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Abstract

In this paper we consider the Yudovich type solution of the 2D inviscid Boussinesq system with critical
and supercritical dissipation. For the critical case, we show that the system admits a global and unique
Yudovich type solution; for the supercritical case, we prove the local and unique existence of Yudovich type
solution, and the global result under a smallness condition of 6. We also give a refined blowup criterion in
the supercritical case.
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1. Introduction

In this paper we address the Cauchy problem of the following two-dimensional Boussinesq
system

u~+u-Vu+v|D|*u+ VP =0es,
360 +u-Ve+«|D|Po=0,

divu =0,

uli=0 = uo, 01=0 = 6o,

(1.1

where (£, x) € RT x RZ, v,k >0, (o, B) €10, 212, e2 = (0, 1) the canonical vector, and |D|* =
(—A)¥/? is defined by the Fourier transform [D|* f(£) = |£|% F(£). The unknowns are the ve-
locity vector field u = (u1, u2) : Rt x R? — R?, the scalar pressure P : R x R> — R, and the
scalar quantity 6 : Rt x R? — R which denotes the density field in the context of geostrophic
fluids or the temperature field in the thermal convection. Boussinesq systems are widely used
to model the geophysical flows such as atmospheric fronts and oceanic circulation, and also
play an important role in the study of Rayleigh-Bénard convection (cf. [4,26]). Besides, the 2D
Boussinesq system and its fractional generation have the mathematical significance: they are the
two-dimensional models which retain the key vortex-stretching mechanism as the 3D Navier—
Stokes/Euler equations; indeed, as pointed out in many literatures (e.g. [24]), the totally inviscid
Boussinesq case (1.1) (i.e. v =« = 0) shares a deep formal analog with the 3D axisymmetric
Euler system with swirl.

Due to the physical background and mathematical relevance, recently there have been intense
works concerned on the Boussinesq systems (e.g. [2,3,5,6,11-17,19,20,25,31] and references
therein), and here for our purpose we only recall the notable works about the 2D inviscid Boussi-
nesq system

ou+u-Vu+ VP =0es,
360 +u-Ve+«|D|Po=0,
divu =0,

uli=0 = uo, Blr=0 = 6.

(1.2)

For k =0, this is the most difficult case for mathematical study; indeed, since the vorticity w =
curlu = 01up — druq solves

ow~+u-Vo =010, (1.3)

thus to control the key L°-norm of w, we need that fOT [1016]| L dt < 0o, but no such a priori
bound is known. Up to now, we know the local well-posedness in various functional frameworks
and the blowup criteria (cf. [6,23,11]), and lower bound for the life-span of the solution (cf. [11]).
Note that in all these settings, the velocity field is at least Lipschitzian. For the dissipative cases
k >0, B > 0, one can resort to the dissipation effect to gain some benefit. For the Laplacian
dissipation case (i.e. k > 0, 8 = 2), Chae [5] proved the global well-posedness of the smooth
solution for (1.2) with (ug,6p) € H®* x H*, s > 2. Later, Hmidi and Keraani [16] proved the

global result for (1.2) with the rough data that ug € B;ﬁz/ Py p € 12,00]) and 6y belongs to
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a suitable Lebesgue space, which in some sense extended the work of Vishik [27] on the 2D
Euler system. Moreover, as a natural extention of Yudovich [32] on the 2D Euler system to treat
the non-Lipschitzian velocity field, Danchin and Paicu [13] showed that (1.2) has a global unique
solution for the Yudovich type data, that is, the initial velocity ug has ﬁnlte energy and bounded
vorticity and 6y belongs to L> N B_ 11 (this additional assumption on B_ 1 is indeed optimal);
note that, this global result in fact holds true for a more general system called the 2D inviscid
Bénard system. For B € ]1, 2[, Hmidi and Zerguine [18] followed the idea of [16] to show the
global well-posedness of (1.2) with the rough data; Wu and the second author [30] proved the
global unique solution of (1.2) (also the 2D inviscid Bénard system) for the Yudovich type data
which naturally generalized the conditions in [13], (see [29] for a similar result and other issues).
We point out that in view of the maximal regularity estimate for the equation of 6 used in [18],
the case B =1, B> 1 and B < 1 can be called as the critical, subcritical and supercritical
case respectively. For the subtle critical case 8 = 1, by deeply developing the structures of the
coupling system about (6, ), Hmidi, Keraani, and Rousset [17] proved the global result for (1.2)
with the rough data ug € Béo’l NAW!P and 6y € Bgo’l NLP (p € ]2, 00[). On the other hand, if the

dissipation term |D|## in the equation of 6 is replaced by the partial horizontal dissipation 8129
or vertical dissipation 8226 in the Boussinesq system (1.2), we refer the readers to the interesting
works [14,22,3].

In this paper, partially continuing the works [32,13,30], we are devoted to treat the Yudovich
type solution for the 2D inviscid Boussinesq system (1.2) with critical and supercritical dissipa-
tion. In the sequel we assume « = 1 for simplicity. Our main result reads as follows.

Theorem 1.1. Let v =0, x = 1, B € 10, 1]. Assume that p € [2, 0o[, 6y € L2 (R?) N BH’ N
B1 ﬁ and up € L*(R?) is a divergence-free vector field with the vorticity wyg = 01up,2 — 8214() 1
belongtng to LP(R%) N L®(R2). Then

{if,B:l, forevery T >0,

if Be€l0,1[, forsomeT > 0 depending only on B, ||wollLenLr, ||90||Bl—ﬁmBl—ﬂ,
p.1 00,1

the 2D inviscid Boussinesq system (1.2) has a unique solution (u, w, ) on [0, T] which satisfies
ue (0,71, L*(R?)),  weLl™([0,T;LPNL™®), and (1.4)

o ec(l0.7:L*nB, P nBT)NL (10, T]; BL, ). (1.5)

Besides, for the supercritical regime B € 10, 1[, 6y is additionally such that 6y € LP° N LP!

with po € [1, %[ and p1 € [2, %[, then the above constant T can be arbitrarily large provided
that

HQOHLPOmLPmB;j"mB;’f < <o (1.6)

for some positive constant co depending only on ||wo||Lenrr and B.

Remark 1.2. The smallness condition (1.6) in the supercritical case is independent of 7', and
there is no smallness restriction on the velocity field. Note that for 6 = 6y = 0, the inviscid
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Boussinesq system (1.2) reduces to the 2D Euler system, thus the global result under the condi-
tion (1.6) can be viewed as a perturbation result of the Yudovich solution for 2D Euler system.
But for the totally inviscid case {v = x = 0}, so far it remains open to obtain an analogous result.

Remark 1.3. If we control the term ||V S3u||r~ in (4.11) by [lul||;2 instead of ||w||L», We can

also get the similar results as those stated in Theorem 1.1. We just note that in the supercritical

case, the time 7' > 0 will depend only on {8, [luoll;2, lwoll L, |60 1-p}, and if additionally
1

6o € LP° with pg € [1, ﬁ[ (so that (4.5) holds), then T can be arbitrarily large as long as

||90||Lp0m317§3 < ¢ with ¢ a small constant depending only on B, ||ug||;2 and ||wo|| 1.
00,

L2NB

We also have the following refined blowup criterion in the supercritical case.

Proposition 1.4. Let g € 10, 1[, T* > 0 be the maximal existence time of the Yudovich type
solution (u, w, 0) constructed in Theorem 1.1. If T* < 00, then we necessarily have

T*
/||9(z)”317,5 dr = oo. (1.7)
00,2
0
Remark 1.5. If we neglect the convection term in the velocity equation of the Boussinesq sys-

tem (1.2), then the system reduces to the following system

30 +u-vo+|DPo=0,

t

u=uy+ / P(Ber)(7)dr, (1.8)
0
ult=0 = uo, divug =0, 0)t=0 = o,

where P = Id — VA~ div is the Leray operator which maps into the divergence-free field. Al-
though (1.8) has a simpler form than (1.2), it is still not clear to show the global regularity of the
solution at the case 8 € ]0, 1[. Indeed, for the transport—diffusion equation

30 +u-vo+|DPo=0, Belo 1],

a typical regularity criterion is as follows (e.g. [8,9]): one needs that u € LY°C 1=# to ensure
that L°°-solution is Holder continuous on ]0, T], while one needs u € LCY (y > 1 — ) to
guarantee that Holder continuous solution is smooth on ]0, T']. A direct consequence of this
criterion is that we a priori need

t

sup f Pfey)dr

1€10,7T]
0

T
<Cf||9(f)||cy dt<co, y>1-8, (1.9)
cv 0

to ensure the smoothness of the solution up to 7. Note that, though they are in the different
situations, the criterion (1.7) (at least formally) is slightly better than the criterion (1.9).
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Compared with [30,29] (where the critical case was unsolved), the new ingredient in the proof
of Theorem 1.1 is to apply the frequency-localized maximum principle Lemma 2.3, which suffi-
ciently develops the dissipation effect of transport—diffusion equation in the point-wise sense; in-
deed, combining it with the generalized Bernstein inequality and the commutator estimate (3.1),
we can prove the a priori bound that for every p € [2,00[, s < 1and r > 0,

Z 29°(q + D 180N Ly (zoonery
geN

Sllellrewsentr ( Y 2167 g+ 1yt ||Aqe||L;(LoomLp>) tlot
qeN

By iteratively using the above estimate (the times depending on f), we can estimate
lollLeeLoenLry + HGHLJ(BO'OWBL,I) by a polynomial F(|lwllreronsr)) = D ock<k, Ck () X
||w||]ioo (L°NLP) with ¢ (¢) depending on the initial data and ¢ (see (4.26)—(4.27)), and from which
we obtain the local resullts. Especially, by virtue of Lemma 2.2, with another suitable assumption
on fp, we can show that ¢ (t) < Cy independent of ¢, which leads to the global result under the
smallness condition. For the proof of Proposition 1.4 and its analogy in the critical case, we adopt
the elegant method of [17] to use the hidden structure; more precisely, let Rg = 01 |D|_/S and
I' =w+"RgH, we find

T +u-VI=—Rgu-V60) +u-VRg0
= —[Rg,u - V1o

then thanks to the commutator estimates involving Rg, the regularization estimate of ¢ and
the relation w = I" — Rg6, we manage to establish the expected blowup criterion. The global
regularity in the critical case is a consequence of this criterion and an a priori estimate in [17].

The paper is organized as follows. Section 2 presents some preparatory results. In Section 3,
we show some auxiliary commutator estimates. We prove Theorem 1.1 and Proposition 1.4 in
Section 4 and Subsection 4.4 respectively.

2. Preliminary

In this preparatory section, we introduce some common notations and the definition of Besov
spaces, and compile some useful lemmas.

Throughout this paper the following notations will be used.

o C (or Cp) stands for a positive constant which may be different from line to line. X <Y
means that there exists a positive harmless constant C such that X < CY. We use the sub-indices
(like C; or <) to indicate the parameter dependence of the constant C.

o D(R?) = cx (R%) denotes the space of test functions, S (R?) denotes the Schwartz class,
and S’(RY) the space of tempered distributions.

o We use F f or fto denote the Fourier transform of a tempered distribution f, and F~! f
denotes its Fourier inverse transform.

o For A, B two operators, denote by [A, B] the commutator operator AB — BA.
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In order to define Besov space, we need the following dyadic partition of unity (cf. [1]).
Choose two nonnegative radial functions x, ¢ € D(R?) which are supported respectively in the
ball {& € R%: |£| < 3} and the shell { e R?: 3 < |&] < 8} such that

XE+Y e(27%)=1, VeeR

q20

Let h = F~(gp), h=F1( x), then for f € S'(R?), we define the Littlewood—Paley operators

A f=xD)f =/ﬁ(y)f(x —y)dy; Ayf =0, forg<-2;
Rd

Aqf:(p(2*qD)f:2qd/.h(2qy)f(x —y)dy, forgeN;
R4

Sef=x(271D)f = Z Ajfzzqd/ﬁ(zqy)f(x—y)dy, forgeN. (2.1)
-1<j<g-1 R4

With the choice of x, ¢, it is obvious to see that

AgAjf =0, forlg—jl=2
Ag(Sj-1fAjg) =0, forlg—j|=5.

Now we give the definition of Besov spaces. Let (p,r) € [1, 0], s € R, the nonhomogeneous
Besov space B;’, = B;’,(Rd) is the set of f € S’(R?) such that ||f||3.lv” < oo with

sup,>_1 2° 1 f I o, for r = oo,

W08, =1 (s 29718 £, V7, forr T, ool

We also introduce two kinds of space—time Besov spaces. The first one is the classical space—time

Besov space L” ([0, T, B;,r), abbreviated by L’;B;,r, which is defined in the usual way. The
second one is the Chemin—Lerner mixed space—time Besov space Lr ([0, T1, B;‘,), abbreviated
by Z’; B?

».r» Which is the set of tempered distribution f satisfying

11z08;, = 127180 Pl 1o} ysy o < o0

Due to Minkowski’s inequality, we immediately obtain

LyB),,— LyB),,, ifr>p, and L7B),, — LyB; . ifp>r

Bernstein’s inequality is fundamental in the analysis involving Besov spaces (cf. [1]).
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Lemma 2.1. Let f € L%, 1 <a <b < oo. Then for every (k,q) € N* there exists a constant
C > 0 such that

sup |08, £ ,» < 294GV, £l o,
la|=k

CT2% Ay fllza < supkHa“Aqf\ Lo SC2M A £l e
la|=

The L?-estimate for the transport(—diffusion) equation is very useful.

Lemma 2.2. Let u be a smooth divergence-free vector field in R? (d > 2) and 6 be a smooth
solution of the following transport(—diffusion) equation

00 +u-Vo+«k|D|*0=f, divu=0, 0|;=0=060y, «€]l0,2], (2.2)
with k > 0. Then the following statements hold.

(1) Forevery p €[1,00] andt € RY, we have

t
[00)],, < I190lLs + / 1£@],, dr. 23)
0

(2) Ifk >0and f =0in Eq. (2.2), then for every p € [1,00[, r € [1, p]l and t € R, we have

Cll@ollLrnrr
e, < m

(2.4)

where C is positive constant depending only on p,r, o, d, k.
Besides, if p=o00 and r € [2, 00], (2.4) also holds true.

Proof of Lemma 2.2. The proof of (2.3) is classical, see [10]. For (2.4), although some typical
cases may have occurred in the literatures, we here present the details of the proof for complete-
ness. For p = oo and r € [2, oo], this corresponds to [30, Prop. 3.1]. For p € [2,00[ and r < p
(the case r = p reduces to (2.3)), by taking the inner product of |8|?~26 with the homogeneous
transport—diffusion equation (2.2) and using the divergence-free condition, we see that

1d
0> ;EHB(I)HZP—l—/c/|D|°‘9(t,x)|9|”_29(t,x)dx

R4

1d 2k @ 22
> 1ol + =2 N1D1E (1) [,

where in the last line we also have used [21, Lem. 3.3]. The Sobolev embedding HS (R) —
L% (R?) leads to



3186 X. Xu, L. Xue / J. Differential Equations 256 (2014) 3179-3207

1 d
;Eue(z)ng’p +C1||9(r)||’L’ p <0,

d

By virtue of interpolation and (2.3), we find

1-6
00| pa < ClbolIY
Li—a

) 1-6
leOl, <clo®] 60| g

with § = (P—:)% (S] ]0, 1[ Thus

1-6
G

1 d ,
;E”G(”Hu +G 160 P/ S

that is,

1+6 1-6
6@, 5P =

d
Zlewl|,, < —Cp—2L
1001 < e

Direct computation yields

6ol LrnLr 0ol Py

o], <Cs A n=em ~ ©3

d 1 1 :
(1 + t) o(r P)
For pE [1 s 2[, (24) can be achieved by interpolation. O

The following localized maximum principle plays a key role in the main proof (cf. [28,
Thm. 3.3]).

Lemma 2.3. Let 0, u, f be smooth solutions with A40(t) € Co (R?) fort>0andq €N, and let
A,0 be a solution of the following transport—diffusion equation

A0 +u-VAH+|DI*AO=f, «cl0,2.

Then there exists an absolute positive constant ¢ independent of 0, u, f, q such that fora.e. t > 0,

d
1200 oo + 2 [ A0 O] oo < [ FO -
The next lemma is useful in dealing with the commutator terms (cf. [17]).

Lemma 2.4. Let p e [1,00],m > p, m = % be the dual number. Then,

|h*(fe) = fhx o), <UxhlpallV fliLelgln. (2.5)
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3. Commutator estimates
In this section we show some commutator estimates.

Lemma 3.1. Assume that u = (uy, ..., uq) is a smooth divergence-free vector field ofRd d=>=2)
with its vorticity w, and 0 is a smooth function.

(1) Letse]—1,1[, r 20, p €[1, o], then

qus(q + D" [[ag,u-VI6|,,
geN

Srs (1VS3ullze + ||0)||L°°)<||539||LP +Y 2%+ 1! IIAq9I|Lp>, 3.1

geN
where S3 is the low-frequency cut-off operator.
2) Lets e ]—1,1[, pe[l,00], r €[1, 00], then
|29 [1ag.u- V10| .} el Ss IVElILP 1618, , - (3.2)

Proof of Lemma 3.1. The Bony’s decomposition yields

[Ag. V10 =) [Ag.Sj—1u-VIA; 0+ [Ag, Aju-VIS; 16
jeN jeN
+ Y [Ag. Aju-VIA;6
jz-1
=1, +1I; + 1,
with Zj =Aj,1 —‘,—Aj +Aj+1.
(1) First we prove (3.1). For I, by the expression (2.1) of dyadic operator A, = h;* =

224129 )% with h = F~1¢ € S(R?) and the mean value theorem, we find

Mgllr <Co Y gl VS 1ull o2/ |01 Lo
JEN,|j—ql<4

<Co Y (luliz+ G+ Dlwliz<) 14,600,
JeN,|j—ql<4

where we have used the following estimate

IVSjqullre < IVA i+ Y IV Az
keNk<j—2

SIVA_ulize + (G + Dllwllzee.

Thus
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Y 295 (g + D Igllr < CIVA_qulli Y 275G+ D)7 Aj6] e
geN jeN

+ Cllowllze Y 275G+ A0 L.
jeN

For I, we directly get

Mgl < Y [Ag(Aju-VS;a0)|,,+ Y. A VAGS;16]Lr

JeEN,|j—ql<4 JeN, j>q
<Co Y NAjulelVSj10lr +Co Y 1 AjullL=2? || AgB] L
JEN,|j—ql<4 JEN, j2q

S CollollLo27[VSq430 e + Coll@ll Lol AgOll Lr-

Noting that for s < 1,

> 291070 (g 4+ 1)V Sy 430l Lr

geN
<Y 2170 + 1)'<||A_19||u + Y 2k||Ak9||Ln>
qeN keNk<qg+2
<Crsl A0y + sznAkenm( > 216D+ 1)’)

keN qeN,g>k—-2
< Crsl AiBllLr + Crs Y21 Ak0 1 Lo 2™V 2 (ke + 1),< > zq“—”/z)
keN q=k—2

S CrallA_iOllLr + Cry Y28 (k+ 1) | Akl o
keN

hence,
Y 2% + D gl < CrsllA1BllLr @]l + Crsllollze Y 27 (g + 1) A0 | Lr.
qeN geN
We further decompose 111, as follows
My = Y [Ag Aju-VIAjO+ > V- Ag(AjuB;0) =Y Aju-VA A0
j=—1.0 j=1 jz1

= 111}1 + 1113 + 111,31. (3.3)

Since III}I =0 forall ¢ > 4, then similarly as the treating of ||I,||L», we obtain that for 0 < g < 3,

(hiig

i <Co 7 Ixhgll iV A jull i VA 61r < Coll VSsull o1 S36ILr

j=—1,0
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hence,

D2+ 0y, = Y 29+ V|||, Ses 1V Ssull o 1301 Lo
qeN 0<g<3

For IIIg, we infer that

), <Co > 270Ajul=lA;0lr < Collwlr=2? Y 277|A;0]Lr,

jzl,j>q-3 JjeN,j=q-3

thus for s > —1,

Y205+ |, < Collolize > Y 296D (g 4 1727|801

geN qeN jeN,j>q-3
< Collo] L Zz—anj@an( > 206t + l)f)
jeN q<j+3

<Crslloliie Y 27 G+ D140l
jeN

It is easy to see that

|, <Co > lAjullL=2?]AgA ;0] Lr < Collwll L[| AgbllLr,
JZL1j—ql<2

thus

> 2% g+ 1y UL |, < Collwlize > 2% (g + 1) | Ag0] L.
qeN qeN

Gathering the upper estimates yields (3.1).
(2) The proof of (3.2) is more or less standard, mainly relying on the above Bony decomposi-
tion and Lemma 2.4, and we omit the details. O

Next we consider the commutator estimates involving the operator R, := 01|D|™* =
1 for every « € 10, noting that R is the usual Riesz transform).
D|'7*R; fi y « € 10, 1] (noting that R is th 1 Riesz transf

Lemma 3.2. Assume thatu = (u1, . .. , ug) is a smooth divergence-free vector field of R¢ (d > 2)
with its vorticity w, and 0 is a smooth function. Let s € |—1, a[, p € [2,00], r € [1, 00], then

(R, u - V16| By, Sa IVullLr (101 gssi-e + 116112). (3.4
Besides, when p = oo, we also have for o € ]ﬁ, ool,
R, u- V16| B, Seo ||V'4||L°(||9||Bg;ri—a+d/rr + 1161 22)- (3.5
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Before showing this lemma, we first recall some useful properties of R, (cf. [17,25])
Lemma33.Let0<a <1, geN

(1) Let x € S(RY). Then for every (s, p) € Ja — 1, 00 x [1, 0c], the operator |D|* x (2~9D)Ry
is bounded in L with the norm

[1D1 X (291D Ra | iy S 296+,

In particular, the kernel K (x) of | D|* x (D)Ry satisfies that

c
K(x) < Vx € RY.

(14 |x])dtstle’

(2) Let C be a ring. Then there exists ¢ € S(R?) whose spectrum does not meet the origin such
that

Rof = 2‘1(d+1—<¥)¢,(2€1.) * f
for every f whose Fourier variable supported on 29C.
Now we are devoted to prove Lemma 3.2.

Proof of Lemma 3.2. Note that (3.4) is essentially the same as [25, Eq. (3.4)], thus here we omit
the details for (3.4) and only focus on (3.5). Once again using Bony’s decomposition yields

[Restt V10 = > [Re. Sj—1ut-VIA;0 + > [Re. Aju-VIS; 10+ Y [Ra. Aju-VIA;0
JjeN jeN j=—1

=I1+141IL

For 1, since the Fourier transform of S;_juA ;0 (j € N) is supported in a ring of size 2/, then
from Lemma 3.3-(2) and (2.5), we have for every g > —1,

ATl S D [y i VIA;0

li—ql<4

S D0 Ixgi VSl IV A6 L
lj—ql<4

S Y 27 V|27 | A8
lj—ql<4

S 2P IVullLe 0] gsri-araro,
where ¢ (x) = 2/ @+1=® ¢ (2J x) with ¢ € S(R?) and (c;) j>_1 with [}l = 1. Thus

Mgy, S WVullLe 101 pss1-atars
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For II, as above we have
1AL S D" [Igj Aju-VIS;-16]
lj—gq1<4,9eN
S Y 272 VA jull e VS 18] e
li—ql<4
5 ||VM”L52_qS Z 2_(k_q)(S_a+d/0)2k(s+l_a+d/a)”AkQHLOC.

—1<k<q+2

Thus by using discrete convolution inequality, we obtain for every s <« — d /o,

00,r N

I s, S WVulleo 101 gst1-ataro -
0o,r
For 111, we further write

=) div[Re. AjulAj0+ Y [0;Ra. Aju]A_16 =TI' + 111,
jz0 1<i<d

By Bernstein’s inequality and Lemma 3.3-(1), we treat the term III! as follows

A< Y [AgdivRa(Ajul;0)] e+ D [ Agdiv(AjuRA;0)]
jeN,j>q-3 jeN,j=q-3
Yo (2907 42927 =) i IO A V|| o || A 0| Lo
jeN.j>q-3
< || Vul o274 Z (2(4—1')(S+2—a)+2(f1—j)(5+1))2j(3+1—04+d/0)“Aj@”LOO.
jzq—4

A

Thus for every s > —1,
IIII < ||V nyzalc s+1l—a+d/o .
H || By, ™~ Il Lol ”B i d/

For the second term III?, from the spectral localization property, there exists x’ € S(R) such
that

P = 3" [3Rax'(D). A1ui]A_9.
1<i<d

where according to Lemma 3.3 we know that 3; Ry x’(D) is a convolution operator with kernel
h satisfying

)| <c(1+1x) 77, vxeR?

Thus from the fact AqIII2 = 0 for every ¢ > 3 and Lemma 2.4 with m = max{o, 2} (we can
choose m = oo for « € 10, 1]), we have
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lug

B, S [+ A 1u]A_i6]
Sk’ || Lo lIVAull o |A-10] m
SAIVullzo 1612
This ends the proof of estimate (3.5). O
4. Proof of Theorem 1.1
The outline of the proof is as follows: first we show some key a priori estimates, next based
on these estimates we prove the existence result, and then we treat the uniqueness issue in Sub-
section 4.3, later we establish the crucial refined blowup criterion, and by using it we prove the
obal regularity of the critical case in the last subsection.
global regularity of the critical the last subsect
4.1. A priori estimates
In this subsection, we a priori assume that the solution (u, 6) is a smooth solution to the

inviscid Boussinesq system (1.2) (with suitable spatial decay near infinity).
First we consider the energy estimate and L7P-estimate. From the L2-estimate of the equation

360 +u-Ve+|DPo=0,
we have
1611750 2 + 181172 752 < 160172
Moreover, thanks to Lemma 2.2, we also obtain that for every p € [1,00] and t € RT,
101 oo < 60l 7 4.1
and for p € [2, oo[ and general pg < p and 2 < p; < 00,

Cllfoll rinpee

Csllfoll LrarLro
(14 1)2/BpD) -~

)

o], < L0
(1+)sro »

[~ <

In particular, if 8 €10, 1[ and 6y € LPo N LP' N L with pg € [1, %[ and p; € [2, %[, the
above estimates ensure that

101 r 00 < CpllO0llLrinzoe,  forall p e[l 00], (4.2)

and

”'9||Lle’ < CllbollLrnrro, forall p €[1, 00]. “4.3)
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For the velocity equation, by taking a scalar product with u, we see that

1d
57l =/uz<r,x)e<r,x)dx <[] 2 lo@] 2
R2

Thus dividing both sides by ||u(¢)||;> and integrating in time lead to
el oo r2 < lluoll L2 + 101112
In general, we get
lullpoor2 < lluollzz + #1160l 22, (4.4)
but under the condition that 8 € 10, I[ and 6y € L0 N L? with po€ll, ﬁ[, we also get
lull o2 < lluollp2 + Cpllfoll L2nzro- (4.5)

Next we try to get the key a priori estimate of || (?)|| L o. From the maximum principle of the
vorticity equation

oyw~+u-Vw =016,

we have
t
Jo®] .~ <llwollL> +/|| 010(7) || o d7 < llollzoe + CollOll 1 g1 - (4.6)
0

The high-low frequency decomposition leads to

- 1
1002151, =27 18100 1o + 320N ANy oo < 510N e + D211 ANy -
qeN qeN

For every g € N, applying Lemma 2.3 to the frequency localized equation
8,Aq9+u-VAq9+|D|5Aq9=—[Aq,u~V]9, 4.7)

we know there exists a positive constant ¢ independent of ¢, 6 so that

d
18481 + 2801 < [[[Ag, 4+ VIO -

Gronwall inequality yields

t
|28 | oo <2 A0 lI > + / e [Ag u - VIO |
0
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Thus for every p €[1, o0],
277 A8l ) oo + 297111 g0l o 1o < Coll AgbollLe + Co[lAg - VIO 1. (48)
Hence we find

100181 + ||9||Z;JBO|;f+ﬂ/p < CollOll et ooyney zoe) + Colloll gi—s

+Coy 210 [Ag u- V10 11 e 4.9)
qgeN

and for some o € |1, oo[ chosen later,

160151, + 16177 g0 < ol poeyoap ey + Collfol s

+Cot 17 21PN [AG - VIO oo (4.10)
geN

By virtue of Lemma 3.1 and Calderén—Zygmund theorem, we infer that for p € [2, oo,

22PN agu VIO
geN

S (1VSsullLe + ||w||Loo)<||Sse||Loo + Y 2107P g + 1>||Aq9||Loo>
geN

s (lelee + ||w||Loo)<||9||Loo +) 210 g + 1)||A49||L°C)~ (4.11)
qeN

Thus we also need to control ||| oop». From LP-estimate of the transport equation, we know
that

lollzgerr < llwoller + 1101011 p < lwollr + CollOll i1 - (4.12)
High-low frequency decomposition ensures that

10025, =27 18100 0 + D 2718601 111 < CollON 1o+ D 211801 1
' geN geN

For the frequency-localized equation (4.7), mainly using the following generalized Bernstein

inequality (cf. [7])

/ IDIPALO(x) [A401P2Ag0(x)dx = 29P )| A,0117,

R2
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with ¢ > 0 independent of ¢ and 6, we can obtain an estimate analogous to (4.8) that for every
p€ll,o0],

2P 8011 + 27PN AN o 10 < CollAgBONlLr + Col[[Ag, - VIO 1y (413)

This implies that we can get the estimates similar to (4.9) and (4.10) by replacing the correspond-
ing index oo by p. Thanks to Lemma 3.1 again, we also infer that

Z 220=P ” [Ag,u-V]0 ” L
geN

S (lollee + ||w||Loo)<||9||m + Yy 2007 g + 1)||Aq9||u’>-
geN

Collecting the upper estimates, and denoting
a(t) := CollOll Ly Loonrry + CollOll Ly Loonrry + Collboll g1 p1-s- (4.14)
00, P
we get
191y, st )+ ||9||Zf(B;f+ﬂ/ﬂmB;ﬁ+ﬂ/ﬂ)

<a() + Cpllolrewener) (II9IIL; weneny + 2210 P g + 1>||Aqe||L;(mLp)),
qeN

(4.15)
and
10N L) s nB1 )+ ||9||Zf(B;;f+ﬁ/me;]ﬂ+ﬁ/p)
La(t)+ Cﬂtl_l/a lwllLge(LoenLr) (||9||L5’(L°0mLP) + qu(l—ﬂ)(q + 1)||Aq9||L;’(L°0mLP))~
qeN
From (4.8), (4.13) and Lemma 3.1, we see that

Z 2‘1(1_/3) g+ ||Aq9||Lt1 (L>®NLP)
geN

< Collboll - g1+ Co Y L2172 (g + D[[Ag, - V10| 13 o)
00, 12 t
qeN

< COHQOHB;;%B;]'S

+ Cpllollpew=nrr (”9 lpwon + 227" P @+ 1)2||Aq9||L,1(L°°ﬂLP))’
geN
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and
> 210D g+ DA g o)
geN
S Colloll gr-pgi-s + CpllwllLzew>ntr)
00, p.
q(1—=p—p/o) 2
X <||9||Ltl(LoomLp) + 22 (g+1 ||Aq9||L}(LoomLp))'
geN
Denoting by
A() = llollgerr + llollLgere,
B 4.16
O = 10N, a1, sy ) + 100 zp g1-pesion p1-prave,,  for p €1, 00, (4.16)
we have

Ot) <a(t)+ CpA(r) <a(t) + CpA(r) <a(t) + Y 2102 g+ 170 (MLP))),
geN

4.17)

and
Or) <a@t)+Cpt' "7 Ar)

x (a(t) + CpA(r) <a(t) + ) 200D g+ 1A (Lom,,))). (4.18)
geN

We first consider the case 8 € ]1/2, 1]. Then we can choose 0 =28 € ]1, 2], and from (4.1),
we find

O(1) <a(t) + CpAr) (a(t) + CpA(r) <a(t) 1011 poonrry D2 2P (g + 1)2>>
geN

<a(t) + CpA@) (at) + Cpa(t)A®)),

and

1) <a(t) + Cpt' V7 A®) (a(t) + CpA(t) (a(t) 1001 orry O 217 P g + 1)2)>
geN

<a(t)+ Cpt' VP A@t) (a(t) + Cpa(t) A1)).

Combining the upper two estimates with (4.6), (4.12), and by setting

a(t) == ||lwollLnrr + Coa(t),
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we have
A() 4+ O(1) <a(r) + Cpra®)A@) (1 + CppA0)), (4.19)
and
A +O@) <at)+1'7VCPCpra() AW (1 + CppA®D)). (4.20)
For every T > 0, according to (4.19), as long as a(7T) small enough such that
Cp1a(T) (1 + Cp22a(T)) < 1/2,
we have
A(T) + ©(T) < 2a(T).
Generally, from (4.1), we have
a(T) < Co(1+ D160l L>nrr + Colleollgigme;]ﬁ < Co(1+ T)llé’ollgiglﬂm;ﬂ, (4.21)
and
a(T) < llwollzenrr + Coa(T) < llwollLenrr + Co, (4.22)

where in the above inequality we have used the assumption (1 4 T)||6p || Blfrpl—F < 1 (without
00,1 p.1

loss of generality), and the notation Ag := ||wg||LnLr, thus under the condition that

1
< b
2Co(T +1)Cp,1(1 +2Cp2(Ap + Cp))

7, _ _
I 0”31 V’me;,_]ﬂ

we have
A(T)+O(T) <2(Ay + Cyp). 4.23)

Moreover, in the supercritical regime 8 € 10, 1[ and for 6y € LP° N LP1 N B,l;l’s N B;; f with
po€ll, %[ and p; € [2, %[, according to (4.2) and (4.3), we deduce that

a(T) < CpllfollLrona s + Colfoll g1-s 15 < CollON Loy 115515
0, P p, oo,
and

a(T) < lwollL=nrr + Coa(T) < Ag+ Cg,

thus under the condition
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1
6 min 1t
160 Lot Prslct < {2cﬂcﬂ,1(1+2cﬁ,z(A0+cﬁ)) }
we have
A(T) + O(T) < 2(Ag + Cp). (4.24)

On the other hand, we can show the short-time estimate for the large data. Based on (4.20), and
noting that for r < 1,

a(t) <Co®y and d(r) < Ap+ Co®y with Oy := ||90||Bé;f03373ﬂ,
then for ¢ small enough (¢ < 1 with no loss of generality) such that
t'=VEP g 1 CoOy (14 Cp2(240 +2CoO0)) < 1/2,
we have
At)+O(1) <2A0 + 2Co0y. (4.25)
Next we consider the general case 8 € 0, 1]. Then there exists a unique integer k € Z1 so

that 8 € ]ﬁ, %], and we can choose o in (4.10) to be 0 = m € 11, 2]. Similarly as
obtaining (4.17) and (4.18), by iteration, we deduce that

(1) <a(t) + Cprat)At) + -+ Cprat)At)*

+ Cﬂ’k+]A(t)k+l (a(t) + qu(l—(k-f‘l),ﬁ) (q + 1)k+1 ||Aq9||LllLOO>
qeN

<a(t)+ Cpra®AW) + -+ Cpr1 A a(),

and
O@) <alt)+1 = {cﬂ 1a(DA@) + -+ Cpra() A()*
+Cpant A (a(r>+22q g+ D A0 Loo)}
qeN
k+Dp—1

Sa@)+t # (Cpra®A@) +-+ Cpr1 ADHa@)).
Hence,

A1)+ O(1) <at) + Coa)AW) (Cp1 + -+ + Cpar1 ADY), (4.26)
and

AN +O0) <AD+Cot T aOAD(Cpi+--+ Coart ADL).  (@2D)
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Therefore, similarly as obtaining (4.23), (4.24) and (4.25), from the continuity method, the fol-
lowing a priori estimates hold:

(1) Forevery T > 0, provided that

1 1
& - _g < min ) )
180ll o510 { 2Co(T + 1)(Cp1 + -+ Cpr1(2Ag+2C)) 1+T }
(4.28)
we have
A(T) + O(T) < 2(Ap + Co).
Besides, for 8 € 10, 1[ and 6y € LPONLP! ﬂB1 ﬁﬁBl B | with po € [1, 1Jrﬂ[andp] n[2, ﬂ[,
under the condition that
HGOHL"O”L”I“B;?%B;']S
1
< min{ o 1}, (4.29)
2CCH(Cp1 + -+ Cpry1(2A0 +2Cp)")
we have
A(T) +O(T) <2(Ao + Cp). (4.30)
(2) For ¢ < 1 small enough such that
1 *F+T)—T1
t<T0=< T > , 4.31)
2CoO0(Cp,1 + -+ Cpi+1(2A0 4+ 2CoOp)*)

we have

A() +0O() <2A0 +2Co6.

Here for both cases (1)—(2), k is the positive integer so that 8 € ]ﬁ, %], A(t) and ©(¢) are
introduced in (4.16), Ag := [luoll ;2 + |lwoll Lo, Op 1= ||90||B|_me1_lﬁ.
00, P,

Next, we derive the a priori upper bound on the quantity |6 ”Zloo 2+ 1017 gs which will be
useful in the continuity-in-time issue. We start with (4.13) for p =2, that is, for every g € N,

t
201 Ag01 1112 + 118401 o2 < Coll Agboll 2 + CO/H[Aq, u-V10()| . dr.
0

By virtue of (3.1), we have
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D 29180 12 < Co Y 27PN AGBONl 2+ Co Y 2R (A u- V10| 1o
qeN qeN geN

< Collfoll 2 + CﬂA(f)(”Q”L,ILz + 327 + 1)|IA49||L}L2)
qeN

< Collfoll L2 + Cplifoll 21 A(D).

Using (3.1) again, we see that

S ltagu- V10,0 < COA(f)<||9||L[1L2 +Y g+ 1>||Aq9||L;L2)

geN geN

< CoA(1) <t||90||L2 +Cp quﬁ/znAqenL;Lz>
qeN

<Cp(l+ t)||90||LzA(t)(1 + A(t)).
Hence from the above estimates and the embedding £! < €2, we get

10 zeor2 + 10071 e < IA-101 172 + 1A-10] Lo 2

12
2
" <Z(||Aq9||L,°°L2 +27)1 8401 1112) )
qeN

<Co(l+D160ll2 + D [[Agsu- VIO 1,0
qeN

2
< Cp+060ll2(1+AM)"
4.2. Existence

We construct the approximate solutions (u#", "), < as follows

ou" +u" - Vu" + VP =0"e,,
80" +u"-Vo" +|D|Po" =0, (4.32)
divu" =0, u”‘tzo = S,ugp, 9"|l:0 = S,00,

where S, is the low-frequency cut-off operator defined in (2.1). Since for every n € N, S,ug €
H*(R?), S,00 € H*(R?) for all s > 0, then from the standard theory (cf. [1]) there exists a lo-
cal smooth solution (u”, 6™) (satisfying the spatial decay) to the approximate system. Thanks
to Theorem 1.1 of [11], we know the following blowup criterion: if the maximal existence

. . T* . .
time 7, < oo, then we necessarily need that fo " IVO"™ (t)| L~ dt = oo; in other words, if for

some 7T such that fOT [IVO™ ()] Lo dt < o0, then the time T can be proceeded forward. Thus from

the following estimates that ||Sn90||L20B117]ﬂmBl—ﬁ < ||90||L2ﬂ3;]5mB;;f’ 1Spuollz2 < lluolly2,

00,1

1SnwollLrnre < |lwollLrnre for some p € [2, oo[ and every n € N, we can get a uniform lo-
cal time T defined by (4.31) so that for every t < Ty,
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u" € L([0,11; L*(R?)),  o" e L™([0,1]; LP N L™),
0" € ZOO([O, t: L*N B;;lﬂ N B;;’f) uniformly in n.  (4.33)
NL*([0,¢]; HP2) N L'([0,1]; B, ;).

Note that by the blowup criterion, we at least have T, > Ty for every n € N. In a similar way as
the treating in [25], we can further obtain that for every ¢ < Ty,

du" e L*([0,11; L*(R?)),  9,0" € L*([0,¢]; HF/>~'(R?)), uniformlyinn. (4.34)

Hence from the uniform estimates (4.33)—(4.34) and the Aubin-Lions compactness theorem,
we can extract a suitable subsequence of the solution sequence (4", "), cn so that it converges

strongly in L*°([0, Ty[; Hl‘zézq) to some function (u, 8), which moreover satisfies

u e COL([0, Tol: L*(R?)), w e L™([0, To[; L? N L™),
{ (0. 7o1: (%) (10.7 ) .

6 e 110, Tol; L2 N B 0 BLP) n 1210, Tol: HP2) 0 L1 (10 To: BL, )-

Then it is clear to pass to the limitin (4.32), and (u, 6) solves the original Boussinesq system (1.2)
in the sense of distribution. Meanwhile, we can show that 8 € C ([0, Tp[; L’NB ;]’3 N B; ’f ).
Indeed, this is a standard procedure, since we have 6 € ZOO([O, To[; L>*NB 11;1‘3 N B;‘f ) (cf. [7]).

Moreover, if additionally 6y € L"(R?) with r € [1, 2[, we also have 6§ € L ([0, Tp]; L” (R?)).!

Besides, we can prove the following global result. For any 7 > 0, if (4.28) or (4.29) holds,
then (4.33)—(4.34) are satisfied for all [0, T] and 7,F > T for every n € N. By passing to the
limit, we know that the limiting function (u, 6) is a solution to (1.2) for all [0, T'] and satisfies
the desired estimates.

4.3. Uniqueness

Now we sketch the proof of uniqueness part (see also [13,30]). Let w®, 0 pM)y and
u®,0@, P@)y satisfying (1.4)—(1.5) be two Yudovich type solutions to the Boussinesq sys-
tem (1.2) with the same initial data (ug, 6p). Denote Su = u — u@, 56 =6 — 9@ and
§P =PWM — P@ then the difference system writes

38u +u . Vou + VP =580ey — su - Vu'?,
3,80 +uV . v50 + |D|P56 = —su - vO@,
divuD = divéu =0, (8u, 80)|;—0 = 0.

From the usual energy method we have that for every p € [p, oo,
L d 2 2 @
58O < [80@] 2 [sud ]| 2 + [8u® 57650 [V O] 5

<[86®] 28] 2 + Coplsu |2~ su@ [ |o® O oo
(4.36)

I But it is not clear to obtain 6 € C([0, Tol; L’(]RQ)) (r e[1,2).
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and

1d
5 71302 < sul 2 [ VoD 0] 1 |50 |

where in the last line of (4.36) we have used interpolation and the Calder6n—Zygmund theorem
that

IVu®| .5
- —* _sup ”“’(2) ||L17 S ”w(z) HLmLOO‘
pelp.ool p pelp,ocl

Let € > 0 be a small number, and set X, (t) = \/62 + ||6u ||i2 + ||89(t)||i2, then we get

d - ~ -
() < Copllau) | L |0P O e T 4 (14 [VOD 0] ) Xe ().

By a direct computation, we infer that

(TS

t
2y <o I (ew +G [oul ||w<2><f>||mwdf>
0

Passing € to 0 yields

2) ~
Jsu|32 + 136052 < hsulZ o (Cot [0 ] o)

Since 6@ € L'([0,T1; BL, ), u € L>®([0,T]; L>®) and »® € L*°([0, T]; LP N L™), by
choosing ¢ > 0 small enough, say 7y, we have COIOHCUIHL?S‘(LPHLOO) < % Then letting p tend

to oo, we deduce (§u, §6) =0 on [0, 19]. Since (Su, §8) € C([0,T1; LZ(RZ)), from a connectiv-
ity argument we can show the uniqueness on [0, T'].

4.4. Refined blowup criterion
Let B €10, 1], (4, w, 6) be the Yudovich type solution on [0, T*[ to the Boussinesq system

(1.2) constructed in Subsection 4.2, with 7* the maximal existence time. If 7* < oo, our target
is to prove the following blowup criterion

T*
/HO(I‘)”Blfz,S dr = oo. (4.37)
0

Note that from the existence part, we have already known a natural blowup criterion that

loollzeoqo.r=eoonery + 101 oo g0 7+, 51 1) = O°-

00, p.1

Thus if we assume that for any 7' < T*,
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T
B(T) ;=/||e(r)||317ﬁ dr < oo, (4.38)
J ,

it suffices to show the upper bound of |||l Lo (zonrr) + 1|6 ”L?(B;;’fmglﬂjﬁ)'

Based on (4.38), we first prove that we can derive the upper bound of ”a)”L‘;“LF + ”9”Z} BL,
P,

for every p € [p, oo[ (p € [2, o[ is the fixed number in Theorem 1.1). Here we adopt an idea of
[17,25] to apply the structure of the following coupling system of (w, 6)

dw—+u-Vo =00,
860 +u-Ve+|D|Po=0.

Denote by Rg := 81/|D|/S = |D|1_ﬂR1 (B €10, 1]) with R the usual Riesz transform, then
applying the operator R4 to the equation of 6 yields

B,Rﬂe—i—u-VR,g9+|D|’8R,39=—[Rﬁ,uoV]G. (4.39)
Noting that |D|ﬂ7€,39 = 016 and by setting
I' =w+Rgb,
we get
I +u-VI'=—[Rg,u-VIb. (4.40)

From the L7-estimate of the transport equation and the continuous embedding Bgz < LP
(p € [2, oo[), we have that for every ¢ € [0, T],

t
Iro),; < ||F0||L5+/||[Rﬂ,u~V]9(f)”LﬁdT
0

t
< Collwoll 7 + Collfoll p1-p + Co/” [Rpu-VIO(D)| o_dr,
P, P
0

where we have used the following estimate that [|Rg0ll,.5 < |1DI' P60l 5o L < 6ol 515 By
. p.2

virtue of Lemma 3.2 and the Calderén—Zygmund theorem, we see that

IRp. - 9100 gy, 555 190 |5 (060 |1 + 100 2)

S5 0@ s (101 5ip + 6ol 2)-

Thus
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t
Ir@|,, <CollwollLs + C0||90||B|~—2ﬁ + Cﬁ,ﬁ/||w(f)||L;(||9(f)HBl—§ + 1160l 12) dz.
7. 0,
0

Similarly, from the L?-estimate of Eq. (4.39), we get

t
[Rp0 )] < IRptoler + [ Ry VW]
0

t
< C0||90||31:25 + Cp,ﬂ/||w(f)||L;(||9(f)||Bl—§ + 1160l 2) dr.
P 00,
0

Hence, gathering the upper two estimates yields

lo@ | <[ Tr®], 7+ |Re0®| 5 < Collwnll L5 + Coll6oll 51—
p.
t
+Cp [0 5 (190 g + 160012) .
0

Gronwall inequality ensures that for every ¢t € [0, T, p € [p, oo[ and p € [2, oo,
P

with B(t) given by (4.38). Now we intend to show the higher regularity estimate of 6. For the
frequency localized equation

HAg0+u-VAH+|DIPAL=~[Ag,u-VI, geN,
from (4.13), we infer that

t
218,00,1,5 S 18 00lr + [ 1A V16| 5
0

Thanks to the Minkowski inequality and (3.2), we obtain

1/2

12 !
2 2 2qg(1— 2
(Zz qquenL}L;) < Collfoll s +co/<22 4(1=F) H[Aq,wku)UL;) dr

qEN 0 qEN

t
< Colloll 15 + Crig / @760 1-g de
7, 0,
0

< Collfoll g1-p + Chpllell e rr BO).
P,
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Hence, from (4.41) we know that for p € [2, co[ and every p € [p, oo,
||9||z113112 S CollA-10ll 15 + C0||90||31;2ﬁ + Cppllolpor5B()
& P

< Cotlloll2 + Cp (160 -y + ol 7)o CoaBO. - (4.42)
P

In particular, by setting p, := max{ %, p} and the Besov embedding, we have
~ 1— < ~
IIGIIL}B;;/;»Q S |I9I|Lt1311,2~2 < Cot 160l 2

+ Cp.p(ll60ll it llwoll.p2 ) eCr #1001 20+Cp s BW), (4.43)
P2

Next we are devoted to derive the bound of ||w|| LPL® and ||0]| 1-f, From the max-

1-8
LEBLINB,

imum principle of Eqs. (4.39)—(4.40), we see that

t
7@ oo + [ REOD oo < IToll + IR g6l +2/H [Rp, - VIO(@)] 0 de
0

t
< lwollLee +C0||90||L2m31—113 +Cof||[Rﬁ,u~V]9(T)||Bgoldf,
, ) .

where in the second line we have used the estimate |[Rg8| > < ||72590||Bgol < ||90||L20317,13
B oo,

for B € ]0, 1]. According to Lemma 3.2 and the embedding, we treat the commutator term as
follows (noting that p, = max{%, 12

IR0 5100 g, S 900 s (1060 |y + 000 2)
S lo@ | Lo (1@ yr-s + 16011 12)-

Hence from (4.41), (4.43) and the Besov embedding B, 5'" < B._|'", we deduce that

[TO]  + RO

llwollzoe + Collfoll o pi-e + Cppll@llzgerr (1011 g1 + 60l L2)
t Zoo,1

00,1

lo®] . <
<

2,Cpptl60ll 2+Cp g BH).

N

Cpp(1+ laollLeare + HGOHLZOB'_ZﬁﬂBl_f)
P, o0,

Taking advantage of (4.15) and the factthat 1 —4/p, > 1—-28/3>1— B lead to

1011 00 g1 + 1161l

1—
L¥B) LB, f

< CoIIGOIIB;;me:lﬁ

+ Cpllollizwener) <”9”L,‘ wenen + D21 P @+ 1) IIAq9||L}<LOOmLP>)
geN
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< CollBol| p1- -+ Cppllw 0 - -
< Goll 0”3;0,%3,‘)']‘"" p.plloliewsnrnll ”Lt'(Bio,T/pz”B;,lﬂ/z)

3 Cpptll6 CppB(t
<Cpp(1+ lloollLraze + ||90||L2031173ﬂm3;;;]9) Crptllfoll 2+CppBI)

Therefore, if B(T) < oo, we get ol LgeLoonrry + 101l 1) < 00, and this finishes
L1

LPBLY nB,
the proof of the blowup criterion (4.37).

4.5. Global regularity in the critical case

For the critical case § = 1, from [17, Prop. 5.2], we a priori have the uniform bound that
||9||Lt1 B, < Co(1 + 1%), Vt € R, which is obtained only under the condition that wg € L7,

6y € LP N L™ for p € ]2, oo, thus as a consequence of the refined blowup criterion (4.37), we
immediately obtain the global result.
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