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1. Introduction

In this article we focus on the two-dimensional inviscid Bénard system with fractional diffusivity⎧⎪⎪⎨⎪⎪⎩
∂t u + u · ∇u + ∇ P = θe2,

∂tθ + u · ∇θ + κ |D|βθ = γ u2,

div u = 0,

u|t=0 = u0, θ |t=0 = θ0,

(1.1)
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where β ∈]0,2], e2 � (0,1) is the canonical vector. The unknowns are the velocity field u = (u1, u2),
the temperature θ and the pressure P . The coefficient κ > 0 is the thermal diffusivity, γ � 0 is a
non-dimensional coefficient and the fractional dissipation operator |D|β is defined via the Fourier
transform

|̂D|β f (ξ) = |ξ |β f̂ (ξ).

The fractional dissipation operator has been used to model many physical phenomena (cf. [14]) in
hydrodynamics and molecular biology such as anomalous diffusion in semiconductor growth [24]. We
call the system (1.1) the inviscid Bénard system since in the case of β = 2, it describes the Rayleigh–
Bénard convective motion in a heated inviscid fluid (see e.g. [1,7,21,25]). In this case, the forcing term
θe2 in the velocity equation models the acting of the buoyancy force on the fluid motion.

When β = 2 and γ � 0, Danchin and Paicu in [12] proved that the inviscid Bénard system has
a global unique solution for Yudovich’s type data, that is, the initial data (u0, θ0) has finite energy
and bounded vorticity and the initial temperature θ0 is also under a natural additional assumption
(precisely, θ0 ∈ L2 ∩ B−1

∞,1). The authors also showed the global result in the case of infinite energy
velocity field which can admit the vortex-patches-like structures.

When γ = 0, the system (1.1) is also often referred to as the inviscid Boussinesq system, which
is related with many models arising from atmospheric and oceanographic dynamics (cf. [23]). Due
to its physical significance and mathematical relevance, there have been intense works studying on
the viscous or inviscid Boussinesq system (e.g. [4,5,11–13,15–17,19,22] and the references therein),
and here we only recall some noticeable works about the 2D inviscid Boussinesq system. For β = 2,
the global well-posedness of the smooth solution for the system (1.1) was settled independently by
Chae [5] and Hou and Li [19] almost at the same time. Moreover, Hmidi et al. [15] proved the global
result for this system with rough data, precisely, they required that u0 ∈ B1+2/p

p,1 with p ∈]2,∞] and

θ0 belongs to a suitable Lebesgue space. This result indeed extended the work of Vishik [27] on
the 2D incompressible Euler equations. Another further improvement to the less regular data was
achieved by [12] mentioned above, as a natural extension of the important work of Yudovich [28].
If the full Laplacian is replaced by the fractional dissipation, for β ∈]1,2[, this corresponds to the
subcritical case, and Hmidi et al. [18] followed [15] and showed the global well-posedness of the
system (1.1) with rough data, more precisely, u0 ∈ B1+2/p

p,1 with p ∈]1,∞[ and θ0 ∈ B1−β+2/p
p,1 ∩ Lr

with r ∈] 2
β−1 ,∞[. For the subtle critical case β = 1, Hmidi et al. in [16] proved the global result for

the system (1.1) by deeply developing the structures of the coupling system. On the other hand, if the
fractional dissipation |D|βθ is replaced by the partial horizontal dissipation ∂2

1 θ or vertical dissipation
∂2

2 θ in the Boussinesq system, we refer the readers to the interesting works [13] and [4].
In this article, we are devoted to continue the works [12,28] to show the global unique solution

for the inviscid Bénard system (1.1) with fractional diffusivity and Yudovich’s type data. For brevity,
we set κ = γ = 1 (noting that γ = 0 is a simpler case). Our main result reads as follows.

Theorem 1.1. Let κ = γ = 1, β ∈]1,2[, θ0 ∈ L2 ∩ B1−β

∞,1 and u0 ∈ L2(R2) be a divergence-free vector field. In

addition assume that the initial vorticity ω0 � ∂1u2,0 − ∂2u1,0 satisfies ω0 ∈ L p ∩ L∞ with 2 � p < ∞. Then
the inviscid Bénard system (1.1) generates a unique global solution (u, θ) such that

u ∈ C0,1
loc

(
R+; L2(R2)), ω ∈ L∞

loc

(
R+; L∞ ∩ Lp)

and (1.2)

θ ∈ C
(
R+; L2 ∩ B1−β

∞,1

) ∩ L2
loc

(
R+; Hβ/2) ∩ L1

loc

(
R+; B1∞,1

)
. (1.3)

Compared with [12], our result is more involved in the proof. Indeed, it seems impossible to
directly apply the method of [12] to the case β ∈]1,2[: one point is that from the energy estimate
we get θ ∈ L2

T Ḣβ/2, which only implies that ∂1θ ∈ L2
T Ḣ−(1−β/2); the second point lies on that when

trying to obtain ω ∈ L∞
T L∞ and θ ∈ L1

T B1∞,1, we cannot get a suitable Gronwall-type inequality about
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‖ω(t)‖L∞ or ‖θ‖L1
t B1∞,1

(from (2.6) and a simple computation). Rather, we shall more deeply study the

system (1.1) to show the global result; precisely, motivated by [16], we shall consider the coupling
system of vorticity ω and temperature θ{

∂tω + u · ∇ω = ∂1θ,

∂tθ + u · ∇θ + |D|βθ = u2,

and by introducing Γ = ω + Rβθ with Rβ = ∂1|D|−β , we see that Γ solves the following more
treatable equation

∂tΓ + u · ∇Γ = Rβu2 − [Rβ, u · ∇]θ,

where [A, B] � AB − B A is the commutator operator, then the desired estimate of ω can be obtained
from the information of Γ and Rβθ . In the process, the commutator estimates involving Rβ will be
encountered and we shall settle them at Proposition 4.2 below; another key point is that we need to
derive the L∞-bound of θ(t) only from the L2-information of (u, θ) (which is not necessary in [12]),
and we shall exploit the fundamental DeGiorgi–Nash estimate for the transport-diffusion equation
with forcing term (cf. Proposition 3.1 below) to reach the target.

We also want to stress one point that if one a priori knows that the velocity field is not Lips-
chitzian and only satisfies ω ∈ L∞

loc(R
+; L∞), it is not clear to propagate the initial regularity for the

transport(-diffusion) equation equipped with this velocity field. But if the regularity index is negative,
the initial regularity can be almost preserved (with a limited loss of regularity) for the transport-
diffusion equation and the smoothing effect can also be obtained. This is shown in Proposition 3.2
below and it plays an important role in the proof.

Remark 1.2. The additional assumption that θ0 ∈ B1−β

∞,1 is quite natural due to that we always expect
that vorticity ω is bounded for all positive time. In fact, noticing that ∂tω + u · ∇ω = ∂1θ , there is
no gain of smoothness from this transport equation, thus we have to require that ∂1θ ∈ L1

loc(R
+; L∞).

Furthermore, from the equation ∂tθ + |D|βθ = −u · ∇θ + u2, we at least call for that

e−t|D|β ∇θ0 ∈ L1
loc

(
R+; L∞)

,

where the semigroup operator e−t|D|β is defined by F(e−t|D|β f )(ξ) = e−t|ξ |β f̂ (ξ). For T > 0 suitably
large, by the following characterization of inhomogeneous Besov space in terms of semigroup e−t|D|β

(with the proof in Appendix A) that

cT ,β‖ f ‖
B−β

∞,1
�

∥∥e−t|D|β f
∥∥

L1
T L∞ � CT ,β‖ f ‖

B−β
∞,1

, (1.4)

where cT ,β , CT ,β are positive constants depending only on T , β , we infer that ∇θ0 ∈ B−β

∞,1 and thus

θ0 ∈ B1−β

∞,1 .

Remark 1.3. When β = 1 and κ = γ = 1, the system (1.1) corresponds to the 2D inviscid Bénard
system with critical diffusivity, and it is not clear how to show the global regularity in this case. The
obstacle we have to overcome first is the lack of the L∞-information of θ ; since Proposition 3.1 do
not concern the endpoint case that {β = 1, p = ∞,q = n = 2}. However, if γ = 0, we do not need to
face that problem, and as we know, the global regularity issue for the corresponding critical system
has been solved by [16], which calls for u0 ∈ B1∞,1 ∩ Ẇ 1,p and θ0 ∈ L p ∩ B0

∞,1 with p ∈]2,∞[. Yet for
the Yudovich’s type data like in Theorem 1.1, the issue of global regularity is still not clear; and it has
some difficulty in deriving the a priori estimate of ‖∇θ‖L1

t L∞ (which plays a role in the uniqueness
part).
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Remark 1.4. By following the scheme of [6,12], Theorem 1.1 can be generalized to the initial velocities
which are L2 perturbations of infinite energy smooth stationary solutions for the 2D incompressible
Euler equations, and here we omit the details. Note that in this way the data can admit the vortex-
patches-like structures.

The paper is organized as follows. Section 2 is devoted to present some preparatory results on
Besov spaces, and give some useful preliminary lemmas. In Section 3, we show some crucial a priori
estimates about the linear transport-diffusion equation. Section 4 concerns the operator Rβ , and we
treat some commutator estimates involving Rβ . We prove our main result in Section 5. At last, we
sketch the proof of (1.4) in Appendix A.

2. Preliminaries

In the preparatory section, we introduce some common notations and some basic points about
Besov spaces, and compile some auxiliary lemmas.

Throughout this paper the following notations will be used.

� The notion X � Y means that there exists a positive harmless constant C such that X � C Y .
X ≈ Y means that both X � Y and Y � X are satisfied.

� D(Rn) denotes the space of test functions, S(Rn) denotes the Schwartz class, and S ′(Rn) the
space of tempered distributions.

� We use F f or f̂ to denote the Fourier transform of a tempered distribution f .

In order to define Besov space we need the following dyadic partition of unity (see e.g. [6]). Choose
two nonnegative radial functions χ , ϕ ∈ D(Rn) which are supported respectively in the ball {ξ ∈ Rn:
|ξ | � 4

3 } and the shell {ξ ∈ Rn: 1 � |ξ | � 8
3 } such that

χ(ξ) +
∑
j�0

ϕ
(
2− jξ

) = 1, ∀ξ ∈Rn.

For all f ∈ S ′(Rn), we define the nonhomogeneous Littlewood–Paley operators

�−1 f � χ(D) f , � j f � ϕ
(
2− j D

)
f , S j f �

∑
−1�k� j−1

�k f , ∀ j ∈N.

Now we introduce the definition of Besov spaces. Let (p, r) ∈ [1,∞]2, s ∈ R, the nonhomogeneous
Besov space

Bs
p,r �

{
f ∈ S ′(Rn); ‖ f ‖Bs

p,r
�

∥∥{
2 js‖� j f ‖L p

}
j�−1

∥∥

r < ∞}

.

We point out that for all s ∈R, Bs
2,2 = Hs .

Next we introduce two kinds of space–time Besov spaces. The first one is the classical space–time
Besov space Lρ([0, T ], Bs

p,r), abbreviated by Lρ
T Bs

p,r , which is the set of tempered distribution f such
that

‖ f ‖Lρ
T Bs

p,r
�

∥∥∥∥{
2 js‖� j f ‖L p

}
j�−1

∥∥

r

∥∥
Lρ([0,T ]) < ∞.

The second one is the Chemin–Lerner’s mixed space–time Besov space L̃ρ([0, T ], Bs
p,r), abbreviated by

L̃ρ
T Bs

p,r , which is the set of tempered distribution f satisfying

‖ f ‖̃Lρ Bs �
∥∥{

2 js‖� j f ‖Lρ L p

}
j�−1

∥∥

r < ∞.
T p,r T
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Due to Minkowiski’s inequality, we immediately obtain

Lρ
T Bs

p,r ↪→ L̃ρ
T Bs

p,r, if r � ρ, and L̃ρ
T Bs

p,r ↪→ Lρ
T Bs

p,r, if ρ � r.

Bernstein’s inequality is fundamental in the analysis involving Besov spaces (see e.g. [2]).

Lemma 2.1. Let f ∈ La, 1 � a � b � ∞. Then for every (k,q) ∈ N2 there exists a constant C > 0 such that

sup
|α|=k

∥∥∂α Sq f
∥∥

Lb � C2q(k+n( 1
a − 1

b ))‖Sq f ‖La ,

C−12qk‖�q f ‖La � sup
|α|=k

∥∥∂α�q f
∥∥

La � C2qk‖�q f ‖La .

The following classical L p-estimate and logarithmic estimate for the transport(-diffusion) equation
is shown in [10] and [15,27] respectively.

Proposition 2.2. Let u be a smooth divergence-free vector field in Rn and θ be a smooth solution of the
transport(-diffusion) equation

∂tθ + u · ∇θ + κ |D|βθ = F , div u = 0, θ |t=0 = θ0, β ∈]0,2], (2.1)

with κ � 0. Then,

(1) for every p ∈ [1,∞] and t ∈R+ , we have

∥∥θ(t)
∥∥

L p � ‖θ0‖L p +
t∫

0

∥∥F (τ )
∥∥

L p dτ ; (2.2)

(2) for every (p, r) ∈ [1,∞]2 and t ∈R+ , we have

‖θ ‖̃L∞
t B0

p,r
� C

(
1 +

t∫
0

∥∥∇u(τ )
∥∥

L∞ dτ

)(∥∥θ0
∥∥

B0
p,r

+ ‖F ‖̃L1
t B0

p,r

)
. (2.3)

We also use the following maximal regularity estimate of the linear dissipative equation.

Lemma 2.3. Let θ be the smooth solution of the linear dissipative equation

∂tθ + |D|βθ = F , θ |t=0 = θ0, β ∈]0,2].

Then for every s ∈R, 1 � σ1 � σ � ∞ and (p, r) ∈ [1,∞]2 , we have

‖θ ‖̃
Lσ

t Bs+β/ρ
p,r

� C(1 + t)1/σ
(∥∥θ0

∥∥
Bs

p,r
+ (

1 + t1−1/σ1
)‖F ‖̃

L
σ1
t B

s−β+β/σ1
p,r

)
. (2.4)
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Note that when β = 2, estimate (2.4) has occurred in many references, e.g. [12].

Proof. Duhamel’s formula leads to

θ(t, x) = e−t|D|β θ0(x) +
t∫

0

e−(t−τ )|D|β F (τ , x)dτ .

For every j ∈N, by virtue of the following estimate (cf. [2, Lemma 2.4] and its generalization) that

∥∥� je
−t|D|β f

∥∥
L p � Ce−ct2 jβ ‖� j f ‖L p , (2.5)

with C , c absolute constants independent of j, and from Young’s inequality, we find that

‖� jθ‖Lσ
t L p � C2− jβ/σ

(∥∥� jθ
0
∥∥

L p + 2− j(β−β/σ1)‖� j F‖L
σ1
t L p

)
.

For j = −1, due to that the semigroup operator e−κt|D|β is bounded on L p , we deduce that

‖�−1θ‖Lσ
t L p � t1/σ ‖�−1θ‖L∞

t L p � Ct1/σ
(∥∥�−1θ

0
∥∥

L p + t1−1/σ1‖�−1 F‖L
σ1
t L p

)
.

Collecting the upper two estimates, multiplying both sides by 2 js and taking 
r norm over j, we have

‖θ ‖̃
Lσ

t Bs+β/σ
p,r

� C(1 + t)1/σ
(∥∥θ0

∥∥
Bs

p,r
+ (1 + t)1−1/σ1‖F ‖̃L

σ1
t Bs

p,r

)
. �

The product estimate as follows is useful in the proof.

Lemma 2.4. Let u be a smooth divergence-free vector field of Rn and f be a smooth function. Then we have
that for every s ∈]0,1[ and (p, r) ∈ [1,∞]2 ,

‖u · ∇ f ‖B−s
p,r

� C‖u‖L∞‖ f ‖B1−s
p,r

. (2.6)

Proof. Thanks to Bony’s decomposition, we get

u · ∇ f =
∑
k∈N

Sk−1u · ∇�k f +
∑
k∈N

�ku · ∇ Sk−1 f +
∑

k�−1

�̃ku · ∇�k f

� A1 + A2 + A3,

with �̃k � �k−1 + �k + �k+1. It is easy to see that

‖A1‖B−s
p,r

�
∥∥{

2−ks‖Sk−1u · ∇�k f ‖L p
}

k�−1

∥∥

r

k
� ‖u‖L∞‖ f ‖B1−s

p,r
.

For A2 and A3, by a direct computation we find that for every s ∈]0,1[,
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2− js‖� j A2‖L p �
∑

|k− j|�4

2− js
∥∥� j(�ku · ∇ Sk−1 f )

∥∥
L p

� ‖u‖L∞
∑

|k− j|�4

∑
k′�k−2

2(k′−k)s2k′(1−s)‖�k′ f ‖L p

� c j‖u‖L∞‖ f ‖B1−s
p,r

,

and

2− js‖� j A3‖L p � 2− js
∑

k� j−3

∥∥� j∇ · (�̃ku�k f )
∥∥

L p

� ‖u‖L∞
∑

k� j−3

2( j−k)(1−s)2k(1−s)‖�k f ‖L p

� c j‖u‖L∞‖ f ‖B1−s
p,r

,

where (c j) j�−1 satisfies that ‖(c j)‖
r = 1, thus

‖A2‖B−s
p,r

+ ‖A3‖B−s
p,r

� ‖u‖L∞‖ f ‖B1−s
p,r

.

Gathering the upper estimates leads to (2.6). �
The lemma as follows is useful in dealing with the commutator term (see e.g. [16]).

Lemma 2.5. Let (p,m) ∈ [1,∞]2 , p � m̄ with m̄ = m
m−1 . Then,

∥∥h � ( f g) − f (h � g)
∥∥

L p � ‖xh‖Lm̄‖∇ f ‖L p ‖g‖Lm . (2.7)

Finally, we recall the following simple lemma concerning the iterative sequence.

Lemma 2.6. Let C > 0, b > 1, ε > 0 and the nonnegative sequence {Bk}k∈N satisfy the following recurrence
relation

Bk+1 � Cbk B1+ε
k , ∀k ∈N.

Then if B0 satisfies that

B0 � C−1/εb−1/ε2
, (2.8)

we have limk→∞ Bk = 0.

Proof. By induction, we can show that Bk � b−k/εC−1/εb−1/ε2
for every k ∈N. �
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3. On the transport-diffusion equation with fractional dissipation

In this section we consider some crucial a priori estimates of the transport-diffusion equation with
fractional dissipation {

∂tθ + u · ∇θ + |D|βθ = f , β ∈]0,2[,
div u = 0, θ(0, x) = θ0(x), x ∈Rn.

(3.1)

First is the fundamental DeGiorgi–Nash estimate.

Proposition 3.1. Let u be a smooth divergence-free vector field in Rn (n � 2), and θ be a smooth solution of
the transport-diffusion equation (3.1). Suppose that r ∈ [2,∞], p ∈]1,∞] and q ∈] n

β
,∞] such that

β

p
+ n

q
< β, (3.2)

and θ0 ∈ Lr(Rn), f ∈ L p
T Lq with T > 0. Then there exists a C > 0 depending only on r, p, q, β , n such that for

every t ∈]0, T ],
∥∥θ(t)

∥∥
L∞ � C

t
n

rβ

∥∥θ0
∥∥

Lr + C
(
1 + T

1
β

(β− β
p − n

q ))‖ f ‖L p
T Lq . (3.3)

Note that when β = 2, a similar result was obtained by Hmidi and Rousset in [17].

Proof. Because of the linearity of Eq. (3.1), we can study separately the following two systems

∂tθ + u · ∇θ + |D|βθ = 0, θ |t=0 = θ0, β ∈]0,2[, (3.4)

and

∂tθ + u · ∇θ + |D|βθ = f , θ |t=0 = 0, β ∈]0,2[. (3.5)

For the homogeneous transport-diffusion equation (3.4), the corresponding estimate in the case of
r = 2 that

∥∥θ(t)
∥∥

L∞ � Cn

tn/(2β)

∥∥θ0
∥∥

L2 , t > 0,

has appeared in [3,9] by using DeGiorgi–Nash’s iterative method. Interpolating it with the classical
maximum principle ‖θ‖L∞

T L∞ � ‖θ0‖L∞ leads to the expected estimate (3.3) concerning θ0. Noticing

that from a limiting process, we only need to require θ0 ∈ Lr .
Now we consider the system (3.5). First we shall prove that for every T ∈]0,1], there exists an

absolute constant C > 0 depending only on p, q, n such that

‖θ‖L∞
T L∞ � C‖ f ‖L p

T Lq . (3.6)

Observe that the Lq a priori estimate is obvious. Since p > 1, we use Proposition 2.2 and Hölder’s
inequality to find

‖θ‖L∞Lq � ‖ f ‖L1 Lq � ‖ f ‖L p Lq . (3.7)

T T T
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When q = ∞, this is just the estimate (3.3) involving f . While for q < ∞, we shall use DeGiorgi–
Nash’s iterative argument to improve the Lq-estimate to an L∞-estimate. Let Λ be a positive number
chosen later, and Λk � Λ(1 − 2−k−1) for all k ∈N. From a pointwise positivity inequality for fractional
derivative operator (cf. [10,20]) that for every convex function Φ ,

Φ ′(θ)|D|βθ � |D|βΦ(θ),

we know that

1{θ�Λk}|D|βθ � |D|β(θ − Λk)+.

Thus

∂t(θ − Λk)+ + u · ∇(θ − Λk)+ + |D|β(θ − Λk)+ � f 1{θ�Λk},

and multiplying this equation with (θ − Λk)+ , integrating over the spatial variable, we see that for
every s ∈]0,

β
2 ]

1

2

d

dt

∥∥(θ − Λk)+(t)
∥∥2

L2 + ∥∥(θ − Λk)+(t)
∥∥2

Ḣ
β
2

�
∣∣∣∣ ∫
Rn

f (t, x)(θ − Λk)+(t, x)dx

∣∣∣∣
�

∥∥ f (t)1{θ(t)�Λk}
∥∥

Ḣ−s

∥∥(θ − Λk)+(t)
∥∥

Ḣ s .

Denoting by

Uk �
∥∥(θ − Λk)+

∥∥2
L∞

T L2 + ∥∥(θ − Λk)+
∥∥2

L2
T Ḣ

β
2
,

and integrating in the time interval [0, T ], we get

Uk � 2

T∫
0

∥∥ f (t)1{θ(t)�Λk}
∥∥

Ḣ−s

∥∥(θ − Λk)+(t)
∥∥

Ḣ s dt.

By virtue of the continuous embedding (cf. Corollary 1.39 of [2]) L
2n

n+2s ↪→ Ḣ−s (β ∈]0,2[, s ∈]0,
β
2 ]),

the Hölder inequality and the interpolation inequality that for every s ∈]0,
β
2 ],

∥∥(θ − Λk)+
∥∥2

Lβ/s
T Ḣ s � C0Uk,

we further obtain

Uk � C0
∥∥ f (t)1{θ(t)�Λk}

∥∥
Lβ/(β−s)

T L2n/(n+2s)

∥∥(θ − Λk)+
∥∥

Lβ/s
T Ḣ s

� C0
∥∥ f (t)1{θ(t)�Λk}

∥∥
Lβ/(β−s)

T L2n/(n+2s) U 1/2
k .

The Young inequality yields

Uk � C0
∥∥ f (t)1{θ(t)�Λk}

∥∥2
Lβ/(β−s)L2n/(n+2s) .
T
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If p ∈]2,∞], we can choose s = β
2 , and then β

β−s = 2 < p and 2n
n+2s = 2n

n+β
< n

β
< q. If p ∈]1,2[, in

order to pick some s ∈]0,
β
2 ] such that p >

β
β−s and q > 2n

n+2s , equivalently, n
q − n

2 < s < β − β
p , and

noting that n
q < β − β

p <
β
2 < n

2 , we can choose s = β
2 − β

2p . For such s, we further use the Hölder
inequality to find that for every p ∈]2,∞],

Uk � C0‖ f ‖2
L p

T Lq ‖1{θ(t)�Λk}‖2

L
2p

p−2
T L

1
1/2+β/(2n)−1/q

� C0‖ f ‖2
L p

T Lq

( T∫
0

∣∣{θ(t) � Λk
}∣∣ 2p

p−2 ( 1
2 + β

2n − 1
q )

dt

) p−2
p

, (3.8)

and for every p ∈]1,2[,

Uk � C0
∥∥ f (t)1{θ(t)�Λk}

∥∥2

L
2p

p+1
T L

2n
n+β−β/p

� C0‖ f ‖2
L p

T Lq ‖1{θ(t)�Λk}‖2

L
2p

p−1
T L

1
1/2+β/(2n)−β/(2np)−1/q

� C0‖ f ‖2
L p

T Lq

( T∫
0

∣∣{θ(t) � Λk
}∣∣ 2p

p−1 ( 1
2 + β

2n − β
2np − 1

q )
dt

) p−1
p

, (3.9)

where |{θ(t) � Λk}| means the Lebesgue measure of the set {x: θ(t, x) � Λk} ⊂ Rn . Noting that
θ(t, x) − Λk−1 � Λ2−k−1 for all θ(t, x) � Λk , we have that for every δ � 1,

1{θ(t)�Λk} �
(

(θ(t) − Λk−1)+
Λ2−k−1

)δ

,

and

∣∣{θ(t) � Λk
}∣∣ � 2(k+1)δ

Λδ

∥∥(θ − Λk−1)+(t)
∥∥δ

Lδ .

Hence, inserting the above estimate into (3.8) and (3.9) leads to that for every p ∈]2,∞],

Uk � C0‖ f ‖2
L p

T Lq

(
2k+1

Λ

)δ(1+ β
n − 2

q )
( T∫

0

∥∥(θ − Λk−1)+(t)
∥∥δ(1+ β

n − 2
q )

p
p−2

Lδ dt

) p−2
p

, (3.10)

and for every p ∈]1,2[,

Uk � C0‖ f ‖2
L p

T Lq

(
2k+1

Λ

)δ(1+ β
n − β

np − 2
q )

( T∫
0

∥∥(θ − Λk−1)+(t)
∥∥δ(1+ β

n − β
np − 2

q )
p

p−1

Lδ dt

) p−1
p

. (3.11)

Since Ḣ
β
2 ↪→ L

2n
n−β , and from interpolation and Hölder’s inequality, we know that for every m ∈

[2, 2n
n−β

] and β
σ + n

m � n
2 ,

∥∥(θ − Λk−1)+
∥∥2

Lσ Lm � C0Uk−1.

T
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Thus to fit our purpose, we need to choose some δ ∈ [2, 2n
n−β

] satisfying that for every p ∈]2,∞]

δ

(
1 + β

n
− 2

q

)
> 2, β

(p − 2)/p

δ(1 + β/n − 2/q)
+ n

δ
� n

2
, (3.12)

and for every p ∈]1,2[

δ

(
1 + β

n
− β

np
− 2

q

)
> 2, β

(p − 1)/p

δ(1 + β/n − β/(np) − 2/q)
+ n

δ
� n

2
. (3.13)

The first condition of (3.12) can be satisfied as long as 2
1+β/n−2/q < 2n

n−β
, which is equivalent to q > n

β
,

and the second condition of (3.12) is equivalent to

β

(
1 − 2

p

)
+ n

(
1 + β

n
− 2

q

)
= n + 2β − 2β

p
− 2n

q
� n

2
δ

(
1 + β

n
− 2

q

)
> n,

which can be guaranteed as long as β
p + n

q < β . Similarly, the first condition of (3.13) can be satisfied

as long as 2
1+β/n−β/(np)−2/q < 2n

n−β
, which is equivalent to β

2p + n
q < β , and the second condition of

(3.13) is equivalent to

β

(
1 − 1

p

)
+ n

(
1 + β

n
− β

np
− 2

q

)
= n + 2β − 2β

p
− 2n

q
� n

2
δ

(
1 + β

n
− β

np
− 2

q

)
> n,

which can be guaranteed as long as β
p + n

q < β . Therefore, for all p ∈]1,∞] and q ∈] n
β
,∞[ satisfying

(3.2), some suitable δ ∈ [2, 2n
n−β

] satisfying (3.12) or (3.13) can be chosen. For such δ, we further have

Uk � C0‖ f ‖2
L p

T Lq

(
2k+1/Λ

)2μ
Uμ

k−1, k ∈ Z+,

where μ > 1 is defined by

μ �
{

δ
2 (1 + β

n − 2
q ), if p ∈]2,∞],

δ
2 (1 + β

n − β
np − 2

q ), if p ∈]1,2[.

We also need to estimate U0. From (3.8), (3.9), (3.7) and the following Tchebychev’s inequality∣∣{θ(t) � Λ0 = Λ/2
}∣∣ � (2/Λ)q

∥∥θ(t)
∥∥q

Lq , q < ∞,

we obtain that for all T ∈]0,1],

U0 � ‖ f ‖2
L p

T Lq (2/Λ)
2qμ
δ ‖θ‖

2qμ
δ

L∞
T Lq � ‖ f ‖2+ 2qμ

δ

L p
T Lq (2/Λ)

2qμ
δ .

According to Lemma 2.6, we can choose Λ > 0 satisfying

‖ f ‖2+ 2qμ
δ

L p
T Lq (2/Λ)

2qμ
δ = C

− 1
μ−1

0 ‖ f ‖− 2
μ−1

L p
T Lq 2− 2μ

μ−1 Λ
2μ

μ−1 2
− 2μ

(μ−1)2 ,

equivalently,
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Λ = Cμ,q,δ‖ f ‖L p
T Lq , (3.14)

so that we have Uk → 0 as k → ∞, which implies ‖(θ − Λ)+‖L∞
1 L2 = 0. Hence, for a.e. (t, x) ∈

[0, T ] ×Rn ,

θ(t, x) � Λ.

Applying the above deduction to −θ , we also get θ(t, x) � −Λ for a.e. (t, x) ∈ [0, T ]×Rn . Clearly, (3.6)
follows.

Next we shall use a scaling argument to show the estimate (3.3) involving f for T � 1. For every
(t, x) ∈ [0, T ]×Rn and ζ > 0, denote by τ � ζ−βt , y � ζ−1x and define θ̃ (τ , y) � θ(ζ βτ , ζ y) = θ(t, x).
By a direct computation, we see that θ̃ (τ , y) also satisfies the transport-diffusion equation with the
scaled divergence-free vector field ũ

∂τ θ̃ + ũ · ∇y θ̃ + |D y|β θ̃ = f̃ ,

where f̃ (τ , y) � ζ β f (ζ βτ , ζ y). If we set ζ = T
1
β , then (τ , y) ∈ [0,1] ×Rn , and we can use (3.6) and

the variable substitution to find that for every T � 1,

∥∥θ(t)
∥∥

L∞
T L∞ = ∥∥θ̃ (τ )

∥∥
L∞

1 L∞ � C‖ f̃ ‖L p
1 Lq = C T

1
β

(β− β
p − n

q )‖ f ‖L p
T Lq .

Combining this estimate and (3.6) leads to the estimate (3.3) concerning f . �
The second one is a useful smoothing estimate of the transport-diffusion equation.

Proposition 3.2. Let u be a smooth divergence-free vector field of Rn with vorticity ω, and θ be a smooth
solution of system (3.1). Then for every (s, p, σ ) ∈]−∞,0[× [2,∞[×[1,∞], we have

‖θ ‖̃
Lσ

t Bs+β/σ
p,1

�σ ,p,s
∥∥θ0

∥∥
Bs

p,1
+ ‖θ‖L1

t L p

(‖ω‖L∞
t L∞ + ‖u‖L∞

t L2

)
+ ‖ f ‖L1

t L p + ‖�−1θ‖Lσ
t L p . (3.15)

Proof. Denoting by θq � �qθ for all q ∈ N, and by applying �q to Eq. (3.1) we get

∂tθq + u · ∇θq + |D|βθq = −[�q, u · ∇]θ + �q f .

Since θq is a real-valued function, we multiply both sides of the upper equation by |θq|p−2θq and
integrate in the spatial variable to find that

1

p

d

dt

∥∥θq(t)
∥∥p

L p +
∫
Rn

|D|βθq(t, x)|θq|p−2θq(t, x)dx

�
(∥∥[�q, u · ∇]θ(t)

∥∥
L p + ∥∥�q f (t)

∥∥
L p

)∥∥θq(t)
∥∥p−1

Lp .

According to the generalized Bernstein inequality (cf. [8]), there exists an absolute constant c > 0
independent of q such that∫

n

|D|βθq(t, x)|θq|p−2θq(t, x)dx � c2qβ‖θq‖p
L p .
R
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Hence we have

d

dt

∥∥θq(t)
∥∥

L p + c2qβ
∥∥θq(t)

∥∥
L p �

∥∥[�q, u · ∇]θ(t)
∥∥

L p + ∥∥�q f (t)
∥∥

L p .

Gronwall’s inequality leads to

∥∥θq(t)
∥∥

L p � e−c2qβ t
∥∥θ0

q

∥∥
L p +

t∫
0

e−c2qβ(t−τ )
(∥∥[�q, u · ∇]θ(τ )

∥∥
L p + ∥∥�q f (τ )

∥∥
L p

)
dτ .

We further get

‖θq‖Lσ
t L p � 2−qβ/σ

(∥∥θ0
q

∥∥
L p + ∥∥[�q, u · ∇]θ∥∥

L1
t L p + ‖�q f ‖L1

t L p

)
.

From the commutator estimate (cf. [15, Proposition 5.4]), we have for every q ∈N,

∥∥[�q, u · ∇]θ(τ )
∥∥

L p �
(
q
∥∥ω(τ)

∥∥
L∞ + ∥∥u(τ )

∥∥
L2

)∥∥θ(τ )
∥∥

L p ,

thus we infer that for every s ∈]−∞,0[,

∑
q∈N

2q(s+β/σ )‖θq‖Lσ
t L p �

∥∥θ0
∥∥

Bs
p,1

+
(∑

q∈N
2qsq

)
‖θ‖L1

t L p

(‖ω‖L∞
t L∞ + ‖u‖L∞

t L2

) + ‖ f ‖L1
t Bs

p,1

�s
∥∥θ0

∥∥
Bs

p,1
+ ‖θ‖L1

t L p

(‖ω‖L∞
t L∞ + ‖u‖L∞

t L2

) + ‖ f ‖L1
t L p .

On the other hand, for the low frequency part we immediately obtain

2−(s+β/σ )‖�−1θ‖Lσ
t L p � ‖�−1θ‖Lσ

t L p .

Gathering the upper two estimations yields (3.15). �
4. Modified Riesz transform and commutators

First we introduce a pseudo-differential operator Rβ defined by

Rβ � ∂1|D|−β = |D|1−βR, β ∈]1,2[,

where R � ∂1/|D| is the usual Riesz transform. For convenience, we call Rβ the modified Riesz
transform. Note that we have encountered Rβ in [22], but there β ∈]0,1[.

We collect some useful properties of this operator as follows.

Proposition 4.1. Let j ∈ N, β ∈]1,2[, Rβ be the modified Riesz transform. Then the following statements hold
true.

(1) For every 1 < p < q < ∞ satisfying 1
q = 1

p − β−1
n , Rβ is a bounded linear operator which maps Lp to Lq.
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(2) Let χ ∈D(Rn). Then for every (p, s) ∈ [1,∞] ×]β − 1,∞[ and f ∈ L p(Rn),

∥∥|D|sχ
(
2− j|D|)Rβ f

∥∥
L p � 2 j(s+1−β)‖ f ‖L p .

Moreover, |D|sχ(|D|)Rβ is a convolution operator with kernel K satisfying

∣∣K (x)
∣∣ � 1

(1 + |x|)n+s+1−β
, ∀x ∈Rn.

(3) Let O be an annulus centered at the origin. Then for every f with spectrum supported on 2 jO, there exists
φ ∈ S(Rn) whose Fourier transform supported away from the origin, such that

Rβ f = 2 j(n+1−β)φ
(
2 j·) � f .

Proof. Since Rβ = |D|1−βR, (1) is a consequence of the Calderón–Zygmund theorem and Hardy–
Littlewood–Sobolev’s inequality. Due to |D|sRβ = |D|s+1−βR, (2) follows from [16, Proposition 3.1].
(3) can be justified by choosing a suitable bump function. �

Next we consider the crucial commutators involving estimates Rβ .

Proposition 4.2. Let β ∈]1,2[, (p, r) ∈ [2,∞] × [1,∞], u be a smooth divergence-free vector field of Rn

(n � 2) with vorticity ω and θ be a smooth scalar function. Then we have that for every s ∈]β − 2, β[,
∥∥[Rβ, u · ∇]θ∥∥

Bs
p,r

�s,β ‖∇u‖L p
(‖θ‖

Bs+1−β
∞,r

+ ‖θ‖L2

)
. (4.1)

Besides, if p = ∞, we also have

∥∥[Rβ, u · ∇]θ∥∥
Bs∞,r

�s,β
(‖ω‖L∞ + ‖u‖L2

)‖θ‖
Bs+(1−β)/2

∞,r
+ ‖u‖L2‖θ‖L2 . (4.2)

Proof. By virtue of Bony’s decomposition, we have

[Rβ, u · ∇]θ =
∑
q∈N

[Rβ, Sq−1u · ∇]�qθ +
∑
q∈N

[Rβ,�qu · ∇]Sq−1θ +
∑

q�−1

[Rβ,�qu · ∇]�̃qθ

� I + II + III.

For I, from Proposition 4.1(3), Lemma 2.5 and Bernstein’s inequality we obtain

‖� j I‖L p �
∑

|q− j|�4

∥∥[φq�, Sq−1u · ∇]�qθ
∥∥

L p

�
∑

|q− j|�4

2−qβ‖∇ Sq−1u‖L p 2q‖�qθ‖L∞

� 2− js‖∇u‖L p 2q(s+1−β)‖�qθ‖L∞ ,

where φq(x) � 2q(n+1−β)φ(2qx) with φ ∈ S and ‖xφq‖L1 � 2−qβ . Thus

‖I‖Bs
p,r

� ‖∇u‖L p ‖θ‖
Bs+1−β .
∞,r
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For II, as above we have

‖� j II‖L p �
∑

|q− j|�4, q∈N

∥∥[φq�,�qu · ∇]Sq−1θ
∥∥

L p

�
∑

|q− j|�4, q∈N
2−qβ‖∇�qu‖L p ‖∇ Sq−1θ‖L∞

� 2− js‖∇u‖L p

∑
q′� j+2

2( j−q′)(s−β)2q′(s−β+1)‖�q′θ‖L∞ .

Thus for every s < β , the discrete Young inequality ensures that

‖II‖Bs
p,r

� ‖∇u‖L p ‖θ‖
Bs+1−β

∞,r
.

Since div u = 0, we further write III as follows

III =
∑
q�2

divRβ(�qu�̃qθ) +
∑
q�2

div(�quRβ�̃qθ) +
∑

−1�q�1, 1�i�n

[
∂iRβ,�qui]�̃qθ

� III1 + III2 + III3.

From Proposition 4.1(2) and Bernstein’s inequality, we get

∥∥� jIII
1
∥∥

L p �
∑

q� j−4, q�2

∥∥div Rβ� j(�qu�̃qθ)
∥∥

L p

�
∑

q� j−4, q�2

2 j(2−β)2−q‖∇�qu‖L p ‖�̃qθ‖L∞

� 2− js‖∇u‖L p

∑
q� j−5

2( j−q)(s+2−β)2q(s+1−β)‖�qθ‖L∞ .

Similarly, for III2 we directly have

∥∥� jIII
2
∥∥

L p �
∑

q� j−4, q�2

2 j‖�quRβ�̃qθ‖L p

�
∑

q� j−4, q�2

2 j2−q‖∇�qu‖L p 2q(1−β)‖�̃qθ‖L∞

� 2− js‖∇u‖L p

∑
q� j−5

2( j−q)(s+1)2q(s+1−β)‖�qθ‖L∞ .

Thus the discrete convolution inequality guarantees that for every s > β − 2,

∥∥III1
∥∥

Bs + ∥∥III2
∥∥

Bs � ‖∇u‖L p ‖θ‖
Bs+1−β .
p,r p,r ∞,r
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For the third term, from the frequency-localization property, there exists χ ′ ∈ D(Rn) satisfying
χ ′(ξ) ≡ 1 for |ξ | � 3 such that

III3 =
∑

−1�q�1, 1�i�n

[
∂i Rβχ ′(D),�qui]�̃qθ.

Proposition 4.1(2) shows that ∂i Rβχ ′(D) is a convolution operator with kernel h′ satisfying

∣∣h′(x)
∣∣ � C

(1 + |x|)n+2−β
, ∀x ∈Rn.

Thus from the fact that � j III3 = 0 for every j � 5, and applying Lemma 2.5 with m̄ ∈] n
n+1−β

,2]
(equivalently, m ∈ [2, n

β−1 [), n � 2 and p � 2, we have

∥∥III3
∥∥

Bs
p,r

�
∑

−1�q�1

∥∥[
h′�,�qu

]
�̃qθ

∥∥
L p

�
∑

−1�q�1

∥∥xh′∥∥
Lm̄‖∇�qu‖L p ‖�̃qθ‖Lm

� ‖∇u‖L p ‖θ‖L2 .

In the above we also have used the fact that xh′ ∈ Lm̄ . This ends the proof of (4.1).
Next we reconsider the case p = ∞. Since ‖�q∇u‖L∞ ≈ ‖�qω‖L∞ for every q ∈ N, we directly

obtain

∥∥II + III1 + III2
∥∥

Bs∞,r
� ‖ω‖L∞‖θ‖

Bs+1−β
∞,r

.

Taking advantage of the following fact that for every q ∈ N

‖∇ Sq−1u‖L∞ � ‖�−1∇u‖L∞ +
∑

0�q′�q−2

‖∇�q′ u‖L∞ � ‖u‖L2 + q‖ω‖L∞ ,

we can also estimate I as follows

‖I‖Bs∞,r
� ‖u‖L2‖θ‖

Bs+1−β
∞,r

+ ‖ω‖L∞‖θ‖
B

s+ 1−β
2∞,r

.

For the last reminder term III3, estimating as above we have for every m ∈ [2, n
β−1 [

∥∥III3
∥∥

Bs∞,r
�

∑
−1�q�1

∥∥xh′∥∥
Lm̄‖∇�qu‖L∞‖�̃qθ‖Lm

� ‖u‖L2‖θ‖L2 .

This ends the proof of (4.2). �
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5. Proof of Theorem 1.1

The system we consider is as follows⎧⎨⎩
∂t u + u · ∇u + ∇ P = θe2, β ∈]1,2[,
∂tθ + u · ∇θ + |D|βθ = u2,

div u = 0, u|t=0 = u0, θ |t=0 = θ0.

(5.1)

The proof ’s outline is as follows: first we show some key a priori estimates, next based on them we
prove the existence and continuity-in-time results, and finally we treat the uniqueness issue.

5.1. A priori estimates

Proposition 5.1. Let (u, θ) be a smooth solution of the system (5.1) with (u0, θ0) ∈ L2 × L2 . Then we have

∥∥u(t)
∥∥2

L2 + ∥∥θ(t)
∥∥2

L2 + ‖θ‖2

L2
t Ḣ

β
2

�
(∥∥θ0

∥∥2
L2 + ∥∥u0

∥∥2
L2

)
eCt . (5.2)

Proof. Taking scalar product of the first equation of (5.1) with u, multiplying the second equation by
θ and integrating over the spatial variable, we get

1

2

d

dt

(∥∥u(t)
∥∥2

L2 + ∥∥θ(t)
∥∥2

L2

) + ∥∥θ(t)
∥∥2

Ḣβ/2 = 2
∫
R2

θ(t, x)u2(t, x)dx

� 2
∥∥θ(t)

∥∥
L2

∥∥u(t)
∥∥

L2

�
∥∥θ(t)

∥∥2
L2 + ∥∥u(t)

∥∥2
L2 .

Gronwall’s inequality further leads to (5.2). �
Proposition 5.2. Let (u, θ) be a smooth solution of system (5.1). If θ0 ∈ L2 ∩ B1−β

∞,1 , u0 ∈ L2 and the initial

vorticity ω0 ∈ L∞ , then we have that for every t > 0,

∥∥θ(t)
∥∥

L∞ � C

t1/β

∥∥θ0
∥∥

L2 + CeCt, (5.3)

and for every t � 0, ∥∥ω(t)
∥∥

L∞ + ‖θ ‖̃
L∞

t B1−β
∞,1

+ ‖θ‖L1
t B1∞,1

� Ceexp{Ct}. (5.4)

Proof. (5.3) is a direct consequence of Propositions 3.1 and 5.1, i.e., for every t > 0,

∥∥θ(t)
∥∥

L∞ � C

t1/β

∥∥θ0
∥∥

L2 + (
1 + t1−1/β

)‖u‖L∞
t L2

� C

t1/β

∥∥θ0
∥∥

L2 + CeCt .

Next we treat (5.4). Applying the operator Rβ � ∂1|D|−β to the equation of temperature θ , we have

∂tRβθ + u · ∇Rβθ + |D|βRβθ = −[Rβ, u · ∇]θ +Rβu2. (5.5)



G. Wu, L. Xue / J. Differential Equations 253 (2012) 100–125 117
We denote by Γ � ω +Rβθ , and due to |D|βRβ = ∂1, we obtain

∂tΓ + u · ∇Γ = −[Rβ, u · ∇]θ +Rβu2. (5.6)

From the L∞ maximal principle of the transport equation (5.6), we find

∥∥Γ (t)
∥∥

L∞ �
∥∥Γ 0

∥∥
L∞ +

t∫
0

∥∥[Rβ, u · ∇]θ(τ )
∥∥

L∞ dτ +
t∫

0

∥∥Rβu2(τ )
∥∥

L∞ dτ

�
∥∥ω0

∥∥
L∞ + ∥∥θ0

∥∥
L2∩B1−β

∞,1
+

t∫
0

∥∥[Rβ, u · ∇]θ(τ )
∥∥

B0∞,1
dτ +

t∫
0

∥∥Rβu(τ )
∥∥

B0∞,1
dτ ,

where we have used the following fact that for all β ∈]1,2[,∥∥Rβθ0
∥∥

L∞ �
∥∥|D|1−βRθ0

∥∥
B0∞,1

�
∥∥|D|1−βR�−1θ

0
∥∥

L
2

2−β
+

∑
q�0

2q(1−β)
∥∥�qθ

0
∥∥

L∞

�β

∥∥θ0
∥∥

L2∩B1−β
∞,1

. (5.7)

According to the commutator estimate (4.2) and the continuous embedding L∞ ↪→ B0∞,∞ ↪→ B(1−β)/2
∞,1

(β > 1), we get∥∥[Rβ, u · ∇]θ(τ )
∥∥

B0∞,1
�

(∥∥ω(τ)
∥∥

L∞ + ∥∥u(τ )
∥∥

L2

)(∥∥θ(τ )
∥∥

B(1−β)/2
∞,1

+ ∥∥θ(τ )
∥∥

L2

)
�

(∥∥ω(τ)
∥∥

L∞ + eCτ
)(

τ
− 1

β + eCτ
)
. (5.8)

By a high–low frequency decomposition, we also find∥∥Rβu(τ )
∥∥

B0∞,1
�

∥∥|D|1−βR�−1u(τ )
∥∥

L
2

2−β
+

∑
q�0

∥∥|D|1−βR�qu(τ )
∥∥

L∞

�
∥∥u(τ )

∥∥
L2 +

∑
q�0

2−β
∥∥ω(τ)

∥∥
L∞

�β eCτ + ∥∥ω(τ)
∥∥

L∞ . (5.9)

On the other hand, from the equation of Rβθ (5.5), we also deduce that

∥∥Rβθ(t)
∥∥

L∞ �
∥∥θ0

∥∥
L2∩B1−β

∞,1
+

t∫
0

∥∥[Rβ, u · ∇]θ(τ )
∥∥

B0∞,1
dτ +

t∫
0

∥∥Rβu(τ )
∥∥

B0∞,1
dτ .

Hence we infer that∥∥ω(t)
∥∥

L∞ �
∥∥Γ (t)

∥∥
L∞ + ∥∥Rβθ(t)

∥∥
L∞

�
∥∥ω0

∥∥
L∞ + ∥∥θ0

∥∥
L2∩B1−β

∞,1
+ eCt +

t∫
0

(
τ

− 1
β + eCτ

)∥∥ω(τ)
∥∥

L∞ dτ .

Thus the Gronwall inequality yields that ‖ω(t)‖L∞ � Ceexp{Ct} .
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By interpolation and the Sobolev embedding, we see that for every q ∈]2,∞[, σ = (1 − β)(1 −
2
q ) < 0 and ε > 0,

L2 ∩ B1−β

∞,1 ↪→ Bσ
q,∞ ↪→ Bσ−ε

q,1 .

Thanks to (3.15), (5.2), (5.3) and the interpolation inequality ‖u‖L∞ � ‖u‖1/2
L2 ‖ω‖1/2

L∞ (cf. [12]), we
further get

‖θ‖
L1

t Bσ−ε+β
q,1

�
∥∥θ0

∥∥
Bσ−ε

q,1
+ ‖θ‖L1

t Lq

(
1 + ‖ω‖L∞

t L∞ + ‖u‖L∞
t L2

) + ‖u2‖L1
t Lq

�
∥∥θ0

∥∥
L2∩B1−β

∞,1
+

t∫
0

∥∥θ(τ )
∥∥

L2∩L∞ dτ
(
1 + ‖ω‖L∞

t L∞ + ‖u‖L∞
t L2

) + ‖u‖L1
t (L2∩L∞)

� eexp{Ct}.

Since σ − ε +β − 2
q = 1 − ε̃ with ε̃ � 2

q (2 −β)+ ε > 0, by choosing q ∈]2,∞[ large enough and ε > 0
small enough, we see that 1 − ε̃ can be sufficiently close to 1 (to fit our purpose in the sequel, it
suffices to choose ε̃ = (β − 1)/2) and

‖θ‖L1
t B1−ε̃

∞,1
� ‖θ‖

L1
t Bσ−ε+β

q,1
� eexp{Ct}. (5.10)

Now we view the equation of θ as a linear dissipative equation with forcing term

∂tθ + |D|βθ = −u · ∇θ + u2, θ |t=0 = θ0. (5.11)

Taking advantage of Lemma 2.3, we get that for every ρ ∈ [1,∞]

‖θ ‖̃
Lρ

t B1−β+β/ρ
∞,1

� C(1 + t)1/ρ
(∥∥θ0

∥∥
B1−β

∞,1
+ ‖u · ∇θ‖

L1
t B1−β

∞,1
+ ‖u‖

L1
t B1−β

∞,1

)
.

From Lemma 2.4, estimate (5.10) (with 0 < ε̃ < β − 1) and interpolation, we infer that

‖u · ∇θ‖
L1

t B1−β
∞,1

+ ‖u‖
L1

t B1−β
∞,1

� ‖u‖L∞
t L∞‖θ‖

L1
t B2−β

∞,1
+ ‖u‖L1

t L∞

� (1 + t)‖u‖1/2
L∞

t L2‖ω‖1/2
L∞

t L∞
(
1 + ‖θ‖L1

t B1−ε̃
∞,1

)
� eexp{Ct}.

Hence for every ρ ∈ [1,∞], we have

‖θ ‖̃
Lρ

t B1−β+β/ρ
∞,1

� eexp{Ct}. �

Proposition 5.3. Let (u, θ) be a smooth solution of system (5.1). If θ0 ∈ L2 ∩ B1−β

∞,1 , u0 ∈ L2 and ω0 ∈ L p ∩ L∞
with p � 2, then we have

∥∥ω(t)
∥∥

L p + ‖θ ‖̃L∞
t L2 + ‖θ ‖̃L1

t Hβ � Ceexp{Ct}. (5.12)
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Proof. For the case of p ∈ [2, 2
2−β

[, there exists ε ∈]0, 2
p − (2 − β)[ such that Bβ−1−ε

2,1 ↪→ L p . Thus,
from the equation of the vorticity

∂tω + u · ∇ω = ∂1θ

and Proposition 2.2, we get∥∥ω(t)
∥∥

L p �
∥∥ω0

∥∥
L p + ‖∂1θ‖L1

t L p

�
∥∥ω0

∥∥
L p + ‖∂1θ‖

L1
t Bβ−1−ε

2,1
�

∥∥ω0
∥∥

L p + ‖θ‖
L1

t Bβ−ε
2,1

.

Applying Proposition 3.2 to the equation of θ , we know that for every ε > 0

‖θ‖
L1

t Bβ−ε
2,1

�
∥∥θ0

∥∥
B−ε

2,1
+ ‖θ‖L1

t L2

(
1 + ‖ω‖L∞

t L∞ + ‖u‖L∞
t L2

) + ‖u‖L1
t L2

� eexp{Ct}. (5.13)

Hence, we have for every p ∈ [2, 2
2−β

[,
∥∥ω(t)

∥∥
L p � eexp{Ct}.

Besides, according to estimates (2.6), (5.13) (with ε ∈]0, β − 1[) and the Sobolev embedding, we infer
that for every ρ ∈ [1,∞],

‖θ ‖̃Lρ
t Hβ/ρ � (1 + t)1/ρ

(∥∥θ0
∥∥

L2 + ‖u · ∇θ ‖̃L1
t L2 + ‖u‖̃L1

t L2

)
� (1 + t)1/ρ

(∥∥θ0
∥∥

L2 + ‖u‖L∞
t L∞‖θ‖L1

t H1 + ‖u‖L1
t L2

)
� eexp{Ct}.

Next we consider the case of p ∈ [ 2
2−β

,∞[ and we shall use a similar method as treating the L∞
case. By applying Proposition 2.2 to Eq. (5.6), and from the Besov embedding and interpolation we
find that

∥∥Γ (t)
∥∥

L p �
∥∥ω0

∥∥
L p + ∥∥θ0

∥∥
L2∩B1−β

∞,1
+

t∫
0

∥∥[Rβ, u · ∇]θ(τ )
∥∥

B0
p,1

dτ +
t∫

0

∥∥Rβu(τ )
∥∥

B0
p,1

dτ ,

where we also have used the following estimate (by Proposition 4.1(1) and (5.7))∥∥Rβθ0
∥∥

L p �
∥∥Rβθ0

∥∥
L

2
2−β ∩B0∞,1

�
∥∥θ0

∥∥
L2∩B1−β

∞,1
.

For the commutator term, from (4.1) we get∥∥[Rβ, u · ∇]θ(τ )
∥∥

B0
p,1

�
∥∥ω(τ)

∥∥
L p

(∥∥θ(τ )
∥∥

B1−β
∞,1

+ ∥∥θ(τ )
∥∥

L2

)
�

∥∥ω(τ)
∥∥

L p

(
τ

− 1
β + eCτ

)
.

Taking advantage of a high–low frequency decomposition, we deduce that
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‖Rβu‖B0
p,1

= ∥∥�−1|D|1−βRu
∥∥

L p +
∑
q∈N

∥∥�q|D|1−βRu
∥∥

L p

�
∥∥�−1|D|1−βu

∥∥
L

2
2−β

+
∑
q∈N

2−β‖�qω‖L p

� ‖u‖L2 + ‖ω‖L p .

Noting that

∥∥Rβθ(t)
∥∥

L p �
∥∥θ0

∥∥
L2∩B1−β

∞,1
+

t∫
0

∥∥[Rβ, u · ∇]θ(τ )
∥∥

B0
p,1

dτ +
t∫

0

∥∥Rβu(τ )
∥∥

B0
p,1

dτ ,

we infer that

∥∥ω(t)
∥∥

L p �
∥∥Γ (t)

∥∥
L p + ∥∥Rβθ(t)

∥∥
L p

�
∥∥ω0

∥∥
L p + ∥∥θ0

∥∥
L2∩B1−β

∞,1
+ eCt +

t∫
0

∥∥ω(τ)
∥∥

L p

(
τ

− 1
β + eCτ

)
dτ .

Gronwall’s inequality further ensures that (5.12) holds for every p ∈ [ 2
2−β

,∞[. �
Proposition 5.4. Let (u, θ) be a smooth solution of system (5.1). If θ0 ∈ L2 ∩ B1−β

∞,1 and u0 ∈ L2 ∩ B1∞,1 , then
we have

‖u‖L∞
t B1∞,1

+ ‖ω‖L∞
t B0∞,1

� Ceexp{exp{Ct}}. (5.14)

Proof. By applying logarithmic estimate (2.3) to Eqs. (5.6) and (5.5), we have

∥∥Γ (t)
∥∥

B0∞,1
+ ∥∥Rβθ(t)

∥∥
B0∞,1

�
(
1 + ‖∇u‖L1

t L∞
)(∥∥ω0

∥∥
B0∞,1

+ ∥∥θ0
∥∥

L2∩B1−β
∞,1

+ ∥∥[Rβ, u · ∇]θ∥∥
L1

t B0∞,1
+ ‖Rβu2‖L1

t B0∞,1

)
�

(
1 + ‖∇u‖L1

t L∞
)
eexp{Ct}

where in the last line we have used (5.8), (5.9) and (5.4). Since by a high–low frequency decomposi-
tion and the Calderón–Zygmund theorem, we see that

∥∥∇u(t)
∥∥

L∞ �
∥∥∇�−1u(t)

∥∥
L∞ +

∑
q�0

∥∥�q∇u(t)
∥∥

L∞ �
∥∥u(t)

∥∥
L2 + ∥∥ω(t)

∥∥
B0∞,1

.

Thus we obtain

∥∥ω(t)
∥∥

B0∞,1
�

∥∥Γ (t)
∥∥

B0∞,1
+ ∥∥Rβθ(t)

∥∥
B0∞,1

� eexp{Ct}
(

1 +
t∫ ∥∥ω(τ)

∥∥
B0∞,1

dτ

)
.

0
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Gronwall’s inequality leads to ‖ω(t)‖B0∞,1
� eexp{exp{Ct}} . Combining this estimate with (5.2), it is obvi-

ous to get ∥∥u(t)
∥∥

B1∞,1
�

∥∥u(t)
∥∥

L2 + ∥∥ω(t)
∥∥

B0∞,1
� eexp{exp{Ct}}. �

5.2. Existence

We smooth the data to get the following approximate system,⎧⎪⎨⎪⎩
∂t u(k) + u(k) · ∇u(k) + ∇ P (k) = θ(k)e2, k ∈N,

∂tθ
(k) + u(k) · ∇θ(k) + |D|βθ(k) = u(k)

2 ,

div u(k) = 0; u(k)
∣∣
t=0 = Sku0, θ(k)

∣∣
t=0 = Skθ

0.

(5.15)

Since Sku0, Skθ
0 ∈ Hs for every s ∈ R, from the classical theory of quasi-linear hyperbolic systems

(cf. [2]), the approximate system has a unique smooth solution (u(k), θ (k)) on [0, T ] with some T > 0
that may depend on k. We also have a blowup criterion as follows: if the quantity ‖∇u(k)‖L1

T L∞
is finite, the time T can always be continued beyond. Then for every k ∈ N, the a priori estimate
(5.14) ensures that the solution (u(k), θ (k)) is globally and smoothly defined. Since ‖Skθ

0‖
L2∩B1−β

∞,1
�

‖θ0‖
L2∩B1−β

∞,1
, ‖Sku0‖L2 � ‖u0‖L2 and ‖Skω

0‖Lp∩L∞ � ‖ω0‖Lp∩L∞ with p ∈ [2,∞[, we find that the

a priori estimates obtained in Propositions 5.1–5.3 for system (5.15) are uniform in k, that is,

u(k) ∈ L∞
loc

(
R+; L2(R2)) and ω(k) ∈ L∞

loc

(
R+; L∞ ∩ Lp)

uniformly in k, (5.16)

and

θ(k) ∈ L∞
loc

(
R+; L2 ∩ B1−β

∞,1

) ∩ L2
loc

(
R+; Hβ/2) ∩ L1

loc

(
R+; B1∞,1

)
uniformly in k. (5.17)

We also need some uniform information about ∂t u(k) and ∂tθ
(k) to show the convergence result.

First we consider the estimate of ∂t u(k) . Denoting by P � Id −∇�−1 div the Leray projection operator
which maps a vector field to the divergence-free vector field, and by applying it to the equation
of u(k) , we get

∂t u(k) = P
(
θ(k)e2

) −P
(
u(k) · ∇u(k)

)
.

From the Calderón–Zygmund theorem, Hölder’s inequality and interpolation, we directly obtain∥∥∂t u(k)
∥∥

L∞
t L2 �

∥∥P(
θ(k)e2

)∥∥
L∞

t L2 + ∥∥P(
u(k) · ∇u(k)

)∥∥
L∞

t L2

�
∥∥θ(k)

∥∥
L∞

t L2 + ∥∥u(k)
∥∥

L∞
t L2p/(p−2)

∥∥∇u(k)
∥∥

L∞
t L p

�p
∥∥θ(k)

∥∥
L∞

t L2 + ∥∥u(k)
∥∥1−1/p

L∞
t L2

∥∥ω(k)
∥∥1/p

L∞
t L∞

∥∥ω(k)
∥∥

L∞
t L p ,

thus the uniform estimates (5.2), (5.4) and (5.12) imply that

∂t u(k) ∈ L∞
loc

(
R+; L2) uniformly in k. (5.18)

Next we treat ∂tθ
(k) . According to the equation of θ(k) , estimate (2.6) and the Sobolev embedding, we

find that
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∥∥∂tθ
(k)

∥∥
L2

t H−β/2 �
∥∥u(k) · ∇θ(k)

∥∥
L2

t H−β/2 + ∥∥|D|βθ(k)
∥∥

L2
t H−β/2 + ∥∥u(k)

2

∥∥
L2

t H−β/2

�
∥∥u(k)

∥∥
L∞

t L∞
∥∥θ(k)

∥∥
L2

t H1−β/2 + ∥∥θ(k)
∥∥

L2
t Hβ/2 + ∥∥u(k)

∥∥
L2

t L2

�
∥∥u(k)

∥∥1/2
L∞

t L2

∥∥ω(k)
∥∥1/2

L∞
t L∞

∥∥θ(k)
∥∥

L2
t Hβ/2 + ∥∥θ(k)

∥∥
L2

t Hβ/2 + ∥∥u(k)
∥∥

L2
t L2 ,

thus combining it with uniform estimates (5.2) and (5.4) yields that

∂tθ
(k) ∈ L2

loc

(
R+; H−β/2) uniformly in k. (5.19)

Therefore, from (5.16)–(5.19) and Aubin–Lions’s compactness lemma (cf. [26]), we know that up to
an extraction of subsequence, the approximate solution sequence (u(k), θ (k))k∈N converges strongly in
L∞

loc(R
+; H−β/2

loc ) to some function (u, θ), and (u, θ) moreover satisfies that

u ∈ C0,1
loc

(
R+; L2(R2)) and ω ∈ L∞

loc

(
R+; L∞ ∩ Lp)

,

and

θ ∈ L∞
loc

(
R+; L2 ∩ B1−β

∞,1

) ∩ L2
loc

(
R+; Hβ/2) ∩ L1

loc

(
R+; B1∞,1

)
.

Interpolating with the uniform bounds (5.16)–(5.17), then it is clear to pass the limit in the approxi-
mate system (5.15) and (u, θ) solves the system (5.1) in the sense of distribution. Furthermore, we can
show that θ ∈ C(R+; L2 ∩ B1−β

∞,1). Indeed, from (5.4) and (5.12) we know that θ ∈ L̃∞
loc(R

+; L2 ∩ B1−β

∞,1),
thus by a classical deduction (cf. [8]) we can get the desired result. This finishes the existence part of
Theorem 1.1.

5.3. Uniqueness

The proof of uniqueness issue is similar to that in [12] with proper modification and we here
sketch it. Let (ui, θi, Pi) (i = 1,2) satisfying (1.2) and (1.3) be two solutions of the Euler–Bénard system
(5.1) with the same initial data. Set ũ � u1 − u2, θ̃ � θ1 − θ2 and P̃ � P1 − P2, then the difference
system writes ⎧⎪⎨⎪⎩

∂t ũ + u1 · ∇ũ + ∇ P̃ = θ̃e2 − ũ · ∇u2,

∂t θ̃ + u1 · ∇ θ̃ + |D|β θ̃ = ũ2 − ũ · ∇θ2,

div u1 = div ũ = 0, (ũ, θ̃ )
∣∣
t=0 = 0.

Since ∂t ũ ∈ L∞
loc(R

+; L2), from the usual energy method we have that for every q ∈ [p,∞[,

1

2

d

dt

∥∥ũ(t)
∥∥2

L2 �
∥∥θ̃ (t)

∥∥
L2

∥∥ũ2(t)
∥∥

L2 + ∥∥ũ(t)
∥∥2

L2q/(q−1)

∥∥∇u1(t)
∥∥

Lq

�
∥∥θ̃ (t)

∥∥
L2

∥∥ũ(t)
∥∥

L2 + Cq
∥∥ũ(t)

∥∥2(q−1)/q
L2

∥∥ũ(t)
∥∥2/q

L∞
∥∥ω1(t)

∥∥
L p∩L∞ ,

where in the last line we have used interpolation and the Calderón–Zygmund theorem that

sup
q∈[p,∞[

‖∇u1‖Lq

q
� ‖ω1‖L p∩L∞ .

We also see that
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∂t θ̃ + |D|β θ̃ = ũ2 − ũ · ∇θ2 − u1 · ∇ θ̃ , θ̃ |t=0 = 0,

and due to that all the right-side terms belong to Lρ
loc(R

+; L2) with ρ ∈ [1, β[ (from (5.12)), we have

∂t θ̃ ∈ Lρ
loc(R

+; L2) from Lemma 2.3. Thus from the energy method we find

1

2

d

dt

∥∥θ̃ (t)
∥∥2

L2 �
∥∥ũ(t)

∥∥
L2

∥∥θ̃ (t)
∥∥

L2 + ‖ũ‖L2

∥∥∇θ2(t)
∥∥

L∞
∥∥θ̃ (t)

∥∥
L2 .

Let ε > 0 be a small number, and denote Xε(t) �
√

ε2 + ‖ũ‖2
L2 + ‖θ̃ (t)‖2

L2 , then we get

d

dt
Xε(t) � Cq

∥∥ũ(t)
∥∥2/q

L∞
∥∥ω1(t)

∥∥
L p∩L∞Xε(t)

1−2/q + (
1 + ∥∥∇θ2(t)

∥∥
L∞

)
Xε(t).

By a direct computation, we infer that

Xε(t) � e
t+‖∇θ2‖

L1
t L∞

(
ε2/q + C

t∫
0

∥∥ũ(τ )
∥∥2/q

L∞
∥∥ω1(τ )

∥∥
L p∩L∞ dτ

) q
2

.

Passing ε to 0, we obtain

∥∥ũ(t)
∥∥2

L2 + ∥∥θ̃ (t)
∥∥2

L2 � e
2t+2‖∇θ2‖

L1
t L∞ ‖ũ‖2

L∞
t L∞

(
Ct

∥∥ω1(τ )
∥∥

L∞
t (L p∩L∞)

)q
.

Since θ2 ∈ L1
loc(R

+; B1∞,1), ũ ∈ L∞
loc(R

+; L∞) and ω1 ∈ L∞
loc(R

+; L p ∩ L∞), by choosing T > 0 small

enough, we have C T ‖ω1‖L∞
T (Lp∩L∞) � 1

2 . Then letting q tend to ∞, we deduce (ũ, θ̃ ) ≡ 0 on [0, T ].
Since (ũ, θ̃ ) ∈ C(R+; L2), from a connectivity argument we can show the uniqueness result on R+ .
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Appendix A

In this section we sketch the proof of (1.4).

Proof of (1.4). We first show that ‖e−t|D|β f ‖L1
T L∞ �T ,β ‖ f ‖

B−β
∞,1

. From a high–low frequency decom-

position and (2.5), we deduce that∥∥e−t|D|β f
∥∥

L1
T L∞ �

∥∥e−t|D|β �−1 f
∥∥

L1
T L∞ +

∑
j�0

∥∥� je
−t|D|β f

∥∥
L1

T L∞

� ‖�−1 f ‖L∞ T +
∑
j�0

∥∥e−ct2 jβ ∥∥
L1

T
‖� j f ‖L∞

�
(
2−β T + 1

)‖ f ‖
B−β

∞,1
.

Next we prove the inverse inequality. For j ∈ N and T > 0, we have
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� j f =
T1∫

0

(
Id − e−T1|D|β − T1|D|βe−T1|D|β )−1

t|D|2βe−t|D|β � j f dt,

where T1 � T /2. Indeed, by applying the Fourier transform, it follows from
∫ T1|ξ |β

0 te−t dt = 1 −
e−T1|ξ |β − T1|ξ |βe−T1|ξ |β > 0. Note that due to supp �̂ j f ⊂ {ξ : |ξ | � 1}, by choosing T large enough,

we get 1 � e−T1|ξ |β + T1|ξ |βe−T1|ξ |β . In a similar way as obtaining (2.5), we infer that for every j ∈ N,∥∥(
Id − e−T1|D|β − T1|D|βe−T1|D|β )−1

� j f
∥∥

L∞ �
(
1 − e−cT )−1‖� j f ‖L∞ .

Then since e−t|D|β = e−t|D|β/2e−t|D|β/2, from Bernstein’s inequality and (2.5), we find that

‖� j f ‖L∞ �
(
1 − e−cT )−1

T /2∫
0

t22 jβe−ct2 jβ ∥∥e−t|D|β/2 f
∥∥

L∞ dt.

Thus

∑
j∈N

2− jβ‖� j f ‖L∞ �
(
1 − e−cT )−1

T∫
0

(∑
j∈N

t2 jβe−ct2 jβ
)∥∥e−t|D|β f

∥∥
L∞ dt

�
(
1 − e−cT )−1∥∥e−t|D|β f

∥∥
L1

T L∞ .

While for j = −1, according to

�−1 f = 1

T

T∫
0

et|D|β (
e−t|D|β �−1 f

)
dt,

and from Bernstein’s inequality and et|D|β = ∑
k∈N(t|D|β)k/k!, we have

‖�−1 f ‖L∞ � 1

T

T∫
0

eCt
∥∥e−t|D|β �−1 f

∥∥
L∞ dt

� 1

T
eC T

∥∥e−t|D|β f
∥∥

L1
T L∞ .

Hence ‖ f ‖
B−β

∞,1
�T ,β ‖e−t|D|β f ‖L1

T L∞ . �
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