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Abstract

We consider the discretely self-similar blowup solutions of the three-dimensional
Navier—Stokes equations, and under suitable assumptions we show some
estimates on the asymptotic behavior of the possible nontrivial velocity profiles.
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1. Introduction

In this paper we consider the Cauchy problem of the three-dimensional (3D) incompressible
Navier—Stokes equations

ov+v-Vv—vAv+ Vp =0,
(3D —NSE)< divv =0, (1.1)
V]i—o(x) = vo(x),

where (x,1) € R? x R* and v > 0 is the viscosity coefficient which is always normalized to 1
in the sequel. v = (vy, v2, v3) is the velocity vector field of R? and the scalar function p denotes
the pressure field. (3D-NSE) describes the motion of incompressible viscous flows and is a
fundamental model in fluid mechanics. There are numerous works on the theoretical studies of
(3D-NSE), but so far the global regularity problem of smooth solutions remains an outstand-
ing open problem, that is, we do not know whether the smooth solutions will always exist or
they break down at finite time.
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We here are mainly concerned with the possible self-similar type singular solutions of
(3D-NSE), which is an important potential type of finite-time blowup solutions for these
equations (see [9, 13]). Such singular solutions are mostly related to the scaling property of
(3D-NSE), that is, the system (1.1) is invariant under the following scaling transformation

v(x, 1) — n(x, 1) = O, N%), A>0,

plx. 1) = py(x, 1) := XNp(x, M1). (1.2)

Singular solutions (v, p) of (3D-NSE) are called (backward) self-similar with respect to a
spacetime point (x, 7') on the domain D := R3 x 10, T if for all (x, t) € D,

B 1 X — Xo 1 X — Xo
o) = Ttv(\/ﬁ)’ p(x’t)_T—tP( Tt)’ (1.3)

where (V, P) = (V, P)(y) correspondingly are stationary functions solving that

1o
lyvily vviv.vvoAaveve=0 yer,
2 Y Y (14)

divV=0.

Combined with the time translation transformation 7 which is defined by 7f(¢) = f(T — t),
we see that solutions with the form (1.3) satisfy V(x,t) € D, VA >0,

ﬁ}(x’ t) - %)\(x’ t)’ TP(X, t) = TP)\(X, t)’ (15)

which accounts for the terminology ‘self-similar solutions’. We also consider a more general
case that (1.5) holds only for a single A > 1, that is, V(x, t) € D,

v, T—1) = WO, T— M%), p(x,t) = NXp(Ox, T — Nt), for some \> 1, (1.6)

which is called ‘discretely self-similar solutions’ with respect to a spacetime point (xo, 7)) on
the space-time domain D. In terms of the similarity variables

= =0, = log 1.7
. T—t . Tt (1.7)
we see that such singular solutions satisfy
1 1
V(x’ t) = V( ,S), (x»t) = —P( ’S)’ 1.8
NT -t Y b T (1.8)

where (V, P)(y, s) are the time periodic functions defined on R? x R* with the period
So := 2log A > 0, and they solve the following equations

o+ %v+ %y-VV-i— V.VV_AV+VP=0,

divV =0, (1.9)
Vls—o(y) = NTvo(NTy + xo).

Under some suitable assumption on V (e.g. the Lng,’—condition in theorem 1.1 below), the
pressure profile up to a function depending only on s can be expressed as

1
P(y,s) = —EIV(y, 9P +p.v. fﬂ;3 Kii(y — 2)Vi(z, 9)Vj(z, 5) dz, (1.10)
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where K (y) = -2

Self-similar solutions (1.3) of (3D-NSE) were firstly proposed as a possible candidate
of finite-time blowup solutions by Leray in his famous article [9]. It was about 60 years
later the problem was finally solved, by Necas—Ruzicka—Sverdk [12] which excluded such a
scenario under the condition V € L*(R%), and later by Tsai [15] under the more general con-
dition V € LY(R?), ¢ > 3. Both papers rely on a key Liouville-type lemma of the quantity
I(y) := %lV(y)I2 + P(y) + %y - V(y). However, as pointed out by Plechac—Sverak [13] (also
by Tsai [16]), the possible occurrence of discretely self-similar solution (1.8) remains to be
an important blowup ansatz. So far there is not much work on this topic in the literature, and
the main known results, to the best of the author’s knowledge, are the direct consequence of
the regularity criteria developed by Escauriaza—Seregin—Sverak [7] and its generalizations [8,
17]. Indeed, in the blowup scenario (1.8) and under the condition V € L°(R™; P(RY), we can
deduce v € L([0, T[; L*(R?), which implies the solutions are regular beyond the time 7 from
[7], thus only the trivial velocity profile V=0 is admitted; we also notice that the Lebesgue

(i,j =1, 2, 3) are the standard Calderén—-Zygmund kernels.

space L*(R%) at above can be replaced by the Besov space B;,lqﬁ/ P(R% (3 < p, g < o0) accord-
ing to [8] and by the Lorentz space L>(R%) (3 < ¢ < o0) according to [17].

We also mention an another type of self-similar solutions called the forward self-similar
solutions, which are defined by (1.3) with 7 (r > 0) in place of T — t, and the associated exist-
ence problem is similarly faced. In a recent work [10], Jia and Sverak make a significant
progress in proving the global existence of large forward self-similar solutions for (3D-NSE)
in the framework of local-Leray weak solutions, and they also conjecture the non-uniqueness
of such solutions. One can see Tsai [16] for a similar result concerning the global existence of
large discretely forward self-similar solutions of (3D-NSE).

Recently, there are also much works studying the backward self-similar type solutions
of the 3D Euler system, which is defined by (1.1) with ¥ = 0 and is an another fundamen-
tal system in fluid mechanics, and one can refer to [1-6, 14, 18] and references therein for
various nonexistence results and some interesting properties of the possible velocity profiles.
However, unlike (3D-NSE), even for the self-similar solutions of the 3D Euler equations, the
existence problem under natural assumptions (e.g. the velocity profiles belonging to LP(R?),
p > 2) remains widely open.

In this note, partially motivated by the recent work on the self-similar type solutions of
the Euler equations, we adapt the method introduced in [5], and later developed by [1, 6, 18],
to consider the discretely self-similar solutions of (3D-NSE) to obtain some estimates on the
asymptotic behavior of the possible velocity profiles. Our main result reads as follows.

Theorem 1.1. Assume that v € C([0, T[; H*(R?)), s >§ satisfying (1.8) is the discretely
self-similar solutions for the (3D-NSE). Suppose that for some p € [3, 0], the velocity pro-
file Ve CiCly’loc(]R3 x RHNL[0, So]; LP(RY) is a time periodic vector field with period
So = 2log A > 0, and the pressure profile P is defined from V by (1.10) up to a function de-
pending only on s. Then we have

So
sip [ VnoPdy+ [T [ IVVOhoPddsSL VL1, (L1
s€[0,850] YIyISL 0 JylsL

If additionally V # 0 (i.e. V is a nontrivial velocity profile) satisfies that
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L So
v s j;}v|sA’f+2L|VV(y’S)|2dyds 1

lim : < (1.12)
L—00 SUD. (0.50] |y|<L|V(y,s)| dy 4\
we also have
sup V(y.9)Fdy~L, VL>1. (1.13)

s€[0,80] Y IVISL

The proof of (1.11) is an easy consequence of the energy inequality (3.1) of the velocity
field v. The proof of (1.13) mainly relies on the local energy inequality (2.23) of the profiles
(V, P), which in turn is derived from the local energy equality (2.1) of the original solutions
(v, p). Then by obtaining the dominant term of the left-hand-side of (2.23) under the assump-
tion (1.12), and by estimating the associated right-hand-side terms, we can conclude (1.13).
We also notice that (1.11) can similarly be proved from the local energy inequality (2.20),

where the assumption V € LiLf truly takes part in the proof, and we place this interesting and

more complicated proof in the appendix A.
Theorem 1.1 can be applicable in identifying the nontrivial velocity profiles with typical

asymptotics. Indeed, since we have the L?L;’ (p €[3, o[ )-assumption of V and may addition-
ally assume that V ¢ L(R*; L}(R?)), the candidates with typical asymptotics will be like

[V(y, )|~ Iy[7" +o(ly|™), forsome~ye]0,1], Vsel0,So],V|y|> 1. (1.14)
By scaling, we can expect that

IVV(y, )|~ [y~ +o(y[7~1), for some y€10,1], Vs € [0,Sol, V]y| > 1. (1.15)

Using these estimates we see that (1.12) holds true, and thanks to theorem 1.1, we moreover
necessarily have (1.13), which is only compatible with the v = 1 case, i.e.

V(y, 9l ~ Iy + oyl ),  Vsel0,S],Vy| > 1. (1.16)
A few remarks are as follows.

Remark 1.2. The assumption on the velocity field v in theorem 1.1 in fact can be weaken as
the local Leray weak solution v (constructed in [11, chapters 32 and 33]) satisfying the local
energy equality (2.1) and the discretely self-similar blowup ansatz (1.8). Note that the local
Leray solution may not satisfy the energy inequality (3.1), but we can still conclude (1.11)
thanks to the appendix A.

Remark 1.3. If the velocity profile Ve Cl(R?x RY)NL3[0,Sy]; LP(R%), p e [3,00]
additionally satisfies that for all L > 1,

121 %
su V(ys)Pdy< ~— —ff VV(y, )P dyds,
p [V(y, ) dy Akglv o ey VYO OF dyds (1.17)

s€[0,8,] Y IVISL

then by arguing as obtaining (1.13) in theorem 1.1, we have V=0 for all (y, s) € R* x [0, Sy].
Remark 1.4. Under the blowup ansatz (1.8), we infer that

1
2 — 2
IV 125,00 = i fmm [V(y,s)I* dy,
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where L= (T —t)~'2,r > 0, s = log TL_Z and V(y, s) is a time periodic vector field with pe-
riod Sy, thus for the nontrivial velocity profile, (1.13) guarantees that

lim supl[v(O)ll 25,y ~ 1>
t—T

that is, the discretely self-similar blowup contains some positive amount of energy as time
tending to the blowup time.

Remark 1.5. The numerator of the left-hand-side term of (1.12) is virtually from the contri-
bution of the local dissipation term in (2.1), while the denominator is from the estimation of
the local energy term in (2.1), thus the assumption (1.12) means that in the blowup scenario
(1.8) and as time approaching to the blowup time, the contribution from the local dissipation
term is much weaker than that from the local energy term. At least for the nontrivial velocity
profiles with typical asymptotics, this assumption seems reasonable.

Remark 1.6. Note that the term sup g 5; f . [V(y,s)|? dyin (1.12) and (1.13) can also si-

IyI<L
multaneously be replaced by the term fo % f [V(y,s)|* dyds, by starting from (2.22) instead
y

of (2.23) in the proof of (1.13). st

The outline of the paper is as follows: in section 2 we show the key local energy inequali-
ties of profiles (V, P), and based on these inequalities we prove theorem 1.1 in the section 3,
and at last we present an another proof of (1.11) from the local energy inequality (2.20) in the
appendix A.

Throughout this paper, C denotes a harmless constant which may be of different value from
line to line. The formula X < Y denotes that there is a constant C > 0 such that X< CY, and
X ~ Y means that X <Y and Y < X. For a real number a, denote by [a] its integer part. For
x0 €R3, r > 0, denote by B,(x¢) the open ball of R3 centered at x, with radius .

2. Local energy inequality

We start with the following local energy equality of the original Navier—Stokes equations (1.1):
5}
2 2 2
S mpxeemar— [ veonPxemder [ [ 19 dsar

2} ) 5]
_ f[l J;@ W28,y (x, 1) dxdr + f“ fu@ (Vv + 2pv) - Vx(x, 1) dxdr + fn fu@ WA (x, 1) dxdr,
2.1
where y € C(R* x [0, TDand 0< 1< b < T.
Without loss of generality, we set xo = O for brevity. Let ¢ € Cﬁo(]R?) be a test function such
that 0 < ¢ < 1, supp ¢ C By(0) and ¢ = 1 0on By;,(0) (note that this A is just the number in (1.6)).
By setting x(x, f) = ¢(x), we have

JpwoPowa— [ peppowdcr2 * [ 19v 0P o der

= ftZ f (|V|2V + ZPV)(X, l) . VQS()C) dxd[ + ftzf |v(x’ [)|2A¢(x) dxdt (22)
h R} i R

Using the blowup ansatz (1.8) and setting s; := log %, i=1,2, we get
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2

P(x) dx

e _ ! X
L/Hv@lv(x’ " P(x) dx = jﬂ‘@ T—1 ‘ V( \/TTII > sl]
— JTe > jl.@ [V(y, s,-)|2¢<yﬁefg) dy. (2.3)

Similarly, by the change of variables, we also see that

b ) _ n 1 X T
L/; fR3|vV| d)(x)dxdt—j; fw—(T_t)z (VV)( _T_t,logT_t)
- f fR 3 ﬁe§|VV(y,s)|2¢( yﬁei)dyds. 2.4)

2

@(x) dxdt

Thus local energy equality (2.2) under the blowup ansatz (1.8) reduces to

VTe 2 [ IV(rsaPo(~Te 2)dy = VTe 2 [ IV(ysoPo(yTe 2)dy
#2T [ [ e ATV(i9PoNTe 3 dvds

— flzjﬂ'ﬁ(lVIZV—k 2PV)(y,log Tit).v(b(y /—T—t)dydt

T

1) 2
+f f JT—1 ) A(yNT —t)dydr
i R3 t

Viy,lo

[os

- szf e (IVPV +2PV)(y,s) - Vo(yTe 2)dyds
St R}

4T3 [ B [ e 3 |V(y, )P AG(yTe 3)dyds, 2.5)
S1 R3

where 0 < 51 < 55 < co. With no loss of generality we assume that s, — 51 >> Sy with Sp = 21log A
the time period of the profiles V(y, s), then for any real number 7 € [0, Sp], by replacing s; in
(2.5) with s; + 7 (i = 1, 2), we have

$+72 $o+72
VTem 2 fR IV(y,s2+ )P p(yJTe 2 )dy
S1+T7 S1+T
VTS [V P SONTe S dy
So+T s s
42 f ’ f NTe 2VV(y.)Po(yWTe 3)dyds
S1+T71 R
§2+T2 N
_ f fR e (VPV + 2PV)(y.5) - Vo(yTe 3)dyds
S1+T71 Y

$2+T2 s s
4TS ] e 3 V(y, )P Ad(yy/Te3) dyds. (2.6)
s R3

1+71

Fori =1, 2, denote by
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So 5i+Ti s5itTi
L= f f3 NTe 2 |V(y, s+ ﬁ)l%(yﬁe’T) dydr;,
o JRr
_sitTi 2 _SitTi
Ji= sup JTe 2 IZIV(y,si+77)| gb(yﬁe 2 )dy. 2.7
7E[0,50] K

By virtue of the time periodicity property of V and the support property of ¢, and by setting
1
lj:=T 2e%2 i=1,2, (2.8)

we infer that (recalling A = eSTO)

1 So 1 So
— [T vooPdds<h< [T V(P dyds,
Al Jo Jiyisy li Jo Jiyien
I 1
— sup L V(9P dy<hi<— sup [V(y,s)P dy. (2.9)
Al sefo.s0 7 IvI<5 i sel0.5] Iyl
Denote by
S2+T
Kuryi= [0 [ T RVVGRe(5Te s ) dds Vrmelosil  210)
S1+T71 R

then we roughly have the following estimate

52 P s 52450 s s
f f NTe 3 VVPA(yTe ) dyds < K(m.m) < f f NTe 2VVPS(yTe 2)dyds.
si+So YR s1 R (2 ll)

By letting By := {5 : b < T e 2 <IN}, k€N, and

l by,
k= |:10g)\ ﬁ], k= |:10g/\ l—2:|, (2.12)
1 1

and thanks to the dyadic decomposition, the time periodic property of V, (2.8) and Sy = 2 log A,
we further get

kl 52 s S
K2y [ [ 1a@Te VYV 9)Po(yyTe ) dyds
k=1 s1+Sp YR

ki 1 s14+2(k+1)log A
> o
et Jg

[ V9P dyds
=1 h [yl<hN!

1+2klog A

L v 2 dyd 2.13)
> —_— V(y,s s, .
/,ézlxkﬂfo jl;KWJ (.9 dy

and

ky s2+So .
Ko <Y [ [ 1n@Te 2AVV(0Po(Te 2) dyds
k=041 ]
i 1 fsl+2(k+l)log>\f V()P dyd
< — , S s
= =0 WX Jsitariog Iyl <hNe! Y Y

kz 1 So
< —f f YV (y. )P dyds, 2.14
\kz;; o |y|<WII (y,9)I dyds (2.14)
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where 1, (s) is the standard indicator function. In (2.6), by taking the supremum over 7 € [0, So]
and integrating on the variable 7 € [0, Sp], we obtain

‘50/2—11+2f sup K(7,m)d7n| <K+ K, (2.15)
72€[0,50]

where K| and K, are given by

So ps2+T2 3 s
Ki= swp [ [ [ Tes (VP + 2PV VOONTe Dldydsdn,  (2.16)
1

72€[0,S0] +7i
and
So ps2tT2 3 3s s
K= sup f f f Ta2e 2|V (y, )PIAG(yTe 2)| dydsdn. 2.17)
72€[0,S0] S1+T71 R3

By arguing as obtaining (2.14), we find

s2+So N
Ki<So [ [ Ten(VE + 2PV ) [Vo(~Te )] dyds
S1

ko s2+So s
<So X [0 [ m@ Te (VE + 2PV 9)[Vo(yTe )] dyds
k=041 ]
C)\S ky 1 s1+2(k+1)log A
oy —= [ [ (IVF + IPIIV]) dyds
)\71 k 0 (ll)\) s1+2klog A BNy BN
C/\So f f 3
VI° +|P||V|) dyds =: K3, 2.18
< Z (W)? s (VP HIPIVD dvds =K (2.18)
and
)\25 ko So 2 dvd
Viy,s s =: Ku, 2.1
()\— 1)2 Z (ll)\")3 f jz’,,\* l<|y|<1Ak+'| () dy N 219
where in the third line of (2.18) we used |V¢| < —— and in (2.19)|A¢| < Thus we get

1)2

Soh— I + f sup 2K (7, m)dn| <Ks+ Ka. (2.20)

72€[0,S0]

Similarly, by using the different treating in 7, 7» € [0, So], we also obtain

L—h+— f f 2K (71, ) d7idn | < K3 + Ky, (2.21)
and
L —SoJi+ sup f 2K(11, ) dna| S K3+ Ky, (2.22)
71€[0,S0]
and
K3 K.
h—Ji+ sup 2K(m, Tz)‘ == (2.23)
71,72€[0.50] So’

where I;-J;, K(7, 1), K3, K4 are defined by (2.7), (2.10), (2.18) and (2.19) respectively.
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3. Proof of theorem 1.1

First we prove (1.11), and we see that it is a direct consequence of the classical energy
inequality

T
sup [ werfar+2 7 [ 1VvennPdrdr< vl G0
refo,7 VR’ o JR L
Indeed, concerning the local ball B;(x) instead of R3, and inserting the blowup ansatz (1.8)
into (3.1), we similarly as (2.3) and (2.4) obtain
1 s
sup v(x,)Pdx = sup T2e 2 f IV s)Pdy <,
re[0, 7] ¥ Bilxo) $€[0,00[ [yIST 2e2

and

T 00 1 s
f f Vv, 1)Pdx = f f  T2e2VV(y,s)Pdyds < 1,
0 Y Bi(xp) 0 |y|<T 2e2

51
then by considering s € [sy, s; + So] with s; € N, and denoting L = T’%ei, we infer that

1 1
— sup [V(y,s)Pdy<  sup Tie’%f VO ePdy < 1,
AL sefo.so) 2Ist S€[s1,514S0] IyI<T 263

and

1 So s1+So 1 s
— [T iwveeobadss [ [ Tee 39V ePdyds ST,
AL Jo Jyyise s Iyl<T 2¢2

which imply the desired estimate (1.11). We remark that (1.11) can also be derived from the
local energy inequality (2.20), and the proof may have its own interest (see remark 1.2), thus
we place it in the appendix.

Next we prove (1.13) under the assumption (1.12), and for this purpose, it suffices to show
that

1
— sup [V(y,9)Pdyds > 1, VYL>1.
L se0,5, YIvISL (3.2)

The argument is by contradiction: suppose that (3.2) is not true for all L > 1, then there exists
a sequence of numbers {L,},cn tending to co such that

€ sup [V(y,9)Pdy—0, as L,— oco. (3.3)
Ly sefo,501 YIvI<La

We then begin with the local energy inequality (2.23): by setting ; = AL and , = L,, — oo,
and according to (3.3), (2.9), (2.14), we infer that J, — 0, and

1
J1 =2 —— sup [V(y, s)|2 dy,
~ NL 5€[0,80] Y IvISL
sup  K(m,m) < 1 i ! fsof |VV(y s)|2 dyds (3.4)
L,T2) S — — ) , .
71,72€[0,5] AL (= M Jo Jiyieaa

and thus
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! c\ X
V(y, 24 < V3+ VIPD dvd
3)\Lse[or;(,] Iyl<L [V(y,s)* dy N\ — Z (L)\k+1)2f j;kL<|)|</\‘+2L(| I+ [VIIP|) dyds
So ,
V(y,s)|* dyd
(A— 1)2 Z (L,\’<+')3 f fAkKMQMLI (¥, 5)|” dyds,

(3.5)
where in obtaining the left-hand-side term of (3.5) from (3.4) we have used the assumption
(1.12) and taken L sufficiently large so that SUD_ _ 10.50]
will suppress the dependence on the constants A. Since we already have (1.11), this estimate
combined with the interpolation inequality guarantees that

1
So So Gy L
V(y, 3dyds < V(y,s)Pd Viy.s)Pd d
‘/; ‘/|:v|<L| O 9Fdy SN«/; (»[ym' (2 y) (f|y|<L| -2 y) '
P
Bl s 5 Ve
S V(y, 2d V s rd d.
N[ swp [ VG y] [fo (fw| (y.9) y) s

5€[0,50] I<

2K(7,m) < %Jl. In the following we

< LA, with 3, := —=

For the treating of the pressure profile, we turn to the following lemma, whose proof is placed
in the end of this section.

Lemma 3.1. Suppose that V € CiCly,IOC(]R3 x RY) is a locally periodic-in-s vector field with
period Sy > 0, which additionally satisfies that for every L>> 1,2 <p < oo and2 < r < oo,

1

Iz a

H(f IV(y,s)lf’dy) <Lp, with 0<a<3.
|yI<L

L7([0,So0])

Let P(y, s) be a scalar-valued function defined from V by
P(3ns) = V9P +pov. [ Ki(y = DV V(2. 5) s (3.6)

with co € R and Kij(2) (i, j = 1, 2, 3) some Calderén—Zygmund kernels, then we have

2
<L7. (3.7)
L3([0,So])

Y
‘Mf IH%ﬂh@)
IyIsL

Applying lemma 3.1 leads to

oo

1 So
(LTI VP + |V||P]) dyd
S gy Vi s

< S 1 fSOf |V|3+|P|2)d dS< Z k)ﬂp< 1
T @ Joo Jiyexe Y /\")2 ~h
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From (1.11), the second term on the right-hand side of (3.5) can be treated as

1 yw< L

[o¢] 1 SO
R V(y,s)P dyds < L\ .
,g)(LAk+l)3j; LMLI O 9F dv ~,§) ALNP 7 Y12

By plugging the above two estimates into (3.5), we have

1 1 1
sup |V(Y»S)|2 dys 3 +_57’
el i<t 07 T LY e

which implies that V=0 for all (y, s) € R x R*, but this contradicts with the nontriviality
assumption of V. Therefore, the desired estimate (3.2) is followed and we prove (1.13).

Proof of lemma 3.1. 'We only need to treat the integral term in the expression formula (3.6),
denoting by P(y, s), and we use the following decomposition

P(y,s) :p.V.jlj|

R

Kii(y — 2)Vi(z,)Vi(z,s)dz + f Ki(y — 2)Vi(z,9)V(z,s)dz
2L |z|>2L

=P (. 9) + Por(y,9).

By the Calder6n—Zygmund theorem, we first see that

_ » % 1/p
[ 1Pl a [ wosrdy
IyIsL Iyl<2L

For P, 1, by the dyadic decomposition, Minkowski’s inequality and Holder’s inequality we have

2
S

rl2
s

2a
<Lp.
L;

L

SIS

2

~ P 2
[Pty ay
IyI<L

P
< f f —|V(z,5)Pdz]| d
" lyI<L ( ,; 2Ll L |y — zf | | Y

2
P\p

: — V(9P dz| d
- Z ‘/|;’|<L ( j|;|~2kL 2] [V(z, 9 Z] ly

k=1

L L»‘/Z
s

r2
Ly

2

(f V@ 9P dz)p
|z|~2kL

23—a) 2
QLY r <Ly,

<loy

e 08

SLpy Ly

Lr/2
;

6

<Lp

k=1

Hence gathering the above estimates yields (3.7).
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Appendix A. Justifying (1.11) from the local energy inequality (2.20)

We begin with the local energy inequality (2.20), and by setting [ = A, , = AL>> 1 and using
(2.9) and (2.13), we get

So 5 i
>— S V(iy,s d —|— vV s dvds
NL VG[OI:.)S‘()] IyIsL l (y )l Y Z M f L/|«,|<)\k l (y )l Y
CASo
< — 2 3
S f L/|;|< ) [V(y,s)|” dyds + . 2: )\2k+2 f j)‘\,\<|y|<)\k+2 (VP +|P||V]) dyds

)\2S ko ,
+ \— 1)2 Z )\3k+3 f j:\k<| < [V(y, )" dyds,

where ki = [log,(L/A)] and k, = [log,(AL)]. By suppressing the dependence on A, we see that

sup [V(y,s)Pdy+D(L) S L+ E(L) + ExL),
s€[0,80] Y IyI<SL

with D(L), E|(L) and E»(L) defined by

L [logA(L/)\)] 1
D(L) = f f IVV(y,5)dyds and
c k 1 yl<Xt

[logy(AL)]

So
E(L) =L —ff VP + |P||V]) dyds, and
W=t 3 5 [T OV IV

[logy(AL)]

So )
ExL):=L Ffo j;k<|y|<,\k+zlv(y’s)| dyds.

k=0

For E (L), by Holder’s inequality we directly have

llog,(\L)] S s 3
E(L) <CL — f f VP +1PJ2) dyd
(L) S Ty e (VP 1P O3s
llogy \L)T » 3/p
SCL Y o -3 f ( f (|V|P+|P|z)dy) ds.
= A 0 [yl M
Thus by using lemma 3.1, we get
llogy(\L)]
E(L)<CL gz Ne1=97p) Cillog, L], for p€[3,9], (A.1)
= CL*> o, for p €19, o]
For E,(L), Holder’s inequality directly yields
log AL | 5 iy VP
ExL)<SCL Y, — %12 f ( f AV, )P dy) ds
-0 A 0 [y~ Xk
logy(AL)]
<SCL Y, XPgCL. (A2)
k=0
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Hence, by gathering the above estimates we get

CL[log, L], for pe[3,9],

CL*9p, for p €19, o] (A3)

sup [V(y,s) dy + D(L) <
s€[0,50] Y IyISL

Next we intend to improve (A.3.) to obtain the desired estimate (1.11). For p € 19, o[, first by
the interpolation inequality we see that

1

So So 8, ﬁ
V(y,s)P dyds < V(y,9)Pd Viy.s)P d d
j; ﬁvlal (y,8)F dy swj(‘) (f|y|<L| (¥, 9l y) (]I;KLI (y,9)| y) s

< L(279/p)/3,,’

with 3, 1= 2=3. and then using this estimate and lemma 3.1 again yields

p—2’
[log,(AL)] 1 So ( 3 3)
E(L) <CL —ff VP + P2 ) dyd
W<t S0 [7 [ (VP 1P dyas
[logy(A\L)] 1

SCL Y S NeIPhCL.
k=0 A

The estimate of the term E»(L) can also be (A.2.), and thus we have that for p €19, ool,
sup IV(y. )P dy + D(L) S L+ E(L) + Ex(L) S L. (A4)
s€[0,80] Y IyISL
For p € [3,9], from (A.3.) we can choose some fixed number ¢ € ]0, 1[ so that
sup IV(y,s)P dy+D(@L)< CL'.
s€[0,80] YIyISL

Similarly as obtaining the above estimates in the case of p € 19, oo[, we get

I,

[V(y,s)P dyds < LA+9%,
<L

<
and

[logy(AL)] 1
EL)SCL Yo pAttob<cL,
k=0

and thus for p € [3,9],
sup IV(y, )P dy+ D) S L.
$€[0,80] Y IVISL (A.5)

Hence (1.11) is ensured by (A.4.), (A.5.) and the following estimate

So
> 2
pwz [ [ L IVVOiP dyds
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