A REVISIT OF PATCH SOLUTIONS FOR THE 2D LOGLOG-EULER TYPE
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EQUATION

CHANGHUI TAN, LIUTANG XUE, AND ZHILONG XUE

ABSTRACT. In this paper, we revisit the patch solutions for a class of inviscid whole-space active
scalar equations that interpolate between the 2D Euler equation and the a-SQG equation. Compared
with the 2D Euler equation in vorticity form, there is an additional Fourier multiplier m(A) (A =
(—A)'?) in the BiotSavart law. If the symbol m satisfies the Osgood-type condition
+oo 1
————————dr = +o00
/2 r(logr)m(r)

and certain mild assumptions, the system is referred to as the 2D Loglog-Euler type equation.

First, we prove a Yudovich-type theorem establishing the existence and uniqueness of a global
weak solution for the Loglog-Euler type equation associated with bounded and integrable initial
data. This result directly applies to patch solutions, which are weak solutions corresponding to
patch initial data given by characteristic functions of disjoint, regular, bounded domains.

Next, we revisit the seminal result by Elgindi [11] and provide a different proof under explicit
assumptions on m, showing that for the 2D Loglog-Euler type equation with C** (0 < u < 1)
single-patch initial data, the evolved patch boundary globally preserves the C1#~¢ regularity for
any € € (0, ). In contrast to the frequency-space argument in [11], we develop an entirely physical-
space-based approach that avoids the LittlewoodPaley theory and offers advantages for potential
extensions to the half-plane or bounded smooth domains.

Furthermore, we investigate the global propagation of higher-order C™* boundary regularity for
patch solutions with any n € N*| and analyze the evolution of multiple patches.
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1. INTRODUCTION

In this paper we study a family of two-dimensional (2D) active scalar equations

Ow +u-Vw =0, (z,t) € R? x Ry,
u=VH(—A)"t'm(A)w, (z,t) € R? x Ry, (1)
wli=0(z) = wo(z), T € R?,

where V+ 2 (9,,,—0,,) and A = (—A)%, the vector u = (u1,uz) is the velocity field and the scalar
field w can be interpreted as the vorticity (or density, or temperature) of the fluid. The operator
m(A) is a Fourier multiplier with the symbol m(¢) = m(|¢|), which is a radial function on R?
satisfying the following hypotheses:

(H1) m(r) € C"™*(R), n € N* and

Vr>0, m(r)>0 m'(r)>0; and lim rm'(r) exists;
r—0+

and m’(r) satisfies the Mikhlin-Hérmander condition, that is, there exists a constant C' > 0
such that

L/ ()] < CrFm(r), Yk=1,-,n+3, Vr>0.

(H2) Denote by m(r) = m(e"). Either one of the statements holds:

(H2a) there exist constants § € [0,+00], f1 € [0,+00), and B2 € (—2,400) such that the
following limits exist:

rm/ (r)

r(logr)m/(r) rm/(r)

=0 I

(H20b) there exists a constant o € (0,2) such that

= [2;

= 61, lim

lim m(r) =400, lim T

r—+00 r—+00 ﬁ”l,(r

/
lim rm(r) =
r—r+o00 m(r)

(H2c¢) there exists a constant C' > 0 such that

lim m(r) =C < +o0.
r—+00

We emphasize that the technical assumptions in (H2) can be viewed as a non-oscillatory condition
on m(r) near infinity. The three cases describe different types of asymptotic growth of m(r) as
r — 4o00: bounded m in (H2c¢), power-law growth in (H2b), and intermediate growth in (H2a).
The existence of the limits in (H2) excludes highly oscillatory behaviors of m near infinity, for
instance, m(r) = loglog(e? + 2r +sinr). To keep (H2a) as general as possible, we allow 3 to take
the value +o0.

Active scalar equations (1) under assumptions (H1)-(H2) arise frequently in hydrodynamic mod-
els and have attracted considerable attention. Typical examples include the following:
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e 2D Euler equation: m(r) = 1. In this case, m(A) = Id, and equation (1) reduces to the
two-dimensional Euler equation in vorticity form, which describes the motion of an inviscid
incompressible fluid in two dimensions and is a fundamental model in fluid dynamics. It is
a typical example where (H2¢) holds.

o Inviscid a-SQG equation: m(r) =r%, a € (0,2). Here,
m(A) = (=A)2 = A®,

For @ = 1, equation (1) becomes the well-known SQG equation, a simplified model for

atmospheric circulation near the tropopause [55] and for ocean dynamics in the upper
layers [72]. The case 0 < a < 1 was introduced by Cérdoba, Fontelos, Mancho, and
Rodrigo [25] as a class of models interpolating between the 2D Euler and SQG equations.

This family of equations satisfy (H2b).

e 2D Loglog-Euler equation: m(r) = log” (14 log(1 +r%)), B € (0,1]. In this case, the
multiplier is
m(A) = log® (1 +log(1 — A)). (2)
This equation was introduced by Chae, Constantin, and Wu [15] as a more general frame-
work connecting the 2D Euler and a-SQG equations. It was later studied independently
by Dabkowski, Kiselev, Silvestre, and Vicol [30], and by Elgindi [11].
The 2D Loglog-Euler equation is a prototypical example satisfying (H2a). Other exam-
ples obeying (H2a) include, for instance,

m(r) =1log” (1 +7) and m(r) =log(1 + log(1 + (log(1 +7)))).

We refer to such models collectively as the 2D Loglog-Euler type equation; these equations
are the primary focus of this paper.

The study of well-posedness issues for the 2D Euler equation originated with the classical works
of Wolibner [90] and Holder [56] in the 1930s, who established global well-posedness for smooth
solutions with Holder continuous vorticity. A significant advance was made by Yudovich [91],
who proved the global existence and uniqueness of weak solutions to the 2D Euler equations with
bounded and decaying vorticity; see also [4, 18, 29, 76, 74] for other accessible proofs. The velocity
field associated with a Yudovich solution is generally not Lipschitz continuous in the spatial variable,
but instead log-Lipschitz in the sense that

[z =y
As observed by Bahouri and Chemin [3], such a log-Lipschitz velocity field will cause the regularity
of the free transported quantity to deteriorate during evolution; one can see recent advances in
[33, 11, 59, 341]. The global existence of a weak solution (possibly without uniqueness) was proved
for vorticity in a wider class L°LE, 1 < p < oo, [91, 37]; and the uniqueness of weak solutions can
also be slightly improved: Yudovich [92] extended his uniqueness result for unbounded vorticity w €
Npo<p<oo LT LE so that ||w(t)||zr < CO(p) and 6(p) grows moderately in p (e.g. 6(p) = logp); Vishik
[36] provided a different uniqueness class that w € L (LP°NBr), po € (1,2) with [ TI(7)"*dr = oo
and B £ {f € S§'(R?) : Z;.V:_l |A;fllLee = O(II(N))}; Taniuchi [35] generalized [92] to be the

following result that w € L?Yg with © : [1,00) + [1,00) an increasing function satisfying the

Osgood type condition f;o %‘fp) =00 and Yg £ {f c S'(R?) : SUPpe(1,00) Hé!;)p < oo}; one can see

[5, 6] for some related improvement. Elgindi et al. [16] developed a novel class of solutions beyond
the Yudovich class that admits the local well-posedness and finite-time singularity result. In the
direction of non-uniqueness for the 2D Euler equation (with or without forcing) with vorticity in
L LE (p < o0), one can see [37, 83, 1, 13, 9, 77, 10] for the recent developments. Except for the
study related to the Yudovich theory, the 2D Euler equation has been actively investigated in other
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key aspects, such as ill-posedness in critical or supercritical function spaces [2, 12, 15, 60, 28], well-
posedness in singular planar domains [51, 52, 53], (optimal) bounds for vorticity gradient growth
[ 9 ) ) ) 9 ]a etc.

For the a-SQG equation, the local well-posedness and ill-posedness results in regular Sobolev and

Holder spaces have been well established; see, e.g. [29, 16, 22] and [26, 27, 61, 20], respectively. The
global existence of weak solutions was shown in [83, 75, 16, 23, 79, 73], and the non-uniqueness result
for the (forcing) a-SQG equation can be referred to [12, 19, 57, 31, 14] and references therein. He and

Kiselev [54] proved that there exist solutions of a-SQG equation with a € (0,2) that exhibit either
infinite-in-time growth of derivatives or finite-time blowup. However, the global well-posedness of
smooth solutions for the a-SQG equation with any « € (0,2) in the whole space R? or the torus
T? still remains a remarkable open problem. We note that this problem is solved for the a-SQG
equation in some domains with boundary: indeed, for the a-SQG equation with « € (0, %] in the
half-plane, Zlatos [94] proved the local well-posedness in the anisotropic Lipschitz type spaces and
established the finite-time singularity formation in this class associated with smooth initial data
(see also [62]), where the rigid boundary plays an essential role in the blowup mechanism.

Based on the study of the 2D Euler and a-SQG equations, an intriguing question arises:

How far can we deviate from the 2D Fuler equation towards the a-SQG equation
while still maintaining global well-posedness of smooth (or non-smooth) solutions?

This question strongly motivated Chae, Constantin, and Wu [15] to introduce the Loglog-Euler
equation (1) with multiplier (2), for which they proved global well-posedness of smooth solutions.
Later, the Osgood-type condition

/+oo 1 d /+oo dr N (O g)
- dr = — = +00. S

2 T(lOg r)m(r) log 2 rm(?“)

was proposed as a possible criterion distinguishing well-posedness from ill-posedness. Elgindi [41]

and Dabkowski et al. [30] independently established the global regularity of smooth solutions to (1)

when the multiplier m satisfies the Osgood condition (Osg), together with certain mild assumptions.
So far, it remains open whether (Osg) is a critical condition in deciding the global regularity of
smooth solutions for equation (1).

We note that if m satisfies (H2c¢) (e.g., the 2D Euler case), (Osg) holds automatically, whereas if
m satisfies (H2b) (e.g., the a-SQG equation), (Osg) fails. Our main interest lies in the intermediate
case (H2a), for which (Osg) holds if and only if § < 1. See Lemma 2.1 for more details.

In this paper, we focus primarily on patch solutions, which are weak solutions of the active scalar
equation (1) associated with patch-like initial data, that is, initial data consisting of either a single
patch (IV = 1) or multiple patches (N > 1):

wo(2) EN:a 1po (@), a€R, 1p o) 24l ©€Di0); (4)
ol) = ilp;0)(Z),  a; v D0\ =

= g 0, ze€R?\D;0),
where D;(0) C R2, j = 1,---,N are simply connected disjoint bounded domains with regular

boundaries 0D;(0). Patch solutions offer an effective mathematical approach for modeling the
evolution of bounded domains with concentrated scalar fields in fluid systems, particularly excelling
in capturing sharp interfacial dynamics. For the 2D Euler equation, Yudovich’s result [91] guarantees
that patch solutions with initial data (4) exist uniquely and globally in time and keep the patch
structure during the evolution. But the flow map (defined by (5)) provided in the Yudovich theory is
a hemoemorphism of Holder class CP(=C?) thus the patch boundary is a priori of class C*P(=C1),
Consequently, the so-called wvorticity patch problem for the 2D Euler equation was initiated in the
1980s which asks whether the initial smoothness of patch boundaries 0D;(t) can be maintained for
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all time under evolution. This fundamental question was resolved by Chemin [17], who established
the global persistence of C*V-regularity with & € N* and v € (0, 1) for the vortex patch boundaries.
Bertozzi and Constantin [7] proved the same result using a more elementary geometric argument.
For other proofs, we refer to [$2, 80]. This global persistence of C'7-regularity of vortex patches
was extended to the 2D Euler equation in the half-plane [68] and the smooth bounded domain [64],
where the patch boundary allows to touch the rigid domain boundary (see [36, 40] for the previous
results). Recently, Kiselev and Luo [(6] established the strong ill-posedness of C? vortex patches.
One can refer to [32, 21, 44, 43] for the study of vortex patches with boundary singularities (e.g.
corners).

For the a-SQG equation, there is no counterpart of Yudovich’s theory that directly implies
the existence and uniqueness of patch solutions. Nevertheless, the evolution of patch boundaries
can still be effectively analyzed through the contour dynamics equations. The local existence and
uniqueness of the C*° patches for the a-SQG equation with o € (0, 1) were first proved by Rodrigo
[81]. By significantly using the cancellation of the curve structures, the local well-posedness of
a-SQG patch solutions in L2-based Sobolev spaces has been established in the following regimes
[47, 16, 70, 24, 49, 48]: H™ (n > 2) for a € (0,1), H>™* (s > 0) for « = 1, and H" (n > 3) for

€ (1,2). Additionally, Kiselev and Luo [(67] demonstrated strong ill-posedness for a-SQG patches
with o € (0,1) in Holder space C?7, v € (0,1) and Sobolev space W?2P, p # 2. The possible splash
singularity of the a-patches with a € (0,2) has been excluded by [50, 65, 58]. For the a-SQG
equation in half-plane with rigid boundary, there is a remarkable breakthrough by Kiselev, Ryzhik,
Yao, and Zlatos [68, 70], which established the local well-posedness of multiple patch solutions and
constructed some patch-like initial data to develop finite-time singularity in the case o € (0, 15);
in combination with the global well-posedness result [68] for multiple vortex patches of the 2D
Euler equation (i.e. o = 0 case), this striking dichotomy highlights the critical transition at o = 0
in the behavior of patch solution. Subsequently, the regime of finite-time singularity formation
for a-patches was extended by Gancedo and Patel [19] to o € (0,3) (see also [91] for further
improvement).

For the active scalar equation (1) with m(-) satisfying (H2a), the associated vortex patch problem
is slightly more singular than in the bounded-m case, and the velocity field is no longer Lipschitz
continuous (in contrast to the Euler case). Consequently, an e-loss of regularity appears in the
boundary regularity propagation of vortex patches [3, 1]. When the Osgood-type condition (Osg)
holds, together with other mild assumptions, Elgindi [11] identified new cancellation mechanism-
s and, by applying the losing-estimates method [3], established global C'7=¢ (0 < ¢ < v < 1)
regularity for the evolving patches of the whole-space 2D Loglog-Euler equation (1), starting from
C17 patch initial data. On the other hand, when the Osgood-type condition (Osg) fails (i.e.,
f;oo Wl)m(r), dr < 400), the authors and Miao in [78] proved the formation of finite-time singu-
larities in patch solutions of (1) in the half-plane with rigid boundary conditions, thereby extending
the results of [68, 19] for the a-SQG equations. These two results together suggest that the Osgood
condition (Osg) may serve as a sharp threshold distinguishing global regularity from finite-time
blow-up in patch solutions of the model (1).

In this paper, we revisit the seminal result of Elgindi [11] on patch solutions to the 2D Loglog-
Euler type equation (1), and provide an alternative proof under the explicit assumptions on m (i.e.,
(H1)-(H2a)-(Osg)). In contrast to the frequency-space-based argument involving losing estimates
in [41], we develop an entirely physical-space-based approach that avoids the use of Littlewood-
Paley theory. This formulation offers several advantages, particularly for extensions to the half-
plane setting (see Remark 3) or to bounded smooth domains. Moreover, we investigate the global
propagation of higher C™7 boundary regularity for patch solutions with arbitrary n € N*, and study
the evolution of multiple interacting patches.
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Our first result establishes a Yudovich type theorem for the 2D Loglog-Euler type equation (1),
which can serve as a basis for the study of patch solutions.

Theorem 1.1. Assume that m(&) = m(|€|) is a radial function of R? with m(r) satisfying (H1)-
(H2a)-(Osg). Let wy € L' N L>®(R?), then the 2D Loglog-Euler type equation (1) admits a unique
global weak solution (in the sense of Definition 3.1)

w e L([0,+00); L' N L®(R?)) and w(x,t) = wo(®; (2)),

where the flow map ®y(x) £ ®;0(x), its inverse &, (x) £ Bgy(x), and By : R? — R? is uniquely
defined by

dd; 4(x
D (@ ).0), @), = 6
Furthermore, the flow map ®(z) satisfies the following estimate,
1 1

< |of () — !

H=1(H(jz — y[~1) + Ct) ()| < (R — g ) 0F)’ (6)

where C' > 0 is a constant depending on ||wol||1nre~ and the map r € (0,+00) — H(r) is defined by

" 1
fdf, for T Z 2,
H(r) 2 /2 7(log 7)m(r) (7)
1 r
ng? fOT re (0,2),
and H71(:) : R = (0, +00) is its inverse function.

Remark 1. For the Euler equation (m(r) = 1), from the definition (7), we have H(r) = loglogr as
r — +o0o. Correspondingly, H71(-) exhibits double-exponential growth:

Hfl(y) R~ exp (C’ exp(y)), as y — +oo.

When lim, 1o, m(r) = +o0, the function H(r) grows more slowly than loglog, and H!(-) grows
faster than double exponential. The Osgood condition (Osg) plays a crucial role in ensuring that
H=1(-) is well defined on R. In general, H~!(-) may grow arbitrarily fast.

The velocity field v in Theorem 1.1 satisfies the continuity estimate (35) below, which is commonly

referred to as an Osgood vector field (see [2, 71]) and is slightly more singular than a log-Lipschitz
field (3).
Finally, we note that Theorem 1.1 is analogous to the results in [92, 86, 85, 5, (] on slightly

generalized Yudovich classes.

Theorem 1.1 ensures the global existence and uniqueness of patch solutions to the 2D Loglog-
Euler equation with initial data given by (4), and guarantees that the patch structure is globally
preserved:

N
wia,t) =) ajlp,p(@), with Dj(t) = @(D;(0)), (8)
j=1

where the flow map ®;(-) = ®;(-) is given by (5).

We now turn to the vortex patch problem concerning the global regularity of the patch boundaries.
More precisely, we aim to address the following question:

If the initial patch boundaries 0D;(0) in (4) belong to the Hélder class C™ with
n € N* and p € (0,1) for all j € 1,2,..., N, what is the (best possible) reqularity
of 0D;(t) for everyt >0 and j€1,2,...,N?
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We first consider the evolution of a single patch with N =1 and a; = 1, namely,
w(z,t) = 1py(r), where D(t) = ®(Dy). 9)
Our main result concerning the regularity of 0D(t) is stated below.

Theorem 1.2. Let p € (0,1) and n € N*. Assume that m(§) = m(|€|) is a radial function on
R2, where m(r) satisfies (H1)-(H2a)-(Osg). Consider the unique global patch solution (9) of the
2D Loglog-Euler equation (1) associated with the patch initial data wy = 1p,, where Dy C R? is
a simply connected bounded domain, with boundary ODg € C™*. Then, for any t > 0, the patch
boundary 0D(t) = ®+(0Dy) almost preserves its reqularity, in the sense that, 0D(t) € C™"~¢ for
any € € (0, ).

More precisely, let z(-,t) be a parameterization of 0D(t) (see (44) and (50) for definition and
construction). Then, for any given € > 0, € > 0, there exists a constant C > 0 depending on u, €,
€ and ||zo||cn.u, such that the following estimates hold:

_ . ClogPte(e+t)
l(®)llgne < C(HH(CO + 1) log™ (e +1)) , (10)

where the mapping H(-) is given by (7).

Theorem 1.2 shows that the initial C"™* boundary regularity persists in time, up to the loss of an
arbitrarily small exponent. However, the estimate (10) indicates that the corresponding bound may
grow rapidly in time, up to H=!(¢), with additional logarithmic factors. According to Remark 1,
this growth can be double-exponential in time, or even faster. This is consistent with the results
for the two-dimensional Euler case (see Remark 2).

The next result extends the boundary regularity theory to the case of multiple patches.

Theorem 1.3. Let p € (0,1) and n € N*. Assume that m(&) = m(|¢|) is a radial function on R?,
where m(r) satisfies (H1)-(H2a)-(Osg). Consider the unique global patch solution (8) of the 2D
Loglog-Euler equation (1) associated with the patch initial data (4), where Dj(0) C R? are simply
connected disjoint bounded domains, with boundaries 0D;(0) € C™" for j € {1,--- ,N}. Then,
for any t > 0, the patches D;(t) remain disjoint, and the boundaries 0D;(t) = ®,(0D;(0)) almost
preserve their reqularity, in the sense that, 0D;(t) € C™*~¢ for any e € (0,u) and j € {1,--- ,N}.

A more detailed version of Theorem 1.3 is given in Theorem 6.1, which provides a more quantita-
tive bound in (115). Compared to the bound (10) for the single-patch case, the growth behaves like
exp(H™1(t)), which is triple-exponential in time or even faster. The additional exponential factor
arises from the fact that the distance between patches may decrease over time, thereby influencing
the boundary regularity. See Remark 6 for further discussion.

In what follows, we outline the main ideas underlying the proofs of our main theorems, empha-
sizing the key analytical mechanisms and novelties involved.

For the proof of Theorem 1.1, we first establish that the velocity field satisfies the crucial modulus-
of-continuity estimate (see (40)) and that the flow map enjoys the property (6). By combining these
a priori estimates with a standard approximation argument, as in the 2D Euler case, we obtain the
global existence of Yudovich-type solutions.

For uniqueness, note that the classical approach for the 2D Euler equation (see [17, 74]) relies on
the harmonic-analysis estimate
_ 2
VAV (=A) el < O llwlre,  1<p<oo,

for some universal constant C' > 0. However, obtaining an analogous bound for V-V (—=A)~!m(A)w
with unbounded m appears nontrivial. Instead, we adopt the approach of [76, Sec 2.3], which is
based on the analysis of the flow map. In particular, we introduce the quantity 6(¢) defined in (42),
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analogous to [70, Eq. (3.30)], but formulated on the whole space rather than a bounded smooth
domain. Using the modulus-of-continuity estimate together with the properties of the flow map,
we derive an Osgood-type inequality, which in turn implies the uniqueness of the Yudovich-type
solutions under consideration.

Next, we turn to the proof of Theorem 1.2. Following the framework described in Section 4.1,
we represent dD(t) using a level-set characterization: a function ¢ such that ¢(z,t) = 0 for all
x € OD(t) (see Definition 4.1 for details). Let W £ V¢ denote the tangential vector field along
0D(t), which satisfies equation (73), and define the tangential derivatives by

ow2W .-V, and 0} 20w - Ow.
k times

As demonstrated in Section 4.1, for any ¢t > 0 and n € N*, 1 € (0,1), we have
105 "W (-, t)||ow < +oo == ID(t) € C™*.

For n = 1, the main objective is to propagate Holder regularity ||W(-,t)|/cu-<. This theory has
been established in [11], through a frequency-space-based argument, in which the two quantities
W ()]l e and [W(t)|ins = inf,eop W (,t)| are propagated simultaneously, employing the e-
regularity-losing estimates from [3, 4].

In contrast, we develop a new approach that is entirely physical-space-based. Compared with
the frequency-space framework, our method is more amenable to extension from the whole space
to domains with boundaries.

Our approach relies on three key new ingredients.
e Near-Lipschitz estimate for the velocity field u = VL(—A)_lm(A)(lD(t)).

In Lemma 4.1, we show that in the single-patch setting, the velocity © admits a modulus
of continuity of the form p — p(m(p_l) + 1) up to an additional logarithmic factor

W@l
7t 210g (1+ gl ), v e .0

Compared with the velocity field associated with general vorticity w € L' N L>, which
satisfies the modulus of continuity p — p(logp~!m(p~') + 1) (see (36)), this represents a
logarithmic improvement. Such an improvement exploits the inherent geometry of patch
structure and plays a crucial role in implementing the regularity-losing estimates.

e Key integral representation formula and refined Holder-type estimate of Oy u.

In Lemma 4.3, we derive a singular integral representation for dy u, which generalizes the
result of [7, Proposition 2] obtained for the 2D Euler case. However, this generalization is
nontrivial due to the unboundedness of Vu and the additional singularity introduced by

the multiplier m(A) (e.g., [11, p.984]). To overcome these difficulties, we adopt a slightly
different and more general approach to justify the integral representation, partially inspired
by [50].

The refined Hélder-type estimate in Lemma 4.4 also generalizes the following bound from
[7, Corollary 1], which holds for the 2D Euler case:

lowullen < ClIVullLoe (Wl +1)-

To accommodate the presence of the multiplier m(A), we introduce the m-adapted Holder
space (Ch, || - [lcr) defined in (57). Using the near-Lipschitz estimate, we establish an
analogous bound for |[Owul e in terms of [[W{| ., up to a logarithmic factor f.

o Refined estimate of the flow map Py .
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Building on the near-Lipschitz regularity of the velocity field, the flow map ®; 4(-) defined
in (5) satisfies a sharper continuity estimate (see (72)), which significantly improves upon
the bound (6) obtained in the Yudovich theory. This refined property of the flow map
allows us to directly analyze W (x,t) along the flow map.

Combining these ingredients with the losing-estimates method within the physical-space frame-
work, we establish the propagation estimate for the C*~¢-regularity of W(-,t) (see (89)).

To handle the logarithmic factor f, we derive a lower bound for |W(t)lin in (76), following the
approach of [11]. The key step is to prove the point-wise estimate on VuW - W as stated in
Lemma 4.5.

With both propagation estimates for |[W(-,¢)|| .- and [W(t)|inf at hand, we find that the quan-
tity f satisfies an Osgood-type inequality (95), which ultimately yields the estimates
—C
(W (E)line = Wolur (™ (C(1+ ) log™ (e +1) ), (11)

ClogPte(e+t)
W (0)llc-sry < ClWollon (H(C+ 1) log? (e + 1)) . (12)

This directly leads to the desired bound (10).

For general n € N*| the proof of Theorem 1.2 follows the same strategy as in the case n = 1.
One crucial step is to establish the higher-order analogue of the key integral representation formula
(103) for 9%, u. Based on this novel formula, we derive Holder-type estimates for i u in Lemma 5.3,
treating the leading term involving 8{}},— YW analogously to the n = 1 case, and handling the lower-
order striated terms separately. Finally, an induction argument combined with the losing-estimates
method leads to the bound

B _ . ClogPt¢(e+t)
135 W ()| cns 2y < Cligollcrs (HT(C(1 + 1) 10g™ (e + 1)) SN
which completes the proof of Theorem 1.2 for general n.

For the proof of Theorem 1.3 concerning multiple patches, we first observe that the distance
between any two evolved patches admits a positive lower bound by Theorem 1.1. Consequently,
for each patch, the influence of the others remains controlled, while the singular contribution still
arises from the patch itself. Arguing as in the single-patch case, we then complete the proof of
Theorem 1.3.

Finally, we present some remarks as follows.

Remark 2 (Bounded-m case). Theorems 1.1, 1.2, and 1.3 remain valid if the assumption (H2a) is
replaced by (H2¢) with 5 = & = € = 0 in the statements. Consequently, these results apply to
the quasi-geostrophic shallow water equation [38] (i.e. m(r) = Tﬁ_%, A > 0). We do not aim to
identify the most general conditions under which the results hold. For example, they also apply to
the Euler\ equation [31] (i.e. m(r) = H/\%Tg, A > 0), even though m is not monotone increasing.
In particular, the bounds (11)-(13) for the single-patch case and (114)-(115) for the multi-patch
case coincide with the corresponding bounds for the 2D Euler equation, as given in [7, Egs. (2.13),
(2.11)] and [68, p. 930], respectively.

Indeed, when m is bounded, the m-adapted space Ch, coincides with the standard Holder space
C*. The main estimates (see Lemmas 4.1, 4.4, 4.5, and 5.3) can then be adapted directly. Moreover,
since the velocity field is Lipschitz continuous (Lemma 4.1), the losing-estimates argument is no
longer required. Consequently, the global persistence of C"™* boundary regularity for patch solutions
follows.

Remark 3 (Half-plane case). Consider the vortex patch problem for the 2D Loglog-Euler equation
(1) in the half-space RZ with a no-flow (rigid) boundary condition. If initially the patch boundaries
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are disjoint from the rigid boundary dR?, then, by performing an odd extension with respect to
the xo-variable and applying the argument of Theorem 1.3, one obtains global persistence of patch
boundary regularity in the half-space, analogous to the whole-space case.

If the patch boundaries touch the rigid boundary, as in the blowup scenario studied in [65], the
situation becomes more delicate. One may attempt to combine the techniques developed in [65] (for
the 2D Euler case) with the arguments of the present paper to obtain a global persistence result.
It appears that most of the necessary estimates can indeed be extended, except for one crucial
estimate, an analogue of [08, Eq. (3.29)]:

Given B, £ B(O,,ry) and ug (2) = VL(—A)*lm(A)(lém)(z), does it hold that
for |2 — Oy| = 1y + d(z) and d(z) € (0, 1r4],

‘VZUEI (z)| <C(1+ m(d(az)_l))rgl?

Due to the nonlocal nature of the multiplier m(A), it is unclear whether the above inequality holds,
or, if it does, how to establish it as in the m = 1 case. Consequently, this interesting vortex patch
problem remains open.

The remainder of this paper is organized as follows. In Section 2, we collect several useful
properties of m(r) and of the kernel function G(p), and present the expression formula for the
velocity u = V+(—A)"'m(A)w. In Section 3, we prove Theorem 1.1, establishing the Yudovich-
type result for the 2D Loglog-Euler type equation. Section 4 is devoted to the proof of Theorem 1.2
with n = 1, concerning the single-patch case, while the general case n € N* of Theorem 1.2 is proved
in Section 5. Finally, the proof of Theorem 1.3 on multiple patches is presented in Section 6.

Notations. We use the symbol C' to denote a generic positive constant, which may vary from line
to line. The dependence of C' on specific parameters will be clear from the context and explicitly
indicated when necessary. We write A ~, B to mean that there exists a constant C' > 0, depending
on p, such that C~'A < B < CA.

2. PRELIMINARIES

In this section, we shall deduce some useful properties of m(r), write out the expression formula
of the velocity field u(z) in convolution form, and recall various estimates of the kernel function
G(p) determined by the multiplier m.

2.1. Properties of m(r). We list some useful properties of m(r) that satisfy the assumptions
(H1)-(H2a). Before proceeding, we note that the limits in (H2a) have the following equivalent
form:

r(logr)(loglog r)m’(r)

rginoo m(r) - rEIJPoo T =5,
. r(ogr)ym/(r) . rm/(r)
Sy L L Wy o L (14)
. (logr)(rm/ (r) +m'(r)) .. rm"(r)
TEI_;,I_’IOO m/(r) - T‘EI-‘POO m/(r) - BQ? (15)

with ﬁ € [07 +OO]’ Bl € [07 +OO)7 BQ € (727 +OO)
e Under the condition (H1), for every A > 0,
m(Ar) =y m(r), Yr >0, (16)
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and there exists a constant C' > 0 such that
m'(r) < Cr~tm(r). (17)
See, e.g. [78, Eq. (43)] for the proof of (16). To obtain (17), we start with the inequality

%(rm’(r)) =m/(r) +rm”(r) < Cm/(r).

Integrating in (0,7) leads to the desired bound

rm/(r) < r£%1+ rm/(r) + C(m(r) — m(07)) < Cm(r),

where we have used the fact that m(0%) > 0, and

lim rm/(r) = 0. 18
T () (18)
To see (18), suppose lim,_,o+ rm/(r) = ¢ > 0. Then we have m'(r) > 5. if r is sufficiently
small. This contradicts the fact that m/(r) is integrable near the origin.

Under the condition (H2a), if 5 < 400, there exists a large constant ro > 2, depending on
(3, such that

3

Ve>0, 7 (logr) P ¢m(r) is monotonously decreasing on [rg, cc). (19)

This is due to

d ey B m(r)
g(logr) B=m(r) = (logr)™? m(r)(l—(ﬁ—i—e)W),

and
ﬁ’L(T) r—+00 c
1-(B+ E)r(log rym/(r) 5 <0

with m/(r) > 0 for all r € R. Hence ¢ € [rg,+00) — (logr)~#~%m(r) decreases for large
enough rg.

If 5 = 400, we apply a similar argument on the limit (14) and obtain a slightly weaker
result

Ve>0, r— (logr) " *m(r) is monotonously decreasing on [rg, o),
where the large constant o depends on 81. As a direct consequence, we also get
m(r) < m(ro) max {1, (log. 7“)51+€}, Vr>0. (20)
Under the condition (H2a), we have
r +— rm(r) is monotonously increasing and convex in [rg, +00), (21)

where we also denote the large constant by rg. To see this, we compute

L) =1+ ), and i) = ) (2 + 2 ),

m(r) m'(r)

rm/ (T) r—+o00

TﬁLl(r) r—+00
— — 2 > 0,
() + B2

IO 4 B >0, 2+
m(r)

with m > 0, m/(r) > 0 for all » > 0.

1+
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e Suppose S < +oo. For any k > 1, there exists a constant C' > 0, depending on x and S,
such that
m(r®) < Cm(r), Vr>0. (22)

Indeed, the inequality follows from (19). For r < ry, we apply the monotonicity of m to
get m(r®) < m(r§) < Crym(0) < Cpym(r). For r > ry, we deduce from (19) that

m(r™) = (log r”)ﬁ“(log r”)*(ﬁﬂ)ﬁl(r“) < (klog r)f3+5(log 7')*(*3“)771(7") = ﬂf8+5ﬁz(7’).

The same argument can be applied to m for r > rg, replacing 3 by (1, while for r < rg,
16) implies m(r*) < m(rf=1r) < C,,m(r). It yields
0 0

m(r®) < Cm(r), VYr >0, (23)
where C depends on x and ;. Note that (23) is weaker than (22), but it holds when
B = +o0.

As a consequence of (23), we get that for every A > 0,
m(Ar) =y m(r), Vr>0. (24)

Indeed, this inequality follows directly from the relation m(Ar) = m((e”)*), (23) and the
fact that m/(r) > 0 (Vr > 0).
e For any p € [p1, p2] C (0, 1), there exists C,,, > 0 such that

pim(prt) < Cuuph (m(py ') +1), Vpa = p1 > 0. (25)
Indeed, there exists some ¢, > 0 such that for every p € (0,c¢,,),
d(p*m(p™")) -1 ~1 1y 1 ~1,_/ -1 p~tm/(p71)
SEL2 = M umlp™) = o7l (p71) = o o) (i = B0 ) > o,
dp m(p~1)

since from (H2a), we have

1,00 —1 /
lim L(p) = lim rm(r) = lim b
p—0  m(p~1) r—+oo m(r) r—+oo logr

=0.

Hence, (25) holds with C},, = 1 for the case ps < ¢,,. When pa > ¢, , we have

For p1 < ¢y, : p’fm(pl_l) < cl’jlm(cljll) < pgm(cljll),
For p1 > ¢y 0 pim(pr') < phm(c,)),
and (25) holds with C,,, = m(c;,}!).

When the Osgood condition (Osg) holds, the limits in (H2) admit the following characterization.

Lemma 2.1. Suppose that m(r) satisfies (H1)-(H2). Then:

e If (H2a) holds, then (Osg) imposes B <1, 1 =0, and fa = —1.
o If (H2b) holds, then (Osg) must fail.
e If (H2c) holds, then (Osg) must hold.

Proof. We first show that under assumptions (H2a) and (Osg), we have 5 < 1. Through a similar
argument as in (19), we get

Ve>0, r— (logr) ?m(r) is monotonously increasing on [rg, o),
_ B-1
- 2

for a large constant ry. Suppose 8 > 1. Taking e > 0, we have

m(r) = (logr)' 2 (log r) " Fm(r) > (logr) = (log ro) " m(rg) = Cp,(logr)'¥5, Vi > rg.
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This further implies

/+°° dr < 1 /+°° dr B 1 < 4o
T ’f‘ﬁl(?") - CTO 0 T(log T)H_s B Crog(log 7“0)5 ’

0

which contradicts the Osgood condition (Osg). Hence, we argue by contradiction and conclude that
B<1
For (51, we have
=~
B = lim ) _ i < lim
r—+oo m(r) r—+oo logr T r—+oo logr
On the other hand, 8; > 0 due to (H1). Therefore, 8; = 0.
Finally, we apply I’Hopital’s rule and get
5 = lim rvjm’(r) . ﬁ@’(r)N—i- rm/ (1)
r—+oo m(r) r——+o0 m!(r)
We conclude with 8o = 81 — 1 = —1.
Under assumption (H2b), we have m(r) > Cr®/? for r > ry with a large enough ro. Hence,

+00 1 To 1 Foo 1
/ —————dr < / —————dr +/ ———— & dr < +oo.
o r(logr)ym(r) 2 r(logr)m(r) ro  r(logr)Cr2

Therefore, the Osgood condition (Osg) fails.

Finally, under assumption (H2c¢), we have m(r) < C for any r > 0, and the Osgood condition
(Osg) must hold:

=1+ fs.

oo 1 d Foo 1 d
- > —_— = .
/2 r(logr)m(r) T_/Q Cr(logr) r=eo
[l

2.2. Expression formula of the velocity u(xz). We gather some useful expression formulas re-
lated to u(x).

Lemma 2.2. Let u(z) = V- (—A)"'m(A)w(z), where V= (=04, 0r, ), m(A) is a Fourier multi-

plier operator with the symbol m(€) = m(|€|) a radial function satisfying that m(€) € C?(R?\ {0})

and lim m(r), lim rm/(r) exist, and also
r—0+ r—0+

: _1 . F
lim r~2m(r)=0, lim rzm'(r)=0.
r—+00 r—r+o0

Then the following statements hold true.

(i) For every x € R* we have

.’,EJ'
u(@) = K xw(r) = - K(z —yw(y)dy, K(z)= WG(M)’ (26)
where x+ = (x2, —x1), and
G(p) & %m(O‘F) + % /OOO Jo(pr)m! (r)dr
T Ry g 27
2m (2m)? Jre I

with m(0F) £ lim+ m(r) and Jo(-) the zero-order Bessel function.
r—0
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(i) For every x € R2%, the symmetric part of S(Vu)(x) can be expressed as

u(x )T (z
s(vu) () 2 VLT [ R - ety (28)
where
"l 29619202 x%—;‘%
(VK)s(J}) 2 ;QG(Q") ’x‘|§’G (‘ D (.7}), U(:U) A xé:clx% _é:?lm (29)
S22 af?

Remark 4. We remind that, if w(x) = 1p(z) where D C R? is a simply connected bounded open
domain, then Vu(z) is well defined for any x ¢ D and Vu(z) = VK *x w(z), with VK (-) given by
(30). In addition, for x € D, we also see that

=/K(w—y)dy=/ K(x —y)dy,
D\B(z,dz)

where K(z) = \:vl G(|z|) and d, £ d(x,0D). Consequently, Vu(z) is bounded outside and inside
the domain D, but it may be unbounded on the boundary 0D.

Proof of Lemma 2.2. The statement (i) has been proved in [78, Lemma 1]. In the following, we
only prove statement (ii).

We start with the calculation of Vu in the distributional sense. For every test function x €
C>°(R?), we apply the expression (26) and get

(a:):ju’iaX) Uu T / Ki(z —y)w (y)dyam]%(x)dx
R2 JR2

= —lim / / Ki(r —y)0x; X(7) drw(y) dy
e—0 Jp2 lz—y|>e

= lim e, Ki(r — y)x(z) do — i@ — 5V T) |w .
= Rz(/lz s DKl —pX(@)d /| e =) ) s ))w(v) dy

We focus on the term

19(y) 2 / Kile DA K@) dS(z).
T—y|=¢

Since the limit lim._,q I (y) may be unbounded, we need to explore extra cancellations. Define

59 (y) £ K(y) / Kife =) P2 as(o)

|lx—y|=¢ T — y’

Then, we control the difference by

159(y) — T59(0)] = | /| - — )Y ()~ $w)) dS )|

!w—y!

e—0

g 1-|VX||peee - 2me < Cem(e™) == 0,

where we have used (31) (the proof is independent of the statement (ii)) and (20). For J&(y), by
symmetry we have

) =) =) [ O gy

|x—y|=¢ ‘IIZ - y‘g
~ 21 —uy1)? — (20 — y9)?
T )+ 2 ) = 3) [ (o =" = (22 =82)” o) = g
|x—y|=¢ ]a:—y]
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Therefore, we conclude with

xr— Tz -
S(Vu)(z) = lim /R 2 / . VE@=y) + VE) (= Y) o0 daw(y)dy

e—0 2

71 122 W)+ ()
€ 2
R2

+ lim 1,2 2,1 w(y) dy
I (y)gls (y) 152’2(9) >

e—0

= [ (o [ (VEOs(a ~ potw)dy) W) d,
R2 R2
where direct computation yields

_ ;QG(‘””D EC||§’G/(|$|)U($) - ;GIS;TD <_01 é) 2 (VK)s(z) + (VK)a(z),  (30)

VK (zx)

where o(x) defined by (29), also (VK)g = %VK)T and (VK)p = M are the symmetric

and antisymmetric parts of VK, respectively. This finishes the proof of (28). U

2.3. Properties of G(p). We collect some crucial estimates of G(p) given by (27) under suitable
assumptions on m.

Lemma 2.3. Assume that m(r) = m(|¢|) satisfies (H1)-(H2a) with n € N*. Then there exist
constants ¢o > 0 and C > 0 such that G(p) = G(|z|) defined by (27) verifies the following statements:

forp € (0,e),  Glp)=m(p™), (31)
and
C -1
foroe O, 1600 < ) vie g (32)
and
. 0 ¢
fOTpE[Co,+OO), |G (P)| Sﬁa VZE{1a27"' ,7’L—|—1}. (33)
Lemma 2.3 can be proved by examining the explicit expression (27) of G. See, e.g. [78, Lemma 2]

for the proof of (31) and (32) with [ = 1,2 (noting that assumptions (H1)-(H2a) in [78, Lemma 2]
are readily verified). For the sake of completeness, we include a proof of (32) and (33) in Appendix
A.

As a direct consequence, we obtain the following estimate on the kernel K.

Corollary 2.4. Assume that m(r) = m(|{]) satisfies (H1)-(H2a) with n € N*, and K is defined in
(26). Then

V'K (2)] < Cla|" "D (m(|jz|7Y) + 1), Yz eR? VIe{0,1,---,n+1} (34)
Proof. From the definition of K in (26), applying the Leibniz rule and Lemma 2.3, we compute
1! ‘G(j)(\x])‘ L L!C(m(\x!fl)—i—l) C(m(|x!71)+1)

l
1
|V K(x)]ﬁz.!w_jﬂﬁzoj! |z]7 - |23+ < [T )
J:

for any [ € {0,1,--- ,n+ 1}. O



16 CHANGHUI TAN, LIUTANG XUE, AND ZHILONG XUE
3. YUDOVICH TYPE THEOREM FOR THE 2D LOGLOG-EULER TYPE EQUATION

In this section, we establish the Yudovich-type theorem for the 2D Loglog-Euler equation (1)
associated with initial data wy € L' N L% (R?).

We first introduce the definition of weak solutions for the equation (1).

Definition 3.1 (Weak solutions). Let wy € L' N L>°(R?). We say that (u,w) is a weak solution to
the 2D Loglog-Euler type equation (1) with initial data wg(z), provided that for any 7' > 0,

(i) w € L>=([0,T); L* N L>®(R?)).
(i) u = V+(=A)"'m(A)w = K * w with the kernel K given by (26).
(iii) For every x € C'1([0,T]; C}(R?)),

T
/R ol T)(, T ~ /R o)X, 0z = /O /R ol 1) (0% + - VX))

The next result is concerned with the continuity estimate of the velocity field associated with
bounded and integrable vorticity.

Lemma 3.1. Assume that m(¢) = m(|€|) is a radial function of R? satisfying (H1)-(H2a). For
any w € L' N L®(R?), the vector u = V+(—A)"Im(A)(w) satisfies

full oy + sup 1 ]
|z—%|>0 v(lz —2|)
where C' > 0 is a universal constant and the modulus of continuity v is defined as
l/( ) é p(logpil)m(pil% fOT’ O < P S %7
p (log2) m(2), for p> 1.

< Ollwllinnee w2y, (35)

Proof. We start by applying (26) and Lemma 2.3 to deduce that

(z —y)* 2 — uhw (z —y)* v — uDw
pw < [ ] wa+] [ Gl ety

co
< Ol / m(p~)dp+ C / w(y)ldy < Cllwllpinpe.
0 {|lz—y|>co}

Here, ¢ > 0 denotes the constant introduced in Lemma 2.3. Note that from (20), m(p~') behaves
like |log p|1T near zero. Hence, the integral [;° m(p~1)dp is finite. Consequently, u € L°(R?).

Next, we will focus on the continuity property of u. For any Z,r € R? such that |z — Z| < %0
(without loss of generality assuming ¢y < 1), we apply (26) and obtain

|u(z) — u(z)] S/ | K (|z —yl) = K(1Z — y])] - lw(y)|dy
R2
< K(lz —yl) — K(|& — y])| - lw(y)|d
< /ﬂx_ygm_i}\ (lo = yD) = K (7 = y])| - lw(y)ldy

T / Kl — yl) — K(I7 - y])] - [w(y)ldy
{lz—y|>2|z—%|}
SN ESI
For I, we deduce from (31) that

G(lz — y 3lx—a| 3le—z| 3
1<zl [ Glz =91 4y — grefeo] e [ e@ap< ol [ mtea.
{lz—y|<3|z—%|} |z -y 0 0
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It follows from L’Hopital’s rule and (14) in (H2a) that

P ~—1 ds -1
iy o ™ m(p™) ST S
p=0 pm(p=t) e 0m(pTh) = pTim (p7h) - roee 1)

Hence, there exists a constant C' > 0, depending on ¢, such that for any p < ¢,

[ < comio).
Therefore, by (37), we deduce
I < Cllwlzlz = zm(|ae - 27).
For 11, we apply the mean value theorem and get
K@—y) -K@-y)=(@—-2) VK(z+ (1-0)T —y),

for some 6 € [0,1]. Applying (34) with { = 1, we have
\VK(z)| < C mijzl”) +1

for every x # 0. Moreover, for |x — y| > 2|z — Z|, we have
slz =yl <102+ (1 -0z —y| < Jle—yl,
for any 6 € [0, 1]. Therefore, we apply the above estimates and (16) to obtain

-1
m(lx —y +1
e =o)L )1y
(lo—y|>2le-31} [T =Yl

_ m(lz —y|™) +
smwmwx—ﬂl Iz =)

11 < Cla — &

2|z—2|<|z—y|<2}

1
N 2lz—z] m(r)+ 1 N
< C||lwl|pee]|z —alc|</1 (Zdr) + C|lw|pr |z — Z|

2

< Clwllpinge |z = &lm(|e — 27 log|z — 2|71 < Cllwllpap~r (| — &),

where we have used that m(-) is increasing in the penultimate inequality to get

m(r)+1 < m( 1~)+m(2|$1_5:|)<<1+
< mdy =

1 ) i1
m(|z — 7).
m(3)
Gathering the above estimates, we conclude with the desired bound

u(z) = u(@)] < Cllwllprapeev (e = Z]).

When |z — & > €, we have the following direct estimate

u(@) —w(@)| _  2fure

a—al) = inf, g v(p)

< CHw”LlﬂL"Oa

where we have used the fact that v is strictly positive away from zero.

Now we present the proof of Theorem 1.1.

1
d - d
Ly Cle =il [ el

17

(38)
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Proof of Theorem 1.1. From the transport structure of (2) and divu = 0, we have
lw(®liane = llwollLipee -
By virtue of Lemma 3.1, the velocity field u = V+(—A)"!m(A)w satisfies

u;l;‘,t —Uu 7t
= <l-;ﬁ N < Ol gy (40)

[w(t) | oo 2y +  sup
|z—y|>0

The Osgood condition (Osg) translates into

%ﬂ_% dp _+°° dr e
AV@_AKﬂW”W@U_L rogrym(r) O

Then, from the standard Peano’s existence theorem and Osgood’s uniqueness theorem for ordinary
differential equations, the flow map equation (5) admits a unique global solution ®; g : R? — R? for
every t,s € R,.

According to (5) and (40), it follows that for every t,s € Ry,
d(®@1s(z) — Prs(y))
dt

The function H(r) defined in (7) is monotonically increasing, and from the Osgood condition
(Osg),

’ < Ju(®rs(2), ) — u(®@rs(y),1)] < Cllwollpipres v(|Prs(@) — Prs(y)]).  (41)

: e dr :
rEI-PooH(T) = /2 T (log rym(r) = +o00, and lli% H(r) = —occ.
Hence, H(+) : (0,4+00) — R is an invertible map. Moreover, H satisfies
d 1
—H(pH=——, Vpe(0,4+0).
e = (0, +ox)

Then, from (41) we get

|t (2)—DPr,s (y)] d
- dp
[H(1@ts(@) — @) ™) — uml\—\/ S| < Clleollping~lt = sl

z—y|
and hence
[@0,0(@) = Pro(y)| " = HT (Hw =y ™) = Cllwoll gt = s1),
1) = @1 (w) |7 < H (Hl2 =y 7) + Cllall et = o).

which directly implies (6). Similarly, letting 0 < ¢; <ty < +00, we have ®g 4, (x) = Po¢, 0 Py 4, ()
and

’(I)t_ll(x) - Qt_gl(x)‘_l = ’(I)O,tl (.’E) - (I)O,tl © (I)thtz (x”_l
> H™ (H(le = @1 (2)] ™) = Cllwnllpinz~t)

> H‘I(H(C‘lllwoug%mm —to| 7! - C'||onL1mLoot1),

where in the last line we have used the equation (5) and estimate (40). With the above a priori
estimates, and following the argument used in the proof of Yudovich’s theorem for the 2D Euler
equation (see, for instance, [74, Sec. 8.2]), one can establish the global existence result.

Next, by adapting the ideas in [70, Sec. 2.3] with suitable modifications (see also [36] and [,
Chap. 7], where the Littlewood- Paley theory is used), we provide a proof of the uniqueness part of
Theorem 1.1. Assume that (w!,u!) and (w?,u?) are two weak solutions on [0, 7] of the 2D Loglog-
Euler type equation (2) associated with the same initial data wy € L' N L>®(R?). Let ®i(-) = @i’o(-)
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(i = 1,2) denote the flow map generated by the velocity field ¢, satisfying (5). Without loss of
generality, we assume wg # 0. Set

1

sy e L
O = ool Jeo

|9 (2) — @} ()] - |wo(z)|dz, (42)

By (5), it follows that
0}(0) — 030) = [ (4 (@he).7) — (@20, ar
- /0 (ul(q>1(x),7) - ul(@i(x),T))dT +/0 (ul(@i(x),f) - u2(<1>3(x),7))d¢.

For the first term, in view of (40) and (36), there exists some constant C' > 0 depending only on
llwollriqre such that

[ul (9 (), 1) — u' (87 (2),1)] < Cw(|Py () — D7 (2))).

For the second term, by the change of variables and using the properties of flow map ®:, for all
t € [0,7] with T' > 0, we have

/RQ [ul (@7 (2), ) — u?(@F (2), 1)| - [wo(x)|do

-/
R2

/ o] ([, 1K (@3 0) - @) - K@) ~ 92(0)] - l(o)ide ) dy

= [ ol [, I1Ge - @) - Ko = 920 1P,z ) dy

< Cllanllnze [ #(19H0) = 26D - o)l

where the last inequality follows from the same procedure used to estimate I and I in the proof
of Lemma 3.1. Combining the above estimates, we infer that

s < [ [ vi9ke) - 82 - Jun(a)ldedr

If we assume v to be concave, then by Jensen’s inequality we obtain

[ vteie) - ot s <o [ ek - w20 ar) — v
R2 R2

lwoll 21 [lwoll 21

<c/ (43)

Even if v is not globally concave, inequality (43) still holds. To see this, we observe that v is concave
near the origin. Indeed,

V'(0%) = Jim, ( —p 'm(p™ ) +2p72m (p7 ) + p*log p‘lm”(p‘l))

rm/(r) _ rlogrm”(r) + 2m’(r)> C e
m(r) m/(r) ’

pv. [ (@) — 2) (w2, 1) — w?(2, t))dz‘ Jwo(z)|dz

(K(@}(z) - @}()) — K(®}(z) - 9(y)))wo(y)dy| - lwo()|dz

which yields

= lim rm(r)( -1+

r—-+o0o
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where we have applied (14)-(15) in (H2a). We then define
(o) & {u(p) = pllogp™ym(p™), it p € (0,1,
calogerhm(er) + P(en)(p— ), if p € (1, +00),
where the constant ¢; € (0, %) is chosen sufficiently small so that vy is concave. Moreover,
vi(p) =e, v(p), Vp € (0,400).

Repeating the above estimates with v in place of v, we obtain

t t t
o(t) < C/o /11%2 vi(|®L(x) — ®2(z)|) - |wo(x)|dzdr < C/o v1(0(r))dr < C’/O v(6(T))dr.

Using the Osgood condition (Osg), we deduce from (43) that §(¢) = 0 for all ¢ € [0,7], which
implies @} (z) = ®7(x) for all z € supp wp and all ¢ € [0,7]. It then yields
WwH(®} (), 1) = wo(x) = W?(®2(x),t), Va € supp wp.
Moreover, since ®} (supp wp) = ®Z(supp wp), we have
W@} (x),t) = 0 = w?(®Z(x),t), Va ¢ supp wp.

Therefore, we conclude that the uniqueness result holds, namely w!(-,t) = w?(,t) on R2. O

4. GLOBAL REGULARITY OF C'1* SINGLE VORTEX PATCH

In this section, we show the global regularity of the 2D Loglog-Euler type equation (1) with the
C1# single patch initial data.

4.1. Mathematical formulation for vortex patch problem. Let Dy C R? be a simply connect-
ed bounded domain with boundary 0Dy € C™#, n € N*, u € (0,1), and wo(x) = 1p,(x) € L' N L>®
be the initial data of the 2D Loglog-Euler type equation (1). According to Theorem 1.1, there exists
a unique global-in-time weak solution

w(z,t) = 1py(r) and D(t) = ®4(Dy),
where the flow map ®.(-) = ®;(-) is given by (5). The vortex patch problem is concerned with the
global regularity of 9D(t) for any ¢ > 0.
Let 29(&) : T — 0Dy be a C™H-parameterization of the boundary 9Dy, where T denotes the
one-dimensional periodic domain. Then
z2(€,t) = Pi(20(€))
is a parameterization of D(t) and satisfies the following contour dynamics equation

dZEl% 0 u(z(§,1),t),  2(£,0) = 20(§)- ()

where

U(Z(E,t%t):/D(t) VJ(E(IZ(i,t)—y))dyZ/ R(|2(&1) — y[)n" (y, £)dS(y)

aD(t)
= [ Rll=(&.0) = 200D 2,23 1 (45)

with ﬁ(p) = fpl @dr + C' and C' € R some constant chosen for convenience. This formulation
in Lagrangian coordinates works well in obtaining the local-in-time regularity of dD(t). However,
even for the 2D Euler equation, it is still open how to get the global regularity of 0D(t) directly

from (44)-(45).
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Following [7, 17], we introduce the level-set formulation for the vortex patch problem, which is
based on Eulerian coordinates.

Definition 4.1 (Level-set characterization of a domain). Let D be a simply connected and bounded
domain 9D € Ck*. Let ¢ € CH*(R?) with k¥ € N* and p € (0,1). We say ¢ is a level-set
characterization of the domain D if

D={zcR?*|p(zx) >0}, inf |Ve(z)]>c>0. (46)
x€0D
One can see, e.g. [68] for more details of the construction. As a direct consequence of (46), we
get
=0 on 0D, and <0 in UND", (47)

where U C R? is a small open neighborhood of dD.

Let g be a C™* level-set characterization of the domain Dy. For any zg € 0Dy, the solution of
the following ordinary differential equation

dz
doé{) = Vpo(20(€)) £ Wol20(€)),  20(0) = o, (48)
yields a C"™#-parameterization of the curve dDy. Let z(&,t) be a solution of (44) with zo given by
(48) and o(z,t) = po(®; ' (x)). Then ¢(z,t) is the solution of
Op+u- V=0, uw=V(=2)"mA)(1pp), ¢li=o = o, (49)

with D(t) = {z € R? : ¢(z,t) > 0}. Furthermore, it follows from direct computation (e.g. see [74,
Lemma 1.4]) that

Ocz(&,1) = W(z(&,1),1), with W(t) £ V(1) (50)
Using (50) repeatedly, we find that for k € N*,
02(&,t) = (W - V)P IW) (2(&, 1), t) = 05 ' W (2(&, 1), 1), (51)

where Oy = W - V. Therefore, to study the boundary regularity of 9D(t), it is sufficient to explore
the regularity of 0k ‘W (-,¢). Indeed, from (44), Lemma 3.1 and (51), we have

Izl < llzofl e + /0 e, 8)lzds < [0l = + Cllwoll et (52)
and for k > 1,
1082, D)l < 105 W (-, )2, (53)
and
1082, )l < 105 W Ollenll0e2( Dl = 105 WDl W OlIE<. (54)

According to (49) and the fact that [y, 0 + u - V] = 0, we infer that for any k € N*,
(O +u-V) (05 W) = Ofpu, 05 Wm0 = 9y, Wa. (55)
Hence, the vortex patch problem can be studied through (49) and (55).
Before embarking on our proof, we introduce the following notation and function spaces:
A .
*)linf = f ;
Vel = mf V()]

Ve(z) — Vo(z
va(')ch(Rz)ésup’ p(x) — Vo )!7 e (0,1),

THET |SL‘ - j|,u

IVe()llongre) = IVl @ey + VOl engey, 1€ (0,1),
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and
||VSDHC;L(R2)
A, E——— 1. o6
# T T Ve 0
The m-adapted Hélder space Ch(R?) (u € (0,1]) is composed of functions f such that
[f(z) — f(v)]

I fller = I1fll e mey 2 [ fll oo r2) + sup (57)

ja—yl>0 | =y (m(lz —y[71) + 1)
4.2. Near-Lipschitz estimate of u. The following lemma shows that the continuity of u is stable

under a small perturbation produced by the slowly increasing multiplier m.

Lemma 4.1. Suppose that m(r) satisfies the assumptions (H1)-(H2a) and D C R? is a bounded
domain with CY* (0 < pu < 1)-boundary. Let o be the level-set characterization of domain D where
(46)-(47) hold. Then for any v € (0, u], the velocity u = V+(—A)"tm(A)(1p) satisfies

HU’HC’}"(R2) S C(l + log A'y), (58)

where the constant C > 0 depends only on vy and the domain area |D]|.

Compared with Lemma 3.1, the core idea of Lemma 4.1 is that the cancellation structure in a
regular patch enhances the regularity of the velocity field by logarithmic order.

We emphasize that Lemma 4.1 is formulated in the physical space. It serves as an alternative
representation of the following estimate, which is expressed in the frequency space.

Lemma 4.2 ([11, p. 985]). Let S; = x(277A), j € N be the low-frequency cut-off operator in
the Littlewood-Paley theory. Under the assumptions of Lemma 4.1, and for every v € (0, u], the
following estimate holds:

15 V|| oo m2) < Cm(27)(1+log A,),
where C' > 0 depends only on vy and |D| (the area of domain D).

The equivalence between Lemma 4.1 and Lemma 4.2 can be guaranteed by [, Sec. 2.11].

Proof of Lemma 4.1. Taking advantage of Lemma 3.1, we directly get |[u|/f < C. It remains to
control the modulus-of-continuity estimate of w in (57).

From the representation (26), for any z,h € R? such that || < % (recalling that & is the
constant appearing in Lemma 2.3), we write

u(x)—u(m+h):/ K(:L‘—y)dy—/ K(x+h—y)dy
D{|z—y|<2|hl} Dn{|z—y|<2|hl}

+/ (K(x—y)—K(m—i—h—y))dy
D{lz—y|>2|h|}
£ Ny + g + Ns.
For 91, arguing as the estimation for I in the proof of Lemma 3.1, we obtain
2[h| 2|h|
i< [ < [ G dp < Clhlm(r ).
Similarly, we bound 913 by
3|h]
Mol < [ Gy < Clppm(h ),

utilizing the fact |z + h —y| < |z —y| + |h|.
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For 913, by mean value theorem, it follows that

1
My = ‘/ / - VK (& + 6h — y)dydd|
0 Jorgle—yiz2inl}
1
g/ ‘/ he VK +0h — y)dy|ao
0 1 JDN{jz+0n—y|>2|h]}

1
+/ / |h - VK (z + 6h — y)|dydd
0 J{lz—y|=22|h|} A{|z+0h—y|>2|h|}

£ N3 + Nao,
where the notation AAB £ (A\B) U (B\A). For N33, observe that
{lz —yl = 2[n[}A{|z + 0h —y| = 2|h|} C {|h] < &+ 0h —y| < 3|h[}.

In view of (38), we infer that

1
Nz <|hy/ / VK (2 + 6h — y)|dydf
0 J{Ih|<|a+0h—y|<3[n}

1 p3)h -1
gc/ / m(p2 ) pdpdd < Clhjm(|hD).
0 Jinl p

Note that in the second inequality, we drop the second term in (38), since |z + 0h — y| < 3|h| < &.

For the remaining term 9131, we state the following claim:
’ / VK (z — y)dy‘ < C(1+logAy) (m(Jh|H) +1), ¥y € (0,1), (59)
D{lz—y|=2|h|}

where C' > 0 depends only on v. Applying (59) and replacing = by x + 6h, we obtain
Ng1 < C|hl- (1 +1log A) (m(|h|™1) +1).

Collecting all the estimates, we obtain the desired bound (58). For the case |h| > ¢, we argue
analogously to (39) and derive the same bound.

We are left to show the claim (59). Applying (38) and the fact that m(r) is non-decreasing, we
obtain

_ -1 1
’/ VK(z - y)dy‘ < C/ m(|r — y| 2) + dy
DA{Ja—y|>2|h} pfle—y>2my 1T =Yl

- dy g\~ dy
< omnl™) [ e om(@) | T
DAfla—y|=2lnl} 1T = Y] DOfJa—y|>2lhl} [T = Y]
L
B 1 B B
< (™) [ o O (1 ¢ log ), (60)

where L = \/|D|/7 and in the third line we have used the rearrangement inequality.
If 2|h| > 6, with

then (59) is a direct consequence of (60).

If 2|h| < 6, we exploit the symmetry properties of K and the patch structure to establish
cancellations, analogous to [7, Geometric lemmal]. Denote d, is the distance between x and 0D,
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namely

d; £ inf |z — 61
Jof |z —2|. (61)

For every z € R?, choosing Z € D such that d, = |z — Z|, we define the sets
Sp(@) £ {2lls] = L+ p2 € D}, S() 2 {alle] = 1, Vag(d) - 2 > 0}, Rpfe) £ 8, (2)A5(w).

Note that
Dn{lz—y|>2h} ={y=a+pz:p>2h, z€S,(x)},

and X(x) is a semicircle where symmetry can be employed. The geometric lemma in [7] characterizes
their difference R,(x): for all p > d,, v € (0,1) and for each x such that d, < d, = A;l/y,

H(R,(x)) < 27r<(1 + 27)% + 27((5)7), (63)

y
where H! is the Hausdorff measure on the unit circle.

From (30), we decompose VK into the symmetric part (VK)g and the antisymmetric part
(VK)a. For the symmetric part, we observe that o(z) has zero mean in unit circle or semicircle:

p<dy: / o(z)dz =0,
Sp(w)

)/ o(z dz‘ < ‘/ dz( +/Rp(x) lo(2)|dz < CHY(R,(2)).

Utilizing the above cancellatlons and applymg (38) and (63) we get

12 !
’/ (VK)s(x —y dy’ ’/W Glp pG( )/ a(z)dzpdp‘
PAfle- y|>2|h|} 2ln] 2 Sp(@)

M 1 6”1 dy P\~
sty 7 (@ < CEnIT +1) /d .0 +5) )do

< C(m(h™") +1). (64)

<(C

For the antisymmetric part, we have

e wvdn— [TCO s o 0 1
/Dn{x—yz2|h}(VK)A( y)dy_/mm 2p H(Splw)) pip <—1 0>'

For H'(S,(z)), we have

p<dy: H(S,(x))=2m,

p>dy: HUS, (@) < HAE(@)) + HA (R () = 7+ HL(R, ().
Therefore, by using (31) when 2|h| > d,, we deduce that

’/Qh 2/) dp‘ 7’ alhl G/(p)dp‘ +;/2: |G ()| H (R (x))dp

™ " m(p~!) +1
2| (2[n]) = G(6,)| +C .

and when Z\h\ < dy, we get

o G/ / T [ ' 1 [% ' 1
(/ Sp(z) pdp‘ < ‘ G (p)dp + 2/ G (p)dp‘ + 2/ G (p)|H (Rp(z))dp
on 2P 2/ do da

HU(Rp(x))dp < C(m(|h|™) +1),
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< Z12G(2Ih]) = G(dy) = G(6,)] + C(m(d;") +1) < C(m(|h] ™) + 1)
This concludes the proof of (59). O

4.3. The bound of Jdyu. Inspired by [7, Proposition 2|, we first deduce an alternative integral
expression for dyu, which fully exploits the structure of a regular patch.

Lemma 4.3. Let D C R? be a bounded domain with C** (0 < p < 1) boundary and let o be the
level-set characterization of domain D. Let W = Vo € C*(R?) be a vector field tangent to OD.
Assume that u = VH(=A)"'m(A)(1p) and m(r) satisfies the assumptions (H1)-(H2a), then the
following identity holds true for all x € R?,

Oowu(x) =W -Vu(zr) = p.v./ (W(z) = W(y)) - VK (z — y)dy, (65)
D

where VK (z) is defined in (30).

Proof. Since W = V1 is divergence free, we have

Owu; =div (W), i=1,2.

In the following, we will compute div (Ww;) in the distributional sense. For every ¥ € C2°(R?), we
have

(div(W ), ¥) = — (W, V¥) = — /R i)W () - V()

In view of the expression formula (26) and Fubini’s theorem, it follows that
(div(W u;),X) = / / Ki(x — dy W(z) - Vx(x)dz
R2
- / Ki(x — y)W(2) - VX(2)dedy

RQ
= —lim / /|zy|25 Ki(z —y)W(z) - VX(z)dzdy.

e—0 D

Through integration by parts, we find that

/D/lm_mzem(x— YW (x) - VX(z)dedy = — // e V@V Ki(x — y)X(z)dady — I,

with
2 SR k) PSRN
IE—/D/IJC_“Kz( y)W(z) |x_y‘x( )dS (z)dy.

Note that lim._,o I might be infinite. Define
T—Y)
re [ [ K- gwe) - SR w@as e,
D J|z—y|=¢ ’1‘ - y’
and we can take the limit of their difference R. = I. — J.. Indeed, we apply (31) and (20) to obtain

tny || = g | | / . Ki(e ) (W(@) - W) - T D @)as(x)ay

=0 |z =yl

< lim
e—0

HWHcﬁ“ 1+ Xl - 272 |dy < C lim em(e™") = 0.

For J., using Fubini’s theorem and integration by parts, we infer that

_ (o (z—y) ~(\d
Je —/R2 /Dﬁ{|x—y:e} Ki(z —y)W(y) |$_y|d5(y)x( )d
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= /R 2 < /D W(y) -V, (Ki(x —y))dy — /8 Ki(z —y)W(y) -n(y) dS(y))%(:v)dw

N{|z—yl|>¢e} Dn{|z—y|>e}

_ / / W(y) - Vy (Kiz — )dy K(z)dz
R2 JDn{|z—y|>e}
- / / W(y) - Va k(e — y)dy X(x)dz, (66)
R2 JDn{|z—y|>e}

where in the second equality, we use the fact that W (y) - n(y) = 0 for y € 9D with n the outward
normal vector of dD. Therefore, based on the above estimates,

(div(Wu;), §) = lim ( L/ e ) ~vxKi<x—y>dy>z<x>dx+Rg>

e—0

- / (p-v. / (W(x) = W(y)) - VaKilw - y)dy ) X(w)de,
R?2 D
This finishes the proof of (65). O

Based on Lemma 4.3, we show the following Holder-type estimate of Oy u.

Lemma 4.4. Under the assumptions of Lemma 4.3, the following estimate holds,
10wl rzy < C(L+log AWl ey (67)

where C' > 0 depends only on u, v and |D|.
Proof. By virtue of the expression (65), (38), the rearrangement inequality, and (20), we deduce
Jowalooe < [ [W(a) =Wl VK G = )ldy

m(lz —y|™h) +1
2 —y?

< ClWlguger [ o= dy

< ClWlangey | ™™ dp < ClW e,

with L = \/|D|/m. Choosing z, h € R? such that |h| < L, we write
owu(z) — Owu(z +h) = J1 + J2 + I3 + Ja,

where

3 & pv. / (W(z) - W(y)) - VK (& — y)dy,
Dn{|z—y|<2|h|}

322 py. / (W(x+h) —W(y)  VE(x+h—y)dy,
Dn{|z—y|<2|h[}

(1>

)
@

/ (W(x) = Wiz +h)) - VE (@ - y)dy,
D{l|z—y|>2|h|}

3.2 / (W +h) - W(y) - (VK@ —y) - V(2 +h - y))dy.
Dfle—y|>2|h[}

For J;, from (38), we get

2 m(p~1)
ay < ClWlewen [ i

R m(le — 4|~
] < Cw, / o —ypE =9
CHE) Joyi<ain |z —y|?
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Using (14) in (H2a) and the L’Hopital rule gives

g m(pdp P tm(p™!) o 1

lim = lim = lim —— = —.

p=0  phm(pT) p=0 ppt—tm(p=h) — pr=im/ (p~)pThroeo T g
mi\r

Then, there exists a constant C' > 0 depending on p and ¢g, such that for any p < ¢,

/op P tm(phdp < Cptm(p ). (68)
Together with (16), we find

311 < ClIW | oy |l m([] 7).
Performing the same procedure, we can also show that

~ 3lh m(p~") -1
32l < ClIW ey 2 )dp < CIW sy (L),
0 prH

For the term Js, it follows from (59) that

3l < IW g v [
Dn{l|z—y|>2|h|}

< O(1+10g A) Wl gy 01 (B 7Y) +1).

VK(z— y)dy’

Finally, for the term J4, we apply (34) with [ = 2 and get

V2K (2)| < CM_

Utilizing the mean value theorem and proceeding as in the treatment of /7 in Lemma 3.1, we obtain

R mle -y~ + 1
Wl < W) /' | Ihldy
) prfla—y/> 211} jz —y|3

Eom(ph) +1 _
< C”W”C#(R2)|h’ /zh pgi_updp < CHWHCH(RQ)’h‘M(m(’h’ b+ 1)'

Gathering the above estimates leads to the desired result (67). U

Next, we will present a refined point-wise estimate for the term dyu = W -Vu in the (tangential)
direction W = V¢, which is essentially from [41] but with more technical details here.

Lemma 4.5. Under the assumptions of Lemma 4.3, we have the following point-wise estimate

[Vuw - w| < C(m(A,Y) + 1) (1 + log A'y)» Yy € (0, pl, (69)
where w £ % = %, and C > 0 depends only on v and |D|.
Proof. Since Vuw -w = S(Vu)w - w with S(Vu) = w being the symmetric part of Vu, we
will concentrate on the analysis of S(Vu)w - w. We recall from (28) that
12G(|lx —y|) — |z — y|G'(|]z —
S(Va) = [ (VK)ste —yay = [ G2AEZI G =il o, g,
D D2 |z —y|

where o is given by (29). For every = € R2, we divide S(Vu)(z) into

wvmuaz/’ <Van—yMy+/' (VE)s(z — y)dy
D{|z—y|>d+} Dn{|z—y|<d4}

2 Ty (x) + Ir(x),
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where 6, = (A,) .
For Z;, we proceed as (60) and obtain
m(lz —y[™") +1

Dr{le—ylzs,} [T =yl

|Zi(z)| < C dy < Cm(é;l)(l + logév_l),

and consequently,
71 (z)w(z) - w(z)| < Cm(A,)(1+log A,).

For Z,, the goal is to exploit additional cancellations in order to sharpen the result of Lemma 4.1.
Denote & € 0D such that |x —Z| = d,, where d, is defined in (61). If §, < d,, then by the mean-zero
property of o(z), we have Zy(z) = 0. Thus, we assume that 6, > d, without loss of generality, and

To() = / (VE)s(z — y)dy.
D{d:<|z—y|<d~}

Since ¢ is a level-set characterization of D, we know that & — x is parallel to V(Z), and hence
orthogonal to w(Z). Therefore, we shall seek cancellations in Zs(x)w(Z) - w(Z). Decompose

Io(z)w(z) - w(z) = To(2)w(Z) - w(Z) + Lo(z) (w(z) + w(Z)) - (w(z) — w(T)).
Let us start with the estimate of the difference
|2 (2) (w(@) + w(2)) - (w(z) — w(3))| < 2|T2(2)] - [w(z) — w(Z)|-
By virtue of the definitions of w(x), & and d,, we have
|(W(z) = W(@) - w@ (W () - W@| _ 2IVelenlr — 2

W) == W) ST Vel <24
A similar argument as in (64) yields
% m(pt) + 1 1 -1
|Za(2)] < C ; f?[ (Rp(x))dp < C(m(dy") +1).
Hence,
]Ig(a:)(w(x) + w(a?)) . (w(x) — w(i*))] < CA,(dy) (m(d;l) + 1) < CA,(04)" (m(é;l) + 1)

1
<C(m(A7)+1) <C(m(A,)+1).
where we have used (25) in the second inequality, and (23) in the last inequality.

Next, we focus on the term Zy(z)w(Z)-w(Z). A main observation is that (VK)g(z—-)w(Z) -w(Z)
is an odd function with respect to the line
L:sa+sw(i)T,

which go across z and Z. To see this, we denote § the reflection point of y with respect to L. Then,
if we represent y = x + s;w(Z)" + sow(Z), we have § = x + s;w(Z)" — sow(Z). This implies

v =gl = /s 455 =z -yl

—y)w(z) -w(x —2(W(j)J_'(x_y))(w(i)'(l‘_y)) 28189
o(x —y)w(T) (@) = \fc—y\Q _s%+s%7

Direct computation shows

and

N - 25152
oz —y)w(z) w(@) = T2+ 82
17T 52

= —o(x —y)w(z) - w(Z).
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Hence, we conclude with
(VE)s(z = y)w(z) - w(Z) = —(VK)s(z — y)w(Z) - w(Z).
Define the half plane
F2{zcR?: Vp(@)- (z—x) >0}

Since FN{d; < |z —y| < 6,} is part of the annulus which is symmetric with respect to L, we deduce
that

Ioi(z)w(z) - w(Z) =0, (70)

where

In@) 2 [ (VK)s(z — y)dy.
FN{ds<|z—y|<oy}

Via (70), it remains to control the difference Zoo(7)W(F) - w(Z) where Toy = Ty — Io; satisfies

m(lz —y|™h) +1

(DA )N {de<|z—y| <65} |l — y?

()] < / (VE)s(x — y)|dy < C dy
(DA F)N{do<|o—y| <55}

<C

(DA §)N{0<|3—y|<26,} |z —yl?
where we apply (38) in the second inequality. For the last inequality, we have used the fact that
0<|Z—yl<|T—z[+|z—yl=ds+ |z —y| <2z —yl,
which implies {d, < v —y| < 4y} C {0 < |2 —y| < 26,}. We also make use of the monotonicity of
m as well as (16).

Now, we argue that the set (DA F) N {0 < |Z —y| < 26,} is small. Rewrite the integral in polar
coordinates centered in Z, and borrow the notation in (62). It yields

Zym(p~) +1 -
o) <0 [ IS, (@) 450) s
0

A variation of the geometric lemma (63) (setting d, = 0) reads

HY(S,(3)AS(x)) < 27 - 27((5)7, ¥p > 0.

Then, we finish the estimate by

PrmpT) +1p N0 2
In@|<C [ P2 ( LY dp < o((@0,)m((28,) ) (0) 7 + =
T <0 [ () ap < (25 m{(26) ) 0) 7+ )
< C(m(65h) +1) < C(m(A,) +1),
where we have used (68) in the second inequality, and (23) in the last inequality.
Collecting all the estimates, we conclude with the desired inequality (69). O

4.4. The refined estimate on the flow map. In this section, we derive a sharper estimate for
the flow map, compared to (6) in Theorem 1.1, which will play a fundamental role in the following
section. Define

(o) 2 o(mlp=] an. H(r) 2 1£_ 1L
7p) 2 p(m(p™") +1), and H<>—A a<p>—/i p(m(p=h) +1)

Y
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Compared to v and H, there is an improvement in a logarithmic factor. Similarly to H, the function
H is invertible since H'(r) = 7“211(7”*1) > 0. Moreover, from the Osgood condition (Osg),

.~ ! dp oo dr log 2 Foo dr
lim H(r) = L —— > : = +00.
r—+oo 0 p(m(p*l) + 1) 1 r(m(r) + 1) 14+ D 2 r(logr)m(r)

m(

Hence, the inverse function ﬂval(-) :R — (0,4+00) is also increasing monotonically.

Lemma 4.6. Under the assumptions of Theorem 1.1, and if v € L*(]0, +o0); CL(R?)), then we
have that for any t,s € Ry,

[10(x) = @1,s(y)| 7! = H (Filz — y] ) / Ju(r) oy @2ydr|)- (71)
Moreover, for any t,s € Ry,
t
[1s(2) = Dis(y)] < | — ylexp ((m<|x —u )| [ ||u<v>||%(Rz>dTD. (72)

Proof. According to (5) and (57), it follows that for every t,s € R,

’d(@t,s(l‘) — q)t,s(y))‘ < ‘u(@t,s(x),t) —u(<1>t,s(y),t)! < |u(t )HCl (R2) V (|(I)ts( ) — q)t,s(y)D‘

dt
Since d%H(p*I) = —ﬁ, we get
~ - 1 |®e,s (@) —Pe,s ()] dp
A1) — @)~ Ao =] [ 2| < | [ty gy
z—y

which directly implies (71).
If | @y 5(x) — Pt s(y)| < |o —yl, then (72) clearly holds. If |®; s(z) — Pt s(y)| > |z — y|, we have

loo [Pts (@) =Pes (y)]
T—y]

‘/M)ts CI:‘ts ‘ dp S 1 /‘bt,s(x)q>t,s(y)| % _ og |f
|lz—y| g(p) N m(|$_y|_1)+1 |z—y| P m(’x_y|_1)+1,

and consequently,

|P s(z) — Prs(y)| < |x —y|exp <( (Jz —y|~ 1 +1 ‘/x‘i’:(w — By 5(y |;§Z))>

< o= slexp ((mlle 1) + )] [ Tu)lcyeae]).
This finishes the proof of (72). O

4.5. Closing estimates. Recall that ¢(z,t) is a level-set characterization of the domain D(t),
satisfying (49), and that W = V1. The dynamics (55) with k = 1 reads

AW + (u- VYW =W -V = dwu, Wlo = Wo. (73)
Using the flow map ®; ¢ defined in (5), we deduce
t
W(x,t) = Wo(Pos(z)) —|—/ (Owu) (s, @sy(z))ds. (74)
0
We apply the bound (67) on [|Owu||cp g2y in Lemma 4.4 and obtain the ||W||fe bound:
t t
W ()l Lo < [[Woll Lo +/O 10w u(s)l|Leds < [[Wol L~ + C/D (1+log Ay) [[W(s) | uds,  (75)

for any p € (0,1), v € (0, ] and the mapping s € [0,t] — u(s) € [§, u].
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Next, we derive a lower bound estimate on |V|i,s. Taking an inner product on both sides of
(73) with W leads to
W +u- VWP =2(Vuw - w)[W[,  with w= .
Then, we infer that
8t(10g |W o <I>t70]) <|(Vuw -w) o ®yl.

Thus, we obtain the following key result:

t
Veelur(t) = [Vulurexp (= [ I(Tuw - w)i=ds).

Taking advantage of Lemma 4.5, we know that for any ~ € (0, ul,
[Vuw - wlpe < C(m(Ay)+1)(1+1ogA,),

with A, = IVeler 4 g Collecting the above estimates yields that for each v € (0, ],

T Vel
t
Velus(t) = [Vnlusexp (= C [ (m(a,(5) + 1)1+ og A (5)ds). (76)
Now we perform the method of losing estimates on ||Vl cu(m2) = [[W || cn(r2), see [1, Section 3.3]

for a general statement of this approach for the transport equation. Our novelty is that here we can
avoid the use of the Littlewood-Paley decomposition, which is crucial when we tackle this problem
in the domain with boundary.

Let 7> 0 and p € (0,1), € € (0, %) be fixed, and let v € (0, 1) be chosen later, then we define

V,(t) & /0 (1+1log Ay(s))ds, nyr= VWZST)

It is clear to see that p(0) = p, u(T) = p— e > &, and p(t) is decreasing for ¢ € [0, T7.

, o u(t) & =y V(). (77)

For any z,y € R?, from (74) we have
Wz, t) = W(y, )| < [[Woll el Pot(x) — Por(y)]*

+ /0 tuawu<s>||cﬁ<s> [@s4(2) = s () (m(| (@) = Dsa(y)l ™) +1)ds. (78)
Recalling Lemma 4.1, for any v € (0,1), there exists C > 1 such that
lu@lleyge) < C(1+log Ay (1), #€ Ry
Applying (72) in Lemma 4.6, we deduce that for every t > s > 0,
B00(2) ~ @aa0)] < o~ vlexp (Clomlle o1 +1) [ (14 1o A 7))
= |z —y| Mt (Jz—yl 1) S (79)
where for convenience, we introduce the shortcut notation
M, i (r) 2 C(mlr) + 1) / (14 log Ay ()dr. (80)
It follows from (25), (79), and the monotonicity of ’I’;, that
|@s(@) = Bsp () (m(| () — Bs(y)| 1) +1)
< Ol — y|H) ) M o=yl ™) (m(|x — oy le MeenlleulTh) 1)

< Clz — y!® (m(jo —y| ") + 1)eu9ﬁs,t,v(\%y|*1)’ (81)
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where C' > 0 depends only on y (recalling that u(s) € [u —e,p] C [§,p]). Applying the above
estimates to (78), we find

’x — y’#(t)

< HWO||CH|J; — yw—ﬂ(t)eﬂmo,t,q(\x—y\*l)

t
+G / (14108 Ay (DI () | o [ = 17O (m(|a — y| 1) + 1) et Mot (=01 i
0

L T+ Jo, (82)
where C1 > 0 depend only on g and ~.

In the following, we divide into three cases to discuss the estimate of (82).

Case I: Suppose that |z — y| € (0, 1] is small enough such that

log |z —y| 7! S c'c
m(lz =y~ +1 7 ny
where the constant C’ > p will be fixed later. By (83), we have that

¢
|z — y|“(s)_“(t) = exp (n%T log |z — y / (1+ log A,Y(T))dT)

(83)

~ . / )
< exp ( — C’C(m(|$ - y|—1) + 1) / (1 + log A'y('r))d7'> _ O My (2 1)‘
Consequently, the terms J; and Jo can be estimated as follows
Jl < HWOHC’;LQ_(C/_M) mo,t,7(|x—y|*1)7

and

t
J2 < Cy sup [W(s)laues / (1 +log Ay(s)) (m(lw —y| 1) + 1)~ (@70 Merallz=vIT g,
s€[0,¢] 0

C o w1 _
-1 Sl[lopﬂHW(S>||C#<5> /0 e (C'=1) M 1. (|lz—y] )di( — My (lz — 1))d8
se|0,

&
< — sup [|[W(s)||aucs) -
g 2 WGl

Hence, choosing C' = p + 2%, the estimates above imply

(W, t) = W(y,t)]

1
i < Wl 5 sup [V e (34)

2 s€[0,t]

Case II: Suppose |z — y| € (0,1] and (83) is not satisfied, that is,
logle —y|™' _ C'C C'CV,(T)
m(lz —y[~) +1 7 nyr €
Thanks to (20), Lemma 2.1 and (85), for |z — y| < 3, we have

. (85)

. ) ) ) _
log? g —y|™t _ loglz—y|™t _ loglz—y[t _ C'CV(T)
¢ T C(1+logzlz—ylt) ~ mr -yt +1 T €

which implies that (for |z —y| € [3,1), the following estimate is clear)

1 2 cc!Cvy(T) )2
log!w—y!JS(w)’ and [z -yt <l )
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Consequently, we have
mile —y| ™) < ((CCLE)?) < (UL < C@VA(T) +1) = Clm(e ) + 1),

where we have used (H1), (22) and (24) in the three inequalities, respectively, and the constants
C’, C and ¢ are absorbed in C. Together with (82), and the definition of M+ () in (80), it follows
that

t
VA (T)
i < [Woll g exp (€ (m(e" @) + 1) /0 (1+10g Ay (7))dr ) < [Wol|ge® Mo,

Similarly, since p(s) > p(t) for any ¢ > s, we also deduce that

t
T2 < e ™)+ 1) [ (1+10g A,(5)) W (5) ey e Vs,
0
Hence, in this case, collecting the above estimates yields
(W (z,t) — W(y,1)| M (VD)
’.’I) _ y’#(t) S HWOHCMe K (86)
t
+ C(m(eVW(T)) +1) / (1+1log Ay(s)) HW(s)HO#(S)ecmsvfﬁ(ewm)ds.
0
Case III: When |z — y| > 1, we directly use the |[|[W]|z~ estimate (75) to obtain
Wi(x,t) — W(y,t t
W) = WOl gy < 2 Wil +C [ (1+1og Ay (s)IW(S)gninds.  (87)
|z — y|r® 0
Based on the analysis of the three cases, it follows from (84), (86) and (87) that
Wz, t) - W(yt)| _1 CMo.s (V7 (D))
sup < — sup [|[W/laue + Cl[Wo| zue™ 7rotte
|z—y|>0 |z — y|“(t) 2 s€[0,t] o o
t
+ C(m(eVW(T)) +1) / (1+log Ay(s)) HW(s)HCMS)ecmsm(ewm)ds.
0
Together with (75), we deduce that
1 VA (T)
IW@llenen =< 5 Sl-[%p}HW(S)HcM(s) + C|[ W | gyue@ ot
s€|0,t
t
+ C(m(eM) 4+ 1) / (1 +log Ay (5)) [IW ()] ey € Mot €7 s,
0
Taking supreme on s € [0, ¢], it immediately leads to
VA (T)
sup [[W(s)[| o) < C|[Wol|gne o0
s€[0,¢]
t
+C(m(e" ™) +1) / (1+1og Ay (5)) [W(5)]] e e o2 dls. - (88)
0
Denote

— Vo (T)
E(t) 2 sup [W(s)|guioe Moo,
s€[0,t]

Then we find from (88) that

£(t) < C|Wollen + C(m(eVV(T)) +1) /Ot (1+1log Ay(s))E(s)ds.
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A direct application of the Gronwall’s inequality implies
E(t) < C||Wollcow exp (/Ot C(m(e" ™) +1) (1 + log Aw(s))ds) _ O Wo|neC Mo ™)
Therefore, we conclude that
IVe(T)llcn-e = [W(D)lgur) < ET)Mor D < Oy e Mol
< Cl[Vollon exp (C (m(e¥? ™) +1)V4(T) ), (89)

for any "> 0 and v € (0,1), and the constant C' is independent of T
Now, choosing v = p—e, from (76) and (89), we find that (recalling that A,_. is defined in (56))

T
A, (T) < Cexp (C(m(eV“‘E(T)) +1)V,—e(T) + C /0 m(A,—c(s)) (14 log Au—a(s))ds)v (90)

where C'= C(u,€) > 0 is independent of T', and V,,_.(T') is given by (77). By setting

- B A r(ﬁl(r)—i—l) :r(m(er)—i—l), Yr > rg,
f(t) - VM—E(t) =1 +10gAM—€(t)7 M(T) - {T(m(@TO) + 1)’ YO <7 S To, (91)
where ry > 2 is the constant appearing in (21), we rewrite the above inequality as
() <C+ c(m(/t F(s)ds) +1) /tf(s)ds " C/tm(f(s))f(s)ds
0 0 0 (92)

< C+CM</0tf(s)ds> +C’/Ot/\/l(f(s))ds,

where C' > 0 may depend on p, €, and the initial data. According to (21), (19) and (91), we have
r +— M(r) is strictly increasing and convex in (0, +00), (93)
and for any A > 0,7 > 0,€¢ >0
M) < Cxr(m(hr) + 1) < CA(1 + log T N)M(r). (94)
Applying Jensen’s inequality, we get

M(/Otf(s)ds> - m(; /Ot f(s)ds) < 1/Otj\/l(tf(s))ds < Clogh (e + 1) /Ot./\/l(f(s))ds.

Consequently, it follows from (92) that

F(t) < C + Clog? (e + 1) /0 M(f(s))ds. (95)

Denote by
o t
log™ (e + 1) + /0 M(f(s))ds,
so that R(0) = rg and f(t) < C'log? (e + t)R(t). Then, together with (94), we obtain
dir(ft) T (et ) lozl—:ﬁie(e T MI®)
< M(Clog? (e + t)R(t)) < Clog? (e + t) M(R(t)).
Integrating the above differential inequality on ¢ € [0, T yields

H(R(T)) = H(R(T)) — H(R(0)) < C(1 +T)log”"* (e +T),

R(t) =
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where

H(r)

r ~ r 1 ot
a ar {fm FmmTn 47 Vr > o, (96)

2 o M(F) Wlog%, VO <r<rg.

Note that H(R(0)) = H(ro) = 0, lim,_,o H(r) = —o0, and the Osgood condition (Osg) implies

_ +oo 1 1 ooy
lim H(r) = — dr > I —— = +00.
T—+00 70 r(m(r) + 1) 1 + = T0 ’rm(r)

m(ro)

Together with (93), we infer that r — H(r) is strictly increasing in [0, +00), and it has a unique
inverse function % ~!(-) in (—oo, +00). Hence, it follows that for any 7' > 0,

F(T) <log?T (e + T)R(T) < log’ (e + T)H ' (C(1 + T)log” (e + T)). (97)

This implies the boundedness of A,_.(T), which leads to the C*~¢ boundary regularity. Indeed,
from (76), (89) and (97), we have that for any 7" > 0,

T
IVo(T) |int > |V@olinf €xp ( — C/ M(f(t))dt) > |V |int e ¢
0
> |Volint exp ( — CHH(C(1+ T)logh (e + T))), (98)

and

T
IV(T) e < ClIVipolon exp (CM( /0 f(t)dt)) < Cl[Vollon exp (Clog™ (e + TIR(T) )
< O Vipol|cm exp (0 log? 2 (e + TYH 1 (C(1 + T) log? (e + T))). (99)

To conclude, we have proved the following theorem.

Theorem 4.7. Let i € (0,1). Assume that m(€) = m(|€|) is a radial function of R? with m(r)
satisfying (H1)-(H2a)-(0Osg). Consider the unique global patch solution (9) of the 2D Loglog-Euler
type equation (1) associated with the patch data wy = 1p, where Dy is a simply connected and
bounded domain with boundary Dy € CY*. Then for any t > 0 and any € € (0, ), the patch
boundary OD(t) persists the CY"~¢-reqularity, namely, OD(t) € C1+~¢,

More precisely, for any given € > 0 and any € > 0, there is some constant C' > 0 depending on
K, €, € and the initial data, such that the estimates (98) and (99) hold, where ¢(-) is the solution
of (49) and the mapping H(-) is given by (96).

In view of the definitions of H in (7) and # in (96), we have that for any r > ro,

T

1 Todr e d7
#0)2 = | = € o A
. e’0 d?z B er B
- C(H(e ) /2 f(logf)m(ﬁ)) =O(H() - ©).
This implies
H(y) <log (H ' (Cy+C)), Yy>o. (100)

Applying the bound to (98) and (99) yields the estimates (11) and (12). Then, a direct application
of (52)-(53)-(54) gives (10), thereby completing the proof of Theorem 1.2 for n = 1.



36 CHANGHUI TAN, LIUTANG XUE, AND ZHILONG XUE
5. GLOBAL REGULARITY OF C™" SINGLE VORTEX PATCH

In this section, we consider the global propagation of the higher boundary regularity of the patch
solution associated with the initial data wy(z) = 1p,(z) and 0Dy € C™* with n > 2 and p € (0, 1).

Now, we can present our main result in this section.
Theorem 5.1. Let p € (0,1) andn € N*N[2, +00). Assume that m(§) = m(|€|) is a radial function
of R% with m(r) satisfying (H1)-(H2a)-(Osg). Let ooy € C™H(R?) be a level-set characterization
of the domain Dq that is bounded and simply connected. Then the global solution of (49) satisfies
dD(t) € C™ for any t > 0 and any 1’ € (0, ).

According to the framework in Section 4.1, to prove Theorem 5.1, it is sufficient to control
dp "W, More precisely, we will show that if ¢o € C™*(R?), then for any u' € (0, 1), there exists
an increasing and positive function R, , ,/(t) such that

-1
103 W Oll e ey < Brgogr() < +05. (101)

Indeed, given (101), for any v € (0,1), pn € (0,1) and p' € (0, ), we have
n—1

n—1
> 0% W Dlloviee) + 105 W (O)llew 2y < D Ryt (8) + Ry () < 00,
j=1 J=1

where we have used the fact that C™# C V"2 when j < n. Consequently, we deduce 0D(t) €
cnm,
Moreover, the growth rate of R, ,, () matches with (99), namely

Ruyye < Cllollcnn exp (c log? 2 (e + TYH ™ (C(1 + T) log?T2(e + T))). (102)

Applying the bound (100) to (102) yields the estimate (13). Then, a direct application of (52)-(53)-
(54) gives (10) for n > 2, finishing the proof of Theorem 1.2.

5.1. The estimation of 8’§Vu. Following the approach developed by Radu [80, Prop. 6.2], we

provide a regular representation formula for Gﬁ,u analogous to (65). For convenience, we introduce
the following notation

O[] % f(@) = fly), Va,y R

Proposition 5.2. Let D C R? be a smooth bounded domain, and let ¢ be a level-set characterization
of domain D and assume that (H1)-(H2a) hold. Let W = (W1, Ws) = V+o be the vector field
tangent to OD. Let k € N* N [1,n], and suppose that 0L, W € C7(R?) for any v € (0,1) and
0<I1<k-=2/(if k=1, this condition is not necessary), and 6{},‘1W € CHR?), p € (0,1). Let
u(z) = VH(=A)"'m(A)(1p)(z), then we have

k
Hu@) = 3 ., p.V./ (5; W] - @6t [alvﬂ'v‘lw]) VK (z —y)dy, (103)
J=10> 2> b
Li+tl=k
where C;Cl,---,lj e Ry, c’,j =1, “®7” denotes the usual tensor product (e.g. a ® b = (a;bj)axa for two
vectors a,b € R?), and K(z) = %G(MD is given by (26).

Remark 5. In particular, for k = 2,3, we have

O3u(x) = p.v. /D (W(z) - W) & (W(x) - W(y) - V2K (z — y)dy



PATCH SOLUTIONS FOR THE 2D LOGLOG-EULER TYPE EQUATION 37

+ p.v. /D (OWW(x) - 8WW(y)) -VK(z —y)dy,
and

dyu(z) = p.v. /D (W(z) = W(y) @ (W) —W(y) e (W) - W(y) VK —y)dy
+3p. /D (Ow W (2) — W (y)) © (W(z) - W(y)) - V2K (z — y)dy
+ p.v. /D (W (x) — Oy W (y)) - VK (z — y)dy.

Proof of Proposition 5.2. We prove (103) by induction. For k = 1, (103) is a direct consequence of
(65) with c¢i = 1. Suppose that (103) is true for k. We will show that it is also true for the k + 1
case. The proof is analogous to Lemma 4.3.

Due to the roughness of the patch solution, we shall compute E)I’f‘;“ L4 in the distributional sense.
Since W = V1t is divergence free, we have

8§Iflu = div(W 0lu).

Next, for any ¥ € C2°(R?), we get

(div(W Ok u),X) = —(OFu, W -VX) = — [ Ou(x) W(z)- VX (z)dz.
R2
Denoting by
Dy (wy) 2 820 IW] @ - @ 82 [0y W], (104)

and through the induction hypotheses (103) and Fubini’s theorem, we deduce that
(div(W d5yu), X)
k
. I, L ; ~
=— Z Z cfh,,.Jj / (hm/ Dy U (x,y) - VK (x — y)dy)W(x) -Vx(x)dx
R2 220/ Dnfle—y|>e}

J=1h =221
I+t lj=k

k
==y Y & lim/ / DI (2,y) - VK (2 — y) W) - VX(z)dady
— > e—0 D |zfy|>6
J=1h2>lg-2>1;>1 =
li+-+li=k

k
A k :
A E E el il_I}I(l] A
J=1lh>lg-2>1;>1
I+t =k

Since W is divergence free, the integration by parts gives us

A= _/ / Dy (@) - VK (2 — y) W(z) - VX(2)dady
D Jiz—y|>e

= /D /|z—y>e W(z) -V, (Dl;v’“"lj (z,y) - VIK(z — y))g(x)dxdy + 1.

where

L £ /D /|| Dy Y () VIK (z —y) W (x) - <§ — ) (@)dS(2)dy.
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Define

e s . X — ~
J. 2 / /| | DY () - VIK (2 — y) W(y) - (’x - zy)x(a:)dS(:c)dy, and R.2 I — J..
T—y

Noting that for s =1,--- .,
|65 [0 W] = |ay W () — 057 W (y)| < 1105 W llewle — o7, (105)

we control the difference R, by

t . = | [ /| D @) VK@ - ) (W) - W) S @) (e)dy

=0 |z —
+1
<ciin [ H (1087 Wilene) - DL v ner 1 Rl - 2oy

< C'lim 5(3“)7 I(m(e™t)
e—0

_|_

1) =0,

by choosing v € (kLer

to estimate VI K.

For J., a similar argument as (66) yields

1) so that v > kiﬂ > and therefore (j + 1)y — 7 > 0. We have used (34)

J
Jj+1

= booli ) VIK (2 — _(x—y)~x x
= [ DR e PRy W ) R

-[./ W) -V, (Dl () - VK (2 — ) )dy S()
R? JDN{|z—y|=e}

Collecting the above computations yields that

a=[f W (@) Vo (Dl 0) - VK (2 — 0)) dy ()
R2 JDN{|z—y|>e}

/ / W)V, (Dl (@) - VK (2 — ) )dy (a)de + R
DAfja—y|>e}

1, 7l' i =
/ / D (2,) @ (W(a) — W(y)) - VK (2 — y)dy U(a)de
R2 JDN{|z—y|>e}
* / / ZD%" Bl () VK (2 — y)dy X(x)da + Re.
R2 Dn{|z—y|>e} s—1

[FRENE = Gl Y .
Observe that all the terms have the form DI;/ Nx,y) - VIK(x —y), with j = j or j + 1 so that
}6 {1,---,k+1},and [ +--- + l; = k + 1. Therefore, we obtain

(div(W 9%,u),X) = lim g g cf A
e—0 Loty
J=11>>1>1
l1+~~~+lj=k
k+1

~[(X X e [ ol e KGR,

j=1 Lh>>1>1
li4+1lj=k+1
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if we define the coefficients ckJrl _ (j =1,---,k+ 1) properly by

J
s &
Cly e 1 Z 1,0l + l{l]':l} CH
iS5
Recalling the notation (104), we conclude with (103) for k + 1, as desired. 0

Given the expression of aﬁvu in (103), the leading term requiring the highest regularity of W
corresponds to the case j = 1 and l; = k, which takes the form

Gr(z) £ p.v. /D (067 'W () — O "W (y)) - VK (z — y)dy.

We obtain the following controls on Gj as well as the remaining lower order terms.

Lemma 5.3. Let k € N*N[2,n]|. Under the assumptions of Proposition 5.2, we have that

1G]l cp re) < C(1 +log A0 Wl ¢ g2y (106)
and
k J
10w — Gallewn < €Y S0 (TLIO Wllen ) (107)
J=2101>>1>1  s=1
Lt-+lj=k

fOT any € (07 1)’ v e (07 1); and Yk € (1 - I_T‘ua 1)

Proof. The proof of (106) is analogous to that of Lemma 4.4, replacing W on the right-hand side
of (67) by o 'W.

To prove (107), we also follow a similar procedure as in Lemma 4.4. Recall that

0Wu( Z Z C;Ch“',lj iy (z),

Jj=21>->1;>1
l1+"'+lj:k

where we denote by
I, ;
Wi @) 2 . [ D) VIR @ = )y
— SE[PW] @ @8t [0l W) - VK (2 — y)d
p.V.D y[W ]® ®y[W ] (z —y)dy.

By virtue of (105), (34), and (20), we have the L® bound:

- Gulim <€ Y ([Tl i) ) [ o=l =)+ 1)y

j=2101>-->1;>1 s=1

l14-- +l =k
k j l L
5_1 s . _
SCZ Z (HH@W W”cm)/ P (m(r) 4 1) dy
J=211>>1;>1  s=1 0
L+ +=k

IN

ey Y (f[ 105 Wl ).

Jj=2101>-->1;>1 s=1
li4-+lj=k
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Choosing x, h € R? such that |h| < %0 (recalling that ¢y > 0 is the constant appearing in Lemma
2.3), we write

Uy gy (1) =y, g (z+ h) = 31+ J2 + I3+ Ja,

where

~ l ""’l' 1
el p.v./ Dy (z,y) - VK (z — y)dy,
Dn{jz—y|<2|h[}

D{lz—y|<2|hl}

(1>

I, 0 [ .
/ (DV}, (z,y) —Dvl[, ](w—i—h,y)) -V K (z — y)dy,
Dn{|z—y|>2|h|}

J4 2 / Di}v""’lj(x +h,y) - (VjK(a: —y) -V K(z+h— y))dy-
Dn{|z—y[>2|k[}

For Ji, from (105), (34) and (68), we get

J -1

. . m(lz —y| ™)
l<c (TT0% Wl b = o) dy

lz—y|<2|h| 821_[1 W o |z — ylit+?

J 2h J o
< C(TTI0% " Wl ) /0 P Im(p~ ) dp < C(TTIO% W g ) IR+ (||~
s=1 s=1

J
< (1195 Wil ) 101,

s=1

where for the last inequality, we have used the fact that jyz — j + 1 > u, which follows from

assumptions v, > 1 — 177“ and j < k. A similar argument yields

J | J
Bl < C(TT106 W) /0 o Im(p~)dp < O TTI0G Wllen ) 101"
s=1 s=1

For the term J3, since |z — y| > 2h, we have |z +h —y| < |z —y| + |1 < 3|z — y|. We apply (105)
and obtain

Lyl Iy L
|DV%/ (@, y) _DV%/ Wz + h,y)|
J
> (il Wl e - @ (ol W - Rl W) @ - @ op ol W)
J l |
= C( HHaV?/_lWHCWk) |h|% |1: — y|(]_1)')’k‘

1
s=1

s

Then, it follows from (34) and analogous estimates for J; that

’3 ‘ < C’(ﬁ”als—lwu )|h”¥kpv / ’1‘ y,(j,l),ykm(|x—y|—1)_|—1
3l < : V. _ ,
e R DA{jz—y|>2|h]} jz —yp*!

< O( L1 Wi JIaPe [ o775 (™) + 1) dp
=1

vl
<

J
< O TTI9% Wil ) I (m(bl =) +1) < (TG Wl )1
1

s= s=1
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Using the mean value theorem and (34), the term J4 can be bounded as

e (TT0ot Wi (31— 2= 2L

2
D{Je—y|>20h]} (L] —y))’*

<C(H|rals Wl ) I Hpm I (m(p™) + 1) dp

J
<o H|raé;*1wum) (B (|~ +1) < O TTI0H Wl ) 01
s=1 s=1

Gathering the above estimates yields

j
st ey < €1 (165 Wl )
and the desired estimate (107) follows. O

5.2. Proof of Theorem 5.1. We prove (101)-(102) by induction. The case n = 1 has been proved
in Theorem 4.7, where the bound is given by (99) with x/' = p —e.

Assume that (101)-(102) holds for any n € {1,2,--- , k}. We will show that it holds for n = k+1,
that is, if Ha‘]%/OWOHCM(R2) < +00, then
08 W () ) < Rt (£) < +00, (108)

where Ry 11,/ (t) satisfies (102).
Recalling that ®; ¢(x) is the flow map given by (5), and from the equation (55), we have

t
O W (2, £) = By, Wo(®@0,4()) + / O (s, By 4 (2))ds.
0

Let e = p—p/, vy =/ Fix T > 0, and define V,(t), 5,7 and p(t) as in (77). Consequently,
|05 W (. 1) — Oy W (y. )] < 1103, Woll ¢l Po.e () — Roe(y)]*

t
+ / ‘8ﬁlu(@s7t(m), 5) — ORI u(®44(y), s)‘ds.
0

It follows from Proposition 5.2 and Lemma 5.3 that for every v, € (1 — };T‘f, 1),
o u(z, s) — O u(y, 8)‘ < C(1 4 log Ay (9))1|85 W ()l o |2 = y [ (m(|e =y ") +1)

k+1

DY (Hua“lw Mo )1 = . (109)

j=2 l>-->l;>1 1=1
l1+'"+lj=k+1

Note that the first term can be handled analogously to the argument in Theorem 4.7 (in the case
n = 1), while the second term is controlled by the induction hypothesis (108):

k1 j
D (H 1641 (8) Hmk) Z > (HR%WH% (t)) 2 Rpy1u(t) < +00.
J=2 L>e>l>1 =1 =2 h>e>l>1 =1 2

I+ =k+1 R
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Indeed, Rl e+l

’Yk(t) < +oo due to the fact [; < k (since l; > 1, {1 +---+1; =k+1, and j > 2), and
AL

consequently CF+1# C’l“%TH. Applying (79) and (81), we obtain the following bound analogously
to (82):
|04 W (2, t) — O3y W (y, t)]

_ _l—1
PTG < CHaIIfVOWOchW — y|pr®) gr Moty o=yl ™)

t
+C1 [ 1+ log Ay ()0 W ) cucol = o0 (mll — | 1) + 1)erMaealle s
0
t
+ Ol — y|ph® / Reg10(s)e Mo (21~ g
0
r —1
< C(H@{?VOWOH@ + / Rk+1,u(t) dt) |z — y‘ﬂ*#(t)eufmo,t,'y(\xfm )
0

t
+C1 [ (U log A DO W ol g0 (m(f = y| ) + 1)t Meo (o0 s,
0
Then, through the same argument as in the proof of Theorem 4.7, we obtain a bound analogously
to (99):
185 W (T) | e = 1103 W ()| o<

T
< C’(H@I’}/OWOHC;L n / Ri1(t) dt) exp (0 log?t2¢(e + TYH ™ (C(1 + T) log? 2 (e + T)))
0

= Rip1 g u(T) < +o0.
This finishes the proof of (108). By induction, (101) holds.
We are left to verify that Ry.q v ,(t) satisfies (102). By the induction hypothesis, we have

Ret1,4(t) < Cllgolloresn exp (Clog™ (e + U (C(1 + 1) log™ ¥ (e + 1) ).
Denote
g(t) 2 Clog? (e + tyH 1 (C(1+ 1) log™ (e + 1)).

It is easy to check that ¢ is a strictly increasing function in [0, +o00) with min;>o¢'(t) = ¢ > 0.
Then,

g r ) Cllgollgrrin [T 11 o) (T)
/ Riet1,(8) dt < / Clleoll grtrned™ dt < / g (1) dt < Clleol|crrue?.
0 0 0

c
Therefore, we find that

Riirw0(T) < C(llollersin + Cligollgrrune?™)) 9™
< Clleollcr+1. exp <C’ log*3+2€(e + t)?-[_l (C(l +1) 10g6+26(e + t))),

finishing the proof.

6. GLOBAL REGULARITY OF MULTIPLE VORTEX PATCHES

In this section, we consider the patch solutions that are composed of multiple patches.
Suppose that wy(z) takes the form of (4), where N > 1 and D;(0) C R? for i € {1,---, N} are
simply connected disjoint bounded domains with

do = ngéln dist(D;(0), D;(0)) > 0.
7]
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Then, according to Theorem 1.1, the 2D Loglog-Euler type equation (1) admits a unique global
vortex patch solution

N
w(z,t) =Y a;lp,p(z), a; €R, with D;(t) £ &,(D;(0)), (110)
j=1

where ®¢(-) = ®; o(+) is the flow map defined by (5).
Suppose that 9D;(0) € C™*, i € {1,--- ,N}. Let ¢; 9 € C™" be a level-set characterization of
D;(0) with a compact support ; = {z € R2 : ¢, o(x) # 0} slightly larger than D;(0), such that

D;(0) C €, dist (09;,0D;(0)) > @, and d;(0) 2 max dist (4, D;(0)) > L.

Denote by
(101'(37715) = SOi,o((I)O,t(l‘)), and Wi($at) = Vl‘pi(xat)'
From the framework discussed in Section 4.1, we know that ¢;(-,t) is a level-set characterization
of the domain D;(t), and that the boundary regularity 0D;(t) € C™*" follows from the control of
H@%lwi(t)HCM(Rz). Furthermore, we have
supp @i (-, 1) = Qi(t) = @4().
and
108, w(t) | cu—e (r2) = 1108, w(t) | i< (: (1)) 104, Wi (t)]| e (r2y = 104 Wi(t) | crs (2 t))-
Define the distance

di(t) 2 min dist (2:(¢), D; (£))-

Applying the estimate (6) on the flow map, we obtain
1 1
= 5
H(d;(0)~1) + Ct) ~ HY(H(F) + Ct)

Hence, different patches remain separated for all time.

di(t) > =T >0, Vt>0. (111)

Let us also comment on the velocity field u, which takes the form
N N
u(a,t) = uj(a,t) £ VH=A) " m(A) (a;1p, ) (x). (112)
j=1 j=1

Since the patches are separated, the main contribution to u(zx,t) for x € Q;(t) comes from the i-th
patch u;(x,t). Indeed, for j # 4, we apply (34) and control u;(x,t) by

SV Oy < Xl | [ V(e =)y
i J#i Db;(®)
m(d;(t -1 +1 _l—
<o MED <o ), (113

forl € {0,1,--- ,n+1} where we do not intend to find the optimized exponent in the last inequality.
Therefore, the global regularity results for a single vortex patch extend to the case of multiple vortex
patches.

Lo (92:(t))

Theorem 6.1. Let € (0,1) and n € N*. Assume that m(&) = m(|¢|) is a radial function on R?,
where m(r) satisfies (H1)-(H2a)-(Osg). For each patch solution w given by (110), if 0D;(0) € C™*,
then the patch boundaries 0D;(t) € C™"~¢ for any e € (0,p) and j € {1,--- ,N}.
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Moreover, for any given € > 0 and € > 0, there are some constant C' > 0 depending on initial
data, € and € such that for all i = {1,2,--- , N}, the following estimates hold:

Vit > [Violins exp (= CHTHC(1+ 1) log? T (e +1) + CH(g(1)),  (114)
and
105, Wit low-s < ClIViiollen exp (Clog™ (e + /M (C(1 + 1) log™ (e +1) + CH(&(1))) ),
(115)

where p;(+) is a level-set characterization of D;(t), Wi(-) & V1i(+), the mapping H(-) is given by
(96), g(t) is defined by

g(t) 2 (HTH(H(2) +C1)°. (116)

Remark 6. The main difference of the bounds (114)-(115) compared to the single-patch case (98)-
(99) is the appearance of the term H(g(t)), which grows exponentially (or faster) in time. This
growth arises because patches may approach one another as time evolves. As a consequence, the
regularity bounds grow triple-exponentially for the 2D Euler equation (i.e. § = ¢ = € = 0), and
potentially faster in the general case.

Proof of Theorem 6.1. We start by proving this result for the case n = 1. Define

IVei (Ol em )
AL () £ S+ 1, v € (0,1).
B IVoi()lint oD (1))
To estimate u, we use the decomposition (112). The control of w;(t) on £;(t) is the same as the
single patch case, see (58), (67) and (69); while the control of u;(t) on Q;(t) follows from (113). We

deduce

u(t)l e ) < C(1+1og Ay, (1) + di(t) ™),
10w, ullce ) < C(1+log Ay (t) + di(&) ) IWi(t)llco (i), @ € (0,1),

|V g oty < C(m(Aiy () +1) (1+log Ay (t) + di(t)?).

. Wi
(Wil W]

The rest of the proof follows from the same procedure in Section 4.5, replacing 1 4 log A, (-) with
1+log, A~ (+) +d;(-)73. In particular, we deduce the bound on A, (t) analogous to (90):

t
Ai,ufe(t) < Cexp <C(m(e%’“_g(t)) + 1)‘/;'#,6(15) + C/ (m(Ai,,ufs(S)) + 1)‘/;;/,;1—5(5) dS)»
0
where
t
Vi (t) = / (1 +log A; ,(s) + d(s)_3) ds, ~v€(0,1).
0
Define
fit) £V (8) = T+ 1og Ay e(t) + di(t) 2,
and M as in (91). It follows from (111) and the inequality above that for every ¢ € [0,7] and € > 0,
t
70 < (&) + og™ (e +1) [ MUfi(5)ds).
0

where g(-) is given by (116). The function

Ri(t) 2 g(T)H) +/0 M(fi(s))ds

log’*< (e
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satisfies

dR;(t) _  (B+€)s(T) ,
dt  (e+1)log?t(e + 1) MU

< M(Clog™ (e + t)Ri(t)) < Clog™ (e + t) M(R;(t)),

which implies

T /
H(R;i(T)) — H(R;(0)) = /O /\4222?)) < C(A+T)log?t*(e+ 1),

where H is defined in (96). Therefore, we conclude that
£i(T) < Clog”™(e + T)Ri(T) < log” (e + T)H ' (C(1+ T)log" (e + T) + H(g(T)))-

This leads to (114) and (115), and hence we complete the proof of Theorem 6.1 for the case n = 1.

Next, we address the case of higher regularity (n > 2) and aim to prove that dD;(t) € C™*~¢ for
each i € {1,---,N}. The proof follows closely the single-patch case (Theorem 5.1), with additional
arguments to account for interactions among patches.

To estimate 8’;‘2 u, we use the decomposition (112)

a{;,f_lu(a:, t) = a{thlui(az, t) + Z 3%1@(:6, t).
£
The first term can be treated like the single-patch case. For the second term, since Dy(t)NQ;(t) = 0,
we are still able to apply the expression formula (103) and obtain

3"3[;21ug(3:) =p.v. /D . (8"3[,11/]/2(3;) — aIIfVZW(y)) . VK($ _ y)dy
e(

I .
Tk X A o e ey

J=2 hLz-2>l>1
li++lj=k+1

2 G (z) + (a’;vﬂw(x,t) _ ék+1(x)>,

K3

with

Grii(2) = pov. /D . (Ol Wile) — Ol W (y) - VE (@ — y)dy.

For ék—i—b we proceed similarly as in Lemma 5.3, and apply (103) to obtain
1GE1 () llew ey < 105 Wl e (di(8) ™2 + 1)
For 8’If‘,tluz(x, t) — Gy (), the same proof of (107) yields

k+1 J
105 el ) = G (@l owen <€ 3 (TL106 Willew. ).

J=2 L>->l>1  s=1
L+t j=k+1

Gathering the above estimates, we deduce the bound (109), where 1 + log A, (-) is replaced by
14 1log Ay () +di(-) 7.

The rest of the proof is identical to the single-patch case, with the additional treatment of the
d;(-)~3 term same as the n = 1 case in Theorem 6.1. We conclude with the bound (115). O
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APPENDIX A. PROOF OF LEMMA 2.3

Properties (31) and (32) with [ = 1,2 have been proved in [78, Lemma 2]. For (32) with general
[ and (33) can be proved analogously. Here we sketch the proof.

Starting from the explicit expression (27) on G, we claim that for every [ € {1,2,--- ,;n+ 1}, the
I-th order derivative G(®) can be expressed by

D) =g r)dr, (117)

where Gj(p) and M;(r) are iteratively defined as

%MZ%1W%J;%¢“WM—@4@% Golp) = Gi(p) =

My(r) = My (r) +rM_y(r),  Mo(r) = m'(r);

or equivalently,
, G90)
Vie{2,3,---,n+1}, Gip) = Z aji———, {aji}i1<j<i—1 are iteratively defined,

[—
=P
141
vie{lL,2, - n+1}, Mfr Zbﬂ” 'mW(r), b= by =1,

and bj; = bj;—1+ (j — 1)bj -1 + bj_1,-1 for every j € {2,---,l}. Indeed, we calculate G by
differentiating G~ and using the following integration by parts

o0 Jo(pr)rM_i(r) |t 1 [
/ Jo(pr)yrMy_1(r)dr = olpr)rMi_a(r) - / Jo(pr) (M1 (r) +rMj_y(r))dr
1 [e.e]
= —/ Jo(pr)M;(r)dr,
P Jo
where we have used the fact that for every [ € {1,--- ,;n+ 1},
. ) 1 m(r)
i [oler)rMia (0] £ €l 72 o) = Oy S =0
and
lim r'm®(r) =0, lim rM;_1(r) =0,
r—0+t r—0+t

applying the Mikhlin-Hérmander condition in (H1), (H2a), (20) and (18).

Next, we prove (32) and (33) by induction. Note that (32)-(33) with [ = 1 have already been
proven in [78, Lemma 2] (although it was only stated that \G’ (p)] < C in [¢g, +00), it can easily
be extended to (33) with [ = 1; see also below). Let k € {1,--- ,n}. Suppose that (32) and (33)
with each [ € {1,---,k} hold, we intend to show that they also hold for the [ = k + 1 case. Let
x(&) = x(]¢]) € C°(R?) be a smooth radial function such that

x =1, in {|¢] <1}, x =0, in {¢] > 2}, 0<x<L

Thanks to identity (27) with || = p and formulas (117), we have

k4L
GE0) = Gunnp) + i [ AN M ()

ﬂ € (1 k+1(|f‘)
* (277)2pk+1/R (1= x(plED)— 75— €| d¢
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£ I, +I, + Ig.
. (€] . . . .
For the first term, noting that I = Z§:1 aj’k+1§€j_71(_pj)-, we immediately use (H1) and the induction
assumptions to deduce that

L+m(p™!)

L <C Pkt

For the term I, due to that the Bessel function Jy(-) satisfies that 0 < Jo(r) < 1 for r € [0, 2], and
using (H1), we find that

1 oo
To] < 5y / Jolor)x(pr) (i (r) + e[ 7" (1) 4 -+ + gz | 7 [+ ()] ar
-1

2
< kaH/O P Jo(pr)m ( )dr < plil( (2p—1) —m(0+)).

For the last term I3, through the integration by parts and (H1), observe that
k+2

, 1)
“ﬂ:(%r;HJEZ%H34 w@%(u_xwm»Kijmwym

k+2

2 1 |§|j_1m(j)(|€|)d A €17t m D ([¢]) d)
'”SZ(/p—lsmszp-l ("4 oe1™) €l §+/£|2p_1 5( €] ) ‘

o 2 -1 Md |£| >
< pk+3</pl§|£|§2p1 (p + pl¢] ) H §+/|£|>p1 |€|3

By virtue of the fact that » — m/(r) is non-increasing and rm/(r) < m(r) for r > 0 large (from
(H2a)-(0Osg)), we infer that for p > 0 small enough, i.e., p € (0, ¢,

C _ C _
13 < Pk "(p7h) < WW(P b;

while for every p € [¢g, 00),

C (2" ' ml(r) *m(r)
|I3|§pk+3<p /pl m(r)d7“+/p1 2 dT+/cgl 2 dr

——1
C % % 1 c
< pk+3 (p2m(2p_1) + E%m(aal) + m(Col)/ —dr +m (’ 1)/ dr) < W
o

3 2
-1 T =L
o

Gathering the above estimates leads to the inequalities (32) and (33) with [ = k + 1, as desired.
Hence, we complete the proof of (32) and (33).
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