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Abstract. In this paper, we revisit the patch solutions for a class of inviscid whole-space active
scalar equations that interpolate between the 2D Euler equation and the α-SQG equation. Compared
with the 2D Euler equation in vorticity form, there is an additional Fourier multiplier m(Λ) (Λ =

(−∆)1/2) in the BiotSavart law. If the symbol m satisfies the Osgood-type condition∫ +∞

2

1

r(log r)m(r)
dr = +∞

and certain mild assumptions, the system is referred to as the 2D Loglog-Euler type equation.
First, we prove a Yudovich-type theorem establishing the existence and uniqueness of a global

weak solution for the Loglog-Euler type equation associated with bounded and integrable initial
data. This result directly applies to patch solutions, which are weak solutions corresponding to
patch initial data given by characteristic functions of disjoint, regular, bounded domains.

Next, we revisit the seminal result by Elgindi [41] and provide a different proof under explicit
assumptions on m, showing that for the 2D Loglog-Euler type equation with C1,µ (0 < µ < 1)
single-patch initial data, the evolved patch boundary globally preserves the C1,µ−ε regularity for
any ε ∈ (0, µ). In contrast to the frequency-space argument in [41], we develop an entirely physical-
space-based approach that avoids the LittlewoodPaley theory and offers advantages for potential
extensions to the half-plane or bounded smooth domains.

Furthermore, we investigate the global propagation of higher-order Cn,µ boundary regularity for
patch solutions with any n ∈ N?, and analyze the evolution of multiple patches.
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1. Introduction

In this paper we study a family of two-dimensional (2D) active scalar equations
∂tω + u · ∇ω = 0, (x, t) ∈ R2 × R+,

u = ∇⊥(−∆)−1m(Λ)ω, (x, t) ∈ R2 × R+,

ω|t=0(x) = ω0(x), x ∈ R2,

(1)

where ∇⊥ , (∂x2 ,−∂x1) and Λ , (−∆)
1
2 , the vector u = (u1, u2) is the velocity field and the scalar

field ω can be interpreted as the vorticity (or density, or temperature) of the fluid. The operator
m(Λ) is a Fourier multiplier with the symbol m(ξ) = m(|ξ|), which is a radial function on R2

satisfying the following hypotheses:

(H1) m(r) ∈ Cn+4(R+), n ∈ N? and

∀ r > 0, m(r) > 0, m′(r) ≥ 0; and lim
r→0+

rm′(r) exists;

and m′(r) satisfies the Mikhlin-Hörmander condition, that is, there exists a constant C > 0
such that ∣∣ dk

drk
m′(r)

∣∣ ≤ Cr−km′(r), ∀ k = 1, · · · , n+ 3, ∀ r > 0.

(H2) Denote by m̃(r) , m(er). Either one of the statements holds:
(H2a) there exist constants β ∈ [0,+∞], β1 ∈ [0,+∞), and β2 ∈ (−2,+∞) such that the

following limits exist:

lim
r→+∞

m(r) = +∞, lim
r→+∞

r(log r)m̃′(r)

m̃(r)
= β, lim

r→+∞

rm̃′(r)

m̃(r)
= β1, lim

r→+∞

rm̃′′(r)

m̃′(r)
= β2;

(H2b) there exists a constant α ∈ (0, 2) such that

lim
r→+∞

rm′(r)

m(r)
= α;

(H2c) there exists a constant C > 0 such that

lim
r→+∞

m(r) = C < +∞.

We emphasize that the technical assumptions in (H2) can be viewed as a non-oscillatory condition
on m(r) near infinity. The three cases describe different types of asymptotic growth of m(r) as
r → +∞: bounded m in (H2c), power-law growth in (H2b), and intermediate growth in (H2a).
The existence of the limits in (H2) excludes highly oscillatory behaviors of m near infinity, for
instance, m(r) = log log(e2 + 2r + sin r). To keep (H2a) as general as possible, we allow β to take
the value +∞.

Active scalar equations (1) under assumptions (H1)-(H2) arise frequently in hydrodynamic mod-
els and have attracted considerable attention. Typical examples include the following:
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• 2D Euler equation: m(r) ≡ 1. In this case, m(Λ) ≡ Id, and equation (1) reduces to the
two-dimensional Euler equation in vorticity form, which describes the motion of an inviscid
incompressible fluid in two dimensions and is a fundamental model in fluid dynamics. It is
a typical example where (H2c) holds.

• Inviscid α-SQG equation: m(r) = rα, α ∈ (0, 2). Here,

m(Λ) = (−∆)
α
2 = Λα.

For α = 1, equation (1) becomes the well-known SQG equation, a simplified model for
atmospheric circulation near the tropopause [55] and for ocean dynamics in the upper
layers [72]. The case 0 < α < 1 was introduced by Córdoba, Fontelos, Mancho, and
Rodrigo [25] as a class of models interpolating between the 2D Euler and SQG equations.
This family of equations satisfy (H2b).

• 2D Loglog-Euler equation: m(r) = logβ
(
1 + log(1 + r2)

)
, β ∈ (0, 1]. In this case, the

multiplier is
m(Λ) = logβ(1 + log(1−∆)). (2)

This equation was introduced by Chae, Constantin, and Wu [15] as a more general frame-
work connecting the 2D Euler and α-SQG equations. It was later studied independently
by Dabkowski, Kiselev, Silvestre, and Vicol [30], and by Elgindi [41].

The 2D Loglog-Euler equation is a prototypical example satisfying (H2a). Other exam-
ples obeying (H2a) include, for instance,

m(r) = logβ1(1 + r) and m(r) = log(1 + log(1 + (log(1 + r)))).

We refer to such models collectively as the 2D Loglog-Euler type equation; these equations
are the primary focus of this paper.

The study of well-posedness issues for the 2D Euler equation originated with the classical works
of Wolibner [90] and Hölder [56] in the 1930s, who established global well-posedness for smooth
solutions with Hölder continuous vorticity. A significant advance was made by Yudovich [91],
who proved the global existence and uniqueness of weak solutions to the 2D Euler equations with
bounded and decaying vorticity; see also [4, 18, 29, 76, 74] for other accessible proofs. The velocity
field associated with a Yudovich solution is generally not Lipschitz continuous in the spatial variable,
but instead log-Lipschitz in the sense that

|u(x, t)− u(y, t)| ≤ C|x− y|
(

1 + log
1

|x− y|

)
, ∀ t > 0, 0 < |x− y| ≤ 1. (3)

As observed by Bahouri and Chemin [3], such a log-Lipschitz velocity field will cause the regularity
of the free transported quantity to deteriorate during evolution; one can see recent advances in
[33, 11, 59, 34]. The global existence of a weak solution (possibly without uniqueness) was proved
for vorticity in a wider class L∞t L

p
x, 1 < p <∞, [91, 37]; and the uniqueness of weak solutions can

also be slightly improved: Yudovich [92] extended his uniqueness result for unbounded vorticity ω ∈
∩p0≤p<∞L

∞
t L

p
x so that ‖ω(t)‖Lp ≤ Cθ(p) and θ(p) grows moderately in p (e.g. θ(p) = log p); Vishik

[86] provided a different uniqueness class that ω ∈ L∞t (Lp0∩BΠ), p0 ∈ (1, 2) with
∫∞

1 Π(τ)−1dτ =∞
and BΠ ,

{
f ∈ S ′(R2) :

∑N
j=−1 ‖∆jf‖L∞ = O(Π(N))

}
; Taniuchi [85] generalized [92] to be the

following result that ω ∈ L∞t YΘ with Θ : [1,∞) 7→ [1,∞) an increasing function satisfying the

Osgood type condition
∫∞

2
dp

pΘ(p) =∞ and YΘ ,
{
f ∈ S ′(R2) : supp∈[1,∞)

‖f‖Lp
Θ(p) <∞

}
; one can see

[5, 6] for some related improvement. Elgindi et al. [46] developed a novel class of solutions beyond
the Yudovich class that admits the local well-posedness and finite-time singularity result. In the
direction of non-uniqueness for the 2D Euler equation (with or without forcing) with vorticity in
L∞t L

p
x (p < ∞), one can see [87, 88, 1, 13, 9, 77, 10] for the recent developments. Except for the

study related to the Yudovich theory, the 2D Euler equation has been actively investigated in other
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key aspects, such as ill-posedness in critical or supercritical function spaces [8, 42, 45, 60, 28], well-
posedness in singular planar domains [51, 52, 53], (optimal) bounds for vorticity gradient growth
[35, 69, 93, 39, 95, 63], etc.

For the α-SQG equation, the local well-posedness and ill-posedness results in regular Sobolev and
Hölder spaces have been well established; see, e.g. [89, 16, 22] and [26, 27, 61, 20], respectively. The
global existence of weak solutions was shown in [83, 75, 16, 23, 79, 73], and the non-uniqueness result
for the (forcing) α-SQG equation can be referred to [12, 19, 57, 31, 14] and references therein. He and
Kiselev [54] proved that there exist solutions of α-SQG equation with α ∈ (0, 2) that exhibit either
infinite-in-time growth of derivatives or finite-time blowup. However, the global well-posedness of
smooth solutions for the α-SQG equation with any α ∈ (0, 2) in the whole space R2 or the torus
T2 still remains a remarkable open problem. We note that this problem is solved for the α-SQG
equation in some domains with boundary: indeed, for the α-SQG equation with α ∈ (0, 1

2 ] in the
half-plane, Zlatoš [94] proved the local well-posedness in the anisotropic Lipschitz type spaces and
established the finite-time singularity formation in this class associated with smooth initial data
(see also [62]), where the rigid boundary plays an essential role in the blowup mechanism.

Based on the study of the 2D Euler and α-SQG equations, an intriguing question arises:

How far can we deviate from the 2D Euler equation towards the α-SQG equation
while still maintaining global well-posedness of smooth (or non-smooth) solutions?

This question strongly motivated Chae, Constantin, and Wu [15] to introduce the Loglog-Euler
equation (1) with multiplier (2), for which they proved global well-posedness of smooth solutions.
Later, the Osgood-type condition∫ +∞

2

1

r(log r)m(r)
dr =

∫ +∞

log 2

dr

rm̃(r)
= +∞. (Osg)

was proposed as a possible criterion distinguishing well-posedness from ill-posedness. Elgindi [41]
and Dabkowski et al. [30] independently established the global regularity of smooth solutions to (1)
when the multiplier m satisfies the Osgood condition (Osg), together with certain mild assumptions.
So far, it remains open whether (Osg) is a critical condition in deciding the global regularity of
smooth solutions for equation (1).

We note that if m satisfies (H2c) (e.g., the 2D Euler case), (Osg) holds automatically, whereas if
m satisfies (H2b) (e.g., the α-SQG equation), (Osg) fails. Our main interest lies in the intermediate
case (H2a), for which (Osg) holds if and only if β ≤ 1. See Lemma 2.1 for more details.

In this paper, we focus primarily on patch solutions, which are weak solutions of the active scalar
equation (1) associated with patch-like initial data, that is, initial data consisting of either a single
patch (N = 1) or multiple patches (N > 1):

ω0(x) =

N∑
j=1

aj1Dj(0)(x), aj ∈ R, 1Dj(0)(x) ,

{
1, x ∈ Dj(0),

0, x ∈ R2 \Dj(0),
(4)

where Dj(0) ⊂ R2, j = 1, · · · , N are simply connected disjoint bounded domains with regular
boundaries ∂Dj(0). Patch solutions offer an effective mathematical approach for modeling the
evolution of bounded domains with concentrated scalar fields in fluid systems, particularly excelling
in capturing sharp interfacial dynamics. For the 2D Euler equation, Yudovich’s result [91] guarantees
that patch solutions with initial data (4) exist uniquely and globally in time and keep the patch
structure during the evolution. But the flow map (defined by (5)) provided in the Yudovich theory is

a hemoemorphism of Hölder class Cexp(−Ct), thus the patch boundary is a priori of class Cexp(−Ct).
Consequently, the so-called vorticity patch problem for the 2D Euler equation was initiated in the
1980s which asks whether the initial smoothness of patch boundaries ∂Dj(t) can be maintained for
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all time under evolution. This fundamental question was resolved by Chemin [17], who established
the global persistence of Ck,γ-regularity with k ∈ N? and γ ∈ (0, 1) for the vortex patch boundaries.
Bertozzi and Constantin [7] proved the same result using a more elementary geometric argument.
For other proofs, we refer to [82, 80]. This global persistence of C1,γ-regularity of vortex patches
was extended to the 2D Euler equation in the half-plane [68] and the smooth bounded domain [64],
where the patch boundary allows to touch the rigid domain boundary (see [36, 40] for the previous
results). Recently, Kiselev and Luo [66] established the strong ill-posedness of C2 vortex patches.
One can refer to [32, 21, 44, 43] for the study of vortex patches with boundary singularities (e.g.
corners).

For the α-SQG equation, there is no counterpart of Yudovich’s theory that directly implies
the existence and uniqueness of patch solutions. Nevertheless, the evolution of patch boundaries
can still be effectively analyzed through the contour dynamics equations. The local existence and
uniqueness of the C∞ patches for the α-SQG equation with α ∈ (0, 1) were first proved by Rodrigo
[81]. By significantly using the cancellation of the curve structures, the local well-posedness of
α-SQG patch solutions in L2-based Sobolev spaces has been established in the following regimes
[47, 16, 70, 24, 49, 48]: Hn (n ≥ 2) for α ∈ (0, 1), H2+s (s > 0) for α = 1, and Hn (n ≥ 3) for
α ∈ (1, 2). Additionally, Kiselev and Luo [67] demonstrated strong ill-posedness for α-SQG patches
with α ∈ (0, 1) in Hölder space C2,γ , γ ∈ (0, 1) and Sobolev space W 2,p, p 6= 2. The possible splash
singularity of the α-patches with α ∈ (0, 2) has been excluded by [50, 65, 58]. For the α-SQG
equation in half-plane with rigid boundary, there is a remarkable breakthrough by Kiselev, Ryzhik,
Yao, and Zlatoš [68, 70], which established the local well-posedness of multiple patch solutions and
constructed some patch-like initial data to develop finite-time singularity in the case α ∈ (0, 1

12);
in combination with the global well-posedness result [68] for multiple vortex patches of the 2D
Euler equation (i.e. α = 0 case), this striking dichotomy highlights the critical transition at α = 0
in the behavior of patch solution. Subsequently, the regime of finite-time singularity formation
for α-patches was extended by Gancedo and Patel [49] to α ∈ (0, 1

3) (see also [94] for further
improvement).

For the active scalar equation (1) with m(·) satisfying (H2a), the associated vortex patch problem
is slightly more singular than in the bounded-m case, and the velocity field is no longer Lipschitz
continuous (in contrast to the Euler case). Consequently, an ε-loss of regularity appears in the
boundary regularity propagation of vortex patches [3, 4]. When the Osgood-type condition (Osg)
holds, together with other mild assumptions, Elgindi [41] identified new cancellation mechanism-
s and, by applying the losing-estimates method [3], established global C1,γ−ε (0 < ε < γ < 1)
regularity for the evolving patches of the whole-space 2D Loglog-Euler equation (1), starting from
C1,γ patch initial data. On the other hand, when the Osgood-type condition (Osg) fails (i.e.,∫ +∞

2
1

r(log r)m(r) , dr < +∞), the authors and Miao in [78] proved the formation of finite-time singu-

larities in patch solutions of (1) in the half-plane with rigid boundary conditions, thereby extending
the results of [68, 49] for the α-SQG equations. These two results together suggest that the Osgood
condition (Osg) may serve as a sharp threshold distinguishing global regularity from finite-time
blow-up in patch solutions of the model (1).

In this paper, we revisit the seminal result of Elgindi [41] on patch solutions to the 2D Loglog-
Euler type equation (1), and provide an alternative proof under the explicit assumptions on m (i.e.,
(H1)-(H2a)-(Osg)). In contrast to the frequency-space-based argument involving losing estimates
in [41], we develop an entirely physical-space-based approach that avoids the use of Littlewood-
Paley theory. This formulation offers several advantages, particularly for extensions to the half-
plane setting (see Remark 3) or to bounded smooth domains. Moreover, we investigate the global
propagation of higher Cn,γ boundary regularity for patch solutions with arbitrary n ∈ N?, and study
the evolution of multiple interacting patches.
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Our first result establishes a Yudovich type theorem for the 2D Loglog-Euler type equation (1),
which can serve as a basis for the study of patch solutions.

Theorem 1.1. Assume that m(ξ) = m(|ξ|) is a radial function of R2 with m(r) satisfying (H1)-
(H2a)-(Osg). Let ω0 ∈ L1 ∩ L∞(R2), then the 2D Loglog-Euler type equation (1) admits a unique
global weak solution (in the sense of Definition 3.1)

ω ∈ L∞([0,+∞);L1 ∩ L∞(R2)) and ω(x, t) = ω0(Φ−1
t (x)),

where the flow map Φt(x) , Φt,0(x), its inverse Φ−1
t (x) , Φ0,t(x), and Φt,s : R2 → R2 is uniquely

defined by
dΦt,s(x)

dt
= u(Φt,s(x), t), Φt,s(x)

∣∣
t=s

= x. (5)

Furthermore, the flow map Φt(x) satisfies the following estimate,

1

H−1
(
H(|x− y|−1) + Ct

) ≤ ∣∣Φ±1
t (x)− Φ±1

t (y)
∣∣ ≤ 1

H−1
(
H(|x− y|−1)− Ct

) , (6)

where C > 0 is a constant depending on ‖ω0‖L1∩L∞ and the map r ∈ (0,+∞) 7→ H(r) is defined by

H(r) ,


∫ r

2

1

r̃(log r̃)m(r̃)
dr̃, for r ≥ 2,

1
(log 2)m(2) log r

2 , for r ∈ (0, 2),

(7)

and H−1(·) : R 7→ (0,+∞) is its inverse function.

Remark 1. For the Euler equation (m(r) ≡ 1), from the definition (7), we have H(r) ≈ log log r as
r → +∞. Correspondingly, H−1(·) exhibits double-exponential growth:

H−1(y) ≈ exp
(
C exp(y)

)
, as y→ +∞.

When limr→+∞m(r) = +∞, the function H(r) grows more slowly than log log, and H−1(·) grows
faster than double exponential. The Osgood condition (Osg) plays a crucial role in ensuring that
H−1(·) is well defined on R. In general, H−1(·) may grow arbitrarily fast.

The velocity field u in Theorem 1.1 satisfies the continuity estimate (35) below, which is commonly
referred to as an Osgood vector field (see [2, 71]) and is slightly more singular than a log-Lipschitz
field (3).

Finally, we note that Theorem 1.1 is analogous to the results in [92, 86, 85, 5, 6] on slightly
generalized Yudovich classes.

Theorem 1.1 ensures the global existence and uniqueness of patch solutions to the 2D Loglog-
Euler equation with initial data given by (4), and guarantees that the patch structure is globally
preserved:

ω(x, t) =

N∑
j=1

aj1Dj(t)(x), with Dj(t) = Φt(Dj(0)), (8)

where the flow map Φt(·) = Φt,0(·) is given by (5).

We now turn to the vortex patch problem concerning the global regularity of the patch boundaries.
More precisely, we aim to address the following question:

If the initial patch boundaries ∂Dj(0) in (4) belong to the Hölder class Cn,µ with
n ∈ N? and µ ∈ (0, 1) for all j ∈ 1, 2, . . . , N , what is the (best possible) regularity
of ∂Dj(t) for every t > 0 and j ∈ 1, 2, . . . , N?
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We first consider the evolution of a single patch with N = 1 and a1 = 1, namely,

ω(x, t) = 1D(t)(x), where D(t) = Φt(D0). (9)

Our main result concerning the regularity of ∂D(t) is stated below.

Theorem 1.2. Let µ ∈ (0, 1) and n ∈ N?. Assume that m(ξ) = m(|ξ|) is a radial function on
R2, where m(r) satisfies (H1)-(H2a)-(Osg). Consider the unique global patch solution (9) of the
2D Loglog-Euler equation (1) associated with the patch initial data ω0 = 1D0, where D0 ⊂ R2 is
a simply connected bounded domain, with boundary ∂D0 ∈ Cn,µ. Then, for any t > 0, the patch
boundary ∂D(t) = Φt(∂D0) almost preserves its regularity, in the sense that, ∂D(t) ∈ Cn,µ−ε for
any ε ∈ (0, µ).

More precisely, let z(·, t) be a parameterization of ∂D(t) (see (44) and (50) for definition and
construction). Then, for any given ε > 0, ε > 0, there exists a constant C > 0 depending on µ, ε,
ε and ‖z0‖Cn,µ, such that the following estimates hold:

‖z(t)‖Cn,µ−ε ≤ C
(
H−1

(
C(1 + t) logβ+ε(e+ t)

))C logβ+ε(e+t)
, (10)

where the mapping H(·) is given by (7).

Theorem 1.2 shows that the initial Cn,µ boundary regularity persists in time, up to the loss of an
arbitrarily small exponent. However, the estimate (10) indicates that the corresponding bound may
grow rapidly in time, up to H−1(t), with additional logarithmic factors. According to Remark 1,
this growth can be double-exponential in time, or even faster. This is consistent with the results
for the two-dimensional Euler case (see Remark 2).

The next result extends the boundary regularity theory to the case of multiple patches.

Theorem 1.3. Let µ ∈ (0, 1) and n ∈ N?. Assume that m(ξ) = m(|ξ|) is a radial function on R2,
where m(r) satisfies (H1)-(H2a)-(Osg). Consider the unique global patch solution (8) of the 2D
Loglog-Euler equation (1) associated with the patch initial data (4), where Dj(0) ⊂ R2 are simply
connected disjoint bounded domains, with boundaries ∂Dj(0) ∈ Cn,µ for j ∈ {1, · · · , N}. Then,
for any t > 0, the patches Dj(t) remain disjoint, and the boundaries ∂Dj(t) = Φt(∂Dj(0)) almost
preserve their regularity, in the sense that, ∂Dj(t) ∈ Cn,µ−ε for any ε ∈ (0, µ) and j ∈ {1, · · · , N}.

A more detailed version of Theorem 1.3 is given in Theorem 6.1, which provides a more quantita-
tive bound in (115). Compared to the bound (10) for the single-patch case, the growth behaves like
exp(H−1(t)), which is triple-exponential in time or even faster. The additional exponential factor
arises from the fact that the distance between patches may decrease over time, thereby influencing
the boundary regularity. See Remark 6 for further discussion.

In what follows, we outline the main ideas underlying the proofs of our main theorems, empha-
sizing the key analytical mechanisms and novelties involved.

For the proof of Theorem 1.1, we first establish that the velocity field satisfies the crucial modulus-
of-continuity estimate (see (40)) and that the flow map enjoys the property (6). By combining these
a priori estimates with a standard approximation argument, as in the 2D Euler case, we obtain the
global existence of Yudovich-type solutions.

For uniqueness, note that the classical approach for the 2D Euler equation (see [17, 74]) relies on
the harmonic-analysis estimate

‖∇⊥∇(−∆)−1ω‖Lp ≤ C p2

p−1‖ω‖Lp , 1 < p <∞,

for some universal constant C > 0. However, obtaining an analogous bound for ∇⊥∇(−∆)−1m(Λ)ω
with unbounded m appears nontrivial. Instead, we adopt the approach of [76, Sec 2.3], which is
based on the analysis of the flow map. In particular, we introduce the quantity δ(t) defined in (42),
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analogous to [76, Eq. (3.30)], but formulated on the whole space rather than a bounded smooth
domain. Using the modulus-of-continuity estimate together with the properties of the flow map,
we derive an Osgood-type inequality, which in turn implies the uniqueness of the Yudovich-type
solutions under consideration.

Next, we turn to the proof of Theorem 1.2. Following the framework described in Section 4.1,
we represent ∂D(t) using a level-set characterization: a function ϕ such that ϕ(x, t) = 0 for all

x ∈ ∂D(t) (see Definition 4.1 for details). Let W , ∇⊥ϕ denote the tangential vector field along
∂D(t), which satisfies equation (73), and define the tangential derivatives by

∂W ,W · ∇, and ∂kW , ∂W · · · ∂W︸ ︷︷ ︸
k times

.

As demonstrated in Section 4.1, for any t > 0 and n ∈ N?, µ ∈ (0, 1), we have

‖∂n−1
W W (·, t)‖Cµ < +∞ =⇒ ∂D(t) ∈ Cn,µ.

For n = 1, the main objective is to propagate Hölder regularity ‖W (·, t)‖Cµ−ε . This theory has
been established in [41], through a frequency-space-based argument, in which the two quantities

‖W (t)‖Ċµ−ε and |W (t)|inf , infx∈∂D(t) |W (x, t)| are propagated simultaneously, employing the ε-
regularity-losing estimates from [3, 4].

In contrast, we develop a new approach that is entirely physical-space-based. Compared with
the frequency-space framework, our method is more amenable to extension from the whole space
to domains with boundaries.

Our approach relies on three key new ingredients.

• Near-Lipschitz estimate for the velocity field u = ∇⊥(−∆)−1m(Λ)(1D(t)).

In Lemma 4.1, we show that in the single-patch setting, the velocity u admits a modulus
of continuity of the form ρ 7→ ρ

(
m(ρ−1) + 1

)
up to an additional logarithmic factor

f(t) , log
(

1 +
‖W (t)‖Ċγ
|W (t)|inf

)
, γ ∈ (0, µ].

Compared with the velocity field associated with general vorticity ω ∈ L1 ∩ L∞, which
satisfies the modulus of continuity ρ 7→ ρ

(
log ρ−1m(ρ−1) + 1

)
(see (36)), this represents a

logarithmic improvement. Such an improvement exploits the inherent geometry of patch
structure and plays a crucial role in implementing the regularity-losing estimates.

• Key integral representation formula and refined Hölder-type estimate of ∂Wu.

In Lemma 4.3, we derive a singular integral representation for ∂Wu, which generalizes the
result of [7, Proposition 2] obtained for the 2D Euler case. However, this generalization is
nontrivial due to the unboundedness of ∇u and the additional singularity introduced by
the multiplier m(Λ) (e.g., [41, p.984]). To overcome these difficulties, we adopt a slightly
different and more general approach to justify the integral representation, partially inspired
by [80].

The refined Hölder-type estimate in Lemma 4.4 also generalizes the following bound from
[7, Corollary 1], which holds for the 2D Euler case:

‖∂Wu‖Ċµ ≤ C‖∇u‖L∞
(
‖W‖Ċµ + 1

)
.

To accommodate the presence of the multiplier m(Λ), we introduce the m-adapted Hölder
space (Cµm, ‖ · ‖Cµm) defined in (57). Using the near-Lipschitz estimate, we establish an
analogous bound for ‖∂Wu‖Cµm in terms of ‖W‖Ċµ , up to a logarithmic factor f .

• Refined estimate of the flow map Φt,s.
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Building on the near-Lipschitz regularity of the velocity field, the flow map Φt,s(·) defined
in (5) satisfies a sharper continuity estimate (see (72)), which significantly improves upon
the bound (6) obtained in the Yudovich theory. This refined property of the flow map
allows us to directly analyze W (x, t) along the flow map.

Combining these ingredients with the losing-estimates method within the physical-space frame-
work, we establish the propagation estimate for the Cµ−ε-regularity of W (·, t) (see (89)).

To handle the logarithmic factor f , we derive a lower bound for |W (t)|inf in (76), following the
approach of [41]. The key step is to prove the point-wise estimate on ∇uW · W , as stated in
Lemma 4.5.

With both propagation estimates for ‖W (·, t)‖Ċµ−ε and |W (t)|inf at hand, we find that the quan-
tity f satisfies an Osgood-type inequality (95), which ultimately yields the estimates

|W (t)|inf ≥ |W0|inf

(
H−1

(
C(1 + t) logβ+ε(e+ t)

))−C
, (11)

‖W (t)‖Cµ−ε(R2) ≤ C‖W0‖Cµ
(
H−1

(
C(1 + t) logβ+ε(e+ t)

))C logβ+ε(e+t)
. (12)

This directly leads to the desired bound (10).

For general n ∈ N?, the proof of Theorem 1.2 follows the same strategy as in the case n = 1.
One crucial step is to establish the higher-order analogue of the key integral representation formula
(103) for ∂kWu. Based on this novel formula, we derive Hölder-type estimates for ∂kWu in Lemma 5.3,

treating the leading term involving ∂k−1
W W analogously to the n = 1 case, and handling the lower-

order striated terms separately. Finally, an induction argument combined with the losing-estimates
method leads to the bound

‖∂n−1
W W (t)‖Cµ−ε(R2) ≤ C‖ϕ0‖Cn,µ

(
H−1

(
C(1 + t) logβ+ε(e+ t)

))C logβ+ε(e+t)
, (13)

which completes the proof of Theorem 1.2 for general n.

For the proof of Theorem 1.3 concerning multiple patches, we first observe that the distance
between any two evolved patches admits a positive lower bound by Theorem 1.1. Consequently,
for each patch, the influence of the others remains controlled, while the singular contribution still
arises from the patch itself. Arguing as in the single-patch case, we then complete the proof of
Theorem 1.3.

Finally, we present some remarks as follows.

Remark 2 (Bounded-m case). Theorems 1.1, 1.2, and 1.3 remain valid if the assumption (H2a) is
replaced by (H2c) with β = ε = ε = 0 in the statements. Consequently, these results apply to

the quasi-geostrophic shallow water equation [38] (i.e. m(r) = r2

r2+λ2 , λ > 0). We do not aim to
identify the most general conditions under which the results hold. For example, they also apply to
the Eulerλ equation [84] (i.e. m(r) = 1

1+λ2r2 , λ > 0), even though m is not monotone increasing.

In particular, the bounds (11)-(13) for the single-patch case and (114)-(115) for the multi-patch
case coincide with the corresponding bounds for the 2D Euler equation, as given in [7, Eqs. (2.13),
(2.11)] and [68, p. 930], respectively.

Indeed, when m is bounded, the m-adapted space Cµm coincides with the standard Hölder space
Cµ. The main estimates (see Lemmas 4.1, 4.4, 4.5, and 5.3) can then be adapted directly. Moreover,
since the velocity field is Lipschitz continuous (Lemma 4.1), the losing-estimates argument is no
longer required. Consequently, the global persistence of Cn,µ boundary regularity for patch solutions
follows.

Remark 3 (Half-plane case). Consider the vortex patch problem for the 2D Loglog-Euler equation
(1) in the half-space R2

+ with a no-flow (rigid) boundary condition. If initially the patch boundaries
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are disjoint from the rigid boundary ∂R2
+, then, by performing an odd extension with respect to

the x2-variable and applying the argument of Theorem 1.3, one obtains global persistence of patch
boundary regularity in the half-space, analogous to the whole-space case.

If the patch boundaries touch the rigid boundary, as in the blowup scenario studied in [68], the
situation becomes more delicate. One may attempt to combine the techniques developed in [68] (for
the 2D Euler case) with the arguments of the present paper to obtain a global persistence result.
It appears that most of the necessary estimates can indeed be extended, except for one crucial
estimate, an analogue of [68, Eq. (3.29)]:

Given B̃x , B(Ox, rx) and u
B̃x

(z) = ∇⊥(−∆)−1m(Λ)(1
B̃x

)(z), does it hold that

for |z −Ox| = rx + d(x) and d(x) ∈ (0, 1
4rx],∣∣∇2u

B̃x
(z)
∣∣ ≤ C(1 +m(d(x)−1)

)
r−1
x ?

Due to the nonlocal nature of the multiplier m(Λ), it is unclear whether the above inequality holds,
or, if it does, how to establish it as in the m ≡ 1 case. Consequently, this interesting vortex patch
problem remains open.

The remainder of this paper is organized as follows. In Section 2, we collect several useful
properties of m(r) and of the kernel function G(ρ), and present the expression formula for the
velocity u = ∇⊥(−∆)−1m(Λ)ω. In Section 3, we prove Theorem 1.1, establishing the Yudovich-
type result for the 2D Loglog-Euler type equation. Section 4 is devoted to the proof of Theorem 1.2
with n = 1, concerning the single-patch case, while the general case n ∈ N? of Theorem 1.2 is proved
in Section 5. Finally, the proof of Theorem 1.3 on multiple patches is presented in Section 6.

Notations. We use the symbol C to denote a generic positive constant, which may vary from line
to line. The dependence of C on specific parameters will be clear from the context and explicitly
indicated when necessary. We write A ≈p B to mean that there exists a constant C > 0, depending
on p, such that C−1A ≤ B ≤ CA.

2. Preliminaries

In this section, we shall deduce some useful properties of m(r), write out the expression formula
of the velocity field u(x) in convolution form, and recall various estimates of the kernel function
G(ρ) determined by the multiplier m.

2.1. Properties of m(r). We list some useful properties of m(r) that satisfy the assumptions
(H1)-(H2a). Before proceeding, we note that the limits in (H2a) have the following equivalent
form:

lim
r→+∞

r(log r)(log log r)m′(r)

m(r)
= lim

r→+∞

r(log r)m̃′(r)

m̃(r)
= β,

lim
r→+∞

r(log r)m′(r)

m(r)
= lim

r→+∞

rm̃′(r)

m̃(r)
= β1, (14)

lim
r→+∞

(log r)(rm′′(r) +m′(r))

m′(r)
= lim

r→+∞

rm̃′′(r)

m̃′(r)
= β2, (15)

with β ∈ [0,+∞], β1 ∈ [0,+∞), β2 ∈ (−2,+∞).

• Under the condition (H1), for every λ > 0,

m(λr) ≈λ m(r), ∀ r > 0, (16)
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and there exists a constant C > 0 such that

m′(r) ≤ Cr−1m(r). (17)

See, e.g. [78, Eq. (43)] for the proof of (16). To obtain (17), we start with the inequality

d

dr

(
rm′(r)

)
= m′(r) + rm′′(r) ≤ Cm′(r).

Integrating in (0, r) leads to the desired bound

rm′(r) ≤ lim
r→0+

rm′(r) + C
(
m(r)−m(0+)

)
≤ Cm(r),

where we have used the fact that m(0+) ≥ 0, and

lim
r→0+

rm′(r) = 0. (18)

To see (18), suppose limr→0+ rm′(r) = c > 0. Then we have m′(r) > c
2r if r is sufficiently

small. This contradicts the fact that m′(r) is integrable near the origin.
• Under the condition (H2a), if β < +∞, there exists a large constant r0 ≥ 2, depending on
β, such that

∀ ε > 0, r 7→ (log r)−β−ε m̃(r) is monotonously decreasing on [r0,∞). (19)

This is due to

d

dr
(log r)−β−εm̃(r) = (log r)−β−εm̃′(r)

(
1− (β + ε)

m̃(r)

r(log r)m̃′(r)

)
,

and

1− (β + ε)
m̃(r)

r(log r)m̃′(r)

r→+∞−−−−→ − ε
β < 0,

with m̃′(r) ≥ 0 for all r ∈ R. Hence t ∈ [r0,+∞) 7→ (log r)−β−ε m̃(r) decreases for large
enough r0.

If β = +∞, we apply a similar argument on the limit (14) and obtain a slightly weaker
result

∀ ε > 0, r 7→ (log r)−β1−εm(r) is monotonously decreasing on [r0,∞),

where the large constant r0 depends on β1. As a direct consequence, we also get

m(r) ≤ m(r0) max
{

1, (log+ r)
β1+ε

}
, ∀ r > 0. (20)

• Under the condition (H2a), we have

r 7→ r m̃(r) is monotonously increasing and convex in [r0,+∞), (21)

where we also denote the large constant by r0. To see this, we compute

d

dr

(
rm̃(r)

)
= m̃(r)

(
1 +

rm̃′(r)

m̃(r)

)
, and

d2

dr2

(
rm̃(r)

)
= m̃′(r)

(
2 +

rm̃′′(r)

m̃′(r)

)
,

and

1 +
rm̃′(r)

m̃(r)

r→+∞−−−−→ 1 + β1 > 0, 2 +
rm̃′′(r)

m̃′(r)

r→+∞−−−−→ 2 + β2 > 0,

with m̃ > 0, m̃′(r) ≥ 0 for all r > 0.
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• Suppose β < +∞. For any κ ≥ 1, there exists a constant C > 0, depending on κ and β,
such that

m̃(rκ) ≤ Cm̃(r), ∀ r > 0. (22)

Indeed, the inequality follows from (19). For r ≤ r0, we apply the monotonicity of m̃ to
get m̃(rκ) ≤ m̃(rκ0 ) ≤ Cr0m̃(0) ≤ Cr0m̃(r). For r ≥ r0, we deduce from (19) that

m̃(rκ) = (log rκ)β+ε(log rκ)−(β+ε)m̃(rκ) ≤ (κ log r)β+ε(log r)−(β+ε)m̃(r) = κβ+εm̃(r).

The same argument can be applied to m for r ≥ r0, replacing β by β1, while for r ≤ r0,
(16) implies m(rκ) ≤ m(rκ−1

0 r) ≤ Cr0m(r). It yields

m(rκ) ≤ Cm(r), ∀ r > 0, (23)

where C depends on κ and β1. Note that (23) is weaker than (22), but it holds when
β = +∞.

As a consequence of (23), we get that for every λ > 0,

m̃(λr) ≈λ m̃(r), ∀ r > 0. (24)

Indeed, this inequality follows directly from the relation m̃(λr) = m((er)λ), (23) and the
fact that m′(r) ≥ 0 (∀r > 0).
• For any µ ∈ [µ1, µ2] ⊂ (0, 1), there exists Cµ1 > 0 such that

ρµ1m(ρ−1
1 ) ≤ Cµ1ρ

µ
2

(
m(ρ−1

2 ) + 1
)
, ∀ρ2 ≥ ρ1 > 0. (25)

Indeed, there exists some cµ1 > 0 such that for every ρ ∈ (0, cµ1),

d(ρµm(ρ−1))

dρ
= ρµ−1(µm(ρ−1)− ρ−1m′(ρ−1)) ≥ ρµ−1m(ρ−1)

(
µ1 −

ρ−1m′(ρ−1)

m(ρ−1)

)
> 0,

since from (H2a), we have

lim
ρ→0

ρ−1m′(ρ−1)

m(ρ−1)
= lim

r→+∞

rm′(r)

m(r)
= lim

r→+∞

β1

log r
= 0.

Hence, (25) holds with Cµ1 = 1 for the case ρ2 ≤ cµ1 . When ρ2 > cµ1 , we have

For ρ1 ≤ cµ1 : ρµ1m(ρ−1
1 ) ≤ cµµ1

m(c−1
µ1

) ≤ ρµ2m(c−1
µ1

),

For ρ1 > cµ1 : ρµ1m(ρ−1
1 ) ≤ ρµ2m(c−1

µ1
),

and (25) holds with Cµ1 = m(c−1
µ1

).

When the Osgood condition (Osg) holds, the limits in (H2) admit the following characterization.

Lemma 2.1. Suppose that m(r) satisfies (H1)-(H2). Then:

• If (H2a) holds, then (Osg) imposes β ≤ 1, β1 = 0, and β2 = −1.
• If (H2b) holds, then (Osg) must fail.
• If (H2c) holds, then (Osg) must hold.

Proof. We first show that under assumptions (H2a) and (Osg), we have β ≤ 1. Through a similar
argument as in (19), we get

∀ ε > 0, r 7→ (log r)−β+ε m̃(r) is monotonously increasing on [r0,∞),

for a large constant r0. Suppose β > 1. Taking ε = β−1
2 > 0, we have

m̃(r) = (log r)1+ε(log r)−(1+ε)m̃(r) ≥ (log r)1+ε(log r0)−(1+ε)m̃(r0) = Cr0(log r)1+ε, ∀ r ≥ r0.
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This further implies∫ +∞

r0

dr

rm̃(r)
≤ 1

Cr0

∫ +∞

r0

dr

r(log r)1+ε
=

1

Cr0ε(log r0)ε
< +∞,

which contradicts the Osgood condition (Osg). Hence, we argue by contradiction and conclude that
β ≤ 1.

For β1, we have

β1 = lim
r→+∞

rm̃′(r)

m̃(r)
= lim

r→+∞

β

log r
≤ lim

r→+∞

1

log r
= 0.

On the other hand, β1 ≥ 0 due to (H1). Therefore, β1 = 0.

Finally, we apply l’Hôpital’s rule and get

β1 = lim
r→+∞

rm̃′(r)

m̃(r)
= lim

r→+∞

m̃′(r) + rm̃′′(r)

m̃′(r)
= 1 + β2.

We conclude with β2 = β1 − 1 = −1.

Under assumption (H2b), we have m(r) ≥ Crα/2 for r > r0 with a large enough r0. Hence,∫ +∞

2

1

r(log r)m(r)
dr ≤

∫ r0

2

1

r(log r)m(r)
dr +

∫ +∞

r0

1

r(log r)Cr
α
2

dr < +∞.

Therefore, the Osgood condition (Osg) fails.

Finally, under assumption (H2c), we have m(r) ≤ C for any r > 0, and the Osgood condition
(Osg) must hold: ∫ +∞

2

1

r(log r)m(r)
dr ≥

∫ +∞

2

1

Cr(log r)
dr = +∞.

�

2.2. Expression formula of the velocity u(x). We gather some useful expression formulas re-
lated to u(x).

Lemma 2.2. Let u(x) = ∇⊥(−∆)−1m(Λ)ω(x), where ∇⊥ = (−∂x2 , ∂x1), m(Λ) is a Fourier multi-
plier operator with the symbol m(ξ) = m(|ξ|) a radial function satisfying that m(ξ) ∈ C2(R2 \ {0})
and lim

r→0+
m(r), lim

r→0+
rm′(r) exist, and also

lim
r→+∞

r−
1
2m(r) = 0, lim

r→+∞
r

1
2m′(r) = 0.

Then the following statements hold true.

(i) For every x ∈ R2 we have

u(x) = K ∗ ω(x) =

∫
R2

K(x− y)ω(y)dy, K(x) ,
x⊥

|x|2
G(|x|), (26)

where x⊥ = (x2,−x1), and

G(ρ) ,
1

2π
m(0+) +

1

2π

∫ ∞
0

J0(ρr)m′(r)dr

=
1

2π
m(0+) +

1

(2π)2

∫
R2

eix·ξ
m′(|ξ|)
|ξ|

dξ,

(27)

with m(0+) , lim
r→0+

m(r) and J0(·) the zero-order Bessel function.
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(ii) For every x ∈ R2, the symmetric part of S(∇u)(x) can be expressed as

S(∇u)(x) ,
∇u(x) + (∇u)T (x)

2
= p.v.

∫
R2

(∇K)S(x− y)ω(y)dy, (28)

where

(∇K)S(x) ,
1

2

2G(|x|)− |x|G′(|x|)
|x|2

σ(x), σ(x) ,

 2x1x2
|x|2

x2
2−x2

1
|x|2

x2
2−x2

1
|x|2

−2x1x2
|x|2

 . (29)

Remark 4. We remind that, if ω(x) = 1D(x) where D ⊂ R2 is a simply connected bounded open
domain, then ∇u(x) is well defined for any x 6∈ D and ∇u(x) = ∇K ∗ ω(x), with ∇K(·) given by
(30). In addition, for x ∈ D, we also see that

u(x) =

∫
D
K(x− y)dy =

∫
D\B(x,dx)

K(x− y)dy,

where K(x) = x⊥

|x|2G(|x|) and dx , d(x, ∂D). Consequently, ∇u(x) is bounded outside and inside

the domain D, but it may be unbounded on the boundary ∂D.

Proof of Lemma 2.2. The statement (i) has been proved in [78, Lemma 1]. In the following, we
only prove statement (ii).

We start with the calculation of ∇u in the distributional sense. For every test function χ̃ ∈
C∞c (R2), we apply the expression (26) and get(

∂xjui, χ̃
)

= −
(
ui, ∂xj χ̃

)
= −

∫
R2

∫
R2

Ki(x− y)ω(y) dy ∂xj χ̃(x) dx

= − lim
ε→0

∫
R2

∫
|x−y|≥ε

Ki(x− y)∂xj χ̃(x) dxω(y) dy

= lim
ε→0

∫
R2

(∫
|x−y|≥ε

∂xjKi(x− y)χ̃(x) dx−
∫
|x−y|=ε

Ki(x− y)
xj − yj
|x− y|

χ̃(x) dS(x)
)
ω(y) dy.

We focus on the term

Ii,jε (y) ,
∫
|x−y|=ε

Ki(x− y)
xj − yj
|x− y|

χ̃(x) dS(x).

Since the limit limε→0 I
i,j
ε (y) may be unbounded, we need to explore extra cancellations. Define

J i,jε (y) , χ̃(y)

∫
|x−y|=ε

Ki(x− y)
xj − yj
|x− y|

dS(x).

Then, we control the difference by

|Ii,jε (y)− J i,jε (y)| =
∣∣∣ ∫
|x−y|=ε

Ki(x− y)
xj − yj
|x− y|

(
χ̃(x)− χ̃(y)

)
dS(x)

∣∣∣
≤ G(ε)

ε
· 1 · ‖∇χ̃‖L∞ε · 2πε ≤ Cεm(ε−1)

ε→0−−−→ 0,

where we have used (31) (the proof is independent of the statement (ii)) and (20). For J i,jε (y), by
symmetry we have

J1,1
ε (y) = −J2,2

ε (y) = χ̃(y)

∫
|x−y|=ε

(x1 − y1)(x2 − y2)

|x− y|3
dS(x) = 0,

J1,2
ε (y) + J2,1

ε (y) = χ̃(y)

∫
|x−y|=ε

(x1 − y1)2 − (x2 − y2)2

|x− y|3
dS(x) = 0.
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Therefore, we conclude with

S(∇u)(x) = lim
ε→0

∫
R2

∫
|x−y|≥ε

∇K(x− y) + (∇K)T (x− y)

2
χ̃(x) dxω(y)dy

+ lim
ε→0

∫
R2

(
I1,1
ε

I1,2
ε (y)+I2,1

ε (y)
2

I1,2
ε (y)+I2,1

ε (y)
2 I2,2

ε (y)

)
ω(y) dy

=

∫
R2

(
p.v.

∫
R2

(∇K)S(x− y)ω(y)dy
)
χ̃(x) dx,

where direct computation yields

∇K(x) =
1

2

2G(|x|)− |x|G′(|x|)
|x|2

σ(x)− 1

2

G′(|x|)
|x|

(
0 1
−1 0

)
, (∇K)S(x) + (∇K)A(x), (30)

where σ(x) defined by (29), also (∇K)S = ∇K+(∇K)T

2 and (∇K)A = ∇K−(∇K)T

2 are the symmetric
and antisymmetric parts of ∇K, respectively. This finishes the proof of (28). �

2.3. Properties of G(ρ). We collect some crucial estimates of G(ρ) given by (27) under suitable
assumptions on m.

Lemma 2.3. Assume that m(r) = m(|ξ|) satisfies (H1)-(H2a) with n ∈ N?. Then there exist
constants c̄0 > 0 and C > 0 such that G(ρ) = G(|x|) defined by (27) verifies the following statements:

for ρ ∈ (0, c̄0), G(ρ) ≈ m(ρ−1), (31)

and

for ρ ∈ (0, c̄0), |G(l)(ρ)| ≤ Cm(ρ−1)

ρl
, ∀ l ∈ {1, 2, · · · , n+ 1}, (32)

and

for ρ ∈ [c̄0,+∞), |G(l)(ρ)| ≤ C

ρl
, ∀ l ∈ {1, 2, · · · , n+ 1}. (33)

Lemma 2.3 can be proved by examining the explicit expression (27) of G. See, e.g. [78, Lemma 2]
for the proof of (31) and (32) with l = 1, 2 (noting that assumptions (H1)-(H2a) in [78, Lemma 2]
are readily verified). For the sake of completeness, we include a proof of (32) and (33) in Appendix
A.

As a direct consequence, we obtain the following estimate on the kernel K.

Corollary 2.4. Assume that m(r) = m(|ξ|) satisfies (H1)-(H2a) with n ∈ N?, and K is defined in
(26). Then

|∇lK(x)| ≤ C|x|−(l+1)
(
m(|x|−1) + 1

)
, ∀x ∈ R2, ∀ l ∈ {0, 1, · · · , n+ 1}. (34)

Proof. From the definition of K in (26), applying the Leibniz rule and Lemma 2.3, we compute

|∇lK(x)| ≤
l∑

j=0

l!

j!

∣∣G(j)(|x|)
∣∣

|x|l−j+1
≤

l∑
j=0

l!

j!

C
(
m(|x|−1) + 1

)
|x|j · |x|l−j+1

≤
C
(
m(|x|−1) + 1

)
|x|l+1

,

for any l ∈ {0, 1, · · · , n+ 1}. �
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3. Yudovich type theorem for the 2D Loglog-Euler type equation

In this section, we establish the Yudovich-type theorem for the 2D Loglog-Euler equation (1)
associated with initial data ω0 ∈ L1 ∩ L∞(R2).

We first introduce the definition of weak solutions for the equation (1).

Definition 3.1 (Weak solutions). Let ω0 ∈ L1 ∩ L∞(R2). We say that (u, ω) is a weak solution to
the 2D Loglog-Euler type equation (1) with initial data ω0(x), provided that for any T > 0,

(i) ω ∈ L∞([0, T ];L1 ∩ L∞(R2)).
(ii) u = ∇⊥(−∆)−1m(Λ)ω = K ∗ ω with the kernel K given by (26).
(iii) For every χ̃ ∈ C1([0, T ];C1

0 (R2)),∫
R2

ω(x, T )χ̃(x, T )dx−
∫
R2

ω0(x)χ̃(x, 0)dx =

∫ T

0

∫
R2

ω(x, t)
(
∂tχ̃+ u · ∇χ̃

)
(x, t)dxdt.

The next result is concerned with the continuity estimate of the velocity field associated with
bounded and integrable vorticity.

Lemma 3.1. Assume that m(ξ) = m(|ξ|) is a radial function of R2 satisfying (H1)-(H2a). For
any ω ∈ L1 ∩ L∞(R2), the vector u = ∇⊥(−∆)−1m(Λ)(ω) satisfies

‖u‖L∞(R2) + sup
|x−x̃|>0

|u(x)− u(x̃)|
ν(|x− x̃|)

≤ C‖ω‖L1∩L∞(R2), (35)

where C > 0 is a universal constant and the modulus of continuity ν is defined as

ν(ρ) ,

{
ρ(log ρ−1)m(ρ−1), for 0 < ρ ≤ 1

2 ,

ρ (log 2)m(2), for ρ > 1
2 .

(36)

Proof. We start by applying (26) and Lemma 2.3 to deduce that

|u(x)| ≤
∣∣∣ ∫
{|x−y|≤c̄0}

(x− y)⊥

|x− y|2
G(|x− y|)ω(y)dy

∣∣∣+
∣∣∣ ∫
{|x−y|≥c̄0}

(x− y)⊥

|x− y|2
G(|x− y|)ω(y)dy

∣∣∣
≤ C‖ω‖L∞

∫ c̄0

0
m(ρ−1)dρ+ C

∫
{|x−y|≥c̄0}

|ω(y)|dy ≤ C‖ω‖L1∩L∞ .

Here, c̄0 > 0 denotes the constant introduced in Lemma 2.3. Note that from (20), m(ρ−1) behaves

like | log ρ|β1+ near zero. Hence, the integral
∫ c̄0

0 m(ρ−1)dρ is finite. Consequently, u ∈ L∞(R2).

Next, we will focus on the continuity property of u. For any x̃, x ∈ R2 such that |x − x̃| < c̄0
3

(without loss of generality assuming c̄0 ≤ 1), we apply (26) and obtain

|u(x)− u(x̃)| ≤
∫
R2

∣∣K(|x− y|)−K(|x̃− y|)
∣∣ · |ω(y)|dy

≤
∫
{|x−y|≤2|x−x̃|}

∣∣K(|x− y|)−K(|x̃− y|)
∣∣ · |ω(y)|dy

+

∫
{|x−y|≥2|x−x̃|}

∣∣K(|x− y|)−K(|x̃− y|)
∣∣ · |ω(y)|dy

, I + II.

For I, we deduce from (31) that

I ≤ 2‖ω‖L∞
∫
{|x−y|≤3|x−x̃|}

G(|x− y|)
|x− y|

dy = 4π‖ω‖L∞
∫ 3|x−x̃|

0
G(ρ)dρ ≤ C‖ω‖L∞

∫ 3|x−x̃|

0
m(ρ−1)dρ.
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It follows from L’Hôpital’s rule and (14) in (H2a) that

lim
ρ→0

∫ ρ
0 m(ρ̃−1)dρ̃

ρm(ρ−1)
= lim

ρ→0

m(ρ−1)

m(ρ−1)− ρ−1m′(ρ−1)
= lim

r→+∞

1

1− rm′(r)
m(r)

= 1.

Hence, there exists a constant C > 0, depending on c̄0, such that for any ρ < c0,∫ ρ

0
m(ρ̃−1)dρ̃ ≤ Cρm(ρ−1). (37)

Therefore, by (37), we deduce

I ≤ C‖ω‖L∞ |x− x̃|m(|x− x̃|−1).

For II, we apply the mean value theorem and get

K(x− y)−K(x̃− y) = (x− x̃) · ∇K(θx+ (1− θ)x̃− y),

for some θ ∈ [0, 1]. Applying (34) with l = 1, we have

|∇K(x)| ≤ C m(|x|−1) + 1

|x|2
, (38)

for every x 6= 0. Moreover, for |x− y| ≥ 2|x− x̃|, we have

1
2 |x− y| ≤ |θx+ (1− θ)x̃− y| ≤ 3

2 |x− y|,

for any θ ∈ [0, 1]. Therefore, we apply the above estimates and (16) to obtain

II ≤ C|x− x̃|
∫
{|x−y|≥2|x−x̃|}

m(|x− y|−1) + 1

|x− y|2
|ω(y)|dy

≤ C‖ω‖L∞ |x− x̃|
∫
{2|x−x̃|≤|x−y|≤2}

m(|x− y|−1) + 1

|x− y|2
dy + C|x− x̃|

∫
R2

|ω(y)|dy

≤ C‖ω‖L∞ |x− x̃|
(∫ 1

2|x−x̃|

1
2

m(r) + 1

r
dr

)
+ C‖ω‖L1 |x− x̃|

≤ C‖ω‖L1∩L∞ |x− x̃|m(|x− x̃|−1) log |x− x̃|−1 ≤ C‖ω‖L1∩L∞ν(|x− x̃|),

where we have used that m(·) is increasing in the penultimate inequality to get

m(r) + 1 ≤ m( 1
2|x−x̃|) +

m( 1
2|x−x̃|)

m(1
2)

≤
(

1 +
1

m(1
2)

)
m(|x− x̃|−1).

Gathering the above estimates, we conclude with the desired bound

|u(x)− u(x̃)| ≤ C‖ω‖L1∩L∞ν(|x− x̃|).

When |x− x̃| ≥ c̄0
3 , we have the following direct estimate

|u(x)− u(x̃)|
ν(|x− x̃|)

≤ 2‖u‖L∞
inf

ρ≥ c̄0
3
ν(ρ)

≤ C‖ω‖L1∩L∞ , (39)

where we have used the fact that ν is strictly positive away from zero. �

Now we present the proof of Theorem 1.1.
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Proof of Theorem 1.1. From the transport structure of (2) and div u = 0, we have

‖ω(t)‖L1∩L∞ = ‖ω0‖L1∩L∞ .

By virtue of Lemma 3.1, the velocity field u = ∇⊥(−∆)−1m(Λ)ω satisfies

‖u(t)‖L∞(R2) + sup
|x−y|>0

|u(x, t)− u(y, t)|
ν(|x− y|)

≤ C‖ω0‖L1∩L∞(R2). (40)

The Osgood condition (Osg) translates into∫ 1
2

0

dρ

ν(ρ)
=

∫ 1
2

0

dρ

ρ(log ρ−1)m(ρ−1)
=

∫ +∞

2

dr

r(log r)m(r)
= +∞.

Then, from the standard Peano’s existence theorem and Osgood’s uniqueness theorem for ordinary
differential equations, the flow map equation (5) admits a unique global solution Φt,s : R2 → R2 for
every t, s ∈ R+.

According to (5) and (40), it follows that for every t, s ∈ R+,∣∣∣d(Φt,s(x)− Φt,s(y))

dt

∣∣∣ ≤ ∣∣u(Φt,s(x), t)− u(Φt,s(y), t)
∣∣ ≤ C‖ω0‖L1∩L∞ ν(|Φt,s(x)− Φt,s(y)|). (41)

The function H(r) defined in (7) is monotonically increasing, and from the Osgood condition
(Osg),

lim
r→+∞

H(r) =

∫ +∞

2

dr

r(log r)m(r)
= +∞, and lim

r→0
H(r) = −∞.

Hence, H(·) : (0,+∞) 7→ R is an invertible map. Moreover, H satisfies

d

dρ
H(ρ−1) = − 1

ν(ρ)
, ∀ ρ ∈ (0,+∞).

Then, from (41) we get∣∣∣H(|Φt,s(x)− Φt,s(y)|−1)− H(|x− y|−1)
∣∣∣ =

∣∣∣ ∫ |Φt,s(x)−Φt,s(y)|

|x−y|

dρ

ν(ρ)

∣∣∣ ≤ C‖ω0‖L1∩L∞ |t− s|,

and hence ∣∣Φt,s(x)− Φt,s(y)
∣∣−1 ≥ H−1

(
H(|x− y|−1)− C‖ω0‖L1∩L∞ |t− s|

)
,∣∣Φt,s(x)− Φt,s(y

)
|−1 ≤ H−1

(
H(|x− y|−1) + C‖ω0‖L1∩L∞ |t− s|

)
,

which directly implies (6). Similarly, letting 0 ≤ t1 ≤ t2 < +∞, we have Φ0,t2(x) = Φ0,t1 ◦ Φt1,t2(x)
and

|Φ−1
t1

(x)− Φ−1
t2

(x)|−1 = |Φ0,t1(x)− Φ0,t1 ◦ Φt1,t2(x)|−1

≥ H−1
(
H(|x− Φt1,t2(x)|−1)− C‖ω0‖L1∩L∞t1

)
≥ H−1

(
H(C−1‖ω0‖−1

L1∩L∞ |t1 − t2|
−1)− C‖ω0‖L1∩L∞t1

)
,

where in the last line we have used the equation (5) and estimate (40). With the above a priori
estimates, and following the argument used in the proof of Yudovich’s theorem for the 2D Euler
equation (see, for instance, [74, Sec. 8.2]), one can establish the global existence result.

Next, by adapting the ideas in [76, Sec. 2.3] with suitable modifications (see also [86] and [4,
Chap. 7], where the Littlewood-Paley theory is used), we provide a proof of the uniqueness part of
Theorem 1.1. Assume that (ω1, u1) and (ω2, u2) are two weak solutions on [0, T ] of the 2D Loglog-
Euler type equation (2) associated with the same initial data ω0 ∈ L1∩L∞(R2). Let Φi

t(·) = Φi
t,0(·)
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(i = 1, 2) denote the flow map generated by the velocity field ui, satisfying (5). Without loss of
generality, we assume ω0 6≡ 0. Set

δ(t) ,
1

‖ω0‖L1

∫
R2

|Φ1
t (x)− Φ2

t (x)| · |ω0(x)|dx, (42)

By (5), it follows that

Φ1
t (x)− Φ2

t (x) =

∫ t

0

(
u1(Φ1

τ (x), τ)− u2(Φ2
τ (x), τ)

)
dτ

=

∫ t

0

(
u1(Φ1

τ (x), τ)− u1(Φ2
τ (x), τ)

)
dτ +

∫ t

0

(
u1(Φ2

τ (x), τ)− u2(Φ2
τ (x), τ)

)
dτ.

For the first term, in view of (40) and (36), there exists some constant C > 0 depending only on
‖ω0‖L1∩L∞ such that

|u1(Φ1
t (x), t)− u1(Φ2

t (x), t)| ≤ Cν(|Φ1
t (x)− Φ2

t (x)|).

For the second term, by the change of variables and using the properties of flow map Φi
t, for all

t ∈ [0, T ] with T > 0, we have∫
R2

|u1(Φ2
t (x), t)− u2(Φ2

t (x), t)| · |ω0(x)|dx

=

∫
R2

∣∣∣p.v.∫
R2

K(Φ2
t (x)− z)

(
ω1(z, t)− ω2(z, t)

)
dz
∣∣∣ · |ω0(x)|dx

=

∫
R2

∣∣∣ ∫
R2

(
K(Φ2

t (x)− Φ1
t (y))−K(Φ2

t (x)− Φ2
t (y))

)
ω0(y)dy

∣∣∣ · |ω0(x)|dx

≤
∫
R2

|ω0(y)|
(∫

R2

∣∣K(Φ2
t (x)− Φ1

t (y))−K(Φ2
t (x)− Φ2

t (y))
∣∣ · |ω0(x)|dx

)
dy

=

∫
R2

|ω0(y)|
(∫

R2

∣∣K(x− Φ1
t (y))−K(x− Φ2

t (y))
∣∣ · |ω2(x, t)|dx

)
dy

≤ C‖ω0‖L1∩L∞

∫
R2

ν(|Φ1
t (y)− Φ2

t (y)|) · |ω0(y)|dy,

where the last inequality follows from the same procedure used to estimate I and II in the proof
of Lemma 3.1. Combining the above estimates, we infer that

δ(t) ≤ C
∫ t

0

∫
R2

ν(|Φ1
τ (x)− Φ2

τ (x)|) · |ω0(x)|dxdτ.

If we assume ν to be concave, then by Jensen’s inequality we obtain∫
R2

ν(|Φ1
t (x)− Φ2

t (x)|) · |ω0(x)|
‖ω0‖L1

dx ≤ ν
(∫

R2

|Φ1
t (x)− Φ2

t (x)| · |ω0(x)|
‖ω0‖L1

dx
)

= ν(δ(t)),

which yields

δ(t) ≤ C
∫ t

0
ν(δ(τ))dτ. (43)

Even if ν is not globally concave, inequality (43) still holds. To see this, we observe that ν is concave
near the origin. Indeed,

ν ′′(0+) = lim
ρ→0+

(
− ρ−1m(ρ−1) + 2ρ−2m′(ρ−1) + ρ−3 log ρ−1m′′(ρ−1)

)
= lim

r→+∞
rm(r)

(
− 1 +

rm′(r)

m(r)
· r log rm′′(r) + 2m′(r)

m′(r)

)
= −∞,
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where we have applied (14)-(15) in (H2a). We then define

ν1(ρ) ,

{
ν(ρ) = ρ(log ρ−1)m(ρ−1), if ρ ∈ (0, c1],

c1(log c−1
1 )m(c−1

1 ) + ν̃ ′(c1)(ρ− c1), if ρ ∈ (c1,+∞),

where the constant c1 ∈ (0, 1
2) is chosen sufficiently small so that ν1 is concave. Moreover,

ν1(ρ) ≈c1 ν(ρ), ∀ρ ∈ (0,+∞).

Repeating the above estimates with ν̃ in place of ν, we obtain

δ(t) ≤ C
∫ t

0

∫
R2

ν1(|Φ1
τ (x)− Φ2

τ (x)|) · |ω0(x)|dxdτ ≤ C
∫ t

0
ν1(δ(τ))dτ ≤ C

∫ t

0
ν(δ(τ))dτ.

Using the Osgood condition (Osg), we deduce from (43) that δ(t) ≡ 0 for all t ∈ [0, T ], which
implies Φ1

t (x) = Φ2
t (x) for all x ∈ supp ω0 and all t ∈ [0, T ]. It then yields

ω1(Φ1
t (x), t) = ω0(x) = ω2(Φ2

t (x), t), ∀x ∈ supp ω0.

Moreover, since Φ1
t (supp ω0) = Φ2

t (supp ω0), we have

ω1(Φ1
t (x), t) = 0 = ω2(Φ2

t (x), t), ∀x 6∈ supp ω0.

Therefore, we conclude that the uniqueness result holds, namely ω1(·, t) ≡ ω2(·, t) on R2. �

4. Global regularity of C1,µ single vortex patch

In this section, we show the global regularity of the 2D Loglog-Euler type equation (1) with the
C1,µ single patch initial data.

4.1. Mathematical formulation for vortex patch problem. Let D0 ⊂ R2 be a simply connect-
ed bounded domain with boundary ∂D0 ∈ Cn,µ, n ∈ N?, µ ∈ (0, 1), and ω0(x) = 1D0(x) ∈ L1 ∩L∞
be the initial data of the 2D Loglog-Euler type equation (1). According to Theorem 1.1, there exists
a unique global-in-time weak solution

ω(x, t) = 1D(t)(x) and D(t) = Φt(D0),

where the flow map Φt(·) = Φt,0(·) is given by (5). The vortex patch problem is concerned with the
global regularity of ∂D(t) for any t > 0.

Let z0(ξ) : T 7→ ∂D0 be a Cn,µ-parameterization of the boundary ∂D0, where T denotes the
one-dimensional periodic domain. Then

z(ξ, t) = Φt(z0(ξ))

is a parameterization of ∂D(t) and satisfies the following contour dynamics equation

dz(ξ, t)

dt
= u(z(ξ, t), t), z(ξ, 0) = z0(ξ). (44)

where

u(z(ξ, t), t) =

∫
D(t)
∇⊥y (R̃(|z(ξ, t)− y|))dy =

∫
∂D(t)

R̃
(
|z(ξ, t)− y|

)
n⊥(y, t)dS(y)

=

∫
T
R̃
(
|z(ξ, t)− z(η, t)|

)
∂ηz(η, t)dη, (45)

with R̃(ρ) =
∫ 1
ρ
G(r)
r dr + C and C ∈ R some constant chosen for convenience. This formulation

in Lagrangian coordinates works well in obtaining the local-in-time regularity of ∂D(t). However,
even for the 2D Euler equation, it is still open how to get the global regularity of ∂D(t) directly
from (44)-(45).
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Following [7, 17], we introduce the level-set formulation for the vortex patch problem, which is
based on Eulerian coordinates.

Definition 4.1 (Level-set characterization of a domain). Let D be a simply connected and bounded
domain ∂D ∈ Ck,µ. Let ϕ ∈ Ck,µ(R2) with k ∈ N? and µ ∈ (0, 1). We say ϕ is a level-set
characterization of the domain D if

D = {x ∈ R2 |ϕ(x) > 0}, inf
x∈∂D

|∇ϕ(x)| ≥ c > 0. (46)

One can see, e.g. [68] for more details of the construction. As a direct consequence of (46), we
get

ϕ = 0 on ∂D, and ϕ < 0 in U ∩Dc
, (47)

where U ⊂ R2 is a small open neighborhood of ∂D.

Let ϕ0 be a Cn,µ level-set characterization of the domain D0. For any x0 ∈ ∂D0, the solution of
the following ordinary differential equation

dz0(ξ)

dξ
= ∇⊥ϕ0(z0(ξ)) ,W0(z0(ξ)), z0(0) = x0, (48)

yields a Cn,µ-parameterization of the curve ∂D0. Let z(ξ, t) be a solution of (44) with z0 given by
(48) and ϕ(x, t) = ϕ0(Φ−1

t (x)). Then ϕ(x, t) is the solution of

∂tϕ+ u · ∇ϕ = 0, u = ∇⊥(−∆)−1m(Λ)(1D(t)), ϕ|t=0 = ϕ0, (49)

with D(t) = {x ∈ R2 : ϕ(x, t) > 0}. Furthermore, it follows from direct computation (e.g. see [74,
Lemma 1.4]) that

∂ξz(ξ, t) = W (z(ξ, t), t), with W (·, t) , ∇⊥ϕ(·, t). (50)

Using (50) repeatedly, we find that for k ∈ N?,

∂kξ z(ξ, t) =
(
(W · ∇)k−1W

)
(z(ξ, t), t) = ∂k−1

W W (z(ξ, t), t), (51)

where ∂W = W · ∇. Therefore, to study the boundary regularity of ∂D(t), it is sufficient to explore

the regularity of ∂k−1
W W (·, t). Indeed, from (44), Lemma 3.1 and (51), we have

‖z‖L∞ ≤ ‖z0‖L∞ +

∫ t

0
‖u(·, s)‖L∞ds ≤ ‖z0‖L∞ + C‖ω0‖L1∩L∞t, (52)

and for k ≥ 1,

‖∂kξ z(·, t)‖L∞ ≤ ‖∂k−1
W W (·, t)‖L∞ , (53)

and

‖∂kξ z(·, t)‖Ċµ ≤ ‖∂
k−1
W W (·, t)‖Ċµ‖∂ξz(·, t)‖

µ
L∞ = ‖∂k−1

W W (·, t)‖Ċµ‖W (·, t)‖µL∞ . (54)

According to (49) and the fact that [∂W , ∂t + u · ∇] = 0, we infer that for any k ∈ N?,

(∂t + u · ∇)
(
∂k−1
W W

)
= ∂kWu, ∂k−1

W W |t=0 = ∂k−1
W0

W0. (55)

Hence, the vortex patch problem can be studied through (49) and (55).

Before embarking on our proof, we introduce the following notation and function spaces:

|∇ϕ(·)|inf , inf
x∈∂D

|∇ϕ(x)|,

‖∇ϕ(·)‖Ċµ(R2) , sup
x 6=x̃

|∇ϕ(x)−∇ϕ(x̃)|
|x− x̃|µ

, µ ∈ (0, 1),

‖∇ϕ(·)‖Cµ(R2) , ‖∇ϕ(·)‖L∞(R2) + ‖∇ϕ(·)‖Ċµ(R2), µ ∈ (0, 1),
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and

∆µ ,
‖∇ϕ‖Ċµ(R2)

|∇ϕ|inf
+ 1. (56)

The m-adapted Hölder space Cµm(R2) (µ ∈ (0, 1]) is composed of functions f such that

‖f‖Cµm = ‖f‖Cµm(R2) , ‖f‖L∞(R2) + sup
|x−y|>0

|f(x)− f(y)|
|x− y|µ

(
m(|x− y|−1) + 1

) . (57)

4.2. Near-Lipschitz estimate of u. The following lemma shows that the continuity of u is stable
under a small perturbation produced by the slowly increasing multiplier m.

Lemma 4.1. Suppose that m(r) satisfies the assumptions (H1)-(H2a) and D ⊆ R2 is a bounded
domain with C1,µ (0 < µ < 1)-boundary. Let ϕ be the level-set characterization of domain D where
(46)-(47) hold. Then for any γ ∈ (0, µ], the velocity u = ∇⊥(−∆)−1m(Λ)(1D) satisfies

‖u‖C1
m(R2) ≤ C

(
1 + log ∆γ

)
, (58)

where the constant C > 0 depends only on γ and the domain area |D|.

Compared with Lemma 3.1, the core idea of Lemma 4.1 is that the cancellation structure in a
regular patch enhances the regularity of the velocity field by logarithmic order.

We emphasize that Lemma 4.1 is formulated in the physical space. It serves as an alternative
representation of the following estimate, which is expressed in the frequency space.

Lemma 4.2 ([41, p. 985]). Let Sj = χ(2−jΛ), j ∈ N be the low-frequency cut-off operator in
the Littlewood-Paley theory. Under the assumptions of Lemma 4.1, and for every γ ∈ (0, µ], the
following estimate holds:

‖Sj∇u‖L∞(R2) ≤ Cm(2j)
(
1 + log ∆γ

)
,

where C > 0 depends only on γ and |D| (the area of domain D).

The equivalence between Lemma 4.1 and Lemma 4.2 can be guaranteed by [4, Sec. 2.11].

Proof of Lemma 4.1. Taking advantage of Lemma 3.1, we directly get ‖u‖L∞ ≤ C. It remains to
control the modulus-of-continuity estimate of u in (57).

From the representation (26), for any x, h ∈ R2 such that |h| ≤ c̄0
3 (recalling that c̄0 is the

constant appearing in Lemma 2.3), we write

u(x)− u(x+ h) =

∫
D∩{|x−y|≤2|h|}

K(x− y)dy −
∫
D∩{|x−y|≤2|h|}

K(x+ h− y)dy

+

∫
D∩{|x−y|≥2|h|}

(
K(x− y)−K(x+ h− y)

)
dy

, N1 + N2 + N3.

For N1, arguing as the estimation for I in the proof of Lemma 3.1, we obtain

|N1| ≤ C
∫ 2|h|

0
G(ρ)dρ ≤ C

∫ 2|h|

0
m(ρ−1)dρ ≤ C|h|m(|h|−1).

Similarly, we bound N2 by

|N2| ≤ C
∫ 3|h|

0
|G(ρ)|dρ ≤ C|h|m(|h|−1),

utilizing the fact |x+ h− y| ≤ |x− y|+ |h|.
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For N3, by mean value theorem, it follows that

|N3| =
∣∣∣ ∫ 1

0

∫
D∩{|x−y|≥2|h|}

h · ∇K(x+ θh− y)dydθ
∣∣∣

≤
∫ 1

0

∣∣∣ ∫
D∩{|x+θh−y|≥2|h|}

h · ∇K(x+ θh− y)dy
∣∣∣dθ

+

∫ 1

0

∫
{|x−y|≥2|h|}4{|x+θh−y|≥2|h|}

|h · ∇K(x+ θh− y)|dydθ

, N31 + N32,

where the notation A4B , (A\B) ∪ (B\A). For N32, observe that

{|x− y| ≥ 2|h|}4{|x+ θh− y| ≥ 2|h|} ⊂ {|h| ≤ |x+ θh− y| ≤ 3|h|}.

In view of (38), we infer that

N32 ≤|h|
∫ 1

0

∫
{|h|≤|x+θh−y|≤3|h|}

|∇K(x+ θh− y)|dydθ

≤C
∫ 1

0

∫ 3|h|

|h|

m(ρ−1)

ρ2
ρdρdθ ≤ C|h|m(|h|−1).

Note that in the second inequality, we drop the second term in (38), since |x+ θh− y| ≤ 3|h| ≤ c̄0.

For the remaining term N31, we state the following claim:∣∣∣ ∫
D∩{|x−y|≥2|h|}

∇K(x− y)dy
∣∣∣ ≤ C(1 + log ∆γ

)(
m(|h|−1) + 1

)
, ∀γ ∈ (0, 1), (59)

where C > 0 depends only on γ. Applying (59) and replacing x by x+ θh, we obtain

N31 ≤ C|h| ·
(
1 + log ∆γ

)(
m(|h|−1) + 1

)
.

Collecting all the estimates, we obtain the desired bound (58). For the case |h| > c̄0
3 , we argue

analogously to (39) and derive the same bound.

We are left to show the claim (59). Applying (38) and the fact that m(r) is non-decreasing, we
obtain ∣∣∣ ∫

D∩{|x−y|≥2|h|}
∇K(x− y)dy

∣∣∣ ≤ C ∫
D∩{|x−y|≥2|h|}

m(|x− y|−1) + 1

|x− y|2
dy

≤ Cm(|h|−1)

∫
D∩{|x−y|≥2|h|}

dy

|x− y|2
+ Cm(( c̄03 )−1)

∫
D∩{|x−y|≥2|h|}

dy

|x− y|2

≤ Cm(|h|−1)

∫ L

2|h|

1

ρ2
ρdρ ≤ Cm(|h|−1)

(
1 + log |h|−1

)
, (60)

where L ,
√
|D|/π and in the third line we have used the rearrangement inequality.

If 2|h| ≥ δγ , with

δγ ,∆
− 1
γ

γ =
(
‖∇ϕ‖Ċγ
|∇ϕ|inf

+ 1
)− 1

γ
,

then (59) is a direct consequence of (60).

If 2|h| < δγ , we exploit the symmetry properties of K and the patch structure to establish
cancellations, analogous to [7, Geometric lemma]. Denote dx is the distance between x and ∂D,
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namely

dx , inf
z∈∂D

|x− z|. (61)

For every x ∈ R2, choosing x̃ ∈ ∂D such that dx = |x− x̃|, we define the sets

Sρ(x) , {z||z| = 1, x+ ρz ∈ D}, Σ(x) , {z||z| = 1, ∇xϕ(x̃) · z ≥ 0}, Rρ(x) , Sρ(x)4Σ(x).
(62)

Note that

D ∩ {|x− y| ≥ 2h} = {y = x+ ρz : ρ ≥ 2h, z ∈ Sρ(x)},

and Σ(x) is a semicircle where symmetry can be employed. The geometric lemma in [7] characterizes

their difference Rρ(x): for all ρ ≥ dx, γ ∈ (0, 1) and for each x such that dx ≤ δγ = ∆
−1/γ
γ ,

H1
(
Rρ(x)

)
≤ 2π

(
(1 + 2γ)

dx
ρ

+ 2γ
( ρ
δγ

)γ)
, (63)

where H1 is the Hausdorff measure on the unit circle.

From (30), we decompose ∇K into the symmetric part (∇K)S and the antisymmetric part
(∇K)A. For the symmetric part, we observe that σ(z) has zero mean in unit circle or semicircle:

ρ < dx :

∫
Sρ(x)

σ(z)dz = 0,

ρ ≥ dx :
∣∣∣ ∫
Sρ(x)

σ(z)dz
∣∣∣ ≤ ∣∣∣ ∫

Σ(x)
σ(z)dz

∣∣∣+

∫
Rρ(x)

|σ(z)|dz ≤ CH1(Rρ(x)).

Utilizing the above cancellations, and applying (38) and (63), we get∣∣∣ ∫
D∩{|x−y|≥2|h|}

(∇K)S(x− y)dy
∣∣∣ =

∣∣∣ ∫ δγ

2|h|

1

2

2G(ρ)− ρG′(ρ)

ρ2

∫
Sρ(x)

σ(z)dz ρdρ
∣∣∣

≤ C
∫ δγ

max{2|h|,dx}

m(ρ−1) + 1

ρ
H1(Rρ(x))dρ ≤ C

(
m(|h|−1) + 1

) ∫ δγ

dx

1

ρ

(dx
ρ

+
( ρ
δγ

)γ)
dρ

≤ C
(
m(|h|−1) + 1

)
. (64)

For the antisymmetric part, we have∫
D∩{|x−y|≥2|h|}

(∇K)A(x− y)dy =

∫ δγ

2|h|

G′(ρ)

2ρ
H1(Sρ(x)) ρdρ

(
0 1
−1 0

)
.

For H1(Sρ(x)), we have

ρ < dx : H1(Sρ(x)) = 2π,

ρ ≥ dx : H1(Sρ(x)) ≤ H1(Σ(x)) +H1(Rρ(x)) = π +H1(Rρ(x)).

Therefore, by using (31), when 2|h| ≥ dx, we deduce that∣∣∣ ∫ δγ

2|h|

G′(ρ)

2ρ
H1(Sρ(x)) ρdρ

∣∣∣ ≤ π

2

∣∣∣ ∫ δγ

2|h|
G′(ρ)dρ

∣∣∣+
1

2

∫ δγ

2|h|
|G′(ρ)|H1(Rρ(x))dρ

≤ π

2
|G(2|h|)−G(δγ)|+ C

∫ δγ

2|h|

m(ρ−1) + 1

ρ
H1(Rρ(x))dρ ≤ C

(
m(|h|−1) + 1

)
,

and when 2|h| < dx, we get∣∣∣ ∫ δγ

2|h|

G′(ρ)

2ρ
H1(Sρ(x)) ρdρ

∣∣∣ ≤ ∣∣∣π ∫ dx

2|h|
G′(ρ)dρ+

π

2

∫ δγ

dx

G′(ρ)dρ
∣∣∣+

1

2

∫ δγ

dx

|G′(ρ)|H1(Rρ(x))dρ
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≤ π

2
|2G(2|h|)−G(dx)−G(δγ)|+ C

(
m(d−1

x ) + 1
)
≤ C

(
m(|h|−1) + 1

)
.

This concludes the proof of (59). �

4.3. The bound of ∂Wu. Inspired by [7, Proposition 2], we first deduce an alternative integral
expression for ∂Wu, which fully exploits the structure of a regular patch.

Lemma 4.3. Let D ⊆ R2 be a bounded domain with C1,µ (0 < µ < 1) boundary and let ϕ be the
level-set characterization of domain D. Let W = ∇⊥ϕ ∈ Cµ(R2) be a vector field tangent to ∂D.
Assume that u = ∇⊥(−∆)−1m(Λ)(1D) and m(r) satisfies the assumptions (H1)-(H2a), then the
following identity holds true for all x ∈ R2,

∂Wu(x) = W · ∇u(x) = p.v.

∫
D

(
W (x)−W (y)

)
· ∇K(x− y)dy, (65)

where ∇K(x) is defined in (30).

Proof. Since W = ∇⊥ϕ is divergence free, we have

∂Wui = div (W ui), i = 1, 2.

In the following, we will compute div (Wui) in the distributional sense. For every χ̃ ∈ C∞c (R2), we
have

(div(W ui), χ̃) = −(Wui,∇χ̃) = −
∫
R2

ui(x)W (x) · ∇χ̃(x)dx.

In view of the expression formula (26) and Fubini’s theorem, it follows that(
div(W ui), χ̃

)
= −

∫
R2

(∫
D
Ki(x− y)dy

)
W (x) · ∇χ̃(x)dx

= −
∫
D

∫
R2

Ki(x− y)W (x) · ∇χ̃(x)dxdy

= − lim
ε→0

∫
D

∫
|x−y|≥ε

Ki(x− y)W (x) · ∇χ̃(x)dxdy.

Through integration by parts, we find that∫
D

∫
|x−y|≥ε

Ki(x− y)W (x) · ∇χ̃(x)dxdy = −
∫
D

∫
|x−y|≥ε

W (x) · ∇xKi(x− y)χ̃(x)dxdy − Iε,

with

Iε ,
∫
D

∫
|x−y|=ε

Ki(x− y)W (x) · (x− y)

|x− y|
χ̃(x)dS(x)dy.

Note that limε→0 Iε might be infinite. Define

Jε ,
∫
D

∫
|x−y|=ε

Ki(x− y)W (y) · (x− y)

|x− y|
χ̃(x)dS(x)dy,

and we can take the limit of their difference Rε , Iε−Jε. Indeed, we apply (31) and (20) to obtain

lim
ε→0
|Rε| = lim

ε→0

∣∣∣ ∫
D

∫
|x−y|=ε

Ki(x− y)(W (x)−W (y)) · (x− y)

|x− y|
χ̃(x)dS(x)dy

∣∣∣
≤ lim

ε→0

∫
D

∣∣∣G(ε)

ε
· ‖W‖Ċµε

µ · 1 · ‖χ̃‖L∞ · 2πε
∣∣∣dy ≤ C lim

ε→0
εµm(ε−1) = 0.

For Jε, using Fubini’s theorem and integration by parts, we infer that

Jε =

∫
R2

∫
D∩{|x−y|=ε}

Ki(x− y)W (y) · (x− y)

|x− y|
dS(y)χ̃(x)dx
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=

∫
R2

(∫
D∩{|x−y|≥ε}

W (y) · ∇y(Ki(x− y))dy −
∫
∂D∩{|x−y|≥ε}

Ki(x− y)W (y) · n(y) dS(y)

)
χ̃(x)dx

=

∫
R2

∫
D∩{|x−y|≥ε}

W (y) · ∇y(Ki(x− y))dy χ̃(x)dx

= −
∫
R2

∫
D∩{|x−y|≥ε}

W (y) · ∇xKi(x− y)dy χ̃(x)dx, (66)

where in the second equality, we use the fact that W (y) · n(y) = 0 for y ∈ ∂D with n the outward
normal vector of ∂D. Therefore, based on the above estimates,

(div(Wui), χ̃) = lim
ε→0

(∫
R2

∫
D∩{|x−y|≥ε}

(
W (x)−W (y)

)
· ∇xKi(x− y)dy χ̃(x)dx+Rε

)
=

∫
R2

(
p.v.

∫
D

(W (x)−W (y)) · ∇xKi(x− y)dy
)
χ̃(x)dx.

This finishes the proof of (65). �

Based on Lemma 4.3, we show the following Hölder-type estimate of ∂Wu.

Lemma 4.4. Under the assumptions of Lemma 4.3, the following estimate holds,

‖∂Wu‖Cµm(R2) ≤ C(1 + log ∆γ)‖W‖Ċµ(R2), (67)

where C > 0 depends only on µ, γ and |D|.

Proof. By virtue of the expression (65), (38), the rearrangement inequality, and (20), we deduce

‖∂Wu‖L∞ ≤
∫
D
|W (x)−W (y)| · |∇K(x− y)|dy

≤ C‖W‖Ċµ(R2)

∫
D
|x− y|µm(|x− y|−1) + 1

|x− y|2
dy

≤ C‖W‖Ċµ(R2)

∫ L

0

m(ρ−1) + 1

ρ1−µ dρ ≤ C‖W‖Ċµ(R2),

with L =
√
|D|/π. Choosing x, h ∈ R2 such that |h| ≤ c̄0

3 , we write

∂Wu(x)− ∂Wu(x+ h) = J1 + J2 + J3 + J4,

where

J1 , p.v.

∫
D∩{|x−y|<2|h|}

(
W (x)−W (y)

)
· ∇K(x− y)dy,

J2 , −p.v.

∫
D∩{|x−y|<2|h|}

(
W (x+ h)−W (y)

)
· ∇K(x+ h− y)dy,

J3 ,
∫
D∩{|x−y|≥2|h|}

(
W (x)−W (x+ h)

)
· ∇K(x− y)dy,

J4 ,
∫
D∩{|x−y|≥2|h|}

(
W (x+ h)−W (y)

)
·
(
∇K(x− y)−∇K(x+ h− y)

)
dy.

For J1, from (38), we get

|J1| ≤ C‖W‖Ċµ(R2)

∫
|x−y|≤2|h|

|x− y|µm(|x− y|−1)

|x− y|2
dy ≤ C‖W‖Ċµ(R2)

∫ 2|h|

0

m(ρ−1)

ρ1−µ dρ.
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Using (14) in (H2a) and the L’Hôpital rule gives

lim
ρ→0

∫ ρ
0 ρ̃

µ−1m(ρ̃−1)dρ̃

ρµm(ρ−1)
= lim

ρ→0

ρµ−1m(ρ−1)

µρµ−1m(ρ−1)− ρµ−1m′(ρ−1)ρ−1
= lim

r→+∞

1

µ− rm′(r)
m(r)

=
1

µ
.

Then, there exists a constant C > 0 depending on µ and c̄0, such that for any ρ < c̄0,∫ ρ

0
ρ̃µ−1m(ρ̃−1)dρ̃ ≤ Cρµm(ρ−1). (68)

Together with (16), we find

|J1| ≤ C‖W‖Ċµ(R2)|h|
µm(|h|−1).

Performing the same procedure, we can also show that

|J2| ≤ C‖W‖Ċµ(R2)

∫ 3|h|

0

m(ρ−1)

ρ1−µ dρ ≤ C‖W‖Ċµ(R2)|h|
µm(|h|−1).

For the term J3, it follows from (59) that

|J3| ≤ ‖W‖Ċµ(R2)|h|
µ
∣∣∣p.v. ∫

D∩{|x−y|≥2|h|}
∇K(x− y)dy

∣∣∣
≤ C

(
1 + log ∆γ

)
‖W‖Ċµ(R2)|h|

µ
(
m(|h|−1) + 1

)
.

Finally, for the term J4, we apply (34) with l = 2 and get

|∇2K(x)| ≤ C m(|x|−1) + 1

|x|3
.

Utilizing the mean value theorem and proceeding as in the treatment of II in Lemma 3.1, we obtain

|J4| ≤ C‖W‖Ċµ(R2)

∫
D∩{|x−y|≥2|h|}

|x− y|µ m(|x− y|−1) + 1

|x− y|3
|h|dy

≤ C‖W‖Ċµ(R2)|h|
∫ L

2|h|

m(ρ−1) + 1

ρ3−µ ρdρ ≤ C‖W‖Ċµ(R2)|h|
µ
(
m(|h|−1) + 1

)
.

Gathering the above estimates leads to the desired result (67). �

Next, we will present a refined point-wise estimate for the term ∂Wu = W ·∇u in the (tangential)
direction W = ∇⊥ϕ, which is essentially from [41] but with more technical details here.

Lemma 4.5. Under the assumptions of Lemma 4.3, we have the following point-wise estimate

|∇uw ·w| ≤ C
(
m(∆γ) + 1

)(
1 + log ∆γ

)
, ∀γ ∈ (0, µ], (69)

where w , W
|W | = ∇⊥ϕ

|∇⊥ϕ| , and C > 0 depends only on γ and |D|.

Proof. Since ∇uw ·w = S(∇u) w ·w with S(∇u) = ∇u+(∇u)T

2 being the symmetric part of ∇u, we
will concentrate on the analysis of S(∇u) w ·w. We recall from (28) that

S(∇u)(x) =

∫
D

(∇K)S(x− y)dy =

∫
D

1

2

2G(|x− y|)− |x− y|G′(|x− y|)
|x− y|2

σ(x− y)dy,

where σ is given by (29). For every x ∈ R2, we divide S(∇u)(x) into

S(∇u)(x) =

∫
D∩{|x−y|≥δγ}

(∇K)S(x− y)dy +

∫
D∩{|x−y|≤δγ}

(∇K)S(x− y)dy

, I1(x) + I2(x),
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where δγ , (∆γ)
− 1
γ .

For I1, we proceed as (60) and obtain

|I1(x)| ≤ C
∫
D∩{|x−y|≥δγ}

m(|x− y|−1) + 1

|x− y|2
dy ≤ Cm(δ−1

γ )
(
1 + log δ−1

γ

)
,

and consequently,

|I1(x)w(x) ·w(x)| ≤ Cm(∆γ)
(
1 + log ∆γ

)
.

For I2, the goal is to exploit additional cancellations in order to sharpen the result of Lemma 4.1.
Denote x̃ ∈ ∂D such that |x− x̃| = dx, where dx is defined in (61). If δγ ≤ dx, then by the mean-zero
property of σ(z), we have I2(x) = 0. Thus, we assume that δγ > dx without loss of generality, and

I2(x) =

∫
D∩{dx≤|x−y|≤δγ}

(∇K)S(x− y)dy.

Since ϕ is a level-set characterization of D, we know that x̃− x is parallel to ∇ϕ(x̃), and hence
orthogonal to w(x̃). Therefore, we shall seek cancellations in I2(x)w(x̃) ·w(x̃). Decompose

I2(x)w(x) ·w(x) = I2(x)w(x̃) ·w(x̃) + I2(x)
(
w(x) + w(x̃)

)
·
(
w(x)−w(x̃)

)
.

Let us start with the estimate of the difference

|I2(x)
(
w(x) + w(x̃)

)
·
(
w(x)−w(x̃)

)
| ≤ 2|I2(x)| · |w(x)−w(x̃)|.

By virtue of the definitions of w(x), x̃ and dx, we have

|w(x)−w(x̃)| =
∣∣(W (x)−W (x̃)

)
−w(x̃)

(
|W (x)| − |W (x̃)|

)∣∣
|W (x)|

≤
2‖∇ϕ‖Ċγ |x− x̃|

γ

|∇ϕ|inf
≤ 2∆γ(dx)γ .

A similar argument as in (64) yields

|I2(x)| ≤ C
∫ δγ

dx

m(ρ−1) + 1

ρ
H1(Rρ(x))dρ ≤ C

(
m(d−1

x ) + 1
)
.

Hence,

|I2(x)
(
w(x) + w(x̃)

)
·
(
w(x)−w(x̃)

)
| ≤ C∆γ(dx)γ

(
m(d−1

x ) + 1
)
≤ C∆γ(δγ)γ

(
m(δ−1

γ ) + 1
)

≤ C
(
m(∆

1
γ
γ ) + 1

)
≤ C

(
m(∆γ) + 1

)
.

where we have used (25) in the second inequality, and (23) in the last inequality.

Next, we focus on the term I2(x)w(x̃) ·w(x̃). A main observation is that (∇K)S(x−·)w(x̃) ·w(x̃)
is an odd function with respect to the line

L : s 7→ x+ sw(x̃)⊥,

which go across x and x̃. To see this, we denote ȳ the reflection point of y with respect to L. Then,
if we represent y = x+ s1w(x̃)⊥ + s2w(x̃), we have ȳ = x+ s1w(x̃)⊥ − s2w(x̃). This implies

|x− ȳ| =
√
s2

1 + s2
2 = |x− y|.

Direct computation shows

σ(x− y)w(x̃) ·w(x̃) =
2
(
w(x̃)⊥ · (x− y)

)(
w(x̃) · (x− y)

)
|x− y|2

=
2s1s2

s2
1 + s2

2

,

and

σ(x− ȳ)w(x̃) ·w(x̃) = − 2s1s2

s2
1 + s2

2

= −σ(x− y)w(x̃) ·w(x̃).
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Hence, we conclude with

(∇K)S(x− ȳ)w(x̃) ·w(x̃) = −(∇K)S(x− y)w(x̃) ·w(x̃).

Define the half plane

F , {x ∈ R2 : ∇ϕ(x̃) · (x− x̃) ≥ 0}.

Since F∩{dx ≤ |x−y| ≤ δγ} is part of the annulus which is symmetric with respect to L, we deduce
that

I21(x)w(x̃) ·w(x̃) = 0, (70)

where

I21(x) ,
∫
F∩{dx≤|x−y|≤δγ}

(∇K)S(x− y)dy.

Via (70), it remains to control the difference I22(x)w(x̃) ·w(x̃) where I22 , I2 − I21 satisfies

|I22(x)| ≤
∫

(D4F)∩{dx≤|x−y|≤δγ}

∣∣(∇K)S(x− y)
∣∣dy ≤ C ∫

(D4F)∩{dx≤|x−y|≤δγ}

m(|x− y|−1) + 1

|x− y|2
dy

≤ C
∫

(D4F)∩{0≤|x̃−y|≤2δγ}

m(|x̃− y|−1) + 1

|x̃− y|2
dy,

where we apply (38) in the second inequality. For the last inequality, we have used the fact that

0 ≤ |x̃− y| ≤ |x̃− x|+ |x− y| = dx + |x− y| ≤ 2|x− y|,

which implies {dx ≤ |x− y| ≤ δγ} ⊂ {0 ≤ |x̃− y| ≤ 2δγ}. We also make use of the monotonicity of
m as well as (16).

Now, we argue that the set (D4F) ∩ {0 ≤ |x̃− y| ≤ 2δγ} is small. Rewrite the integral in polar
coordinates centered in x̃, and borrow the notation in (62). It yields

|I22(x)| ≤ C
∫ 2δγ

0

m(ρ−1) + 1

ρ
H1(Sρ

(
x̃)4Σ(x)

)
ρdρ.

A variation of the geometric lemma (63) (setting dx = 0) reads

H1
(
Sρ
(
x̃)4Σ(x)

)
≤ 2π · 2γ

( ρ
δγ

)γ
, ∀ρ > 0.

Then, we finish the estimate by

|I22(x)| ≤ C
∫ 2δγ

0

m(ρ−1) + 1

ρ

( ρ
δγ

)γ
dρ ≤ C

(
(2δγ)γm

(
(2δγ)−1

)
(δγ)−γ +

2γ

γ

)
≤ C

(
m(δ−1

γ ) + 1
)
≤ C

(
m(∆γ) + 1

)
,

where we have used (68) in the second inequality, and (23) in the last inequality.

Collecting all the estimates, we conclude with the desired inequality (69). �

4.4. The refined estimate on the flow map. In this section, we derive a sharper estimate for
the flow map, compared to (6) in Theorem 1.1, which will play a fundamental role in the following
section. Define

ν̃(ρ) , ρ
(
m(ρ−1) + 1

)
, and H̃(r) ,

∫ 1

1
r

dρ

ν̃(ρ)
=

∫ 1

1
r

dρ

ρ
(
m(ρ−1) + 1

) ,
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Compared to ν and H, there is an improvement in a logarithmic factor. Similarly to H, the function

H̃ is invertible since H̃′(r) = 1
r2ν̃(r−1)

> 0. Moreover, from the Osgood condition (Osg),

lim
r→+∞

H̃(r) =

∫ 1

0

dρ

ρ
(
m(ρ−1) + 1

) =

∫ +∞

1

dr

r
(
m(r) + 1

) ≥ log 2

1 + 1
m(1)

∫ +∞

2

dr

r(log r)m(r)
= +∞.

Hence, the inverse function H̃−1(·) : R→ (0,+∞) is also increasing monotonically.

Lemma 4.6. Under the assumptions of Theorem 1.1, and if u ∈ L1([0,+∞);C1
m(R2)), then we

have that for any t, s ∈ R+,

|Φt,s(x)− Φt,s(y)|−1 ≥ H̃−1
(
H̃(|x− y|−1)−

∣∣∣ ∫ t

s
‖u(τ)‖C1

m(R2)dτ
∣∣∣). (71)

Moreover, for any t, s ∈ R+,

|Φt,s(x)− Φt,s(y)| ≤ |x− y| exp

((
m(|x− y|−1) + 1

)∣∣∣ ∫ t

s
‖u(τ)‖C1

m(R2)dτ
∣∣∣). (72)

Proof. According to (5) and (57), it follows that for every t, s ∈ R+,∣∣∣d(Φt,s(x)− Φt,s(y))

dt

∣∣∣ ≤ ∣∣u(Φt,s(x), t)− u(Φt,s(y), t)
∣∣ ≤ ‖u(t)‖C1

m(R2) ν̃(|Φt,s(x)− Φt,s(y)|).

Since d
dρ H̃(ρ−1) = − 1

ν̃(ρ) , we get∣∣∣H̃(|Φt,s(x)− Φt,s(y)|−1)− H̃(|x− y|−1)
∣∣∣ =

∣∣∣ ∫ |Φt,s(x)−Φt,s(y)|

|x−y|

dρ

ν̃(ρ)

∣∣∣ ≤ ∣∣∣ ∫ t

s
‖u(τ)‖C1

m(R2)dτ
∣∣∣,

which directly implies (71).

If |Φt,s(x)− Φt,s(y)| ≤ |x− y|, then (72) clearly holds. If |Φt,s(x)− Φt,s(y)| > |x− y|, we have∣∣∣ ∫ |Φt,s(x)−Φt,s(y)|

|x−y|

dρ

ν̃(ρ)

∣∣∣ ≥ 1

m(|x− y|−1) + 1

∫ |Φt,s(x)−Φt,s(y)|

|x−y|

dρ

ρ
=

log
|Φt,s(x)−Φt,s(y)|

|x−y|

m(|x− y|−1) + 1
,

and consequently,

|Φt,s(x)− Φt,s(y)| ≤ |x− y| exp

((
m(|x− y|−1) + 1

) ∣∣∣ ∫ |Φt,s(x)−Φt,s(y)|

|x−y|

dρ

ν̃(ρ)

∣∣∣)
≤ |x− y| exp

((
m(|x− y|−1) + 1

)∣∣∣ ∫ t

s
‖u(τ)‖C1

m(R2)dτ
∣∣∣).

This finishes the proof of (72). �

4.5. Closing estimates. Recall that ϕ(x, t) is a level-set characterization of the domain D(t),
satisfying (49), and that W = ∇⊥ϕ. The dynamics (55) with k = 1 reads

∂tW + (u · ∇)W = W · ∇u = ∂Wu, W |t=0 = W0. (73)

Using the flow map Φt,s defined in (5), we deduce

W (x, t) = W0(Φ0,t(x)) +

∫ t

0

(
∂Wu

)
(s,Φs,t(x))ds. (74)

We apply the bound (67) on ‖∂Wu‖Cµm(R2) in Lemma 4.4 and obtain the ‖W‖L∞ bound:

‖W (t)‖L∞ ≤ ‖W0‖L∞ +

∫ t

0
‖∂Wu(s)‖L∞ds ≤ ‖W0‖L∞ + C

∫ t

0

(
1 + log ∆γ

)
‖W (s)‖Ċµ(s)ds, (75)

for any µ ∈ (0, 1), γ ∈ (0, µ] and the mapping s ∈ [0, t] 7→ µ(s) ∈ [µ2 , µ].
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Next, we derive a lower bound estimate on |∇ϕ|inf . Taking an inner product on both sides of
(73) with W leads to

∂t|W |2 + u · ∇|W |2 = 2(∇uw ·w)|W |2, with w = W
|W | .

Then, we infer that

∂t
(

log |W ◦ Φt,0|
)
≤ |(∇uw ·w) ◦ Φt,0|.

Thus, we obtain the following key result:

|∇ϕ|inf(t) ≥ |∇ϕ0|inf exp
(
−
∫ t

0
‖(∇uw ·w)‖L∞ds

)
.

Taking advantage of Lemma 4.5, we know that for any γ ∈ (0, µ],

‖∇uw ·w‖L∞ ≤ C
(
m(∆γ) + 1

)
(1 + log ∆γ),

with ∆γ =
‖∇ϕ‖Ċγ
|∇ϕ|inf

+ 1. Collecting the above estimates yields that for each γ ∈ (0, µ],

|∇ϕ|inf(t) ≥ |∇ϕ0|inf exp
(
− C

∫ t

0

(
m(∆γ(s)) + 1

)(
1 + log ∆γ(s)

)
ds
)
. (76)

Now we perform the method of losing estimates on ‖∇ϕ‖Cµ(R2) = ‖W‖Cµ(R2), see [4, Section 3.3]
for a general statement of this approach for the transport equation. Our novelty is that here we can
avoid the use of the Littlewood-Paley decomposition, which is crucial when we tackle this problem
in the domain with boundary.

Let T > 0 and µ ∈ (0, 1), ε ∈ (0, µ2 ) be fixed, and let γ ∈ (0, µ) be chosen later, then we define

Vγ(t) ,
∫ t

0

(
1 + log ∆γ(s)

)
ds, ηγ,T ,

ε

Vγ(T )
, µ(t) , µ− ηγ,TVγ(t). (77)

It is clear to see that µ(0) = µ, µ(T ) = µ− ε ≥ µ
2 , and µ(t) is decreasing for t ∈ [0, T ].

For any x, y ∈ R2, from (74) we have

|W (x, t)−W (y, t)| ≤ ‖W0‖Ċµ |Φ0,t(x)− Φ0,t(y)|µ

+

∫ t

0
‖∂Wu(s)‖

C
µ(s)
m
|Φs,t(x)− Φs,t(y)|µ(s)

(
m(|Φs,t(x)− Φs,t(y)|−1) + 1

)
ds. (78)

Recalling Lemma 4.1, for any γ ∈ (0, 1), there exists C̃ ≥ 1 such that

‖u(t)‖C1
m(R2) ≤ C̃

(
1 + log ∆γ(t)

)
, t ∈ R+.

Applying (72) in Lemma 4.6, we deduce that for every t ≥ s ≥ 0,

|Φs,t(x)− Φs,t(y)| ≤ |x− y| exp
(
C̃
(
m(|x− y|−1) + 1

) ∫ t

s
(1 + log ∆γ(τ))dτ

)
= |x− y| eMs,t,γ(|x−y|−1), (79)

where for convenience, we introduce the shortcut notation

Ms,t,γ(r) , C̃
(
m(r) + 1

) ∫ t

s
(1 + log ∆γ(τ))dτ. (80)

It follows from (25), (79), and the monotonicity of m that

|Φs,t(x)− Φs,t(y)|µ(s)
(
m(|Φs,t(x)− Φs,t(y)|−1) + 1

)
≤ C|x− y|µ(s)eµ(s)Ms,t,γ(|x−y|−1)

(
m
(
|x− y|−1e−Ms,t,γ(|x−y|−1)

)
+ 1
)

≤ C|x− y|µ(s)
(
m(|x− y|−1) + 1

)
eµMs,t,γ(|x−y|−1), (81)
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where C > 0 depends only on µ (recalling that µ(s) ∈ [µ − ε, µ] ⊂ [µ2 , µ]). Applying the above
estimates to (78), we find

|W (x, t)−W (y, t)|
|x− y|µ(t)

≤ ‖W0‖Ċµ |x− y|
µ−µ(t)eµM0,t,γ(|x−y|−1)

+ C1

∫ t

0
(1 + log ∆γ(s))‖W (s)‖Ċµ(s) |x− y|µ(s)−µ(t)

(
m(|x− y|−1) + 1

)
eµMs,t,γ(|x−y|−1)ds

, J1 + J2, (82)

where C1 > 0 depend only on µ and γ.

In the following, we divide into three cases to discuss the estimate of (82).

Case I: Suppose that |x− y| ∈ (0, 1] is small enough such that

log |x− y|−1

m(|x− y|−1) + 1
≥ C ′C̃

ηγ,T
, (83)

where the constant C ′ > µ will be fixed later. By (83), we have that

|x− y|µ(s)−µ(t) = exp
(
ηγ,T log |x− y|

∫ t

s
(1 + log ∆γ(τ))dτ

)
≤ exp

(
− C ′C̃

(
m(|x− y|−1) + 1

) ∫ t

s
(1 + log ∆γ(τ))dτ

)
= e−C

′Ms,t,γ(|x−y|−1).

Consequently, the terms J1 and J2 can be estimated as follows

J1 ≤ ‖W0‖Ċµe
−(C′−µ)M0,t,γ(|x−y|−1),

and

J2 ≤ C1 sup
s∈[0,t]

‖W (s)‖Ċµ(s)

∫ t

0

(
1 + log ∆γ(s)

)(
m(|x− y|−1) + 1

)
e−(C′−µ)Ms,t,γ(|x−y|−1)ds

=
C1

C̃
sup
s∈[0,t]

‖W (s)‖Ċµ(s)

∫ t

0
e−(C′−µ)Ms,t,γ(|x−y|−1) d

ds

(
−Ms,t,γ(|x− y|−1)

)
ds

≤ 1

C ′ − µ
C1

C̃
sup
s∈[0,t]

‖W (s)‖Ċµ(s) .

Hence, choosing C ′ = µ+ 2C1

C̃
, the estimates above imply

|W (x, t)−W (y, t)|
|x− y|µ(t)

≤ ‖W0‖Ċµ +
1

2
sup
s∈[0,t]

‖W (s)‖Ċµ(s) . (84)

Case II: Suppose |x− y| ∈ (0, 1] and (83) is not satisfied, that is,

log |x− y|−1

m(|x− y|−1) + 1
≤ C ′C̃

ηγ,T
=
C ′C̃Vγ(T )

ε
. (85)

Thanks to (20), Lemma 2.1 and (85), for |x− y| ≤ 1
2 , we have

log
1
2 |x− y|−1

C
≤ log |x− y|−1

C(1 + log
1
2 |x− y|−1)

≤ log |x− y|−1

m(|x− y|−1) + 1
≤ C ′C̃Vγ(T )

ε
,

which implies that (for |x− y| ∈ [1
2 , 1), the following estimate is clear)

log |x− y|−1 ≤
(
CC′C̃Vγ(T )

ε

)2
, and |x− y|−1 ≤ e

(
CC′C̃Vγ (T )

ε

)2

.
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Consequently, we have

m(|x− y|−1) ≤ m̃
((CC′C̃Vγ(T )

ε

)2) ≤ Cm̃(CC′C̃Vγ(T )
ε

)
≤ C

(
m̃(Vγ(T )) + 1

)
= C

(
m(eVγ(T )) + 1

)
,

where we have used (H1), (22) and (24) in the three inequalities, respectively, and the constants

C ′, C̃ and ε are absorbed in C. Together with (82), and the definition of Ms,t,γ(·) in (80), it follows
that

J1 ≤ ‖W0‖Ċµ exp
(
C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(τ)

)
dτ
)
≤ ‖W0‖Ċµe

CM0,t,γ(eVγ (T )).

Similarly, since µ(s) ≥ µ(t) for any t ≥ s, we also deduce that

J2 ≤ C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(s)

)
‖W (s)‖Ċµ(s)e

CMs,t,γ(eVγ (T ))ds.

Hence, in this case, collecting the above estimates yields

|W (x, t)−W (y, t)|
|x− y|µ(t)

≤ ‖W0‖Ċµe
CM0,t,γ(eVγ (T )) (86)

+ C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(s)

)
‖W (s)‖Ċµ(s)e

CMs,t,γ(eVγ (T ))ds.

Case III: When |x− y| > 1, we directly use the ‖W‖L∞ estimate (75) to obtain

|W (x, t)−W (y, t)|
|x− y|µ(t)

≤ 2‖W‖L∞ ≤ 2‖W0‖L∞ + C

∫ t

0

(
1 + log ∆γ(s)

)
‖W (s)‖Ċµ(s)ds. (87)

Based on the analysis of the three cases, it follows from (84), (86) and (87) that

sup
|x−y|>0

|W (x, t)−W (y, t)|
|x− y|µ(t)

≤ 1

2
sup
s∈[0,t]

‖W‖Cµ(s) + C‖W0‖Ċµe
CM0,t,γ(eVγ (T ))

+ C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(s)

)
‖W (s)‖Ċµ(s)e

CMs,t,γ(eVγ (T ))ds.

Together with (75), we deduce that

‖W (t)‖Cµ(t) ≤
1

2
sup
s∈[0,t]

‖W (s)‖Cµ(s) + C‖W0‖Ċµe
CM0,t,γ(eVγ (T ))

+ C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(s)

)
‖W (s)‖Ċµ(s)e

CMs,t,γ(eVγ (T ))ds.

Taking supreme on s ∈ [0, t], it immediately leads to

sup
s∈[0,t]

‖W (s)‖Cµ(s) ≤ C‖W0‖CµeCM0,t,γ(eVγ (T ))

+ C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(s)

)
‖W (s)‖Ċµ(s)e

CMs,t,γ(eVγ (T ))ds. (88)

Denote

E(t) , sup
s∈[0,t]

‖W (s)‖Cµ(s)e−CM0,t,γ(eVγ (T )).

Then we find from (88) that

E(t) ≤ C‖W0‖Cµ + C
(
m(eVγ(T )) + 1

) ∫ t

0

(
1 + log ∆γ(s)

)
E(s)ds.
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A direct application of the Grönwall’s inequality implies

E(t) ≤ C‖W0‖Cµ exp
(∫ t

0
C
(
m(eVγ(T )) + 1

)(
1 + log ∆γ(s)

)
ds
)

= C‖W0‖CµeCM0,t,γ(eVγ (T )).

Therefore, we conclude that

‖∇ϕ(T )‖Cµ−ε = ‖W (T )‖Cµ(T ) ≤ E(T )eCM0,T,γ(eVγ (T )) ≤ C‖W0‖Cµe2CM0,T,γ(eVγ (T ))

≤ C‖∇ϕ0‖Cµ exp
(
C
(
m(eVγ(T )) + 1

)
Vγ(T )

)
, (89)

for any T > 0 and γ ∈ (0, 1), and the constant C is independent of T .

Now, choosing γ = µ−ε, from (76) and (89), we find that (recalling that ∆µ−ε is defined in (56))

∆µ−ε(T ) ≤ C exp
(
C
(
m(eVµ−ε(T )) + 1

)
Vµ−ε(T ) + C

∫ T

0
m
(
∆µ−ε(s)

)(
1 + log ∆µ−ε(s)

)
ds
)
, (90)

where C = C(µ, ε) > 0 is independent of T , and Vµ−ε(T ) is given by (77). By setting

f(t) , V ′µ−ε(t) = 1 + log ∆µ−ε(t), M(r) ,

{
r
(
m̃(r) + 1

)
= r
(
m(er) + 1

)
, ∀ r ≥ r0,

r
(
m(er0) + 1

)
, ∀ 0 < r ≤ r0,

(91)

where r0 ≥ 2 is the constant appearing in (21), we rewrite the above inequality as

f(t) ≤ C + C
(
m̃
(∫ t

0
f(s)ds

)
+ 1
)∫ t

0
f(s)ds+ C

∫ t

0
m̃
(
f(s)

)
f(s)ds

≤ C + CM
(∫ t

0
f(s)ds

)
+ C

∫ t

0
M(f(s))ds,

(92)

where C > 0 may depend on µ, ε, and the initial data. According to (21), (19) and (91), we have

r 7→ M(r) is strictly increasing and convex in (0,+∞), (93)

and for any λ > 0, r > 0, ε > 0

M(λr) ≤ Cλr
(
m̃(λr) + 1

)
≤ Cλ(1 + logβ+ε

+ λ)M(r). (94)

Applying Jensen’s inequality, we get

M
(∫ t

0
f(s)ds

)
=M

(1

t

∫ t

0
tf(s)ds

)
≤ 1

t

∫ t

0
M(tf(s))ds ≤ C logβ+ε(e+ t)

∫ t

0
M(f(s))ds.

Consequently, it follows from (92) that

f(t) ≤ C + C logβ+ε(e+ t)

∫ t

0
M(f(s))ds. (95)

Denote by

R(t) ,
r0

logβ+ε(e+ t)
+

∫ t

0
M(f(s))ds,

so that R(0) = r0 and f(t) ≤ C logβ+ε(e+ t)R(t). Then, together with (94), we obtain

dR(t)

dt
= − β + ε

(e+ t) log1+β+ε(e+ t)
+M

(
f(t)

)
≤M

(
C logβ+ε(e+ t)R(t)

)
≤ C logβ+2ε(e+ t)M(R(t)).

Integrating the above differential inequality on t ∈ [0, T ] yields

H(R(T )) = H(R(T ))−H(R(0)) ≤ C(1 + T ) logβ+2ε(e+ T ),
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where

H(r) ,
∫ r

r0

dr̃

M(r̃)
=

{∫ r
r0

1
r̃(m̃(r̃)+1)dr̃, ∀ r ≥ r0,
1

m(er0 )+1 log r
r0
, ∀ 0 < r ≤ r0.

(96)

Note that H(R(0)) = H(r0) = 0, limr→0H(r) = −∞, and the Osgood condition (Osg) implies

lim
r→+∞

H(r) =

∫ +∞

r0

1

r(m̃(r) + 1)
dr ≥ 1

1 + 1
m̃(r0)

∫ +∞

r0

dr

r m̃(r)
= +∞.

Together with (93), we infer that r 7→ H(r) is strictly increasing in [0,+∞), and it has a unique
inverse function H−1(·) in (−∞,+∞). Hence, it follows that for any T > 0,

f(T ) ≤ logβ+ε(e+ T )R(T ) ≤ logβ+ε(e+ T )H−1
(
C(1 + T ) logβ+2ε(e+ T )

)
. (97)

This implies the boundedness of ∆µ−ε(T ), which leads to the Cµ−ε boundary regularity. Indeed,
from (76), (89) and (97), we have that for any T > 0,

|∇ϕ(T )|inf ≥ |∇ϕ0|inf exp
(
− C

∫ T

0
M(f(t))dt

)
≥ |∇ϕ0|inf e

−CR(T )

≥ |∇ϕ0|inf exp
(
− CH−1

(
C(1 + T ) logβ+2ε(e+ T )

))
, (98)

and

‖∇ϕ(T )‖Cµ−ε ≤ C‖∇ϕ0‖Cµ exp
(
CM

(∫ T

0
f(t)dt

))
≤ C‖∇ϕ0‖Cµ exp

(
C logβ+ε(e+ T )R(T )

)
≤ C‖∇ϕ0‖Cµ exp

(
C logβ+2ε(e+ T )H−1

(
C(1 + T ) logβ+2ε(e+ T )

))
. (99)

To conclude, we have proved the following theorem.

Theorem 4.7. Let µ ∈ (0, 1). Assume that m(ξ) = m(|ξ|) is a radial function of R2 with m(r)
satisfying (H1)-(H2a)-(Osg). Consider the unique global patch solution (9) of the 2D Loglog-Euler
type equation (1) associated with the patch data ω0 = 1D0 where D0 is a simply connected and
bounded domain with boundary ∂D0 ∈ C1,µ. Then for any t > 0 and any ε ∈ (0, µ), the patch
boundary ∂D(t) persists the C1,µ−ε-regularity, namely, ∂D(t) ∈ C1,µ−ε.

More precisely, for any given ε > 0 and any ε > 0, there is some constant C > 0 depending on
µ, ε, ε and the initial data, such that the estimates (98) and (99) hold, where ϕ(·) is the solution
of (49) and the mapping H(·) is given by (96).

In view of the definitions of H in (7) and H in (96), we have that for any r ≥ r0,

H(r) ≥ 1

1 + 1
m̃(r0)

∫ r

r0

dr̃

r̃ m̃(r̃)
= C

∫ er

er0

dr̃

r̃(log r̃)m(r̃)

= C
(
H(er)−

∫ er0

2

dr̃

r̃(log r̃)m(r̃)

)
= C

(
H(er)− C

)
.

This implies

H−1(y) ≤ log
(
H−1(Cy + C)

)
, ∀ y ≥ 0. (100)

Applying the bound to (98) and (99) yields the estimates (11) and (12). Then, a direct application
of (52)-(53)-(54) gives (10), thereby completing the proof of Theorem 1.2 for n = 1.
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5. Global regularity of Cn,µ single vortex patch

In this section, we consider the global propagation of the higher boundary regularity of the patch
solution associated with the initial data ω0(x) = 1D0(x) and ∂D0 ∈ Cn,µ with n ≥ 2 and µ ∈ (0, 1).

Now, we can present our main result in this section.

Theorem 5.1. Let µ ∈ (0, 1) and n ∈ N?∩ [2,+∞). Assume that m(ξ) = m(|ξ|) is a radial function
of R2 with m(r) satisfying (H1)-(H2a)-(Osg). Let ϕ0 ∈ Cn,µ(R2) be a level-set characterization
of the domain D0 that is bounded and simply connected. Then the global solution of (49) satisfies

∂D(t) ∈ Cn,µ′ for any t > 0 and any µ′ ∈ (0, µ).

According to the framework in Section 4.1, to prove Theorem 5.1, it is sufficient to control
∂n−1
W W . More precisely, we will show that if ϕ0 ∈ Cn,µ(R2), then for any µ′ ∈ (0, µ), there exists

an increasing and positive function Rn,µ,µ′(t) such that

‖∂n−1
W W (t)‖Cµ′ (R2) ≤ Rn,µ,µ′(t) < +∞. (101)

Indeed, given (101), for any γ ∈ (0, 1), µ ∈ (0, 1) and µ′ ∈ (0, µ), we have

n−1∑
j=1

‖∂j−1
W W (t)‖Cγ(R2) + ‖∂n−1

W W (t)‖Cµ′ (R2) ≤
n−1∑
j=1

Rj, γ+1
2
,γ(t) +Rn,µ,µ′(t) < +∞,

where we have used the fact that Cn,µ ⊂ Cj,
γ+1

2 when j < n. Consequently, we deduce ∂D(t) ∈
Cn,µ

′
.

Moreover, the growth rate of Rn,µ,µ′(t) matches with (99), namely

Rn,µ,µ′ ≤ C‖ϕ0‖Cn,µ exp
(
C logβ+2ε(e+ T )H−1

(
C(1 + T ) logβ+2ε(e+ T )

))
. (102)

Applying the bound (100) to (102) yields the estimate (13). Then, a direct application of (52)-(53)-
(54) gives (10) for n ≥ 2, finishing the proof of Theorem 1.2.

5.1. The estimation of ∂kWu. Following the approach developed by Radu [80, Prop. 6.2], we

provide a regular representation formula for ∂kWu analogous to (65). For convenience, we introduce
the following notation

δxy [f ] , f(x)− f(y), ∀x, y ∈ R2.

Proposition 5.2. Let D ⊆ R2 be a smooth bounded domain, and let ϕ be a level-set characterization
of domain D and assume that (H1)-(H2a) hold. Let W = (W1,W2) = ∇⊥ϕ be the vector field
tangent to ∂D. Let k ∈ N? ∩ [1, n], and suppose that ∂lWW ∈ Cγ(R2) for any γ ∈ (0, 1) and

0 ≤ l ≤ k − 2 (if k = 1, this condition is not necessary), and ∂k−1
W W ∈ Cµ(R2), µ ∈ (0, 1). Let

u(x) = ∇⊥(−∆)−1m(Λ)(1D)(x), then we have

∂kWu(x) =
k∑
j=1

∑
l1≥···≥lj≥1
l1+···+lj=k

ckl1,··· ,lj p.v.

∫
D

(
δxy
[
∂l1−1
W W

]
⊗ · · · ⊗ δxy

[
∂
lj−1
W W

])
· ∇jK(x− y)dy, (103)

where ckl1,··· ,lj ∈ R+, ckk = 1, “ ⊗ ” denotes the usual tensor product (e.g. a ⊗ b = (aibj)2×2 for two

vectors a, b ∈ R2), and K(x) = x⊥

|x|2G(|x|) is given by (26).

Remark 5. In particular, for k = 2, 3, we have

∂2
Wu(x) = p.v.

∫
D

(
W (x)−W (y)

)
⊗
(
W (x)−W (y)

)
· ∇2K(x− y)dy
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+ p.v.

∫
D

(
∂WW (x)− ∂WW (y)

)
· ∇K(x− y)dy,

and

∂3
Wu(x) = p.v.

∫
D

(
W (x)−W (y)

)
⊗
(
W (x)−W (y)

)
⊗
(
W (x)−W (y)

)
· ∇3K(x− y)dy

+ 3 p.v.

∫
D

(
∂WW (x)− ∂WW (y)

)
⊗
(
W (x)−W (y)

)
· ∇2K(x− y)dy

+ p.v.

∫
D

(
∂2
WW (x)− ∂2

WW (y)
)
· ∇K(x− y)dy.

Proof of Proposition 5.2. We prove (103) by induction. For k = 1, (103) is a direct consequence of
(65) with c1

1 = 1. Suppose that (103) is true for k. We will show that it is also true for the k + 1
case. The proof is analogous to Lemma 4.3.

Due to the roughness of the patch solution, we shall compute ∂k+1
W u in the distributional sense.

Since W = ∇⊥ϕ is divergence free, we have

∂k+1
W u = div(W ∂kWu).

Next, for any χ̃ ∈ C∞c (R2), we get

(div(W ∂kWu), χ̃) = −(∂kWu,W · ∇χ̃) = −
∫
R2

∂kWu(x)W (x) · ∇χ̃(x)dx.

Denoting by

Dl1,··· ,ljW (x, y) , δxy
[
∂l1−1
W W

]
⊗ · · · ⊗ δxy

[
∂
lj−1
W W

]
, (104)

and through the induction hypotheses (103) and Fubini’s theorem, we deduce that

(div(W ∂kWu), χ̃)

= −
k∑
j=1

∑
l1≥···≥lj≥1
l1+···+lj=k

ckl1,··· ,lj

∫
R2

(
lim
ε→0

∫
D∩{|x−y|≥ε}

Dl1,··· ,ljW (x, y) · ∇jK(x− y)dy
)
W (x) · ∇χ̃(x)dx

= −
k∑
j=1

∑
l1≥l2···≥lj≥1
l1+···+lj=k

ckl1,··· ,lj lim
ε→0

∫
D

∫
|x−y|≥ε

Dl1,··· ,ljW (x, y) · ∇jK(x− y)W (x) · ∇χ̃(x)dxdy

,
k∑
j=1

∑
l1≥l2···≥lj≥1
l1+···+lj=k

ckl1,··· ,lj lim
ε→0
Aε.

Since W is divergence free, the integration by parts gives us

Aε = −
∫
D

∫
|x−y|≥ε

Dl1,··· ,ljW (x, y) · ∇jK(x− y)W (x) · ∇χ̃(x)dxdy

=

∫
D

∫
|x−y|≥ε

W (x) · ∇x
(
Dl1,··· ,ljW (x, y) · ∇jK(x− y)

)
χ̃(x)dxdy + Iε

where

Iε ,
∫
D

∫
|x−y|=ε

Dl1,··· ,ljW (x, y) · ∇jK(x− y)W (x) · (x− y)

|x− y|
χ̃(x)dS(x)dy.
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Define

Jε ,
∫
D

∫
|x−y|=ε

Dl1,··· ,ljW (x, y) · ∇jK(x− y)W (y) · (x− y)

|x− y|
χ̃(x)dS(x)dy, and Rε , Iε − Jε.

Noting that for s = 1, · · · , j,∣∣δxy [∂ls−1
W W ]

∣∣ =
∣∣∂ls−1
W W (x)− ∂ls−1

W W (y)
∣∣ ≤ ‖∂ls−1

W W‖Cγ |x− y|γ , (105)

we control the difference Rε by

lim
ε→0
|Rε| = lim

ε→0

∣∣∣ ∫
D

∫
|x−y|=ε

Dl1,··· ,ljW (x, y) · ∇jK(x− y)(W (x)−W (y)) · (x− y)

|x− y|
χ̃(x)dS(x)dy

∣∣∣
≤ C lim

ε→0

∫
D

j∏
s=1

(
‖∂ls−1

W W‖Cγεγ
)
· m(ε−1) + 1

εj+1
· ‖W‖Cγεγ · 1 · ‖χ̃‖L∞ · 2πεdy

≤ C lim
ε→0

ε(j+1)γ−j(m(ε−1) + 1
)

= 0,

by choosing γ ∈ ( k
k+1 , 1) so that γ > k

k+1 ≥
j
j+1 and therefore (j + 1)γ − j > 0. We have used (34)

to estimate ∇jK.

For Jε, a similar argument as (66) yields

Jε =

∫
R2

∫
D∩{|x−y|=ε}

Dl1,··· ,ljW (x, y) · ∇jK(x− y)W (y) · (x− y)

|x− y|
χ̃(x)dS(y)dx

=

∫
R2

∫
D∩{|x−y|≥ε}

W (y) · ∇y
(
Dl1,··· ,ljW (x, y) · ∇jK(x− y)

)
dy χ̃(x)dx.

Collecting the above computations yields that

Aε =

∫
R2

∫
D∩{|x−y|≥ε}

W (x) · ∇x
(
Dl1,··· ,ljW (x, y) · ∇jK(x− y)

)
dy χ̃(x)dx

+

∫
R2

∫
D∩{|x−y|≥ε}

W (y) · ∇y
(
Dl1,··· ,ljW (x, y) · ∇jK(x− y)

)
dy χ̃(x)dx+Rε

=

∫
R2

∫
D∩{|x−y|≥ε}

Dl1,··· ,ljW (x, y)⊗
(
W (x)−W (y)

)
· ∇j+1K(x− y)dy χ̃(x)dx

+

∫
R2

∫
D∩{|x−y|≥ε}

j∑
s=1

Dl1,··· ,ls+1,··· ,lj
W (x, y) · ∇jK(x− y)dy χ̃(x)dx+Rε.

Observe that all the terms have the form D
l̃1,··· ,l̃j̃
W (x, y) · ∇j̃K(x − y), with j̃ = j or j + 1 so that

j̃ ∈ {1, · · · , k + 1}, and l̃1 + · · ·+ l̃j̃ = k + 1. Therefore, we obtain

(div(W ∂kWu), χ̃) = lim
ε→0

k∑
j=1

∑
l1≥···≥lj≥1
l1+···+lj=k

ckl1,··· ,ljAε

=

∫
R2

( k+1∑
j=1

∑
l1≥···≥lj≥1

l1+···+lj=k+1

ck+1
l1,··· ,lj p.v.

∫
D
Dl1,··· ,ljW (x, y) · ∇jK(x− y)dy

)
χ̃(x)dx,
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if we define the coefficients ck+1
l1,··· ,lj (j = 1, · · · , k + 1) properly by

ck+1
l1,··· ,lj =

j∑
s=1
ls≥2

ckl1,··· ,ls−1,··· ,lj + 1{lj=1} c
k
l1,··· ,lj−1

.

Recalling the notation (104), we conclude with (103) for k + 1, as desired. �

Given the expression of ∂kWu in (103), the leading term requiring the highest regularity of W
corresponds to the case j = 1 and l1 = k, which takes the form

Gk(x) , p.v.

∫
D

(
∂k−1
W W (x)− ∂k−1

W W (y)
)
· ∇K(x− y)dy.

We obtain the following controls on Gk as well as the remaining lower order terms.

Lemma 5.3. Let k ∈ N? ∩ [2, n]. Under the assumptions of Proposition 5.2, we have that

‖Gk‖Cµm(R2) ≤ C(1 + log ∆γ)‖∂k−1
W W‖Ċµ(R2), (106)

and

‖∂kWu−Gk‖Cµ(R2) ≤ C
k∑
j=2

∑
l1≥···≥lj≥1
l1+···+lj=k

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
, (107)

for any µ ∈ (0, 1), γ ∈ (0, 1), and γk ∈ (1− 1−µ
k , 1).

Proof. The proof of (106) is analogous to that of Lemma 4.4, replacing W on the right-hand side

of (67) by ∂k−1
W W .

To prove (107), we also follow a similar procedure as in Lemma 4.4. Recall that

∂kWu(x)−Gk(x) =
k∑
j=2

∑
l1≥···≥lj≥1
l1+···+lj=k

ckl1,··· ,lj Ψl1,··· ,lj (x),

where we denote by

Ψl1,··· ,lj (x) , p.v.

∫
D
Dl1,··· ,ljW (x, y) · ∇jK(x− y)dy

= p.v.

∫
D

(
δxy
[
∂l1−1
W W

]
⊗ · · · ⊗ δxy

[
∂
lj−1
W W

])
· ∇jK(x− y)dy.

By virtue of (105), (34), and (20), we have the L∞ bound:

‖∂kWu−Gk‖L∞ ≤ C
k∑
j=2

∑
l1≥···≥lj≥1
l1+···+lj=k

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)∫
D
|x− y|−j−1+jγk

(
m(|x− y|−1) + 1

)
dy

≤ C
k∑
j=2

∑
l1≥···≥lj≥1
l1+···+lj=k

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)∫ L

0
r−j+jγk

(
m(r−1) + 1

)
dy

≤ C
k∑
j=2

∑
l1≥···≥lj≥1
l1+···+lj=k

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
,
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Choosing x, h ∈ R2 such that |h| ≤ c̄0
3 (recalling that c̄0 > 0 is the constant appearing in Lemma

2.3), we write

Ψl1,··· ,lj (x)−Ψl1,··· ,lj (x+ h) = J1 + J2 + J3 + J4,

where

J1 , p.v.

∫
D∩{|x−y|<2|h|}

Dl1,··· ,ljW (x, y) · ∇jK(x− y)dy,

J2 , −p.v.

∫
D∩{|x−y|<2|h|}

Dl1,··· ,ljW (x+ h, y) · ∇jK(x+ h− y)dy,

J3 ,
∫
D∩{|x−y|≥2|h|}

(
Dl1,··· ,ljW (x, y)−Dl1,··· ,ljW (x+ h, y)

)
· ∇jK(x− y)dy,

J4 ,
∫
D∩{|x−y|≥2|h|}

Dl1,··· ,ljW (x+ h, y) ·
(
∇jK(x− y)−∇jK(x+ h− y)

)
dy.

For J1, from (105), (34) and (68), we get

|J1| ≤ C
∫
|x−y|≤2|h|

( j∏
s=1

‖∂ls−1
W W‖Ċγk |x− y|

γk
)m(|x− y|−1)

|x− y|j+1
dy

≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)∫ 2|h|

0
ρjγk−jm(ρ−1)dρ ≤ C

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|jγk−j+1m(|h|−1)

≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|µ,

where for the last inequality, we have used the fact that jγk − j + 1 > µ, which follows from
assumptions γk > 1− 1−µ

k and j ≤ k. A similar argument yields

|J2| ≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)∫ 3|h|

0
ρjγk−jm(ρ−1)dρ ≤ C

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|µ.

For the term J3, since |x− y| ≥ 2h, we have |x+ h− y| ≤ |x− y|+ |h| ≤ 3
2 |x− y|. We apply (105)

and obtain

|Dl1,··· ,ljW (x, y)−Dl1,··· ,ljW (x+ h, y)|

=
∣∣∣ j∑
s=1

(
δx+h
y [∂l1−1

W W ]⊗ · · · ⊗
(
δxy [∂ls−1

W W ]− δx+h
y [∂ls−1

W W ]
)
⊗ · · · ⊗ δxy [∂

lj−1
W W ]

)∣∣∣
≤ C

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|γk |x− y|(j−1)γk .

Then, it follows from (34) and analogous estimates for J1 that

|J3| ≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|γkp.v.

∫
D∩{|x−y|≥2|h|}

|x− y|(j−1)γk
m(|x− y|−1) + 1

|x− y|j+1
dy

≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|γk

∫ L

2|h|
ρ(j−1)γk−j

(
m(ρ−1) + 1

)
dρ

≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|jγk−j+1

(
m(|h|−1) + 1

)
≤ C

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|µ.
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Using the mean value theorem and (34), the term J4 can be bounded as

|J4| ≤ C
∫
D∩{|x−y|≥2|h|}

( j∏
s=1

‖∂ls−1
W W‖Ċγk

(
3
2 |x− y|

)γk) |h| m((1
2 |x− y|)

−1
)

+ 1(
1
2 |x− y|

)j+2
dy

≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|
∫ L

2|h|
ρjγk−j−1

(
m(ρ−1) + 1

)
dρ

≤ C
( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|jγk−j+1

(
m(|h|−1) + 1

)
≤ C

( j∏
s=1

‖∂ls−1
W W‖Ċγk

)
|h|µ.

Gathering the above estimates yields

‖Ψl1,··· ,lj‖Ċµ(R2) ≤ C
j∏
s=1

(
‖∂ls−1

W W‖Ċγk
)
,

and the desired estimate (107) follows. �

5.2. Proof of Theorem 5.1. We prove (101)-(102) by induction. The case n = 1 has been proved
in Theorem 4.7, where the bound is given by (99) with µ′ = µ− ε.

Assume that (101)-(102) holds for any n ∈ {1, 2, · · · , k}. We will show that it holds for n = k+1,
that is, if ‖∂kW0

W0‖Cµ(R2) < +∞, then

‖∂kWW (t)‖Cµ′ (R2) ≤ Rk+1,µ,µ′(t) < +∞, (108)

where Rk+1,µ,µ′(t) satisfies (102).

Recalling that Φt,s(x) is the flow map given by (5), and from the equation (55), we have

∂kWW (x, t) = ∂kW0
W0(Φ0,t(x)) +

∫ t

0
∂k+1
W u(s,Φs,t(x))ds.

Let ε = µ− µ′, γ = µ′. Fix T > 0, and define Vγ(t), ηγ,T and µ(t) as in (77). Consequently,

|∂kWW (x, t)− ∂kWW (y, t)| ≤ ‖∂kW0
W0‖Ċµ |Φ0,t(x)− Φ0,t(y)|µ

+

∫ t

0

∣∣∣∂k+1
W u(Φs,t(x), s)− ∂k+1

W u(Φs,t(y), s)
∣∣∣ds.

It follows from Proposition 5.2 and Lemma 5.3 that for every γk ∈ (1− 1−µ
k+1 , 1),∣∣∣∂k+1

W u(x, s)− ∂k+1
W u(y, s)

∣∣∣ ≤ C(1 + log ∆γ(s)
)
‖∂kWW (s)‖Ċµ(s) |x− y|µ(s)

(
m(|x− y|−1) + 1

)
+ C

k+1∑
j=2

∑
l1≥···≥lj≥1

l1+···+lj=k+1

( j∏
i=1

‖∂li−1
W W (s)‖Ċγk

)
|x− y|µ. (109)

Note that the first term can be handled analogously to the argument in Theorem 4.7 (in the case
n = 1), while the second term is controlled by the induction hypothesis (108):

k+1∑
j=2

∑
l1≥···≥lj≥1

l1+···+lj=k+1

( j∏
i=1

‖∂li−1
W W (t)‖Ċγk

)
≤

k+1∑
j=2

∑
l1≥···≥lj≥1

l1+···+lj=k+1

( j∏
i=1

R
li,
γk+1

2
,γk

(t)
)
, Rk+1,µ(t) < +∞.
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Indeed, R
li,
γk+1

2
,γk

(t) < +∞ due to the fact li ≤ k (since li ≥ 1, l1 + · · ·+ lj = k+1, and j ≥ 2), and

consequently Ck+1,µ ⊂ C li,
γk+1

2 . Applying (79) and (81), we obtain the following bound analogously
to (82):

|∂kWW (x, t)− ∂kWW (y, t)|
|x− y|µ(t)

≤ C‖∂kW0
W0‖Ċµ |x− y|

µ−µ(t)eµM0,t,γ(|x−y|−1)

+ C1

∫ t

0
(1 + log ∆γ(s))‖∂kWW (s)‖Ċµ(s) |x− y|µ(s)−µ(t)

(
m(|x− y|−1) + 1

)
eµMs,t,γ(|x−y|−1)ds

+ C|x− y|µ−µ(t)

∫ t

0
Rk+1,µ(s)eµMs,t,γ(|x−y|−1)ds

≤ C
(
‖∂kW0

W0‖Ċµ +

∫ T

0
Rk+1,µ(t) dt

)
|x− y|µ−µ(t)eµM0,t,γ(|x−y|−1)

+ C1

∫ t

0
(1 + log ∆γ(s))‖∂kWW (s)‖Ċµ(s) |x− y|µ(s)−µ(t)

(
m(|x− y|−1) + 1

)
eµMs,t,γ(|x−y|−1)ds.

Then, through the same argument as in the proof of Theorem 4.7, we obtain a bound analogously
to (99):

‖∂kWW (T )‖Cµ′ = ‖∂kWW (T )‖Cµ−ε

≤ C
(
‖∂kW0

W0‖Cµ +

∫ T

0
Rk+1,µ(t) dt

)
exp

(
C logβ+2ε(e+ T )H−1

(
C(1 + T ) logβ+2ε(e+ T )

))
, Rk+1,µ′,µ(T ) < +∞.

This finishes the proof of (108). By induction, (101) holds.

We are left to verify that Rk+1,µ′,µ(t) satisfies (102). By the induction hypothesis, we have

Rk+1,µ(t) ≤ C‖ϕ0‖Ck+1,µ exp
(
C logβ+2ε(e+ t)H−1

(
C(1 + t) logβ+2ε(e+ t)

))
.

Denote

g(t) , C logβ+2ε(e+ t)H−1
(
C(1 + t) logβ+2ε(e+ t)

)
.

It is easy to check that g is a strictly increasing function in [0,+∞) with mint≥0 g
′(t) = c > 0.

Then,∫ T

0
Rk+1,µ(t) dt ≤

∫ T

0
C‖ϕ0‖Ck+1,µeg(t) dt ≤ C‖ϕ0‖Ck+1,µ

c

∫ T

0
g′(t)eg(t) dt ≤ C‖ϕ0‖Ck+1,µeg(T ).

Therefore, we find that

Rk+1,µ′,µ(T ) ≤ C
(
‖ϕ0‖Ck+1,µ + C‖ϕ0‖Ck+1,µeg(T )) eg(T )

≤ C‖ϕ0‖Ck+1,µ exp
(
C logβ+2ε(e+ t)H−1

(
C(1 + t) logβ+2ε(e+ t)

))
,

finishing the proof.

6. Global regularity of multiple vortex patches

In this section, we consider the patch solutions that are composed of multiple patches.

Suppose that ω0(x) takes the form of (4), where N > 1 and Di(0) ⊂ R2 for i ∈ {1, · · · , N} are
simply connected disjoint bounded domains with

d0 , min
i 6=j

dist(Di(0), Dj(0)) > 0.
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Then, according to Theorem 1.1, the 2D Loglog-Euler type equation (1) admits a unique global
vortex patch solution

ω(x, t) =
N∑
j=1

aj1Dj(t)(x), aj ∈ R, with Dj(t) , Φt(Dj(0)), (110)

where Φt(·) = Φt,0(·) is the flow map defined by (5).

Suppose that ∂Di(0) ∈ Cn,µ, i ∈ {1, · · · , N}. Let ϕi,0 ∈ Cn,µ be a level-set characterization of

Di(0) with a compact support Ωi , {x ∈ R2 : ϕi,0(x) 6= 0} slightly larger than Di(0), such that

Di(0) ⊂ Ωi, dist (∂Ωi, ∂Di(0)) ≥ d0
3 , and di(0) , max

j 6=i
dist (Ωi, Dj(0)) ≥ d0

2 .

Denote by

ϕi(x, t) = ϕi,0(Φ0,t(x)), and Wi(x, t) , ∇⊥ϕi(x, t).

From the framework discussed in Section 4.1, we know that ϕi(·, t) is a level-set characterization
of the domain Di(t), and that the boundary regularity ∂Di(t) ∈ Cn,µ follows from the control of
‖∂n−1

Wi
Wi(t)‖Cµ(R2). Furthermore, we have

suppϕi(·, t) = Ωi(t) , Φt(Ωi).

and

‖∂lWi
u(t)‖Cµ−ε(R2) = ‖∂lWi

u(t)‖Cµ−ε(Ωi(t)), ‖∂l−1
Wi

Wi(t)‖Cµ−ε(R2) = ‖∂l−1
Wi

Wi(t)‖Cµ−ε(Ωi(t)).

Define the distance

di(t) , min
j 6=i

dist (Ωi(t), Dj(t)).

Applying the estimate (6) on the flow map, we obtain

di(t) ≥
1

H−1
(
H(di(0)−1) + Ct

) ≥ 1

H−1
(
H( 2

d0
) + Ct

) > 0, ∀ t ≥ 0. (111)

Hence, different patches remain separated for all time.

Let us also comment on the velocity field u, which takes the form

u(x, t) =
N∑
j=1

uj(x, t) ,
N∑
j=1

∇⊥(−∆)−1m(Λ)
(
aj1Dj(t)(x)

)
. (112)

Since the patches are separated, the main contribution to u(x, t) for x ∈ Ωi(t) comes from the i-th
patch ui(x, t). Indeed, for j 6= i, we apply (34) and control uj(x, t) by∑

j 6=i
‖∇luj(t)‖L∞(Ωi(t)) ≤

∑
j 6=i
|aj |

∥∥∥∫
Dj(t)

∇lK(x− y)dy
∥∥∥
L∞x (Ωi(t))

≤ C m(di(t)
−1) + 1

di(t)l+1
≤ C

(
di(t)

−l−2 + 1
)
, (113)

for l ∈ {0, 1, · · · , n+1} where we do not intend to find the optimized exponent in the last inequality.
Therefore, the global regularity results for a single vortex patch extend to the case of multiple vortex
patches.

Theorem 6.1. Let µ ∈ (0, 1) and n ∈ N?. Assume that m(ξ) = m(|ξ|) is a radial function on R2,
where m(r) satisfies (H1)-(H2a)-(Osg). For each patch solution ω given by (110), if ∂Di(0) ∈ Cn,µ,
then the patch boundaries ∂Dj(t) ∈ Cn,µ−ε for any ε ∈ (0, µ) and j ∈ {1, · · · , N}.
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Moreover, for any given ε > 0 and ε > 0, there are some constant C > 0 depending on initial
data, ε and ε such that for all i = {1, 2, · · · , N}, the following estimates hold:

|∇ϕi(t)|inf ≥ |∇ϕi,0|inf exp
(
− CH−1

(
C(1 + t) logβ+ε(e+ t) + CH(g(t))

))
, (114)

and

‖∂n−1
Wi

Wi(t)‖Cµ−ε ≤ C‖∇ϕi,0‖Cµ exp
(
C logβ+ε(e+ t)H−1

(
C(1 + t) logβ+ε(e+ t) + CH(g(t))

))
,

(115)

where ϕi(·) is a level-set characterization of Di(t), Wi(·) , ∇⊥ϕi(·), the mapping H(·) is given by
(96), g(t) is defined by

g(t) ,
(
H−1(H( 2

d0
) + Ct)

)3
. (116)

Remark 6. The main difference of the bounds (114)-(115) compared to the single-patch case (98)-
(99) is the appearance of the term H(g(t)), which grows exponentially (or faster) in time. This
growth arises because patches may approach one another as time evolves. As a consequence, the
regularity bounds grow triple-exponentially for the 2D Euler equation (i.e. β = ε = ε = 0), and
potentially faster in the general case.

Proof of Theorem 6.1. We start by proving this result for the case n = 1. Define

∆i,γ(t) ,
‖∇ϕi(t)‖Ċγ(Ωi(t))

‖∇ϕi(t)‖inf(∂Di(t))
+ 1, γ ∈ (0, 1).

To estimate u, we use the decomposition (112). The control of ui(t) on Ωi(t) is the same as the
single patch case, see (58), (67) and (69); while the control of uj(t) on Ωi(t) follows from (113). We
deduce

‖u(t)‖C1
m(Ωi(t)) ≤ C

(
1 + log ∆i,γ(t) + di(t)

−3
)
,

‖∂Wiu‖Cσm(Ωi(t)) ≤ C
(
1 + log ∆i,γ(t) + di(t)

−3
)
‖Wi(t)‖Cσ(Ωi(t)), σ ∈ (0, 1),∥∥∇u Wi

|Wi| ·
Wi
|Wi|
∥∥
L∞(Ωi(t))

≤ C
(
m(∆i,γ(t)) + 1

)(
1 + log ∆i,γ(t) + di(t)

−3
)
.

The rest of the proof follows from the same procedure in Section 4.5, replacing 1 + log ∆γ(·) with
1 + log+ ∆i,γ(·) + di(·)−3. In particular, we deduce the bound on ∆i,γ(t) analogous to (90):

∆i,µ−ε(t) ≤ C exp

(
C
(
m(eVi,µ−ε(t)) + 1

)
Vi,µ−ε(t) + C

∫ t

0

(
m(∆i,µ−ε(s)) + 1

)
V ′i,µ−ε(s) ds

)
,

where

Vi,γ(t) ,
∫ t

0

(
1 + log ∆i,γ(s) + d(s)−3

)
ds, γ ∈ (0, 1).

Define

fi(t) , V
′
i,γ(t) = 1 + log ∆i,µ−ε(t) + di(t)

−3,

andM as in (91). It follows from (111) and the inequality above that for every t ∈ [0, T ] and ε > 0,

fi(t) ≤ C
(
g(T ) + logβ+ε(e+ t)

∫ t

0
M(fi(s))ds

)
,

where g(·) is given by (116). The function

Ri(t) ,
g(T )

logβ+ε(e+ t)
+

∫ t

0
M(fi(s))ds
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satisfies

dRi(t)

dt
= − (β + ε)g(T )

(e+ t) logβ+ε(e+ t)
+M(fi(t))

≤M
(
C logβ+ε(e+ t)Ri(t)

)
≤ C logβ+2ε(e+ t)M(Ri(t)),

which implies

H(Ri(T ))−H(Ri(0)) =

∫ T

0

R′i(t)dt

M(Ri(t))
≤ C(1 + T ) logβ+2ε(e+ T ),

where H is defined in (96). Therefore, we conclude that

fi(T ) ≤ C logβ+ε(e+ T )Ri(T ) ≤ logβ+2ε(e+ T )H−1
(
C(1 + T ) logβ+2ε(e+ T ) +H(g(T ))

)
.

This leads to (114) and (115), and hence we complete the proof of Theorem 6.1 for the case n = 1.

Next, we address the case of higher regularity (n ≥ 2) and aim to prove that ∂Di(t) ∈ Cn,µ−ε for
each i ∈ {1, · · · , N}. The proof follows closely the single-patch case (Theorem 5.1), with additional
arguments to account for interactions among patches.

To estimate ∂k+1
Wi

u, we use the decomposition (112)

∂k+1
Wi

u(x, t) = ∂k+1
Wi

ui(x, t) +
∑
`6=i

∂k+1
Wi

u`(x, t).

The first term can be treated like the single-patch case. For the second term, since D`(t)∩Ωi(t) = ∅,
we are still able to apply the expression formula (103) and obtain

∂k+1
Wi

u`(x) = p.v.

∫
D`(t)

(
∂kWi

Wi(x)− ∂kWi
W (y)

)
· ∇K(x− y)dy

+ a`

k+1∑
j=2

∑
l1≥···≥lj≥1

l1+···+lj=k+1

ck+1
l1,··· ,lj

∫
D`(t)

Dl1,··· ,ljWi
(x, y) · ∇jK(x− y)dy

, G̃k+1(x) +
(
∂k+1
Wi

u`(x, t)− G̃k+1(x)
)
,

with

G̃k+1(x) = p.v.

∫
D`(t)

(
∂kWi

Wi(x)− ∂kWi
W (y)

)
· ∇K(x− y)dy.

For G̃k+1, we proceed similarly as in Lemma 5.3, and apply (103) to obtain

‖G̃k+1(t)‖Cµ(Ωi(t)) ≤ ‖∂
k
WW‖Ċµ

(
di(t)

−3 + 1
)
.

For ∂k+1
Wi

u`(x, t)− G̃k+1(x), the same proof of (107) yields

‖∂k+1
Wi

u`(x, t)− G̃k+1(x)‖Cµ(Ωi(t)) ≤ C
k+1∑
j=2

∑
l1≥···≥lj≥1

l1+···+lj=k+1

( j∏
s=1

‖∂ls−1
Wi

Wi‖Ċγk
)
,

Gathering the above estimates, we deduce the bound (109), where 1 + log ∆γ(·) is replaced by
1 + log ∆i,γ(·) + di(·)−3.

The rest of the proof is identical to the single-patch case, with the additional treatment of the
di(·)−3 term same as the n = 1 case in Theorem 6.1. We conclude with the bound (115). �
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Appendix A. Proof of Lemma 2.3

Properties (31) and (32) with l = 1, 2 have been proved in [78, Lemma 2]. For (32) with general
l and (33) can be proved analogously. Here we sketch the proof.

Starting from the explicit expression (27) on G, we claim that for every l ∈ {1, 2, · · · , n+ 1}, the

l-th order derivative G(l) can be expressed by

G(l)(ρ) = Gl(ρ) +
(−1)l

2πρl

∫ ∞
0

J0(ρr)Ml(r)dr, (117)

where Gl(ρ) and Ml(r) are iteratively defined as

Gl(ρ) = G′l−1(ρ)− l − 1

ρ

(
G(l−1)(ρ)− Gl−1(ρ)

)
, G0(ρ) = G1(ρ) = 0,

Ml(r) = Ml−1(r) + rM ′l−1(r), M0(r) = m′(r);

or equivalently,

∀ l ∈ {2, 3, · · · , n+ 1}, Gl(ρ) =

l−1∑
j=1

aj,l
G(j)(ρ)

ρl−j
, {aj,l}1≤j≤l−1 are iteratively defined,

∀ l ∈ {1, 2, · · · , n+ 1}, Ml(r) =
l+1∑
j=1

bj,l r
j−1m(j)(r), b1,l = bl+1,l = 1,

and bj,l = bj,l−1 + (j − 1)bj,l−1 + bj−1,l−1 for every j ∈ {2, · · · , l}. Indeed, we calculate G(l) by

differentiating G(l−1) and using the following integration by parts∫ ∞
0

J ′0(ρr)rMl−1(r)dr =
J0(ρr)rMl−1(r)

ρ

∣∣∣∣+∞
r=0

− 1

ρ

∫ ∞
0

J0(ρr)
(
Ml−1(r) + rM ′l−1(r)

)
dr

= −1

ρ

∫ ∞
0

J0(ρr)Ml(r)dr,

where we have used the fact that for every l ∈ {1, · · · , n+ 1},

lim
r→+∞

∣∣J0(ρr)rMl−1(r)
∣∣ ≤ C lim

r→+∞
r−

1
2 · r ·m′(r) = Cβ1 lim

r→+∞

m(r)

r1/2 log r
= 0,

and
lim
r→0+

rlm(l)(r) = 0, lim
r→0+

rMl−1(r) = 0,

applying the Mikhlin-Hörmander condition in (H1), (H2a), (20) and (18).

Next, we prove (32) and (33) by induction. Note that (32)-(33) with l = 1 have already been
proven in [78, Lemma 2] (although it was only stated that |G′(ρ)| ≤ C in [c̄0,+∞), it can easily
be extended to (33) with l = 1; see also below). Let k ∈ {1, · · · , n}. Suppose that (32) and (33)
with each l ∈ {1, · · · , k} hold, we intend to show that they also hold for the l = k + 1 case. Let
χ(ξ) = χ(|ξ|) ∈ C∞c (R2) be a smooth radial function such that

χ ≡ 1, in {|ξ| ≤ 1}, χ ≡ 0, in {|ξ| ≥ 2}, 0 ≤ χ ≤ 1.

Thanks to identity (27) with |x| = ρ and formulas (117), we have

G(k+1)(ρ) = Gk+1(ρ) +
(−1)k+1

2πρk+1

∫ ∞
0

J0(ρr)χ(ρr)Mk+1(r)dr

+
(−1)k+1

(2π)2ρk+1

∫
R2

eix·ξ(1− χ(ρ|ξ|))Mk+1(|ξ|)
|ξ|

dξ
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, I1 + I2 + I3.

For the first term, noting that I1 =
∑k

j=1 aj,k+1
G(j)(ρ)
ρk+1−j , we immediately use (H1) and the induction

assumptions to deduce that

|I1| ≤ C
1 +m(ρ−1)

ρk+1
.

For the term I2, due to that the Bessel function J0(·) satisfies that 0 < J0(r) ≤ 1 for r ∈ [0, 2], and
using (H1), we find that

|I2| ≤
1

2πρk+1

∫ ∞
0

J0(ρr)χ(ρr)
(
m′(r) + |b2,k+1| r |m′′(r)|+ · · ·+ |bk+2,k+1| rk+1 |m(k+2)(r)|

)
dr

≤ C

ρk+1

∫ 2ρ−1

0
J0(ρr)m′(r)dr ≤ C

ρk+1

(
m(2ρ−1)−m(0+)

)
.

For the last term I3, through the integration by parts and (H1), observe that

|I3| =
1

(2π)2ρk+3

∣∣∣ k+2∑
j=1

bj,k+1

∫
R2

eix·ξ∆ξ

(
(1− χ(ρ|ξ|)) |ξ|

j−1m(j)(|ξ|)
|ξ|

)
dξ
∣∣∣

≤ C

ρk+3

k+2∑
j=1

(∫
ρ−1≤|ξ|≤2ρ−1

(
ρ2 + ρ|ξ|−1

) |ξ|j−1m(j)(|ξ|)
|ξ|

dξ +

∫
|ξ|≥ρ−1

∆ξ

( |ξ|j−1m(j)(|ξ|)
|ξ|

)
dξ

)

≤ C

ρk+3

(∫
ρ−1≤|ξ|≤2ρ−1

(
ρ2 + ρ|ξ|−1

)m′(|ξ|)
|ξ|

dξ +

∫
|ξ|≥ρ−1

m′(|ξ|)
|ξ|3

dξ

)
.

By virtue of the fact that r 7→ m′(r) is non-increasing and rm′(r) ≤ m(r) for r > 0 large (from
(H2a)-(Osg)), we infer that for ρ > 0 small enough, i.e., ρ ∈ (0, c̄0],

|I3| ≤
C

ρk+2
m′(ρ−1) ≤ C

ρk+1
m(ρ−1);

while for every ρ ∈ [c̄0,∞),

|I3| ≤
C

ρk+3

(
ρ2

∫ 2ρ−1

ρ−1

m′(r)dr +

∫ c̄−1
0

ρ−1

m′(r)

r2
dr +

∫ ∞
c̄−1
0

m′(r)

r2
dr

)

≤ C

ρk+3

(
ρ2m(2ρ−1) + c̄2

0m(c̄−1
0 ) +m(c̄−1

0 )

∫ c̄−1
0

ρ−1

1

r3
dr +m′(c̄−1

0 )

∫ ∞
c̄−1
0

1

r2
dr

)
≤ C

ρk+1
.

Gathering the above estimates leads to the inequalities (32) and (33) with l = k + 1, as desired.
Hence, we complete the proof of (32) and (33).
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[16] D. Chae, P. Constantin, D. Córdoba, F. Gancedo, and J. Wu, Generalized surface quasi-geostrophic equations
with singular velocities. Comm. Pure Appl. Math., 65 (2012), no. 8, 1037–1066.
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