y|≤L

|�(y)|p dy ≤ CLa0−b2 , ∀L � 1, (3.25)

with b2 = a1 + (b1 + m1(1 + α))δ satisfying b2 ≥ a1 + a1δ; then the remaining case is a0 −
b2 ≥ 0, and by iteratively repeating the above process, and denoting by mn ∈ N (n = 1, 2, · · · ) 
the smallest integer such that

mn(1 + α)(1 − δ) > a1 − bn(1 − δ) − (1 + α), (3.26)
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which ensures that bn +mn(1 +α) + (1 +α)δ ≤ a1 + (bn +mn(1 +α))δ < bn + (mn +1)(1 +α), 
we deduce that ∫

|y|≤L

|�(y)|p dy ≤ CLa0−bn+1 , ∀L � 1, (3.27)

where bn+1 := a1 + (bn + mn(1 + α))δ satisfying

bn+1 ≥ a1 + a1δ + · · · + a1δ
n, (3.28)

and the iteration can be stopped provided that the power of L on the r.h.s. of (3.27) is negative; 
according to (3.28) and (3.16), we infer that there exists some number n = ñ ∈ N (depending 
only on p, γ , r) so that a1 + a1δ + · · · + a1δ

ñ > a0 and the power index a0 − bñ+1 on the r.h.s. 
of (3.27) satisfies a0 − bñ+1 < 0, which clearly implies � ≡ 0 on R2.

Step 2: we show that for all α ≥ 2−γ
r

, the profile � satisfies

∫
|y|≤L

|�(y)|p dy ≤ CL2−pα, ∀L � 1. (3.29)

Indeed, this can be simply deduced from the Lp-inequality of the original quantity θ which 
reads ‖θ(t)‖Lp ≤ ‖θ0‖Lp ≤ ‖θ0‖Hs∩L1 for all t ∈ [0, T [: by using the blowup scenario (1.3), we 
infer that

1

(T − t)
pα

1+α

∫
|x−x0|≤ρ

∣∣∣∣∣�
(

x − x0

(T − t)
1

1+α

)∣∣∣∣∣
p

dx

= 1

(T − t)
pα−2
1+α

∫
|y|≤ρ(T −t)

− 1
1+α

|�(y)|p dy ≤ C,

(3.30)

thus (3.29) is implied by denoting L = ρ(T − t)−
1

1+α , t ∈ [0, T [. We remark that (3.29) can also 
be proved from the local energy inequality (2.12), where the assumptions like (1.7) truly take 
part in the proof, but we here omit the details (one can see [21] for a similar treating).

As a consequence of (3.29), we deduce that � ≡ 0 on R2 for all α > 2
p

, which combined

with (3.1) yields that the scope of α admitting nontrivial blowup profiles is 
{

2−γ
r

≤ α ≤ 2
p

}
for 

p ∈ ]1,∞[ and for some r ∈ [p + 1,∞[, γ ∈ [0, r − p[.
Step 3: we prove the desired estimate (1.8) for every 2−γ

r
≤ α < 2

p
.

According to (3.29), under the assumption that � �≡ 0, it suffices to show that for all L � 1,

1

L2−pα

∫
|y|≤L

|�(y)|p dy � 1. (3.31)

We prove (3.31) by contradiction: suppose that it is not true, then there exists a sequence of 
numbers Li � 1 (i = 1, 2, · · · ) such that
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1

L
2−pα
i

∫
|y|≤Li

|�(y)|p dy → 0, as Li → ∞. (3.32)

By letting l2 = Li → ∞ and ρ8 l1 = L � 1 in (2.12), we get

∫
|y|≤L

|�(y)|p dy ≤ CL2−pα

∫
|y|≥L

|�(y)|p U(1)(y)

|y|2−(p+1)α
dy + CL2−pα

∫
|y|≥L

|�(y)|p
|y|3−(p−1)α

dy. (3.33)

Similarly as obtaining (3.6), (3.7), (3.9) and (3.10), and by using (3.29) and Lemma 2.2 with 
r = p + 1, b = (2 − pα)δ + γ (1 − δ), we deduce that

∫
|y|≤L

|�(y)|p+1 dy ≤ C

⎛
⎜⎝ ∫

|y|≤L

|�(y)|p dy

⎞
⎟⎠

δ ⎛
⎜⎝ ∫

|y|≤L

|�(y)|r dy

⎞
⎟⎠

1−δ

≤ CL(2−pα)δ+γ (1−δ), with δ = r − p − 1

r − p
,

and

1

L2−pα

∫
|y|≤L

|�|pdy

≤ C

∞∑
k=0

1

(2kL)2−(p+1)α

∫
|y|∼2kL

|�|p U(1)dy + C

∞∑
k=0

1

(2kL)3−(p−1)α

∫
|y|∼2kL

|�|pdy

≤ C

∞∑
k=0

1

(2kL)2−(p+1)α
(2kL)(2−pα)δ+γ (1−δ)−(1+α) + C

∞∑
k=0

1

(2kL)3−(p−1)α
(2kL)2−pα

≤ C

∞∑
k=0

(2kL)(γ−(2−pα))(1−δ)−1 + C

∞∑
k=0

(2kL)−(1+α)

≤ CL(γ−(2−pα))(1−δ)−1 + CL−(1+α),

where in the last inequality we used the fact that (γ − (2 − pα))(1 − δ) − 1 = ((γ + p − r) −
(2 − pα))(1 − δ) < 0 for all α ≤ 2

p
and γ < r − p. Noting that for all 2−γ

r
≤ α ≤ 2

p
,

(γ − (2 − pα))(1 − δ) − 1 + (1 + α) = (γ − 2 + pα)
1

r − p
+ α = γ − 2 + rα

r − p
≥ 0,

we obtain∫
|�(y)|p dy ≤ CL(2−pα)−ã0 , with ã0 := −(γ − (2 − pα))(1 − δ) + 1 > 0. (3.34)
|y|≤L
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If 2 − pα − ã0 < 0, then the proof is over; we also note that if r = p + 1, i.e. δ = 0, then 
2 − pα − ã0 = γ − 1 < 0, thus in the following the scope of δ we need to treat is δ ∈ ]0,1[. 
Otherwise, for the case 2 − pα − ã0 ≥ 0, by applying this improved estimate and Lemma 2.2, 
we repeat the above process to derive that

∫
|y|≤L

|�(y)|p+1 dy ≤ CL(2−pα−ã0)δ+γ (1−δ),

and

1

L2−pα

∫
|y|≤L

|�(y)|p dy ≤ C

∞∑
k=0

(2kL)(2−pα−ã0)δ+γ (1−δ)−(1+α)

(2kL)2−(p+1)α
+ C

∞∑
k=0

(2kL)2−pα−ã0

(2kL)3−(p−1)α

≤ C

∞∑
k=0

(2kL)(γ−(2−pα))(1−δ)−ã0δ−1 + C

∞∑
k=0

(2kL)−(1+α)−ã0

≤ CL−ã0−ã0δ + CL−ã0−(1+α) ≤ CL−ã0−ã0δ,

which implies that

∫
|y|≤L

|�(y)|p dy ≤ CL2−pα−ã0−ã0δ. (3.35)

It suffices to consider the case 2 − pα − ã0(1 + δ) ≥ 0, and by iteratively repeating the above 
process we find that for every n ∈N,

∫
|y|≤L

|�(y)|p dy ≤ CL2−pα−ã0(1+δ+···+δn). (3.36)

Since 1 + δ + · · · + δn → 1
1−δ

= r − p, and

ã0(r − p) = 2 − pα + r − p − γ > 2 − pα,

there exists a sufficiently large number n ∈N so that 2 − pα − ã0(1 + δ + · · · + δn) < 0, which 
obviously implies � ≡ 0 on R2 and contradicts with the nontrivial assumption of �. Hence we 
prove (1.8) under the assumption that � �≡ 0, and thus conclude Theorem 1.1.

4. Proof of Theorem 1.2

For the first part, since � ∈ C1
loc(R

2) and

|�(y)| � 1

|y|μ , ∀|y| ≥ L0, (4.1)

with L0 > 0 some pure number, we get that for every r > max{ 2 , 2},

μ
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∫
|y|≤L

|�(y)|r dy �
∫

|y|≤L0

|�(y)|r dy +
∫

|y|≥L0

1

|y|μr
dy ≤ C, ∀L � 1,

which corresponds to (1.7) with γ = 0. Let p1 := max{ 2
μ
, 2}, and set p = p1, r = p1 + 1, γ = 0

in Theorem 1.1, which clearly contains the case (4.1), then the scope of α admitting nontrivial 
profiles is 2

p1+1 ≤ α ≤ 2
p1

. On the other hand, we set p = p1 + 2, r = p1 + 3, γ = 0 in Theo-
rem 1.1, which also includes the considered case (4.1), then the range of α admitting nontrivial 
profiles is 2

p1+3 ≤ α ≤ 2
p1+2 . Since [ 2

p1+1 , 2
p1

] ∩ [ 2
p1+3 , 2

p1+2 ] = ∅, we conclude that � ≡ 0

on R2.
We next consider the second part. Let L0 > 0 be a constant such that (1.9) holds for all 

|y| ≥ L0, then under the assumptions (1.9) and � ∈ C1
loc(R

2), we have that for every p ∈ ]1,∞[
and some r ≥ p + 1,

∫
|y|≤L

|�(y)|r dy �
∫

|y|≤L0

|�(y)|r dy +
∫

L0≤|y|≤L

|y|σr dy ≤ CLσr+2, ∀L � 1.

We set γ = σr +2, and we need that σr +2 < r −p, and it suffices to choose r = p+2
1−σ

+1. Thus 
for every p ∈ ]1,∞[, and such r and γ , we can apply Theorem 1.1 to see that the scope of α
admitting nontrivial profiles is −σ = 2−γ

r
≤ α ≤ 2

p
. On the other hand, due to the lower bound at 

the assumption (1.9), we see that 
∫
|y|≤L

|�(y)|r dy ≥ CL2, ∀L � 1, which means that the range 

0 < α ≤ 2
p

is not admissible. Hence, the scope of α admitting nontrivial profiles is −σ ≤ α ≤ 0, 
and the profile corresponding to each α ∈ [−σ, 0] satisfies (1.10) for every p ∈ ]1,∞[.
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