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ON THE REGULARITY ISSUES OF A CLASS OF
DRIFT-DIFFUSION EQUATIONS WITH NONLOCAL DIFFUSION\ast 
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Abstract. In this paper we address the regularity issues of drift-diffusion equation with nonlocal
diffusion, where the diffusion operator is in the realm of stable-type L\'evy operator and the velocity
field is defined from the considered quantity by a zero-order pseudodifferential operator. Through
using the method of nonlocal maximum principle in a unified way, we prove the eventual regularity
result in the supercritical type cases and the global regularity at some logarithmically supercritical
cases. The feature of these results is that the time after which the solution is smoothly regular in
the supercritical type cases can be evaluated explicitly.
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1. Introduction. We consider the Cauchy problem of the drift-diffusion equa-
tion with nonlocal diffusion

\partial t\theta + u \cdot \nabla \theta + \scrL \theta = 0, \theta | t=0(x) = \theta 0(x),(1.1)

where x \in \BbbR d (or \BbbT d), d \in \BbbN +, t \in \BbbR +, \theta : \BbbR + \times \BbbR d \rightarrow \BbbR is a scalar-valued quantity,
and the velocity field u = \scrP (\theta ) : \BbbR + \times \BbbR d \rightarrow \BbbR d is defined from \theta by the zero-order
pseudodifferential operator,

u(x) = \scrP (\theta )(x) = a \theta (x) + p.v.

\int 
\BbbR d

S(y) \theta (x+ y) dy,(1.2)

with a = (a1, . . . , ad) \in \BbbR d, and S(x) = \Psi (x/| x| )
| x| d = (\Psi 1(x/| x| )

| x| d , . . . , \Psi d(x/| x| )
| x| d ) \in 

C
\bigl( 
\BbbR d \setminus \{ 0\} ;\BbbR d

\bigr) 
composed of Calder\'on--Zygmund kernels ([36]). The nonlocal dif-

fusion operator \scrL is given by

\scrL f(x) = p.v.

\int 
\BbbR d

\bigl( 
f(x) - f(x+ y)

\bigr) 
K(y) dy,(1.3)

where the radially symmetric kernel function K(y) = K(| y| ) defined on \BbbR d \setminus \{ 0\} 
satisfies that there exist some \alpha \in ]0, 1], \~\alpha > 0, and c0 > 0 (c0 may be dependent on
\alpha and \sigma ), c1 \geq 1 such that

\ast Received by the editors November 27, 2017; accepted for publication (in revised form) April 26,
2019; published electronically July 16, 2019.

https://doi.org/10.1137/17M1158537
Funding: The work of the first author was supported by National Natural Science Foundation

of China grants 11671047, 11831004, and 11826005. The work of the second author was supported
by National Natural Science Foundation of China grants 11401027, 11671039, and 11771043 and the
Youth Scholars Program of Beijing Normal University.

\dagger Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088,
People's Republic of China (miao changxing@iapcm.ac.cn).

\ddagger Corresponding author. Laboratory of Mathematics and Complex Systems (MOE), School of
Mathematical Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
(xuelt@bnu.edu.cn).

2927

D
ow

nl
oa

de
d 

09
/2

9/
20

 to
 2

10
.3

1.
78

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/17M1158537
mailto:miao_changxing@iapcm.ac.cn
mailto:xuelt@bnu.edu.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2928 CHANGXING MIAO AND LIUTANG XUE

c - 1
1

m
\bigl( 
| y|  - 1

\bigr) 
| y| d

\leq K(y) \leq c1
m
\bigl( 
| y|  - 1

\bigr) 
| y| d

\forall 0 < | y| \leq c0, and(1.4)

0 \leq K(y) \leq c1
| y| d+\~\alpha 

\forall | y| \geq c0,(1.5)

with m(y) = m(| y| ) a radially symmetric function satisfying the following assump-
tions:

(A1) m(| y| ) is smooth away from zero, nondecreasing, with m(0) = 0, lim| y| \rightarrow \infty 
m(| y| ) = \infty ;

(A2) there exists \sigma \in [0, \alpha [ such that

(\alpha  - \sigma )
m(| y| )
| y| 

\leq m\prime (| y| ) \leq \alpha 
m(| y| )
| y| 

\forall | y| \geq c - 1
0 .(1.6)

In some cases concerned, the condition (1.5) can be replaced by a more general con-
dition

 - c1
| y| d+\~\alpha 

\leq K(y) \leq c1
| y| d+\~\alpha 

\forall | y| \geq c0.(1.7)

Besides, we also consider the nonlocal operator \scrL defined by (1.3)--(1.6) with ``c0 =
\infty ,"" i.e., the kernel K(y) = K(| y| ) is given by

c - 1
1

m
\bigl( 
| y|  - 1

\bigr) 
| y| d

\leq K(y) \leq c1
m
\bigl( 
| y|  - 1

\bigr) 
| y| d

\forall | y| > 0,(1.8)

with c1 \geq 1 and m(y) = m(| y| ) satisfying (A1) and
(A3) there exists a constant \sigma \in [0, \alpha [ such that

(\alpha  - \sigma )
m(| y| )
| y| 

\leq m\prime (| y| ) \leq \alpha 
m(| y| )
| y| 

\forall | y| > 0.(1.9)

The diffusion operator (1.3) defined above is in the realm of L\'evy operator; indeed,
according to (1.6) and Lemma 2.2 below, we deduce that for \alpha \in ]0, 1] and \sigma \in [0, \alpha [,

c\alpha  - \sigma 
0 m

\bigl( 
c - 1
0

\bigr) 1

| y| \alpha  - \sigma 
\leq m

\bigl( 
| y|  - 1

\bigr) 
\leq c\alpha 0m(c - 1

0 )
1

| y| \alpha 
\forall 0 < | y| \leq c0,(1.10)

which leads to

c - 1
1 c\alpha  - \sigma 

0 m
\bigl( 
c - 1
0

\bigr) 1

| y| d+\alpha  - \sigma 
\leq K(y) \leq c1c

\alpha 
0m

\bigl( 
c - 1
0

\bigr) 1

| y| d+\alpha 
\forall 0 < | y| \leq c0,(1.11)

and we know the operator given by (1.3) satisfying (1.11) and
\int 
\BbbR d

\bigl( 
min\{ 1, | y| 2\} 

\bigr) 
K(y)

dy \leq C corresponds to the infinitesimal generator of the stable-type L\'evy process [8].
By taking the Fourier transform on \scrL , we get

\widehat \scrL f(\zeta ) = A(\zeta ) \widehat f(\zeta ) \forall \zeta \in \BbbR d,(1.12)

where the symbol A(\zeta ) is given by the following L\'evy--Khintchine formula [25, equa-
tion 3.217]:

A(\zeta ) :=

\int 
\BbbR d\setminus \{ 0\} 

(1 - cos(\zeta \cdot y))K(y)dy.(1.13)
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REGULARITY ISSUES OF THE DRIFT-DIFFUSION EQUATION 2929

The diffusion operator \scrL defined by (1.3) under (1.4)--(1.5) or (1.4), (1.7) contains
a large class of multiplier operators \scrL = m(D) such as

\scrL = | D| \beta , (\beta \in [\alpha  - \sigma , \alpha ]), and \scrL =
| D| \alpha 

(log(\lambda + | D| ))\mu 
, (\alpha \in ]0, 1], \mu > 0, \lambda \geq 1) ,

which we shall explain in subsection 2.1 below. Among them, an important case, which
is also a particular case of \scrL under (1.8)--(1.9), is the fractional Laplacian operator
| D| \alpha := ( - \Delta )

\alpha 
2 with \alpha \in ]0, 1], which has the following representation formula:

| D| \alpha f(x) = cd,\alpha p.v.

\int 
\BbbR d

f(x) - f(x+ y)

| y| d+\alpha 
dy(1.14)

with cd,\alpha > 0. The operator \scrL = | D| \alpha corresponds to the infinitesimal generator of
the symmetric stable L\'evy process and recently has been intensely studied in many
theoretical problems. For the drift-diffusion equation (1.1)--(1.2) with \scrL = | D| \alpha , we
conventionally call the cases \alpha < 1, \alpha = 1, and \alpha > 1 the supercritical, critical, and
subcritical cases, respectively.

The drift-diffusion equation (1.1)--(1.2) has various physical backgrounds from
geophysics, fluid dynamics, dislocation theory, and other fields. Typical examples are
the surface quasi-geostrophic (SQG) equation, the Burgers equation, the C\'ordoba--
C\'ordoba--Fontelos (CCF) equation and the incompressible porous media equation,
and below we will specifically review some noticeable results related to these models.
For other interesting models expressed as (1.1)--(1.2), one can also refer to [3, 23, 30],
etc.

The SQG equation is written as (1.1) with

d = 2 and u = \scrR \bot \theta = ( - \scrR 2,\scrR 1)\theta ,(1.15)

where \scrR i = \partial i| D|  - 1 (i = 1, 2) is the usual Riesz transform [36]. The inviscid model
(i.e., \scrL = 0) arises from the geostrophic study of the highly rotating fluid [34], and
partially due to the formal analogue with three-dimensional (3D) Euler/Navier--Stokes
equations [9] and its simple form, the SQG equation has received much attention.
For the SQG equation with fractional operator \scrL = | D| \alpha , the subcritical case (i.e.,
\alpha \in ]1, 2]) has been known for decades to be globally well-posed for suitably regular
data (e.g., [35]), while for the subtle critical case (i.e., \alpha = 1), the issue of global
regularity was independently settled by [29] and [4]. Kiselev, Nazarov, and Volberg
[29] developed an original method called the ``nonlocal maximum principle,"" and
Caffarelli and Vasseur [4] exploited the De Giorgi's iteration method and a novel
extension. For other proofs resolving the critical problem, one can refer to [27], which
uses the duality method, and [11, 10], which apply the ``nonlinear maximum principle""
method. However, the global regularity issue in the supercritical case remains an
outstanding open problem. So far, for the SQG equation with supercritical diffusion
(i.e., \alpha \in ]0, 1[), we only know some partial results: the local well-posedness result
for large data and global well-posedness result under some smallness condition (e.g.,
[7]), the conditional regularity criterion (e.g., [12]), and the eventual regularity of the
global weak solution [18, 26, 17]. More precisely, for the eventual regularity issue,
which means the global weak solution is smoothly regular after some finite time, the
progress was first made by Dabkowski [18] by adapting the duality method of [27]
and later achieved by Kiselev [26] by using the nonlocal maximum principle method,
and we refer to [17] for a third proof by applying the method of [10]. Notice that
Coti Zelati and Vicol [17] also proved a somewhat global result that for \theta 0 \in H2 with
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2930 CHANGXING MIAO AND LIUTANG XUE

\| \theta 0\| \alpha /2L2 \| \theta 0\| 1 - \alpha /2
\.H2

\leq R, the supercritical SQG equation has a unique global solution
as long as \alpha depending on R is sufficiently close to 1. For the SQG equation with
general diffusion operator \scrL , Dabkowski et al. [19] considered the slightly supercritical
case, where the operator \scrL defined by (1.3) and (1.8) satisfies (1.23) below, and they
obtained the global well-posedness of smooth solution by applying the method of
nonlocal maximum principle. They also showed the global result for the multiplier
operator \scrL = m(D) under some suitable assumptions on m(\zeta ) = m(| \zeta | ).

The Burgers equation is just (1.1) with

d = 1 and u = \theta ,(1.16)

which was studied by Burgers in the 1940s as a 1D equation modeling the nonlinearity
of 3D Euler/Navier--Stokes equations. It is known that the inviscid Burgers equation
with some smooth data forms the shock singularity at finite time. For the Burgers
equation with fractional diffusion, the subcritical and critical cases can be treated as
the corresponding cases of the SQG equation to obtain the global results, while for
the supercritical case, Kiselev, Nazarov, and Shterenberg [28] proved that the shock
singularity similar to the inviscid case occurs in the supercritical case (see also [22, 1]).
For the Burgers equation with a general \scrL defined by (1.3) and (1.8), the authors in
[19] proved that under (1.23) below and other mild conditions on m, the equation is

globally well-posed for smooth data, whereas under lim\nu \rightarrow 0+

\int 1

\nu 
m(r - 1)dr <\infty , finite

time blowup will also happen for some smooth data.
The CCF equation corresponds to (1.1) with

d = 1 and u = H\theta ,(1.17)

and H is the usual 1D Hilbert transform. C\'ordoba, C\'ordoba, and Fontelos [16]
introduced this model as a 1D simple equation of 3D Euler/Navier--Stokes equations
which has the nonlocal velocity, and they proved there exists smooth data so that the
inviscid CCF equation forms singularity at finite time. For the CCF equation with
fractional diffusion, Dong [21] considered the subcritical and critical cases and showed
the global results, while in the supercritical case with \alpha \in ]0, 1/2[, Li and Rodrigo [31]
showed there is an occurrence of finite-time blowup similar to the inviscid case. The
problem concerning the global regularity of solution for the supercritical CCF equation
with \alpha \in [1/2, 1[ is still open. We mention that Do [20] proved the eventual regularity
of the limit function of regularized solution \theta \epsilon at the supercritical case \alpha \in ]0, 1[ by
applying the method of [26] and also obtained the global well-posedness result of the
CCF equation at slightly supercritical cases equipped with smooth data.

The incompressible porous media equation is (1.1) with the following velocity
field:

u = \nabla p+ \theta ed, div u = 0,(1.18)

where p is a scalar quantity and ed is the last canonical vector of \BbbR d. By a direct
computation, we can show that the velocity u can be exactly expressed as (1.2), e.g.,
for d = 2 [15],

a =

\biggl( 
0, - 1

2

\biggr) 
, S(x) =

1

2\pi 

\biggl( 
2x1x2
| x| 4

,
x22  - x21
| x| 4

\biggr) 
,

and for d = 3 [5],
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REGULARITY ISSUES OF THE DRIFT-DIFFUSION EQUATION 2931

a =

\biggl( 
0, 0, - 2

3

\biggr) 
, S(x) =

1

4\pi 

\biggl( 
3x1x3
| x| 5

,
3x2x3
| x| 5

,
2x23  - x21  - x22

| x| 5

\biggr) 
.

In [5, 15], C\'ordoba et al., among other issues, proved the global well-posedness result
for the equation in the subcritical and critical cases. Similarly as the SQG equation,
the issue of global regularity in the supercritical case remains unsolved.

In this paper we focus on the drift-diffusion equation (1.1)--(1.2) with general \scrL 
defined by (1.3), and we mainly are concerned with the following cases:

Case (I):
\bigl( 
K(y),m(y)

\bigr) 
satisfies (1.8) and (A1), (A3);

Case (II):
\bigl( 
K(y),m(y)

\bigr) 
satisfies (1.4)--(1.5) and (A1)--(A2);

Case (III):
\bigl( 
K(y),m(y)

\bigr) 
satisfies (1.4), (1.7) and (A1)--(A2), symbol A(\zeta ) \geq 0,

div u = 0.

By applying the method of nonlocal maximum principle in a unified way, we show
the eventual regularity of global weak solution for the supercritical type equation
(1.1)--(1.2) at Case (I). Compared with the eventual result obtained in [26] for the
supercritical SQG equation, we have explicit control on the eventual regularity time
(i.e., the time after which the solution is regular) which is small enough as \sigma \rightarrow 0,
\alpha = 1. In accordance with this point, we further prove the global regularity result
for the logarithmically supercritical drift-diffusion equation (1.1)--(1.2) at either Case
(II) or Case (III).

More precisely, our first main result is the eventual regularity of the vanishing
viscosity weak solution for the drift-diffusion equation (1.1)--(1.2).

Theorem 1.1. Assume that Case (I) is considered with \alpha \in ]0, 1], \sigma \in [0, 1[, \theta 0 \in 
L2(\BbbR d), and div u = 0. Then for every T > 0 large, the drift-diffusion equation (1.1)--

(1.2) admits a weak solution \theta \in L\infty ([0, T ];L2(\BbbR d)) \cap L2([0, T ]; \.H
\alpha  - \sigma 

2 (\BbbR d)), which
satisfies \theta \in C\infty (]t0 + t1, T ] \times \BbbR d), where t0 > 0 can be chosen arbitrarily small and
t1 > 0 is a number depending only on \alpha , \sigma , d, t0, and \| \theta 0\| L2 .

Moreover, if \alpha \in ]0, 1[ and \sigma = 0 in condition (A3), i.e., m(y) \equiv C0| y| \alpha for all y \not =
0, we can set T = \infty , and we explicitly have

t1 \leq C

\alpha 

\Bigl( 
C2d/\alpha t - 1

0

\Bigr) d
2(1 - \alpha )

\Bigl( C(1 - \alpha )

\alpha 5

\Bigr) \alpha 
1 - \alpha \| \theta 0\| 

\alpha 
1 - \alpha 

L2(1.19)

with C > 0 some constant depending only on d.

Our second result is the global regularity of the solution for some logarithmically
supercritical drift-diffusion equations (1.1)--(1.2).

Theorem 1.2. Assume that either Case (II) or Case (III) is considered for \alpha = 1
and \sigma \in [0, 1[ with some constant c0 = c0(\sigma ) > 0. Additionally suppose that there
exist \mu \in [0, 1] and c2 \geq 1 such that

1

c2

| y| 
(log | y| )\mu 

\leq m(y) \leq c2| y| \forall | y| \geq c2.(1.20)
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2932 CHANGXING MIAO AND LIUTANG XUE

We have the following two statements:
(1) If Case (III) is considered and \theta 0 \in L2 \cap L\infty (\BbbR d), then for any t\ast > 0 small

and T > 0 large, the vanishing viscosity solution \theta \in L\infty ([0, T ];L2(\BbbR d)) \cap 
L2([0, T ]; \.H

1 - \sigma 
2 (\BbbR d)) of the drift-diffusion equation (1.1)--(1.2) satisfies \theta \in 

C\infty ([t\ast , T ]\times \BbbR d).
(2) If Case (II) is considered, \theta 0 \in C0(\BbbR d) (i.e., the space composed of continuous

functions which decay to zero at infinity), and letting \theta be the limit function
of \theta \epsilon which solves the regularized drift-diffusion equation

\partial t\theta 
\epsilon + u\epsilon \cdot \nabla \theta \epsilon + \scrL \theta \epsilon  - \epsilon \Delta \theta \epsilon = 0, u\epsilon = \scrP (\theta \epsilon ), \theta \epsilon | t=0 = \phi \epsilon \ast 

\bigl( 
\theta 01B1/\epsilon 

\bigr) 
,

(1.21)

where \epsilon > 0, \phi \in C\infty 
c (\BbbR d) is the standard mollifier, \phi \epsilon (x) = \epsilon  - d\phi (x/\epsilon ), and

1B1/\epsilon 
is the indicator function on the ball B1/\epsilon , then for any t\ast > 0 small,

we have \theta \in C\infty ([t\ast ,\infty [\times \BbbR d) and \theta on the time period [t\ast ,\infty [ satisfies the
drift-diffusion equation (1.1)--(1.2).

The main method in proving the above results is the nonlocal maximum principle
originated from [29, 26], whose basic idea is to show the evolution strictly preserves
some appropriate modulus of continuity (MOC; see subsection 2.3 below).

In the proofs of Theorems 1.1 and 1.2, the following proposition concerned with
the uniform-in-\epsilon improvement of the eventual H\"older regularity from the L\infty -estimate
plays a core role.

Proposition 1.3. Assume that Case (I) is considered with \alpha \in ]0, 1], \sigma \in [0, 1[,
and \theta \epsilon \in C([0,\infty [;Hs(\BbbR d)), and s > 1 + d

2 is a smooth solution for the regularized
drift-diffusion equation (1.21) with \epsilon > 0, \theta 0 \in L\infty (\BbbR d). Then there exists a time
t1 > 0 independent of \epsilon such that for every \beta \in ]1 - \alpha + \sigma , 1[,

sup
t\in [t1,\infty [

\| \theta \epsilon (t)\| \.C\beta (\BbbR d) \leq C(\| \theta 0\| L\infty , d, \alpha , \beta , \sigma ),(1.22)

with C independent of \epsilon . Moreover, if \alpha \in ]0, 1[ and \sigma = 0 in the condition (A3), we
have the explicit estimates on t1 and supt\in [t1,\infty [ \| \theta \epsilon (t)\| \.C\beta as (3.19)--(3.20) below.

For the proof of Proposition 1.3, the new ingredient is the MOC \omega (\xi , \xi 0) given by
(3.8)--(3.9), which is derived from suitably modifying the MOC \omega (\xi ) defined by (3.2),
and by virtue of a careful analysis according to the values of \xi and \xi 0, we manage to
show that the solution \theta \epsilon (x, t) of the regularized equation (1.21) uniformly-in-\epsilon strictly
obeys the MOC \omega (\xi , \xi 0(t)), which combined with the regularity preservation criterion
in terms of MOC (3.2) (see Lemma 3.1) further guarantees the desired uniform-in-\epsilon 
H\"older regularity estimate after some time. We stress that there is no factor like
1 - \alpha +\sigma or 1 - \alpha in the conditions of \kappa , \gamma , \rho (see (3.76)) appearing in \omega (\xi , \xi 0), so that
we can estimate the eventual regularity time t1 as (1.19) in the case \alpha \in ]0, 1[, \sigma = 0,
which has the property that t1 \rightarrow 0 as \alpha \rightarrow 1 for the fixed data \theta 0.

For the proof of Theorem 1.1, we first prove the global existence of a vanish-
ing viscosity solution satisfying the L2-energy estimate; then by using De Giorgi's
method we show the crucial L\infty 

x -improvement for all t \geq t0 with any t0 > 0, and
then Proposition 1.3 ensures the eventual H\"older regularity of this weak solution for
every t \geq t0+ t1 with some t1 > 0, which in combination with the regularity criterion
Lemma 2.5 further leads to the desired eventual regularity result.
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REGULARITY ISSUES OF THE DRIFT-DIFFUSION EQUATION 2933

For Theorem 1.2, we observe that under the condition (1.20), the eventual reg-
ularity time t1 can be arbitrarily small, and thus by applying Proposition 1.3 and
by appropriately choosing the coefficients in the MOC \omega (\xi , \xi 0) and \xi 0 = \xi 0(t), we
can show the desired global regularity result. Notice that in the considered cases it
suffices to justify the criterion (4.25) for small \xi and \xi 0(t), so that we can treat the
more general diffusion operator \scrL than that in Proposition 1.3.

Next we make some remarks.

Remark 1.4. Since m(y) = | y| 
(log(\lambda +| y| ))\mu with \mu \in [0, 1], \lambda \geq 0 satisfies (1.6) with

\alpha = 1, \sigma \in ]0, 1[, c0 = e - 
\mu 
\sigma , and also satisfies (1.20) with c2 = 2, Theorem 1.2 can be

applied to the drift-diffusion equation (1.1)--(1.2) under either Case (II) or Case (III)
with these m and c0. Recalling that the improvement from L\infty to H\"older regularity
is a crucial step in proving the global regularity of weak solution for the critical SQG
equation (i.e., \scrL = | D| ) by Caffarelli and Vasseur [4] and also Kiselev and Nazarov
[27], we here as a nontrivial generalization achieve such an improvement for vanishing
viscosity solution of the drift-diffusion equation (1.1)--(1.2) at some logarithmically
supercritical cases, and we even remove the divergence-free assumption of the velocity
field at Case (II).

Remark 1.5. As a counterpart of Theorem 1.2, we can also prove the following
global well-posedness result for (1.1)--(1.2) at the slightly supercritical case comple-
mented with regular data: assume that \theta 0 \in Hs(\BbbR d), s > d

2+1, and either Case (II) or
Case (III) is considered with \alpha \in ]0, 1], \sigma \in [0, 1[, c0 = c0(\alpha , \sigma ) > 0, and additionally

lim
\nu \rightarrow 0+

\int c0

\nu 

m(\xi  - 1)d\xi = \infty ;(1.23)

then the associated drift-diffusion equation (1.1)--(1.2) generates a uniquely global
smooth solution \theta \in C([0,\infty [;Hs(\BbbR d)) \cap C\infty (]0,\infty [\times \BbbR d). We shall justify this state-
ment in the appendix. This global well-posedness result is concerned with the slightly
supercritical drift-diffusion equation (1.1)--(1.2), and it generalizes the corresponding
result of [19] on the slightly supercritical SQG and Burgers equations. Note also that
the MOC given by (4.29) has a simper form than that in [19], and we use a different
way to estimate the contribution (2.30) so that we can avoid the difficulty encountered
in considering the general u defined by (1.2).

Remark 1.6. Motivated by Coti Zelati and Vicol [17] and in a different method,
we can also prove the following global result: assume that either Case (II) or Case
(III) is considered for \alpha = 1 and \sigma \in [0, 1[ with some c0 > 0 (independent of \sigma ),
and let \theta 0 \in Hs(\BbbR d), s > 1 + d

2 be satisfying \| \theta 0\| Hs(\BbbR d) \leq R with some R > 0;
then there exists a constant \sigma 1 = \sigma 1(R, d) > 0 such that for every \sigma \leq \sigma 1, the
associated drift-diffusion equation (1.1)--(1.2) has a unique global solution \theta (x, t) \in 
C([0,\infty [;Hs(\BbbR d)) \cap C\infty ([0,\infty [\times \BbbR d). Indeed, the classical local well-posedness result
first ensures that there is T1 = T1(d,R) > 0 such that (1.1)--(1.2) admits a smooth
solution \theta on [0, T1]; then similarly as obtaining (1.19) and (3.14) (we also adopt the
different points in proving (4.25) compared with proving (3.34)), one can show that
the eventual time t1 \rightarrow 0 as \sigma \rightarrow 0, which implies t1 < T1 for \sigma small enough, and
thus we conclude the statement.

The outline of the paper is as follows. In section 2, we introduce a class of
multiplier operators as examples of the diffusion operator \scrL , we present some useful
auxiliary lemmas, and we also collect the definition and useful lemmas related to
the MOC. In section 3, we give the detailed proof of Proposition 1.3. The proofs of
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2934 CHANGXING MIAO AND LIUTANG XUE

Theorems 1.1 and 1.2 are respectively in the subsections of section 4. Finally, the
appendix section justifies the statement in Remark 1.5.

Throughout this paper, C stands for a constant which may be different from line
to line. The notation X \lesssim Y means that X \leq CY . Denote by Br(x0) := \{ x \in \BbbR d :
| x - x0| < r\} the ball of \BbbR d and we abbreviate Br(0) as Br. Denote \scrS \prime (\BbbR d) the space

of tempered distributions. We use \widehat f and \v g to denote the Fourier transform and the
inverse Fourier transform of a tempered distribution, that is, \widehat f(\zeta ) = \int \BbbR d e

 - ix\cdot \zeta f(x)dx

and \v g(x) = 1
(2\pi )d

\int 
\BbbR d e

ix\cdot \zeta g(\zeta )d\zeta .

2. Preliminary and auxiliary lemmas. In this section, we introduce a class
of multiplier operators as examples of the operator \scrL and also compile some useful
auxiliary lemmas.

2.1. Multiplier operators as examples of \bfscrL . In addition to the conditions
(A1)--(A2) stated in the introduction, we assume that m(\zeta ) = m(| \zeta | ) also may satisfy
the following assumptions:

(A4) m is of the Mikhlin--H\"ormander type, i.e., there is some constant c3 \geq 1 so
that

| \partial k\zeta m(\zeta )| \leq c3| \zeta |  - km(\zeta ) \forall \zeta \not = 0(2.1)

for all k \in \BbbN and k \leq k0, with k0 a positive constant depending only on d.
(A5) m satisfies that

( - \Delta )dm(\zeta ) \geq c4| \zeta |  - 2dm(\zeta ) \forall | \zeta | large enough(2.2)

with some c4 > 0.
(A6) m satisfies that

( - 1)k - 1m(k)(| \zeta | ) \geq 0 \forall | \zeta | > 0, k \in \{ 1, 2, . . . , d\} .(2.3)

Note that there does exist a large class of nontrivial examples satisfying all the
necessary conditions; in fact, as shown by [24, Proposition 3.6], the functions m(\zeta ) =

| \zeta | \alpha 

(log(\lambda +| \zeta | ))\beta with \lambda \geq e
3+2\beta 

\alpha , \alpha \in ]0, 1], \beta \geq 0, and d = 1, 2, 3 satisfy (2.3), and they

also satisfy (A1)--(A2)--(A4)--(A5) by a direct computation.
The following lemma relates the multiplier operator with the conditions of K in

the introduction.

Lemma 2.1. Suppose that m(\zeta ) = m(| \zeta | ) is a radial function that satisfies the
conditions (A1)--(A2)--(A4)--(A5). Then the multiplier operator m(D) has the repre-
sentation formula

m(D)\theta (x) =
\Bigl( 
m(\zeta )\widehat \theta (\zeta )\Bigr) \vee (x) = p.v.

\int 
\BbbR d

K(y) (\theta (x) - \theta (x+ y)) dy,(2.4)

where the radial kernel K satisfies

| K(y)| \leq C| y|  - dm(| y|  - 1) \forall | y| > 0(2.5)

and

K(y) \geq c5| y|  - dm(| y|  - 1) \forall 0 < | y| \leq c0(2.6)

with two generic constants c0, c5 > 0. Besides, if m(\zeta ) = m(| \zeta | ) additionally satisfies
the condition (A6), then the kernel function K in (2.4) also satisfies

K(y) \geq 0 \forall | y| > 0.(2.7)
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Notice that (2.5)--(2.6) just correspond to (1.4), (1.7), and (2.5)--(2.7) correspond
to (1.4)--(1.5).

Proof of Lemma 2.1. The properties (2.5)--(2.6) were proved in [19, Lemmas 5.1
and 5.2]. We only prove (2.7). By arguing as [24, Proposition 3.6 and Lemma 3.8], we
can show that, thanks to (A6), the kernel function Gt(x) associated with the operator
e - t\scrL satisfies

Gt(x) \geq 0 and

\int 
\BbbR d

Gt(x) dx = \widehat Gt(\cdot )| \zeta =0 = 1.

In light of the semigroup representation formula of the operator \scrL ,

\scrL f(x) = lim
t\rightarrow 0+

f(x) - e - t\scrL f(x)

t
= lim

t\rightarrow 0+

\int 
\BbbR d

Gt(y)

t
(f(x) - f(x+ y)) dy,

we see that K(y) = limt\rightarrow 0
Gt(y)

t \geq 0 for all | y| > 0.

2.2. Auxiliary lemmas. First we give a useful lemma on the function m satis-
fying (1.6).

Lemma 2.2. Let m(y) = m(| y| ) be the radial function satisfying the condition
(1.6) for some \alpha \in ]0, 1[ and \sigma \in [0, \alpha [; then

the mapping | y| \mapsto \rightarrow | y| \beta 1m(| y|  - 1), \beta 1 \geq \alpha is nondecreasing,(2.8)

and

the mapping | y| \mapsto \rightarrow | y| \beta 2m(| y|  - 1), \beta 2 \leq \alpha  - \sigma is nonincreasing.(2.9)

Proof of Lemma 2.2. Let fi(r) = r\beta im(r - 1) for i = 1, 2 and r > 0; then by direct
computation,

f \prime 1(r) = r\beta 1 - 1
\bigl( 
\beta 1m(r - 1) - r - 1m\prime (r - 1)

\bigr) 
\geq (\beta 1  - \alpha )r\beta 1 - 1m(r - 1) \geq 0,

which yields (2.8), and similarly

f \prime 2(r) = r\beta 2 - 1
\bigl( 
\beta 2m(r - 1) - r - 1m\prime (r - 1)

\bigr) 
\leq (\beta 2  - (\alpha  - \sigma )) r\beta 2 - 1m(r - 1) \leq 0,

which yields (2.9).

The next lemma concerns the pointwise lower bound estimate of the symbol of
the operator \scrL .

Lemma 2.3. Let \scrL be defined by (1.3) with K(y) satisfying (1.4)--(1.5) and m(y)
satisfying (A1)--(A2); then the associated symbol A(\zeta ) given by (1.13) satisfies that

A(\zeta ) \geq C - 1| \zeta | \alpha  - \sigma  - C \forall \zeta \in \BbbR d,(2.10)

where \alpha \in ]0, 1], \sigma \in [0, \alpha [ and C is a positive constant depending only on d, \alpha , and
\sigma . Besides, if K(y) satisfies (1.4), (1.7) with m(y) satisfying (A1)--(A2), we can
also get (2.10) with a different constant C. In particular, if K(y) satisfies (1.8) with
m(y) = | y| \alpha (\alpha \in ]0, 1]) for all y \not = 0, we get

A(\zeta ) \geq C - 1| \zeta | \alpha \forall \zeta \in \BbbR d(2.11)

with C a positive constant depending only on d and \alpha .
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2936 CHANGXING MIAO AND LIUTANG XUE

Note that if m(y) \equiv | y| \alpha , then we can get (2.10) with \sigma = 0 for the associated
operator \scrL , and this special result in fact has appeared in the literature, e.g., [6,
Lemma 2.2].

Proof of Lemma 2.3. Recalling that for every \alpha \in ]0, 2[ we have (e.g., see [25, eqn.
(3.219)])

| \zeta | \alpha = cd,\alpha 

\int 
\BbbR d\setminus \{ 0\} 

(1 - cos(y \cdot \zeta )) 1

| y| d+\alpha 
dy \forall \zeta \in \BbbR d(2.12)

and by virtue of the lower bound of K in (1.4)--(1.5) and the fact | y| \alpha  - \sigma m(| y|  - 1) \geq 
c\alpha  - \sigma 
0 m(c - 1

0 ) for all 0 < | y| \leq c0, we obtain

A(\zeta ) \geq c - 1
1

\int 
0<| y| \leq c0

(1 - cos(y \cdot \zeta )) m(| y|  - 1)

| y| d
dy

\geq c - 1
1 c\alpha  - \sigma 

0 m(c - 1
0 )

\int 
0<| y| \leq c0

(1 - cos(y \cdot \zeta )) 1

| y| d+(\alpha  - \sigma )
dy

\geq c - 1
1 c\alpha  - \sigma 

0 m(c - 1
0 )

\Biggl( 
c - 1
d,\alpha | \zeta | 

\alpha  - \sigma  - 
\int 
| y| \geq c0

1

| y| d+\alpha  - \sigma 
dy

\Biggr) 
\geq C - 1| \zeta | \alpha  - \sigma  - C.

If K satisfies (1.4) and (1.7), we similarly deduce

A(\zeta ) \geq c - 1
1

\int 
0<| y| \leq c0

(1 - cos(y \cdot \zeta )) m(| y|  - 1)

| y| d
dy  - c1

\int 
| y| \geq c0

(1 - cos(y \cdot \zeta )) | K(y)| dy

\geq c - 1
1 c\alpha  - \sigma 

0 m
\bigl( 
c - 1
0

\bigr) \int 
0<| y| \leq c0

(1 - cos(y \cdot \zeta )) 1

| y| d+\alpha  - \sigma 
dy

 - c1c
\alpha  - \sigma 
0 m

\bigl( 
c - 1
0

\bigr) \int 
| y| \geq c0

1

| y| d+\~\alpha 
dy

\geq C - 1| \zeta | \alpha  - \sigma  - C.

If K satisfies (1.8) with m(y) = | y| \alpha (\alpha \in ]0, 1]) \forall y \not = 0, from (2.12) we see that
A(\zeta ) \geq c - 1

1 c - 1
d,\alpha | \zeta | \alpha , which leads to (2.11).

The following lemma is about the L\infty -estimate of a smooth solution for
(1.1)--(1.2).

Lemma 2.4. Let \theta \in C([0, T \ast [;Hs(\BbbR d)), s > 1 + d
2 , be a smooth solution to the

drift-diffusion equation (1.1)--(1.2). If Case (II) is supposed, then we have

\| \theta (t)\| L\infty \leq \| \theta 0\| L\infty \forall t \in [0, T \ast [.(2.13)

Besides, if Case (III) is assumed, we get

\| \theta (t)\| L\infty \leq C (\| \theta 0\| L2\cap L\infty , \alpha , \sigma , d) \forall t \in [0, T \ast [.(2.14)

Proof of Lemma 2.4. Because the kernel K is nonnegative on \BbbR d \setminus \{ 0\} , the proof
of (2.13) is classical (cf. [14, Theorem 4.1] for \scrL = | D| \alpha ), and we here omit the details.

Next we prove (2.14). Thanks to the assumptions that div u = 0 and A(\zeta ) \geq 0,
by the L2-energy estimate (cf. (4.4) below), we get \| \theta (t)\| L2

x
\leq \| \theta 0\| L2 \forall t \in [0, T \ast [.
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Now for every t \in ]0, T \ast [, assume that xt \in \BbbR d is some point satisfying \theta (xt, t) =
\| \theta (t)\| L\infty 

x
=:M(t). According to\bigm| \bigm| \bigm| \bigm| \biggl\{ y \in \BbbR d : | \theta (xt + y)| \geq M(t)

2

\biggr\} \bigm| \bigm| \bigm| \bigm| \leq \biggl( 2\| \theta (t)\| L2

M(t)

\biggr) 2

\leq 
4\| \theta 0\| 2L2

M(t)2
,

and denoting by rt :=
41/d

| B1(0)| 1/d
\| \theta 0\| 2/d

L2

M(t)2/d
, we may setM(t) large enough so that rt \leq c0

2 .

Taking advantage of (1.4), (1.7), and Lemma 2.2, we find that (by arguing as [27,
Lemma 4.1])

(\scrL \theta )(xt, t) \geq c - 1
1

\int 
0<| y| \leq c0

(\theta (xt, t) - \theta (xt + y, t))
m(| y|  - 1)

| y| d
dy  - 2c1M(t)

\int 
| y| \geq c0

1

| y| d+\~\alpha 
dy

\geq c - 1
1

M(t)

2

\int 
rt\leq | y| \leq c0

m(| y|  - 1)

| y| d
dy  - 2c1M(t)

\int 
| y| \geq c0

1

| y| d+\~\alpha 
dy

\geq c - 1
1 c\alpha  - \sigma 

0 m(c - 1
0 )

M(t)

2

\int 
rt\leq | y| \leq c0

1

| y| d+\alpha  - \sigma 
dy  - 2c1M(t)

\int 
| y| \geq c0

1

| y| d+\~\alpha 
dy

\geq c - 1
1 c\alpha  - \sigma 

0 m(c - 1
0 )

M(t)

2

| B1(0)| 
\alpha  - \sigma 

1

2r\alpha  - \sigma 
t

 - 2c1M(t)
| B1(0)| 

\~\alpha 

=
C\alpha ,\sigma ,d

\| \theta 0\| 2(\alpha  - \sigma )/d
L2

M(t)1+
2(\alpha  - \sigma )

d  - C\~\alpha ,dM(t).

Hence we see that

d

dt
M(t) \leq  - C\alpha ,\sigma ,d\| \theta 0\| 

 - 2(\alpha  - \sigma )
d

L2 M(t)1+
2(\alpha  - \sigma )

d + C\~\alpha ,dM(t),

and for M(t) larger than the quantity \| \theta 0\| L2(
C\~\alpha ,d

C\alpha ,\sigma ,d
)

d
2(\alpha  - \sigma ) , we have d

dtM(t) \leq 0,

which readily implies that M(t) \leq max\{ \| \theta 0\| L\infty , (
C\~\alpha ,d

C\alpha ,\sigma ,d
)

d
2(\alpha  - \sigma ) \| \theta 0\| L2\} and concludes

the lemma.

Finally, we state the following key regularity criterion for the drift-diffusion equa-
tion (1.1).

Lemma 2.5.
(1) Assume that Case (III) is considered, and \theta 0 \in Lp(\BbbR d) for some p \in [2,\infty [.

If the drift u satisfies that for any T > 0,

u \in L\infty ([0, T ];C\delta (\BbbR d)) for every \delta \in ]1 - \alpha + \sigma , 1[,(2.15)

then the drift-diffusion equation (1.1) admits a unique weak solution (in the
distributional sense) \theta \in L\infty ([0, T ];Lp(\BbbR d)) which satisfies \theta \in L\infty (]0, T ], C1,\gamma 

(\BbbR d)) with any \gamma \in ]0, \delta + \alpha  - \sigma  - 1[. Moreover, if the drift field u is given by
(1.2), we have \theta \in C\infty (]0, T ]\times \BbbR d).

(2) Suppose that Case (II) is considered, \theta 0 \in C0(\BbbR d), and the drift u satisfy
(2.15) for any T > 0. Then for the approximate equation of the drift-diffusion
equation (1.1)

\partial t\theta 
\epsilon + u\epsilon \cdot \nabla \theta \epsilon + \scrL \theta \epsilon = 0, u\epsilon = \phi \epsilon \ast u, \theta \epsilon | t=0 = \theta 01B1/\epsilon 

(x),

with \phi \epsilon (x) = \epsilon  - d\phi (x/\epsilon ), \phi the standard mollifier, and 1B1/\epsilon 
the indicator

function on the ball B1/\epsilon , the corresponding regularized solution \theta \epsilon uniformly-

in-\epsilon satisfies that \theta \epsilon \in L\infty ([0, T ];C0(\BbbR d))\cap L\infty (]0, T ], C1,\gamma (\BbbR d)) for any \gamma \in 
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2938 CHANGXING MIAO AND LIUTANG XUE

]0, \delta + \alpha  - \sigma  - 1[. Moreover, if the drift field u is given by (1.2), we have
\theta \epsilon \in C\infty (]0, T ]\times \BbbR d) uniformly in \epsilon .

For the proof of Lemma 2.5, one can refer to [38, Theorems 1.1 and 1.2 and
Remark 1.3] for the detailed proof of the same result for the drift-diffusion equation
(1.1) with more general L\'evy-type operator \scrL .

2.3. Modulus of continuity. In this subsection we gather some results related
to the MOC, which play an important role in the method of nonlocal maximum
principle.

First is the definition of the MOC.

Definition 2.6. A function \omega : [0,\infty [\rightarrow [0,\infty [ is called a MOC if \omega is continuous
on ]0,\infty [, nondecreasing, concave, and piecewise C2 with one-sided derivatives defined
at every point in ]0,\infty [. We say a function f : \BbbR d \rightarrow \BbbR l obeys the MOC \omega if
| f(x) - f(y)| \leq \omega (| x - y| ) for all x, y \in \BbbR d, and we say f : \BbbR d \rightarrow \BbbR l strictly obeys the
MOC \omega if the above inequality is strict for every x \not = y \in \BbbR d.

Then we recall the general criterion of the nonlocal maximum principle for the
whole-space drift-diffusion equation (for the proof see [33, Proposition 3.2] or [26,
Theorem 2.2]).

Proposition 2.7. Let \theta \in C([0,\infty [;Hs(\BbbR d)), s > d
2 + 1, be a smooth solution of

the following whole space drift-diffusion equation:

\partial t\theta + u \cdot \nabla \theta + \scrL \theta  - \epsilon \Delta \theta = 0, \theta (0, x) = \theta 0(x), x \in \BbbR d,(2.16)

with \epsilon \geq 0. Assume that
(1) for every t \geq 0, \omega (\xi , t) is a MOC and satisfies that its inverse function \omega  - 1

(3\| \theta (\cdot , t)\| L\infty 
x
, t) <\infty ;

(2) for every fixed point \xi , \omega (\xi , t) is piecewise C1 in the time variable with one-
sided derivatives defined at each point and that for all \xi near infinity, \omega (\xi , t)
is continuous in t uniformly in \xi ;

(3) \omega (0+, t) and \partial \xi \omega (0+, t) are continuous in t with values in \BbbR \cup \{ \pm \infty \} and
satisfy that for every t \geq 0, either \omega (0+, t) > 0 or \partial \xi \omega (0+, t) = \infty or
\partial \xi \xi \omega (0+, t) =  - \infty .

Let the initial data \theta 0(x) strictly obey \omega (\xi , 0); then for every T > 0, \theta (x, T )
strictly obeys the MOC \omega (\xi , T ) provided that for all t \in ]0, T ] and \xi \in \{ \xi > 0 : \omega (\xi , t)
\leq 2\| \theta (\cdot , t)\| L\infty 

x
\} , \omega (\xi , t) satisfies

\partial t\omega (\xi , t) > \Omega (\xi , t) \partial \xi \omega (\xi , t) +D(\xi , t) + 2\epsilon \partial \xi \xi \omega (\xi , t),(2.17)

where \Omega (\xi , t) and D(\xi , t) are respectively defined from that for every x \in \BbbR d and
every unit vector e \in \BbbS d - 1 in (2.20) (noting that we suppress the dependence of x, e
in \Omega (\xi , t) and D(\xi , t)),

\Omega (\xi , t) := | (u(x+ \xi e, t) - u(x, t)) \cdot e| and(2.18)

D(\xi , t) :=  - 
\bigl( 
\scrL \theta (x, t) - \scrL \theta (x+ \xi e, t)

\bigr) 
,(2.19)

under the scenario that

\theta (x, t) - \theta (x+ \xi e, t) = \omega (\xi , t) and

| \theta (y, t) - \theta (z, t)| \leq \omega (| y  - z| , t) \forall y, z \in \BbbR d.
(2.20)
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In (2.17), at the points where \partial t\omega (\xi , t) (or \partial \xi \omega (\xi , t)) does not exist, the smaller
(or larger) value of the one-sided derivative should be taken.

The following lemma is concerned with the estimate of (2.19) under the scenario
(2.20).

Lemma 2.8. Assume that the diffusion operator \scrL is defined by (1.3) with the
radial kernel K; then we have the following estimates on D(\xi , t) defined by (2.19)
under the scenario (2.20).

(1) If K satisfies (1.8) with m satisfying (A1), (A3), then for any \xi > 0,

D(\xi , t) \leq C1

\int \xi 
2

0

(\omega (\xi + 2\eta , t) + \omega (\xi  - 2\eta , t) - 2\omega (\xi , t))
m(\eta  - 1)

\eta 
d\eta 

+ C1

\int \infty 

\xi 
2

(\omega (2\eta + \xi , t) - \omega (2\eta  - \xi , t) - 2\omega (\xi , t))
m(\eta  - 1)

\eta 
d\eta 

(2.21)

with C1 > 0 a constant depending only on d.
(2) If K satisfies (1.4)--(1.5) with m satisfying (A1)--(A2), then for every \xi \in 

]0, c02 ],

D(\xi , t) \leq C1

\int \xi 
2

0

(\omega (\xi + 2\eta , t) + \omega (\xi  - 2\eta , t) - 2\omega (\xi , t))
m(\eta  - 1)

\eta 
d\eta 

+ C1

\int c0
2

\xi 
2

(\omega (2\eta + \xi , t) - \omega (2\eta  - \xi , t) - 2\omega (\xi , t))
m(\eta  - 1)

\eta 
d\eta .

(2.22)

(3) If K satisfies (1.4), (1.7) with m satisfying (A1)--(A2), then for every \xi \in 
]0, c02 ],

D(\xi , t) \leq C \prime 
1\omega (\xi , t) + R.H.S. of (2.22),(2.23)

where C \prime 
1 > 0 is a constant depending on d, \~\alpha , c0, and c1 and R.H.S. is

right-hand side.

Proof of Lemma 2.8. According to (1.3) and (2.20), we see that

D(\xi , t) =

\int 
\BbbR d

K(y) (\theta (x+ y, t) - \theta (x+ \xi e+ y, t) - \omega (\xi , t)) dy,(2.24)

where the integral will be understood in the sense of principle value if needed. By
arguing as the proof of [19, Lemma 2.3], we get

D(\xi , t) \leq 
\int \xi 

2

0

(\omega (\xi + 2\eta , t) + \omega (\xi  - 2\eta , t) - 2\omega (\xi , t)) \widetilde K(\eta )d\eta 

+

\int \infty 

\xi 
2

(\omega (2\eta + \xi , t) - \omega (2\eta  - \xi , t) - 2\omega (\xi , t)) \widetilde K(\eta )d\eta 

(2.25)

with \widetilde K(\eta ) =
\int 
\BbbR d - 1 K(\eta , \nu )d\nu . Note that due to the concavity of \omega (\cdot , t), both terms

\omega (\xi + 2\eta , t) + \omega (\xi  - 2\eta , t)  - 2\omega (\xi , t) and \omega (2\eta + \xi , t)  - \omega (2\eta  - \xi , t)  - 2\omega (\xi , t) are
non-positive.

D
ow

nl
oa

de
d 

09
/2

9/
20

 to
 2

10
.3

1.
78

.1
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2940 CHANGXING MIAO AND LIUTANG XUE

(1) If K satisfies (1.8) with m satisfying (A1), (A3), by using (2.8), we infer that
for every \eta > 0,

\widetilde K(\eta ) \geq c - 1
1

\int 
\BbbR d - 1

m
\bigl( 
(\eta 2 + | \nu | 2) - 1/2

\bigr) 
(\eta 2 + | \nu | 2)d/2

d\nu 

\geq c - 1
1 \eta \alpha m(\eta  - 1)

\int 
\BbbR d - 1

1

(\eta 2 + | \nu | 2)(d+\alpha )/2
d\nu 

\geq c - 1
1

m(\eta  - 1)

\eta 

\int 
\BbbR d - 1

1

(1 + | \nu \prime | 2)(d+\alpha )/2
d\nu \prime \geq C1

m(\eta  - 1)

\eta 
,(2.26)

where in the last inequality we used

c - 1
1

\int 
\BbbR d - 1

1

(1 + | \nu \prime | 2)(d+\alpha )/2
d\nu \prime \geq c - 1

1

\int 
| \nu \prime | \leq 1

1

2(d+\alpha )/2
d\nu \prime 

\geq c - 1
1

1

2(d+1)/2
| B1(0)| = C1.

Inserting the above estimate into (2.25) leads to (2.21).
(2) If K satisfies (1.4)--(1.5) with m satisfying (A1)--(A2) and \xi \leq c0/2 is con-

cerned, we mainly consider the scope \eta \in ]0, c02 ] and | \nu | \in ]0, c02 ] so that

(\eta 2 + | \nu | 2)1/2 \in ]0, c0]; thus similarly as (2.26), we get that for all \eta \in ]0, c02 ],

\widetilde K(\eta ) \geq c - 1
1

\int 
\nu \in \BbbR d - 1,| \nu | \leq c0

2

m
\bigl( 
(\eta 2 + | \nu | 2) - 1/2

\bigr) 
(\eta 2 + | \nu | 2)d/2

d\nu 

\geq c - 1
1

m(\eta  - 1)

\eta 

\int 
\nu \prime \in \BbbR d - 1,| \nu \prime | \leq 1

1

(1 + | \nu \prime | 2) d+\alpha 
2

d\nu \prime \geq C1
m(\eta  - 1)

\eta 
,

which ensures (2.22).
(3) If K satisfies (1.4), (1.7) with m satisfying (A1)--(A2), and \xi \leq c0

2 is con-
cerned, we divide the (\eta , \nu ) integral region of the R.H.S. of (2.25) into several
parts

\bigl\{ 
\eta \in [ c02 ,\infty [

\bigr\} 
,
\bigl\{ 
\eta \in ]0, c02 ], | \nu | \in ]0,

c0
2 ]
\bigr\} 
, and

\bigl\{ 
\eta \in ]0, c02 ], | \nu | \in [ c02 ,\infty [

\bigr\} 
.

The part \eta \in ]0, c02 ] and | \nu | \in ]0, c02 ] can be treated as above and the bound is
the R.H.S. of (2.22). For \eta \geq c0

2 , the kernel K(\eta , \nu ) may be nonpositive, and
from (1.7) we deduce

 - \widetilde K(\eta ) \leq  - 
\int 
(\eta 2+| \nu | 2)1/2\leq c0

K(\eta , \nu ) d\nu  - 
\int 
(\eta 2+| \nu | 2)1/2\geq c0

K(\eta , \nu ) d\nu 

\leq c1

\int 
\BbbR d - 1

1

(\eta 2 + | \nu | 2) d+\~\alpha 
2

d\nu \leq c1
1

\eta 1+\~\alpha 

\int 
\BbbR d - 1

1

(1 + | \nu \prime | 2) d+\~\alpha 
2

d\nu \prime 

\leq c1Cd
1

\eta 1+\~\alpha 
,

and thus the contribution from this part is\int \infty 

c0
2

(2\omega (\xi , t) + \omega (2\eta  - \xi , t) - \omega (2\eta + \xi , t))
\Bigl( 
 - \widetilde K(\eta )

\Bigr) 
d\eta 

\leq c1Cd2\omega (\xi , t)

\int \infty 

c0
2

1

\eta 1+\~\alpha 
d\eta \leq C \prime 

2
\omega (\xi , t).
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For the part \eta \in ]0, c02 ] and | \nu | \geq c0
2 , from (1.7) we get

 - 
\int 
\nu \in \BbbR d - 1,| \nu | \geq c0

2

K(\eta , \nu )d\nu \leq  - 
\int 
\nu \in \BbbR d - 1,| \nu | \geq c0

2 ,(\eta 2+| \nu | 2)1/2\geq c0

K(\eta , \nu )d\nu 

\leq c1

\int 
\nu \in \BbbR d - 1,| \nu | \geq c0

2

1

(\eta 2 + | \nu | 2) d+\~\alpha 
2

d\nu \leq Cd,\~\alpha c1c
\~\alpha 
0 ,

and thus the contribution from this part is bounded by

c1c
\~\alpha 
0Cd,\~\alpha 

\biggl( \int \xi 
2

0

\Bigl( 
2\omega (\xi , t) - \omega (\xi + 2\eta , t) - \omega (\xi  - 2\eta , t)

\Bigr) 
+

\int c0
2

\xi 
2

\Bigl( 
2\omega (\xi , t) + \omega (2\eta  - \xi , t) - \omega (2\eta + \xi , t)

\Bigr) \biggr) 
\leq c1c

\~\alpha 
0Cd,\~\alpha 

\Bigl( 
\omega (\xi , t)

\xi 

2
+ 2\omega (\xi , t)

c0  - \xi 

2

\Bigr) 
\leq C \prime 

1

2
\omega (\xi , t).

Hence, gathering the above estimates yields (2.23).

Next we consider the estimation of (2.18) under the scenario (2.20).

Lemma 2.9. Assume that u = \scrP (\theta ) is defined by (1.2), and the diffusion operator
\scrL is given by (1.3) with the radial kernel K; then we have the following estimates on
\Omega (\xi , t) under the scenario (2.20):

(1) If K satisfies (1.8) with m satisfying (A1), (A3), then for all \xi > 0,

\Omega (\xi , t) \leq  - C2

m(\xi  - 1)
D(\xi , t) + C2\omega (\xi , t) + C2\xi 

\int \infty 

\xi 

\omega (\eta , t)

\eta 2
d\eta (2.27)

with C2 > 0 defending only on d (and | a| , | \Psi | ).
(2) If K satisfies (1.4)--(1.5) with m satisfying (A1)--(A2), then we also get (2.27)

for all 0 < \xi \leq c0
2 .

(3) If K satisfies (1.4) and (1.7) with m satisfying (A1)--(A2), then for all 0 <
\xi \leq c0

2 ,

\Omega (\xi , t) \leq  - C2

m(\xi  - 1)
D(\xi , t) + (C \prime 

2 + C2)\omega (\xi , t) + C2\xi 

\int \infty 

\xi 

\omega (\eta , t)

\eta 2
d\eta (2.28)

with some C \prime 
2 > 0 depending on d, \alpha , \~\alpha , and c0, c1.

(4) There exists a constant C3 > 0 depending only on d, | a| , | \Psi | such that

\Omega (\xi , t) \leq C3\omega (\xi , t) + C3

\int \xi 

0

\omega (\eta , t)

\eta 
d\eta + C3\xi 

\int \infty 

\xi 

\omega (\eta , t)

\eta 2
d\eta .(2.29)

Notice that for \scrL = | D| \alpha and u = H(\theta ) with H the 1D Hilbert transform, an
estimate similar to (2.27) was obtained in [20, Lemma 2.7].

Proof of Lemma 2.9. For simplicity, we suppress the time variable t in \omega (\xi , t),
\Omega (\xi , t), and D(\xi , t). By virtue of (1.2), we see that

| u(x) - u(x+\xi e)| =
\bigm| \bigm| \bigm| \bigm| a\omega (\xi ) + p.v.

\int 
\BbbR d

\Psi (\^y)

| y| d
\theta (x+ y)dy - p.v.

\int 
\BbbR d

\Psi (\^y)

| y| d
\theta (x+ \xi e+ y)dy

\bigm| \bigm| \bigm| \bigm| 
\leq | a| \omega (\xi ) + | I(\xi )| + | II(\xi )| ,

with \^y = y
| y| \in \BbbS d - 1, and
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2942 CHANGXING MIAO AND LIUTANG XUE

I(\xi ) := p.v.

\int 
| y| \leq 2\xi 

\Psi (\^y)

| y| d
\theta (x+ y)dy  - p.v.

\int 
| y| \leq 2\xi 

\Psi (\^y)

| y| d
\theta (x+ \xi e+ y)dy,(2.30)

and II(\xi ) :=

\int 
| y| \geq 2\xi 

\Psi (\^y)

| y| d
\theta (x+ y)dy  - 

\int 
| y| \geq 2\xi 

\Psi (\^y)

| y| d
\theta (x+ \xi e+ y)dy.

First we note that the estimation of II(\xi ) and the proof of (2.29) are classical, and
one can refer to [29, Lemma] or [32, Lemma 3.2] to see that

| II(\xi )| \leq C\xi 

\int \infty 

\xi 

\omega (\eta )

\eta 2
d\eta and | I(\xi )| \leq C

\int \xi 

0

\omega (\eta )

\eta 
d\eta .

Thus for the statements (1)--(3), it suffices to estimate I(\xi ) by virtue of D(\xi ). Thanks
to the zero-average property of \Psi (\^y) and the scenario (2.20), we have

I(\xi ) =

\int 
| y| \leq 2\xi 

\Psi (\^y)

| y| d
(\theta (x+ y) - \theta (x))dy  - 

\int 
| y| \leq 2\xi 

\Psi (\^y)

| y| d
(\theta (x+ \xi e+ y) - \theta (x+ \xi e))dy

=

\int 
| y| \leq 2\xi 

\Psi (\^y)

| y| d
\bigl( 
\theta (x+ y) - \theta (x+ \xi e+ y) - \omega (\xi )

\bigr) 
dy,

where the integral will be understood in the sense of principle value if needed.
(1) If K satisfies (1.8) with m satisfying (A1), (A3), recalling that D(\xi ) defined

by (2.19) has the formula (2.24), and using (2.8)--(2.9), we obtain that for
some constant B > 0 chosen later,

I(\xi ) +
B

m(\xi  - 1)
D(\xi )

\leq 
\int 
| y| \leq 2\xi 

\biggl( 
\Psi (\^y)

| y| d
 - c - 1

1

B

m(\xi  - 1)

m(| y|  - 1)

| y| d

\biggr) \bigl( 
\omega (\xi )+\theta (x+\xi e+ y) - \theta (x+y)

\bigr) 
dy

 - 
\int 
| y| \geq 2\xi 

K(y)
\bigl( 
\omega (\xi ) + \theta (x+ \xi e+ y) - \theta (x+ y)

\bigr) 
dy

\leq 
\int 
| y| \leq 2\xi 

\biggl( 
\Psi (\^y)

| y| d
 - 2 - \sigma c - 1

1 B
\xi \alpha  - \sigma 

| y| d+\alpha  - \sigma 

\biggr) \bigl( 
\omega (\xi ) + \theta (x+ \xi e+ y) - \theta (x+ y)

\bigr) 
dy

\leq 
\int 
| y| \leq 2\xi 

\bigl( 
2\alpha  - \sigma \Psi (\^y) - 2 - \sigma c - 1

1 B
\bigr) \xi \alpha  - \sigma 

| y| d+\alpha  - \sigma 

\bigl( 
\omega (\xi )+\theta (x+ \xi e+ y) - \theta (x+ y)

\bigr) 
dy,

where in the third line we used | y| \alpha  - \sigma m(| y|  - 1)\geq (2\xi )\alpha  - \sigma m((2\xi ) - 1)\geq 2 - \sigma \xi \alpha  - \sigma 

m(\xi  - 1) for all 0 < | y| \leq 2\xi . Thus by choosing B = 2c1
\bigl( 
max\^y\in \BbbS d - 1 | \Psi (\^y)| 

\bigr) 
,

we get

| I(\xi )| \leq  - B

m(\xi  - 1)
D(\xi ).(2.31)

(2) If K satisfies (1.4)--(1.5) with m satisfying (A1)--(A2), and we only consider
\xi in the range 0 < \xi \leq c0/2, then due to that K \geq 0 on all \BbbR d \setminus \{ 0\} , we
similarly obtain (2.31).

(3) If K satisfies (1.4) and (1.7) with m satisfying (A1)--(A2), then for the same
B as above and for all 0 < \xi \leq c0/2,

I(\xi ) +
B

m(\xi  - 1)
D(\xi ) \leq B

m(\xi  - 1)

\int 
| y| \geq 2\xi 

(\omega (\xi )+\theta (x+\xi e+y) - \theta (x+y)) ( - K(y)) dy

\leq c1B

m(2/c0)

\int 
| y| \geq c0

(\omega (\xi )+\theta (x+\xi e+y) - \theta (x+ y))
1

| y| d+\~\alpha 
dy.
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By arguing as obtaining (2.23), we find that

I(\xi ) +
B

m(\xi  - 1)
D(\xi ) \leq C \prime 

2\omega (\xi ).

Therefore, collecting the above estimates leads to the desired results (2.27)--(2.29).

3. Proof of Proposition 1.3: Uniform-in-\bfitepsilon eventual H\"older estimate of
the \bfitepsilon -regularized solution.

3.1. Sketch of the main proof. In this section, we denote \theta \epsilon \in C([0,\infty [;Hs

(\BbbR d)), s > 1 + d
2 , to be a smooth solution for the regularized drift-diffusion equation

\partial t\theta 
\epsilon + u\epsilon \cdot \nabla \theta \epsilon + \scrL \theta \epsilon  - \epsilon \Delta \theta \epsilon = 0, u\epsilon = \scrP (\theta \epsilon ), \theta \epsilon | t=0 = \theta \epsilon 0 = \phi \epsilon \ast 

\bigl( 
\theta 011/\epsilon 

\bigr) 
,(3.1)

where \epsilon > 0, \theta 0 \in L\infty , 1B1/\epsilon 
is the indicator function on the ball B1/\epsilon , \phi \in C\infty 

c (\BbbR d)

is a test function satisfying
\int 
\BbbR d \phi = 1, and \phi \epsilon (x) = \epsilon  - d\phi (\epsilon  - 1x). From the max-

imus principle (2.13), we immediately get the uniform L\infty -estimate \| \theta \epsilon (t)\| L\infty (\BbbR d) \leq 
\| \theta \epsilon 0\| L\infty (\BbbR d) \leq \| \theta 0\| L\infty (\BbbR d) for all t \geq 0.

Our main method is the nonlocal maximum principle. We first introduce a non-
negative function that for \alpha \in ]0, 1], \sigma \in [0, \alpha [ and \beta \in ]1 - \alpha + \sigma , 1[,

\omega (\xi ) =

\Biggl\{ 
\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta for 0 \leq \xi \leq \delta ,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 

\delta 
m(\eta  - 1)d\eta for \xi > \delta 

(3.2)

with \delta > 0, 0 < \gamma < \kappa < 1, chosen later.
We show that \omega (\xi ) is indeed a MOC satisfying the necessary properties. Clearly,

\omega (0+) = 0, \omega \prime (0+) = \kappa \beta m(\delta  - 1)\delta 1 - \beta lim\xi \rightarrow 0+ \xi 
\beta  - 1 = \infty , which satisfies the condition

(3) in Proposition 2.7. Observe that for every 0 < \xi < \delta ,

\omega \prime (\xi ) = \kappa \beta m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1 > 0 and \omega \prime \prime (\xi ) =  - \kappa \beta (1 - \beta )m(\delta  - 1)\delta 1 - \beta \xi \beta  - 2 < 0,

(3.3)

and for every \xi > \delta (from (1.6)),

\omega \prime (\xi ) = \gamma m(\xi  - 1) > 0 and \omega \prime \prime (\xi ) =  - \gamma m
\prime (\xi  - 1)

\xi 2
\leq  - \gamma (\alpha  - \sigma )

m(\xi  - 1)

\xi 
< 0,(3.4)

and for \xi = \delta ,

\omega \prime (\delta  - ) = \kappa \beta m(\delta  - 1) and \omega \prime (\delta +) = \gamma m(\delta  - 1),

thus if \gamma < \kappa \beta , we infer that \omega is nondecreasing and concave for all \xi > 0. We also
find that

the mapping \xi \mapsto \rightarrow \omega (\xi )

\xi \beta 
for every \xi > 0 is nonincreasing.(3.5)

Indeed, if \xi \in ]0, \delta ], (3.5) is a direct consequence of (3.2), while if \xi \in ]\delta ,\infty [, we have

(\omega (\xi )
\xi \beta 

)\prime = \xi \omega \prime (\xi ) - \beta \omega (\xi )
\xi \beta +1 , and noticing that by (3.4), \beta > 1 - \alpha + \sigma and \gamma < \beta \kappa ,

(\xi \omega \prime (\xi ) - \beta \omega (\xi ))
\prime 
=\omega \prime (\xi ) + \xi \omega \prime \prime (\xi ) - \beta \omega \prime (\xi ) < (1 - \beta  - (\alpha  - \sigma )) \gamma m(\xi  - 1)m(\xi  - 1) < 0,

and

\delta \omega \prime (\delta +) - \beta \omega (\delta ) = \gamma m(\delta  - 1)\delta  - \beta \kappa m(\delta  - 1)\delta < 0,

we deduce that d
d\xi (

\omega (\xi )
\xi \beta 

) < 0, which implies (3.5) in the range \xi \in ]\delta ,\infty [.

Now we give the following key lemma concerned with the uniform-in-\epsilon preservation
of the H\"older regularity by using the MOC (3.2).
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2944 CHANGXING MIAO AND LIUTANG XUE

Lemma 3.1. There exist two constants \gamma and \kappa (cf. (3.33)) independent of \delta , \epsilon 
such that

if for some time T0 \geq 0, \theta \epsilon (T0) uniformly-in-\epsilon strictly obeys MOC \omega (\xi ),(3.6)

then for any t > T0, \theta 
\epsilon (t) also strictly obeys this MOC \omega (\xi ), which further implies

the \beta -H\"older regularity of \theta \epsilon (t) for t > T0.

The proof of Lemma 3.1 is given in subsection 3.2. We only note that under the
uniform-in-\epsilon preservation of MOC \omega (\xi ) by \theta \epsilon (t) for all t \in [T0,\infty [, we deduce from
(3.5) that

sup
t\in [T0,\infty [

\| \theta \epsilon (t)\| \.C\beta = sup
t\in [T0,\infty [

sup
x \not =y\in \BbbR d

| \theta \epsilon (x, t) - \theta \epsilon (y, t)| 
| x - y| \beta 

\leq sup
x \not =y\in \BbbR d

\omega (| x - y| )
| x - y| \beta 

\leq \kappa m(\delta  - 1)\delta 1 - \beta .(3.7)

Next our goal is to justify the condition (3.6) at some time T0 > 0. We consider
the following family of moduli of continuity that for \xi 0 > \delta ,

\omega (\xi , \xi 0) =
(3.8)

\left\{     
(1 - \beta )\kappa m(\delta  - 1)\delta + \gamma 

\int \xi 0
\delta 
m(\eta  - 1)d\eta  - \gamma m(\xi  - 1

0 )(\xi 0  - \delta )+\beta \kappa m(\delta  - 1)\xi for 0 \leq \xi \leq \delta ,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 0
\delta 
m(\eta  - 1)d\eta  - \gamma m(\xi  - 1

0 )\xi 0 + \gamma m(\xi  - 1
0 )\xi for \delta < \xi \leq \xi 0,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 

\delta 
m(\eta  - 1)d\eta for \xi > \xi 0,

and for \xi 0 \leq \delta ,

\omega (\xi , \xi 0) =

\left\{     
(1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta 0 + \beta \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1

0 \xi for 0 \leq \xi < \xi 0,

\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta for \xi 0 \leq \xi \leq \delta ,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 

\delta 
m(\eta  - 1) d\eta for \xi > \delta ,

(3.9)

where \beta \in ]1 - \alpha + \sigma , 1[, and \kappa , \gamma , \delta are positive constants chosen later. Note that for
\xi 0 = 0+, \omega (\xi , 0+) just reduces to the MOC \omega (\xi ) given by (3.2). Motivated by [26],
the basic idea of constructing \omega (\xi , \xi 0) is through taking a tangent line at \xi = \xi 0 to
\omega (\xi ) given by (3.2) and replacing \omega (\xi ) with this tangent line at the range 0 \leq \xi \leq \xi 0.
But since the one-sided derivatives of \omega (\xi ) at the point \xi = \delta do not coincide, in order
to control \partial \xi 0\omega (\xi , \xi 0) at the point \xi 0 = \delta , we make a modification in the case \xi 0 > \delta ,
that is, the tangent line mentioned above at the range \delta \leq \xi \leq \xi 0 is still adopted, but
at the range 0 \leq \xi \leq \delta it is replaced by a straight line crossing \omega (\delta +, \xi 0) with the
larger slope \omega \prime (\delta  - ) = \beta \kappa m(\delta  - 1).

Clearly, for all \xi 0 > 0, \omega (0+, \xi 0) > 0, which guarantees condition (3) in Proposi-
tion 2.7. Similarly as \omega (\xi ) defined by (3.2), \omega (\xi , \xi 0) is also a increasing and concave
function for all \xi > 0 and \xi 0 > 0. For \xi 0 = A0 > \delta , by virtue of (2.9), we get

\omega (0+, A0) = (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma 

\int A0

\delta 

m(\eta  - 1)d\eta  - \gamma m(A - 1
0 )(A0  - \delta )

\geq (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma m(A - 1
0 )A\alpha  - \sigma 

0

\int A0

\delta 

\eta  - (\alpha  - \sigma )d\eta  - \gamma m(A - 1
0 )A0

\geq (1 - \beta )\kappa m(\delta  - 1)\delta 
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+
\gamma 

1 - \alpha + \sigma 
m(A - 1

0 )A\alpha  - \sigma 
0

\bigl( 
A1 - \alpha +\sigma 

0  - \delta 1 - \alpha  - \sigma 
\bigr) 
 - \gamma m(A - 1

0 )A0

\geq 
\bigl( 
(1 - \beta )\kappa  - \gamma 

\bigr) 
m(\delta  - 1)\delta +

(\alpha  - \sigma )\gamma 

1 - \alpha + \sigma 
m(A - 1

0 )A\alpha  - \sigma 
0

\bigl( 
A1 - \alpha +\sigma 

0  - \delta 1 - \alpha +\sigma 
\bigr) 
.(3.10)

In view of \gamma < (1 - \beta )\kappa , we have that the initial data \theta \epsilon 0 uniformly-in-\epsilon strictly obeys
the MOC \omega (\xi , A0) provided that

(\alpha  - \sigma ) \gamma 

1 - \alpha + \sigma 
m(A - 1

0 )A\alpha  - \sigma 
0

\bigl( 
A1 - \alpha +\sigma 

0  - \delta 1 - \alpha +\sigma 
\bigr) 
\geq 2\| \theta 0\| L\infty .(3.11)

We next state a crucial lemma.

Lemma 3.2. Suppose that Case (I) is considered, and the initial data \theta \epsilon 0 uniformly-
in-\epsilon strictly obeys the MOC \omega (\xi , A0) given by (3.8). For \rho > 0, let \xi 0 = \xi 0(t) be a
function satisfying

d

dt
\xi 0 =  - \rho m(\xi  - 1

0 )\xi 0, \xi 0(0) = A0.(3.12)

Then for some positive constants \delta , \kappa , \gamma , \rho small enough, the solution \theta \epsilon (x, t) of the
regularized drift-diffusion equation (3.1) strictly obeys the MOC \omega (\xi , \xi 0(t)) for all t
such that \xi 0(t) > 0.

Now with Lemma 3.2 at our disposal, whose proof is postponed in subsection 3.2,
we can conclude Proposition 1.3 as follows. Thanks to (3.12), and by integrating on
the time variable over [0, t], we get

\rho t =

\int A0

\xi 0(t)

1

m(\xi  - 1
0 )\xi 0

d\xi 0 \leq 1

A\alpha  - \sigma 
0 m(A - 1

0 )

\int A0

\xi 0(t)

1

\xi 1 - \alpha +\sigma 
0

d\xi 0

=
1

A\alpha  - \sigma 
0 m(A - 1

0 )

1

\alpha  - \sigma 

\bigl( 
A\alpha  - \sigma 

0  - \xi 0(t)
\alpha  - \sigma 

\bigr) 
,

which yields that

\xi 0(t) \leq A0

\bigl( 
1 - m(A - 1

0 )(\alpha  - \sigma )\rho t
\bigr) 1

\alpha  - \sigma .(3.13)

Thus there exists a time t1 satisfying

t1 \leq 1

(\alpha  - \sigma )\rho m(A - 1
0 )

,(3.14)

so that \xi 0(t1) \equiv 0 and also \theta \epsilon (x, t1) obeys the MOC \omega (\xi , 0+) = \omega (\xi ) with \omega (\xi ) given
by (3.2). Moreover, we claim that

\theta \epsilon (x, t1) uniformly-in-\epsilon strictly obeys the MOC \omega (\xi ) with \omega (\xi ) given by (3.2).
(3.15)

Indeed, the proof is in the spirit of that of Proposition 2.7; denoting by F \epsilon (x, y, t1) =
| \theta \epsilon (x,t1) - \theta \epsilon (y,t1)| 

\omega (| x - y| ) for every x \not = y \in \BbbR d, and according to [33, Proposition 3.1], we find

that there exist positive constants C, c depending on t1 so that F \epsilon (x, y, t1) < 1 for
every (x, y) /\in \scrK , with \scrK := \{ (x, y) \in \BbbR d \times \BbbR d : | x| , | y| \leq C, | x - y| \geq c\} , while for the
continuous function F \epsilon (x, y, t1) on the compact set \scrK , the maximum can be achieved
by some pair (x, y) on \scrK : if the maximum is just strictly less than 1, the claim (3.15)
is followed; otherwise, there do exist some points (x, y) \in \scrK so that F \epsilon (x, y, t1) = 1,
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2946 CHANGXING MIAO AND LIUTANG XUE

and by writing y = x + \xi e with \xi > 0 and e \in \BbbS d - 1, it yields that the scenario
(2.20) holds with t = t1 and \omega (\xi , t1) = \omega (\xi ). But then from \xi 0(t1) = 0, (3.68) and
(2.18)--(2.19),

d

dt

\biggl( 
\theta \epsilon (x, t) - \theta \epsilon (x+ \xi e, t)

\omega (\xi , \xi 0(t))

\biggr) \bigm| \bigm| \bigm| \bigm| 
t=t1

=
\Omega (\xi , t1)\omega 

\prime (\xi ) +D(\xi , t1) + 2\epsilon \omega \prime \prime (\xi )

\omega (\xi )
,(3.16)

and by arguing as (3.21) below we can show that the R.H.S. of (3.16) is strictly less
than 0 (for \kappa , \gamma in \omega (\xi ) satisfying (3.33)), which clearly leads to a contradiction; hence
we justify the assertion (3.15).

Then the condition (3.6) with T0 = t1 is satisfied, and Lemma 3.1 ensures that
such a MOC \omega (\xi ) given by (3.2) is strictly preserved by the solution \theta \epsilon (x, t) for all
t \geq t1, which leads to

sup
t\in [t1,\infty [

\| \theta \epsilon (t)\| \.C\beta (\BbbR d) \leq \kappa m(\delta  - 1)\delta 1 - \beta (3.17)

with some fixed \delta > 0 satisfying (3.11), and thus we finish the proof of (1.22).
In particular, if \alpha \in ]0, 1[ and \sigma = 0 in the condition (1.9), then (3.11), (3.14),

and (3.17) reduce to \left\{     
\alpha \gamma 
1 - \alpha 

\bigl( 
A1 - \alpha 

0  - \delta 1 - \alpha 
\bigr) 
\geq 2\| \theta 0\| L\infty ,

t1 \leq A\alpha 
0 /(\alpha \rho ),

supt\in [t1,\infty [ \| \theta \epsilon (t)\| \.C\beta (\BbbR d) \leq \kappa \delta 1 - \alpha  - \beta ,

where \kappa , \gamma , \rho are fixed positive constants satisfying (3.76) below, that is, we can choose

\rho =
1 - \beta 

C\alpha 
, \kappa =

1

C
(1 - \beta )2, \gamma =

1

C
min

\bigl\{ 
(1 - \beta )3\alpha , \beta (1 - \beta )2

\bigr\} 
,(3.18)

with some C = C(d) > 0. By choosing

A0 =

\biggl( 
4(1 - \alpha )

\alpha \gamma 
\| \theta 0\| L\infty 

\biggr) 1
1 - \alpha 

, \delta =

\biggl( 
(1 - \alpha )

\alpha \gamma 
\| \theta 0\| L\infty 

\biggr) 1
1 - \alpha 

,

we see that

t1 \leq C

1 - \beta 

\biggl( 
4(1 - \alpha )

\alpha \gamma 

\biggr) \alpha 
1 - \alpha 

\| \theta 0\| 
\alpha 

1 - \alpha 

L\infty ,(3.19)

and for every \beta \in ]1 - \alpha , 1[, we have

sup
t\in [t1,\infty [

\| \theta \epsilon (t)\| \.C\beta (\BbbR d) \leq 
(1 - \beta )2

C

\biggl( 
1 - \alpha 

\alpha \gamma 

\biggr)  - \beta  - 1+\alpha 
1 - \alpha 

\| \theta 0\| 
 - \beta  - 1+\alpha 

1 - \alpha 

L\infty ,(3.20)

where C > 0 is some constant depending only on d, and thus we conclude Proposition
1.3.

3.2. Proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. According to Proposition 2.7, it suffices to show that for all
t > T0 and \xi > 0,

\Omega (\xi , t)\omega \prime (\xi ) +D(\xi , t) + \epsilon \omega \prime \prime (\xi ) < 0,(3.21)
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where \Omega (\xi , t), D(\xi , t) are respectively defined by (2.18) and (2.19) under the scenario
(2.20) with \omega (\cdot ) in place of \omega (\cdot , t). By using Lemmas 2.8 and 2.9, we get

D(\xi , t) \leq C1

\int \xi 
2

0

(\omega (\xi + 2\eta ) + \omega (\xi  - 2\eta ) - 2\omega (\xi ))
m(\eta  - 1)

\eta 
d\eta 

+ C1

\int \infty 

\xi 
2

\bigl( 
\omega (2\eta + \xi ) - \omega (2\eta  - \xi ) - 2\omega (\xi )

\bigr) m(\eta  - 1)

\eta 
d\eta 

(3.22)

and

\Omega (\xi , t) \leq  - C2

m(\xi  - 1)
D(\xi , t) + C2\omega (\xi ) + C2\xi 

\int \infty 

\xi 

\omega (\eta )

\eta 2
d\eta ,(3.23)

where C1 = C1(d), C2 = C2(d) > 0.
In order to prove (3.21), we divide the proof into two cases.
Case 1: 0 < \xi \leq \delta . In this case, we have \omega (\xi ) = \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta , and \omega \prime (\xi ) =

\kappa \beta m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1, and from (3.5) we see that\int \infty 

\xi 

\omega (\eta )

\eta 2
d\eta =

\int \delta 

\xi 

\omega (\eta )

\eta 2
d\eta +

\int \infty 

\delta 

\omega (\eta )

\eta 2
d\eta 

= \kappa m(\delta  - 1)\delta 1 - \beta 

\int \delta 

\xi 

\eta \beta  - 2d\eta +

\int \infty 

\delta 

\omega (\eta )

\eta \beta 
1

\eta 2 - \beta 
d\eta 

\leq \kappa m(\delta  - 1)\delta 1 - \beta 1

1 - \beta 
(\xi \beta  - 1  - \delta \beta  - 1) + \kappa m(\delta  - 1)\delta 1 - \beta 1

1 - \beta 
\delta \beta  - 1

\leq \kappa 

1 - \beta 
m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1.

Thus

\Omega (\xi , t)\omega \prime (\xi ) \leq  - C2

m(\xi  - 1)
\omega \prime (\xi )D(\xi , t) +

2C2

1 - \beta 

\bigl( 
\kappa m(\delta  - 1)\delta 1 - \beta 

\bigr) 2
\beta \xi 2\beta  - 1.

Observing that for every \beta > 1 - \alpha + \sigma and \xi \in ]0, \delta ],

C2

m(\xi  - 1)
\omega \prime (\xi ) = C2\beta \kappa 

m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1+\alpha  - \sigma 

\xi \alpha  - \sigma m(\xi  - 1)
\leq C2\beta \kappa 

m(\delta  - 1)\delta 1 - \beta \delta \beta  - 1+\alpha  - \sigma 

\delta \alpha  - \sigma m(\delta  - 1)
= C2\beta \kappa ,

we further get that by letting \kappa < 1/(2C2\beta ),

\Omega (\xi , t)\omega \prime (\xi ) \leq  - 1

2
D(\xi , t) +

2C2

1 - \beta 

\bigl( 
\kappa m(\delta  - 1)\delta 1 - \beta 

\bigr) 2
\beta \xi 2\beta  - 1.(3.24)

For the contribution from the diffusion term, by virtue of the estimate

\omega (\xi + 2\eta ) + \omega (\xi  - 2\eta ) - 2\omega (\xi ) = 4\eta 2
\int 1

0

\int 1

 - 1

\lambda \omega \prime \prime (\xi + 2\lambda \tau \eta ) d\tau d\lambda 

\leq 4\eta 2
\int 1

0

\int 0

 - 1

\lambda \omega \prime \prime (\xi ) d\tau d\lambda \leq \omega \prime \prime (\xi )\eta 2,

(3.25)

and (3.3), (2.9), we directly get
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D(\xi , t) \leq C1

\int \xi 
2

0

(\omega (\xi + 2\eta ) + \omega (\xi  - 2\eta ) - 2\omega (\xi ))
m(\eta  - 1)

\eta 
d\eta 

\leq C1\omega 
\prime \prime (\xi )

\int \xi 
2

0

\eta m(\eta  - 1)d\eta 

\leq  - C1\beta (1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta  - 2

\int \xi 
2

0

\bigl( 
\eta \alpha  - \sigma m(\eta  - 1)

\bigr) 
\eta 1 - \alpha +\sigma d\eta 

\leq  - C1

8
\beta (1 - \beta )\kappa 

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1 - \beta +\alpha  - \sigma \xi \beta  - \alpha +\sigma .

(3.26)

Hence we infer that

\Omega (\xi , t)\omega \prime (\xi ) +D(\xi , t)

\leq 2C2

1 - \beta 
\beta 
\bigl( 
\kappa m(\delta  - 1)\delta 1 - \beta 

\bigr) 2
\xi 2\beta  - 1 +

1

2
D(\xi , t)

\leq \beta \kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1 - \beta +\alpha  - \sigma \xi \beta  - \alpha +\sigma 

\Biggl( 
2C2

1 - \beta 
\kappa 

\biggl( 
\xi 

\delta 

\biggr) \beta  - 1+\alpha  - \sigma 

 - C1(1 - \beta )

16

\Biggr) 

\leq \beta \kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1 - \beta +\alpha  - \sigma \xi \beta  - \alpha +\sigma 

\biggl( 
2C2

1 - \beta 
\kappa  - C1(1 - \beta )

16

\biggr) 
< 0,

(3.27)

where the last inequality is from choosing \kappa so that \kappa < C1

32C2
(1 - \beta )2.

Case 2: \xi \geq \delta . Taking advantage of (3.5), we have\int \infty 

\xi 

\omega (\eta )

\eta 2
d\eta =

\int \infty 

\xi 

\omega (\eta )

\eta \beta 
1

\eta 2 - \beta 
d\eta \leq \omega (\xi )

\xi \beta 

\int \infty 

\xi 

1

\eta 2 - \beta 
d\eta \leq 1

1 - \beta 

\omega (\xi )

\xi 
.

Thus from (3.23) and \omega \prime (\xi ) = \gamma m(\xi  - 1) in this case, we obtain that by choosing
\gamma < 1/(2C2),

\Omega (\xi , t)\omega \prime (\xi ) =  - \gamma C2D(\xi , t) +
2C2

1 - \beta 
\gamma m(\xi  - 1)\omega (\xi ) \leq  - 1

2
D(\xi , t) +

2C2

1 - \beta 
\gamma m(\xi  - 1)\omega (\xi ).

(3.28)

For D(\xi , t), noticing that \omega (2\eta + \xi ) - \omega (2\eta  - \xi ) \leq \omega (2\xi ) < 2\omega (\xi ), we get

D(\xi , t) \leq C1

\bigl( 
\omega (2\xi ) - 2\omega (\xi )

\bigr) \int \infty 

\xi 
2

m(\eta  - 1)

\eta 
d\eta 

\leq C1 (\omega (2\xi ) - 2\omega (\xi ))

\biggl( 
\xi 

2

\biggr) \alpha 

m

\biggl( 
2

\xi 

\biggr) \int \infty 

\xi 
2

1

\eta 1+\alpha 
d\eta 

\leq C1

\bigl( 
\omega (2\xi ) - 2\omega (\xi )

\bigr) 
2 - \sigma \xi \alpha m(\xi  - 1)

1

\alpha 

\biggl( 
2

\xi 

\biggr) \alpha 

\leq C1

\alpha 
(\omega (2\xi ) - 2\omega (\xi ))m(\xi  - 1).(3.29)

Next we claim that for \gamma small enough, we have

\omega (2\xi ) \leq max
\bigl\{ 
21 - \alpha +\sigma , 3/2

\bigr\} 
\omega (\xi ) \forall \xi \geq \delta .(3.30)

Indeed, for \xi = \delta , we see that \omega (\delta ) = \kappa m(\delta  - 1)\delta and
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\omega (2\delta ) = \omega (\delta ) + \gamma 

\int 2\delta 

\delta 

m(\eta  - 1)d\eta \leq \omega (\delta ) + \gamma \delta \alpha  - \sigma m(\delta  - 1)

\int 2\delta 

\delta 

1

\eta \alpha  - \sigma 
d\eta 

\leq \kappa m(\delta  - 1)\delta + \gamma \delta \alpha  - \sigma m(\delta  - 1)
1

1 - \alpha + \sigma 

\bigl( 
(2\delta )1 - \alpha +\sigma  - \delta 1 - \alpha +\sigma 

\bigr) 
\leq \kappa m(\delta  - 1)\delta +

\gamma 

1 - \alpha + \sigma 

\bigl( 
21 - \alpha +\sigma  - 1

\bigr) 
m(\delta  - 1)\delta ,

which further yields that for all \gamma < \kappa 
2 ,

\omega (2\delta ) \leq 

\Biggl\{ 
\kappa m(\delta  - 1)\delta + 2\gamma (21 - \alpha +\sigma  - 1)m(\delta  - 1)\delta if \alpha  - \sigma \leq 1/2,

\kappa m(\delta  - 1)\delta + \gamma 
\Bigl( 
supx\in ]0,1/2]

2x - 1
x

\Bigr) 
m(\delta  - 1)\delta if \alpha  - \sigma > 1/2,

\leq max
\bigl\{ 
21 - \alpha +\sigma , 3/2

\bigr\} 
\omega (\delta ),

where we have used supx\in ]0,1/2]
2x - 1

x \leq max\{ limx\rightarrow 0+
2x - 1

x , 2
1/2 - 1
1/2 \} \leq 1. However,

for \xi \in ]\delta ,\infty [, considering an auxiliary function

h(\xi ) := \omega (2\xi ) - max\{ 21 - \alpha +\sigma , 3/2\} \omega (\xi ),

and noting that

h\prime (\xi ) \leq 2\omega \prime (2\xi ) - 21 - \alpha +\sigma \omega \prime (\xi ) = 2m((2\xi ) - 1) - 21 - \alpha +\sigma m(\xi  - 1) \leq 0,

we deduce h(\xi ) \leq h(\delta ) \leq 0 for all \xi \geq \delta , which implies (3.30). Hence plugging (3.30)
into (3.29) yields

D(\xi , t) \leq  - C1

\alpha 

\bigl( 
2 - max

\bigl\{ 
21 - \alpha +\sigma , 3/2

\bigr\} \bigr) 
m(\xi  - 1)\omega (\xi )

\leq  - C1

2\alpha 
(1 - 2 - \alpha +\sigma )m(\xi  - 1)\omega (\xi ) \leq  - C1\~c

4\alpha 
(\alpha  - \sigma )m(\xi  - 1)\omega (\xi )

(3.31)

with \~c := infx\in ]0,1]

\bigl\{ 
2x - 1

x

\bigr\} 
> 0.

Collecting the above estimates yields that for all \xi \geq \delta ,

\Omega (\xi , t)\omega \prime (\xi ) +D(\xi , t) \leq 
\biggl( 

2C2

1 - \beta 
\gamma  - C1\~c(\alpha  - \sigma )

4\alpha 

\biggr) 
m(\xi  - 1)\omega (\xi ) < 0,(3.32)

where the last inequality is ensured as long as \gamma is satisfying \gamma < C1\~c(1 - \beta )(\alpha  - \sigma )
8C2\alpha 

.
Therefore, thanks to (3.27) and (3.32), we prove (3.7) for every \beta \in ]1 - \alpha + \sigma , 1[

with each \alpha \in ]0, 1] and \sigma \in [0, \alpha [, where \delta > 0, and \kappa , \gamma are some fixed positive
constants satisfying

\kappa < min

\biggl\{ 
1

2C2\beta 
,
C1(1 - \beta )2

32C2

\biggr\} 
, \gamma < min

\biggl\{ 
\beta \kappa ,

\kappa 

2
,

1

2C2
,
C1\~c(1 - \beta )(\alpha  - \sigma )

8C2\alpha 

\biggr\} 
.

(3.33)

Thus we finish the proof of Lemma 3.1.

Next we show Lemma 3.2.

Proof of Lemma 3.2. According to Proposition 2.7, it suffices to prove that for all
t > 0 and \xi > 0,

 - \partial \xi 0\omega (\xi , \xi 0) \.\xi 0(t) + \Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) +D(\xi , t) + \epsilon \partial \xi \xi \omega (\xi , \xi 0) < 0,(3.34)
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2950 CHANGXING MIAO AND LIUTANG XUE

where \omega (\xi , \xi 0) is given by (3.8)--(3.9) and

D(\xi , t) \leq C1

\int \xi 
2

0

(\omega (\xi + 2\eta , \xi 0) + \omega (\xi  - 2\eta , \xi 0) - 2\omega (\xi , \xi 0))
m(\eta  - 1)

\eta 
d\eta 

+ C1

\int \infty 

\xi 
2

\bigl( 
\omega (2\eta + \xi , \xi 0) - \omega (2\eta  - \xi , \xi 0) - 2\omega (\xi , \xi 0)

\bigr) m(\eta  - 1)

\eta 
d\eta ,

(3.35)

and

\Omega (\xi , t) \leq  - C2

m(\xi  - 1)
D(\xi , t) + C2\omega (\xi , \xi 0) + C2\xi 

\int \infty 

\xi 

\omega (\eta , \xi 0)

\eta 2
d\eta .(3.36)

In (3.34), if \partial \xi 0\omega (\xi , \xi 0) or \partial \xi \omega (\xi , \xi 0) does not exist, the larger value of the one-sided
derivative should be taken.

We divide the proof into several cases to get (3.34), owing to the values of \xi 0
and \xi .

Case 1: \xi 0 > \delta , 0 < \xi \leq \delta . From \omega (\xi , \xi 0) = (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 0
\delta 
m(\eta  - 1)d\eta  - 

\gamma m(\xi  - 1
0 )(\xi 0  - \delta ) + \beta \kappa m(\delta  - 1)\xi , we have

\partial \xi 0\omega (\xi , \xi 0) = \gamma \xi  - 2
0 m\prime (\xi  - 1

0 ) (\xi 0  - \delta ) \leq \gamma \alpha m(\xi  - 1
0 ), and \partial \xi \omega (\xi , \xi 0) = \beta \kappa m(\delta  - 1)

(3.37)

and

\omega (\xi , \xi 0) \geq \omega (0+, \xi 0) = (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma 

\int \xi 0

\delta 

m(\eta  - 1)d\eta  - \gamma m(\xi  - 1
0 )(\xi 0  - \delta )

\geq (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma \xi \alpha  - \sigma 
0 m(\xi  - 1

0 )

\int \xi 0

\delta 

1

\eta \alpha  - \sigma 
d\eta  - \gamma m(\xi  - 1

0 )(\xi 0  - \delta )

= (1 - \beta )\kappa m(\delta  - 1)\delta 

+
\gamma 

1 - \alpha + \sigma 
m(\xi  - 1

0 )\xi \alpha  - \sigma 
0

\bigl( 
\xi 1 - \alpha +\sigma 
0  - \delta 1 - \alpha +\sigma 

\bigr) 
 - \gamma m(\xi  - 1

0 ) (\xi 0  - \delta )

=:M\xi 0,\delta (3.38)

and

\omega (\xi , \xi 0) - \omega (0+, \xi 0) \leq \omega (\delta , \xi 0) - \omega (0+, \xi 0) = \beta \kappa m(\delta  - 1)\delta .(3.39)

Thus by using (3.12) and (3.37), we get

 - \partial \xi 0\omega (\xi , \xi 0) \.\xi 0(t) \leq \rho \alpha \gamma 
\bigl( 
m(\xi  - 1

0 )
\bigr) 2
\xi 0.(3.40)

In view of (3.8), we obtain

\int \infty 

\xi 

\omega (\eta , \xi 0)

\eta 2
d\eta =

\omega (\xi , \xi 0)

\xi 
+

\int \infty 

\xi 

\partial \eta \omega (\eta , \xi 0)

\eta 
d\eta 

(3.41)

=
\omega (\xi , \xi 0)

\xi 
+

\int \delta 

\xi 

\kappa \beta m(\delta  - 1)

\eta 
d\eta +

\int \xi 0

\delta 

\gamma m(\xi  - 1
0 )

\eta 
d\eta +

\int \infty 

\xi 0

\gamma m(\eta  - 1)

\eta 
d\eta 

\leq \omega (\xi , \xi 0)

\xi 
+ \kappa \beta m(\delta  - 1)

\biggl( 
log

\delta 

\xi 

\biggr) 
+ \gamma m(\xi  - 1

0 )

\biggl( 
log

\xi 0
\delta 

\biggr) 
+ \gamma \xi \alpha  - \sigma 

0 m(\xi  - 1
0 )

\int \infty 

\xi 0

1

\eta 1 - \alpha +\sigma 
d\eta 

\leq \omega (\xi , \xi 0)

\xi 
+ \kappa \beta m(\delta  - 1)

\biggl( 
log

\delta 

\xi 

\biggr) 
+ \gamma m(\xi  - 1

0 )

\biggl( 
log

\xi 0
\delta 

\biggr) 
+

\gamma 

\alpha  - \sigma 
m(\xi  - 1

0 ).
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Thus by using (3.36), (3.39), and (3.41), we find that for \kappa \leq 1
4C2\beta 

,

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0)

\leq  - C2\beta \kappa D(\xi , t) + C2\beta \kappa m(\delta  - 1)

\biggl( 
2\omega (\xi , \xi 0) + \kappa \beta m(\delta  - 1)\xi 

\biggl( 
log

\delta 

\xi 

\biggr) 
+ \gamma m(\xi  - 1

0 )\xi 

\biggl( 
log

\xi 0
\delta 

+
1

\alpha  - \sigma 

\biggr) \biggr) 
\leq  - C2\beta \kappa D(\xi , t) + C2\beta \kappa m(\delta  - 1)

\bigl( 
2\omega (0+, \xi 0) + (C0 + 2)\kappa \beta m(\delta  - 1)\delta 

+ \gamma m(\xi  - 1
0 )\xi 0

\biggl( 
C0 +

1

\alpha  - \sigma 

\biggr) \biggr) 
\leq  - 1

4
D(\xi , t) + C2 (C0 + 2)\beta 2\kappa 2

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta +

C2\beta (C0 + 1)\kappa \gamma 

\alpha  - \sigma 
m(\delta  - 1)m(\xi  - 1

0 )\xi 0

+ 2C2\beta \kappa m(\delta  - 1)\omega (0+, \xi 0),

(3.42)

where in the third line we also used \xi 
\delta (log

\delta 
\xi ) \leq C0 and \xi 

\xi 0
log \xi 0

\delta \leq C0. For the

contribution from the diffusion term, since the function \omega (\eta , \xi 0)  - \omega (0+, \xi 0) is still
concave, we infer that

D(\xi , t) \leq  - 2C1\omega (0+, \xi 0)

\int \infty 

\xi 
2

m(\eta  - 1)

\eta 
d\eta 

\leq  - 2C1\omega (0+, \xi 0)

\biggl( 
\xi 

2

\biggr) \alpha 

m

\biggl( 
2

\xi 

\biggr) \int \infty 

\xi 
2

1

\eta 1+\alpha 
d\eta 

\leq  - 2C1

\alpha 
\omega (0+, \xi 0)m(\xi  - 1),(3.43)

and also by (3.38),

D(\xi , t) \leq  - 2C1

\alpha 
M\xi 0,\delta m(\xi  - 1).(3.44)

If \xi 0 \geq N\delta with N \in \BbbN a suitable constant, we see that

1

1 - \alpha + \sigma 

\bigl( 
\xi 1 - \alpha +\sigma 
0  - \delta 1 - \alpha +\sigma 

\bigr) 
\geq 1 - (1/N)1 - \alpha +\sigma 

1 - \alpha + \sigma 
\xi 1 - \alpha +\sigma 
0 \geq 1

1 - \alpha  - \sigma 
2

\xi 1 - \alpha +\sigma 
0 ,

provided that 1  - (1/N)1 - \alpha +\sigma \geq 2(1 - \alpha +\sigma )
2 - \alpha +\sigma , that is, N \geq ( 2 - (\alpha  - \sigma )

\alpha  - \sigma )
1

1 - (\alpha  - \sigma ) , thus we
may choose

N :=

\Biggl[ \biggl( 
2 - \alpha + \sigma )

\alpha  - \sigma 

\biggr) 1
1 - \alpha +\sigma 

\Biggr] 
+ 1.(3.45)

Thus for the case \xi 0 \geq N\delta , we get

M\xi 0,\delta \geq (1 - \beta )\kappa m(\delta  - 1)\delta +

\biggl( 
1

1 - (\alpha  - \sigma )/2
 - 1

\biggr) 
\gamma m(\xi  - 1

0 )\xi 0

\geq (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma (\alpha  - \sigma )m(\xi 0)\xi 0.

(3.46)

Inserting the above estimate into (3.44) leads to
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2952 CHANGXING MIAO AND LIUTANG XUE

D(\xi , t) \leq  - 2C1(1 - \beta )\kappa 

\alpha 
m(\delta  - 1)\delta m(\xi  - 1) - 2C1(\alpha  - \sigma ) \gamma 

\alpha 
m(\xi  - 1

0 )\xi 0m(\xi  - 1).(3.47)

Hence for \xi 0 \geq N\delta with N satisfying (3.45), by (3.43) and setting \kappa \leq C1

4C2\beta \alpha 
so that

2C2\beta \kappa m(\delta  - 1)\omega (0+, \xi 0) \leq 
C1

2\alpha 
m(\xi  - 1)\omega (0+, \xi 0) \leq  - 1

4
D(\xi , t),(3.48)

and by collecting (3.40), (3.42), and (3.47), we deduce that

L.H.S. of (3.34) \leq \kappa m(\delta  - 1)\delta m(\xi  - 1)
\Bigl( 
C2 (C0 + 2)\beta 2\kappa  - C1(1 - \beta )

\alpha 

\Bigr) 
+ \gamma m(\xi  - 1

0 )\xi 0m(\xi  - 1)
\Bigl( 
\rho \alpha +

C2\beta (C0 + 1)

\alpha  - \sigma 
\kappa  - C1(\alpha  - \sigma )

\alpha 

\Bigr) 
< 0,

where the last inequality is guaranteed as long as \rho , L.H.S. denotes left-hand side,
and \kappa satisfy

\rho <
C1(\alpha  - \sigma )

2\alpha 2
, \kappa < min

\biggl\{ 
1

4C2\beta 
,

C1

4C2\beta \alpha 
,

C1(\alpha  - \sigma )2

2C2 (C0 + 1)\beta \alpha 
,

C1(1 - \beta )

C2(C0 + 2)\beta 2\alpha 

\biggr\} 
.

(3.49)

If \xi 0 \leq N\delta with N satisfying (3.45), thanks to the fact

m(\xi  - 1
0 )\xi 0 \leq m

\bigl( 
(N\delta ) - 1

\bigr) 
N\delta \leq N1 - \alpha +\sigma m(\delta  - 1)\delta \leq 4

\alpha  - \sigma 
m(\delta  - 1)\delta ,(3.50)

and using (3.48) again, the positive contribution which is treated by (3.40) and (3.42)
can further be bounded by

 - \partial \xi 0\omega (\xi , \xi 0)
\.\xi 0 +\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0)

\leq  - 1

2
D(\xi , t) + \kappa 

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 

\biggl( 
4\rho \alpha 

\alpha  - \sigma 

\gamma 

\kappa 
+ C2 (C0 + 2)\beta 2\kappa +

4C2(C0 + 1)\beta 

(\alpha  - \sigma )2
\gamma 

\biggr) 
.

For the negative contribution from the diffusion term, from (3.38), (3.44), and (3.50),

we directly get that by letting \gamma \leq (1 - \beta )(\alpha  - \sigma )
8 \kappa ,

D(\xi , t) \leq  - 2C1

\alpha 
m(\xi  - 1)

\Bigl( 
(1 - \beta )\kappa m(\delta  - 1)\delta  - \gamma m(\xi  - 1

0 )\xi 0

\Bigr) 
\leq  - 2C1

\alpha 

\Bigl( 
(1 - \beta )\kappa  - 4\gamma 

\alpha  - \sigma 

\Bigr) \bigl( 
m(\delta  - 1)2\delta 

\bigr) 
\leq  - C1 (1 - \beta )\kappa 

\alpha 

\bigl( 
m(\delta  - 1)2\delta 

\bigr) 
.

(3.51)

Hence for \xi 0 \leq N\delta , we have

L.H.S. of (3.34) \leq \kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 

\biggl( 
4\alpha 

\alpha  - \sigma 
\rho + C2 (C0 + 2)\beta 2\kappa 

+
4C2(C0 + 1)\beta 

(\alpha  - \sigma )2
\gamma  - C1(1 - \beta )

2\alpha 

\biggr) 
< 0,

where the last inequality is ensured if we set

\rho <
C1(1 - \beta )(\alpha  - \sigma )

24\alpha 2
, \kappa < min

\biggl\{ 
C1(1 - \beta )

6C2 (C0 + 2)\beta 2\alpha 
,

1

4C2\beta 

\biggr\} 
,

\gamma \leq min

\biggl\{ 
(1 - \beta )(\alpha  - \sigma )

8
\kappa ,
C1(1 - \beta )(\alpha  - \sigma )2

24C2(C0 + 1)\beta \alpha 

\biggr\} 
.

(3.52)D
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Case 2: \xi 0 > \delta , \delta < \xi \leq \xi 0. From \omega (\xi , \xi 0) = \kappa m(\delta  - 1)\delta + \gamma 
\int \xi 0
\delta 
m(\eta  - 1)d\eta  - 

\gamma m(\xi  - 1
0 )\xi 0 + \gamma m(\xi  - 1

0 )\xi in this case, we have

\partial \xi 0\omega (\xi , \xi 0) = \gamma m\prime (\xi  - 1
0 )\xi  - 2

0 (\xi 0  - \xi ) \leq \alpha \gamma m(\xi  - 1
0 ), and \partial \xi \omega (\xi , \xi 0) = \gamma m(\xi  - 1

0 )

and (recalling M\xi 0,\delta is defined in (3.38))

\omega (\xi , \xi 0) \geq \omega (\delta , \xi 0) \geq \kappa m(\delta  - 1)\delta + \gamma \xi \alpha  - \sigma 
0 m(\xi  - 1

0 )
1

1 - \alpha + \sigma 

\bigl( 
\xi 1 - \alpha +\sigma 
0  - \delta 1 - \alpha +\sigma 

\bigr) 
 - \gamma m(\xi  - 1

0 )(\xi 0  - \delta )

\geq \kappa m(\delta  - 1)\delta +
\gamma 

1 - \alpha + \sigma 
m(\xi  - 1

0 )\xi \alpha  - \sigma 
0 (\xi 1 - \alpha +\sigma 

0  - \delta 1 - \alpha +\sigma )

 - \gamma m(\xi  - 1
0 )(\xi 0  - \delta )

=M\xi 0,\delta + \beta \kappa m(\delta  - 1)\delta 

and

\omega (\xi , \xi 0) - \omega (0+, \xi 0) \leq \omega (\xi 0, \xi 0) - \omega (0+, \xi 0) = \gamma m(\xi  - 1
0 )(\xi 0  - \delta ) + \beta \kappa m(\delta  - 1)\delta .

(3.53)

Thus by using (3.12), we get

 - \partial \xi 0\omega (\xi , \xi 0) \.\xi 0(t) \leq \alpha \rho \gamma 
\bigl( 
m(\xi  - 1

0 )
\bigr) 2
\xi 0.(3.54)

From the estimate\int \infty 

\xi 

\omega (\eta , \xi 0)

\eta 2
d\eta =

\omega (\xi , \xi 0)

\xi 
+

\int \xi 0

\xi 

\gamma m(\xi  - 1
0 )

\eta 
d\eta +

\int \infty 

\xi 0

\gamma m(\eta  - 1)

\eta 
d\eta 

\leq \omega (\xi , \xi 0)

\xi 
+ \gamma m(\xi  - 1

0 )

\biggl( 
log

\xi 0
\xi 

\biggr) 
+ \gamma \xi \alpha  - \sigma 

0 m(\xi  - 1
0 )

\int \infty 

\xi 0

1

\eta 1 - \alpha +\sigma 
d\eta 

=
\omega (\xi , \xi 0)

\xi 
+ \gamma m(\xi  - 1

0 )

\biggl( 
log

\xi 0
\xi 

\biggr) 
+

\gamma 

\alpha  - \sigma 
m(\xi  - 1

0 ),

and similarly as obtaining (3.42), we find that for \gamma \leq 1
4C2

,

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0)

(3.55)

\leq  - C2\gamma D(\xi , t) + 2C2\gamma \omega (\xi , \xi 0)m(\xi  - 1
0 ) + C2

\bigl( 
\gamma m(\xi  - 1

0 )
\bigr) 2\biggl( 

\xi log
\xi 0
\xi 

+
\xi 

\alpha  - \sigma 

\biggr) 
\leq  - 1

4
D(\xi , t) +

C2(C0 + 3)

\alpha  - \sigma 

\bigl( 
\gamma m(\xi  - 1

0 )
\bigr) 2
\xi 0 + 2C2\beta \gamma \kappa m(\delta  - 1)\delta m(\xi  - 1

0 )

+ 2C2\gamma m(\xi  - 1
0 )\omega (0+, \xi 0),

where C0 > 0 is the constant such that \xi 
\xi 0

log \xi 0
\delta \leq C0.

For the contribution from the diffusion term, we also have (3.43) and (3.44).
If \xi 0 \geq N\delta with N \in \BbbN defined by (3.45), by using (3.46) and setting \gamma < C1

4C2\alpha 
,

we deduce that

L.H.S. of (3.34) \leq \kappa m(\delta  - 1)\delta m(\xi  - 1)

\biggl( 
2C2\beta \gamma  - C1(1 - \beta )

\alpha 

\biggr) 
+ \gamma m(\xi  - 1

0 )\xi 0m(\xi  - 1)

\biggl( 
\rho \alpha +

C2(C0 + 3)

\alpha  - \sigma 
\gamma  - C1(\alpha  - \sigma )

\alpha 

\biggr) 
< 0,
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where the last inequality is guaranteed as long as

\rho <
C1(\alpha  - \sigma )

2\alpha 2
, \gamma < min

\biggl\{ 
1

4C2
,
C1

4C2\alpha 
,
C1(1 - \beta )

2C2\beta \alpha 
,
C1(\alpha  - \sigma )2

2C2(C0 + 3)\alpha 

\biggr\} 
.(3.56)

If \xi 0 \leq N\delta with N satisfying (3.45), by applying (3.50) and setting \gamma < C1

4C2\alpha 
, the

positive contribution treated by (3.54) and (3.55) can further be bounded as

 - \partial \xi 0\omega (\xi , \xi 0)
\.\xi 0(t) + \Omega (\xi , t)\partial \xi \omega (\xi , \xi 0)

\leq  - 1

2
D(\xi , t) +

4\gamma 

\alpha  - \sigma 
m(\delta  - 1)\delta m(\xi  - 1

0 )
\Bigl( 
\rho \alpha +

C2(C0 + 3)

\alpha  - \sigma 
\gamma 
\Bigr) 
.

For the negative contribution from the diffusion term, by arguing as (3.51) we obtain

that for \gamma \leq (1 - \beta )(\alpha  - \sigma )
8 \kappa ,

D(\xi , t) \leq  - 2C1

\alpha 
m(\xi  - 1)

\Bigl( 
(1 - \beta )\kappa m(\delta  - 1)\delta  - 4\gamma 

\alpha  - \sigma 
m(\delta  - 1)\delta 

\Bigr) 
\leq  - 2C1

\alpha 

4 \gamma 

\alpha  - \sigma 
m(\xi  - 1)m(\delta  - 1)\delta .

Hence for \xi 0 \leq N\delta with N given by (3.45), we have

L.H.S. of (3.34) \leq 4\gamma 

\alpha  - \sigma 
m(\delta  - 1)\delta m(\xi  - 1)

\Bigl( 
\rho \alpha +

C2(C0 + 3)

\alpha  - \sigma 
\gamma  - C1

\alpha 

\Bigr) 
< 0,

where the last inequality is guaranteed if we set

\rho <
C1(\alpha  - \sigma )

2\alpha 2
, \gamma \leq min

\biggl\{ 
(1 - \beta )(\alpha  - \sigma )

8
\kappa ,

1

4C2
,

C1(\alpha  - \sigma )

2C2(C0 + 3)\alpha 

\biggr\} 
.(3.57)

Case 3: \xi 0 > \delta , \xi > \xi 0. In this case, from \omega (\xi , \xi 0) = \kappa m(\delta  - 1)\delta + \gamma 
\int \xi 

\delta 
m(\eta  - 1)d\eta ,

we see that \partial \xi 0\omega (\xi , \xi 0) = 0, \partial \xi \omega (\xi , \xi 0) = \gamma m(\xi  - 1), and\int \infty 

\xi 

\omega (\eta , \xi 0)

\eta 2
d\eta =

\omega (\xi , \xi 0)

\xi 
+

\int \infty 

\xi 

\gamma m(\eta  - 1)

\eta 
d\eta 

\leq \omega (\xi , \xi 0)

\xi 
+ \gamma \xi \alpha  - \sigma m(\xi  - 1)

\int \infty 

\xi 

1

\eta 1+\alpha  - \sigma 
d\eta \leq \omega (\xi , \xi 0)

\xi 
+

\gamma 

\alpha  - \sigma 
m(\xi  - 1).

Thus in light of (3.36), we get

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) \leq  - C2\gamma D(\xi , t) + C2

\Bigl( 
2\omega (\xi , \xi 0) +

\gamma 

\alpha  - \sigma 
\xi m(\xi  - 1)

\Bigr) 
\gamma m(\xi  - 1).(3.58)

For the contribution from the diffusion term, since \omega (2\eta + \xi , \xi 0) - \omega (2\eta  - \xi , \xi 0) \leq 
\omega (2\xi , \xi 0) < 2\omega (\xi , \xi 0), by estimating as (3.43) we obtain

D(x, t)\leq C1 (\omega (2\xi , \xi 0) - 2\omega (\xi , \xi 0))

\int \infty 

\xi 
2

m(\eta  - 1)

\eta 
d\eta \leq C1

\alpha 
(\omega (2\xi , \xi 0) - 2\omega (\xi , \xi 0))m(\xi  - 1).

(3.59)

Observing that
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\omega (2\xi , \xi 0) - \omega (\xi , \xi 0) = \gamma 

\int 2\xi 

\xi 

m(\eta  - 1)d\eta 

\leq \gamma \xi \alpha  - \sigma m(\xi  - 1)

\int 2\xi 

\xi 

1

\eta \alpha  - \sigma 
d\eta \leq 21 - \alpha +\sigma  - 1

1 - \alpha + \sigma 
\gamma m(\xi  - 1)\xi 

and

\omega (\xi , \xi 0) \geq \gamma 

\int \xi 

\delta 

m(\eta  - 1)d\eta \geq \gamma \xi \alpha  - \sigma m(\xi  - 1)

\int \xi 

\delta 

1

\eta \alpha  - \sigma 
d\eta 

\geq \gamma \xi \alpha  - \sigma m(\xi  - 1)
\xi 1 - \alpha +\sigma  - \delta 1 - \alpha +\sigma 

1 - \alpha + \sigma 
,

if \xi satisfies that \xi \geq \delta ( 1
2\alpha  - \sigma  - 1 )

1
1 - \alpha +\sigma , equivalently, \xi 1 - \alpha +\sigma  - \delta 1 - \alpha +\sigma \geq (2 - 2\alpha  - \sigma )

\xi 1 - \alpha +\sigma , we find

\omega (\xi , \xi 0) \geq 
2 - 2\alpha  - \sigma 

1 - \alpha + \sigma 
\gamma m(\xi  - 1)\xi = 2\alpha  - \sigma 2

1 - \alpha +\sigma  - 1

1 - \alpha + \sigma 
\gamma m(\xi  - 1)\xi \geq \~c\gamma m(\xi  - 1)\xi (3.60)

and

\omega (2\xi , \xi 0) - \omega (\xi , \xi 0) \leq 
21 - \alpha +\sigma  - 1

2 - 2\alpha  - \sigma 
\omega (\xi , \xi 0) = 2 - \alpha +\sigma \omega (\xi , \xi 0)

and

\omega (2\xi , \xi 0) - 2\omega (\xi , \xi 0) \leq  - 
\bigl( 
1 - 2 - \alpha +\sigma 

\bigr) 
\omega (\xi , \xi 0) \leq  - \~c(\alpha  - \sigma )

2
\omega (\xi , \xi 0)(3.61)

with \~c := infx\in ]0,1]

\bigl\{ 
2x - 1

x

\bigr\} 
> 0. Hence if \xi \geq \delta ( 1

2\alpha  - \sigma  - 1 )
1

1 - \alpha +\sigma , and by gathering the

above estimates and setting \gamma \leq 1
2C2

, we deduce that

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) \leq  - 1

2
D(\xi , t) +

3C2

\~c(\alpha  - \sigma )
\gamma \omega (\xi , \xi 0)m(\xi  - 1)

and

D(\xi , t) \leq  - C1\~c(\alpha  - \sigma )

2\alpha 
\omega (\xi , \xi 0)m(\xi  - 1)

and

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) +D(\xi , t)\prime \leq 
\Bigl( 3C2

\~c(\alpha  - \sigma )
\gamma  - C1\~c(\alpha  - \sigma )

2\alpha 

\Bigr) 
\omega (\xi , \xi 0)m(\xi  - 1) < 0,

where the last inequality is ensured if we set

\gamma < min

\biggl\{ 
1

2C2
,
C1\~c

2(\alpha  - \sigma )2

6C2\alpha 

\biggr\} 
.(3.62)

On the other hand, if \xi satisfies that \xi \leq \delta ( 1
2\alpha  - \sigma  - 1 )

1
1 - \alpha +\sigma , since \omega (\xi , \xi 0) - \omega (0+, \xi 0)

is concave and \omega (0+, \xi 0) \geq (1 - \beta )\kappa m(\delta  - 1)\delta , we get

D(\xi , t) \leq  - 2\omega (0+, \xi 0)

\int \infty 

\xi 
2

m(\eta  - 1)

\eta 
d\eta \leq  - 2(1 - \beta )\kappa 

\alpha 
\delta m(\delta  - 1)m(\xi  - 1),(3.63)

and by using \xi 1 - \alpha +\sigma  - \delta 1 - \alpha +\sigma \leq \delta 1 - \alpha +\sigma 2 - 2\alpha  - \sigma 

2\alpha  - \sigma  - 1 , we also infer that
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2956 CHANGXING MIAO AND LIUTANG XUE

m(\xi  - 1)\xi \leq \delta \alpha  - \sigma m(\delta  - 1)\xi 1 - \alpha +\sigma \leq m(\delta  - 1)\delta 
1

2\alpha  - \sigma  - 1
\leq 1

\~c(\alpha  - \sigma )
m(\delta  - 1)\delta 

and

\omega (\xi , \xi 0) \leq \kappa m(\delta  - 1)\delta + \gamma \delta \alpha  - \sigma m(\delta  - 1)

\int \xi 

\delta 

1

\eta \alpha  - \sigma 
d\eta 

\leq \kappa m(\delta  - 1)\delta +
\gamma 

1 - \alpha + \sigma 
\delta \alpha  - \sigma m(\delta  - 1)

\bigl( 
\xi 1 - \alpha +\sigma  - \delta 1 - \alpha +\sigma 

\bigr) 
\leq 
\biggl( 
\kappa +

2\alpha  - \sigma (21 - \alpha +\sigma  - 1)

1 - \alpha + \sigma 

1

2\alpha  - \sigma  - 1
\gamma 

\biggr) 
m(\delta  - 1)\delta \leq 

\biggl( 
\kappa +

2\gamma 

\~c(\alpha  - \sigma )

\biggr) 
m(\delta  - 1)\delta ,

(3.64)

where \~c := infx\in ]0,1]

\bigl\{ 
2x - 1

x

\bigr\} 
> 0 and we also used supx\in ]0,1]

2x - 1
x \leq 1. Hence if

\xi \leq \delta ( 1
2\alpha  - \sigma  - 1 )

1
1 - \alpha +\sigma , by collecting the above results and letting \gamma \leq min\{ 1

2C2
, \kappa \} , we

obtain

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) \leq  - 1

2
D(\xi , t) +

\biggl( 
2\gamma +

4\gamma 

\~c(\alpha  - \sigma )
+

2\gamma 

\~c(\alpha  - \sigma )2

\biggr) 
\kappa \delta m(\delta  - 1)m(\xi  - 1),

and thus

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) +D(\xi , t) \leq 
\biggl( 

8\gamma 

\~c(\alpha  - \sigma )2
 - 1 - \beta 

\alpha 

\biggr) 
\kappa \delta m(\delta  - 1)m(\xi  - 1),

where the last inequality is ensured by setting

\gamma < min

\biggl\{ 
\~c(1 - \beta )(\alpha  - \sigma )2

8\alpha 
,

1

2C2
, \kappa 

\biggr\} 
.(3.65)

Case 4: 0 < \xi 0 \leq \delta , 0 < \xi < \xi 0. In this case \omega (\xi , \xi 0) = (1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta 0 +

\beta \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1
0 \xi , and thus

\partial \xi 0\omega (\xi , \xi 0) = \beta (1 - \beta )\kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta \biggl( 
1 - \xi 

\xi 0

\biggr) 
and

\partial \xi \omega (\xi , \xi 0) = \beta \kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

and

\omega (\xi , \xi 0) \geq \omega (0+, \xi 0) \geq (1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta 0 ,

\omega (\xi , \xi 0) \leq \omega (\delta , \xi 0) \leq \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta 0 .
(3.66)

Taking advantage of the estimates

m(\delta  - 1) \leq 
\biggl( 
\xi 

\delta 

\biggr) \alpha  - \sigma 

m(\xi  - 1), and m(\xi  - 1
0 ) \leq 

\biggl( 
\xi 

\xi 0

\biggr) \alpha  - \sigma 

m(\xi  - 1),(3.67)

we deduce

 - \partial \xi 0\omega (\xi , \xi 0) \.\xi 0(t) \leq \rho \beta (1 - \beta )\kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

(\xi 0  - \xi )m(\xi  - 1
0 )
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\leq \rho \beta (1 - \beta )\kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

\xi 0

\biggl( 
\xi 

\xi 0

\biggr) \alpha  - \sigma 

m(\xi  - 1)

\leq \rho \beta (1 - \beta )\kappa m(\delta  - 1)\xi 0

\biggl( 
\delta 

\xi 0

\biggr) 1+\alpha  - \sigma  - \beta \biggl( 
\xi 

\delta 

\biggr) \alpha  - \sigma 

m(\xi  - 1)

\leq \rho \beta (1 - \beta )\kappa m(\delta  - 1)\xi 0m(\xi  - 1)(3.68)

and

 - C2

m(\xi  - 1)
D(\xi , t)\partial \xi \omega (\xi , \xi 0) \leq  - C2\beta \kappa 

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta  - \alpha +\sigma 

D(\xi , t) \leq  - C2\beta \kappa D(\xi , t).

In view of the integration by parts and (3.9), we see that\int \infty 

\xi 

\omega (\eta , \xi 0)

\eta 2
d\eta =

\omega (\xi , \xi 0)

\xi 
+

\int \infty 

\xi 

\partial \eta \omega (\eta , \xi 0)

\eta 
d\eta 

\leq \omega (\xi , \xi 0)

\xi 
+

\int \xi 0

\xi 

\beta \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1
0

\eta 
d\eta +

\int \infty 

\xi 0

\beta \kappa m(\delta  - 1)\delta 1 - \beta \eta \beta  - 1

\eta 
d\eta 

\leq \omega (\xi , \xi 0)

\xi 
+\beta \kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta \biggl( 
log

\xi 0
\xi 

\biggr) 
+

\beta 

1 - \beta 
\kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

,

then gathering the above estimates and (3.36) leads to that for \kappa \leq 1
2C2\beta 

,

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) \leq  - C2\beta \kappa D(\xi , t) + 2C2\beta \kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

\omega (\xi , \xi 0)

+ C2

\bigl( 
\beta \kappa m(\delta  - 1)

\bigr) 2\biggl( \delta 

\xi 0

\biggr) 2(1 - \beta )

\xi 0

\biggl( 
\xi 

\xi 0
log

\xi 0
\xi 

+
\xi 

\xi 0

1

1 - \beta 

\biggr) 
\leq  - 1

2
D(\xi , t) + C2\beta 

\bigl( 
\kappa m(\delta  - 1)

\bigr) 2\biggl( \delta 

\xi 0

\biggr) 2(1 - \beta )

\xi 0

\biggl( 
2 + C0\beta +

\beta 

1 - \beta 

\biggr) 
,

(3.69)

where in the third line we used \xi 
\xi 0

\leq 1 and \xi 
\xi 0
(log \xi 0

\xi ) \leq C0. For the contribution

from the diffusion term, by arguing as (3.44), we obtain

D(\xi , t) \leq  - 2C1\omega (0+, \xi 0)

\int \infty 

\xi 
2

m(\eta  - 1)

\eta 
d\eta \leq  - 2(1 - \beta )C1

\alpha 
\kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

\xi 0m(\xi  - 1).

(3.70)

Collecting the estimates (3.68), (3.69), and (3.70), and using (3.67) again, we find
that

L.H.S. of (3.34)

\leq \kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

\xi 0m(\xi  - 1)

\biggl( 
\rho \beta (1 - \beta ) +

C2\beta (2 + C0\beta )\kappa 

1 - \beta 

\biggl( 
\xi 

\xi 0

\biggr) \alpha  - \sigma \biggl( 
\delta 

\xi 0

\biggr) 1 - \beta  - \alpha +\sigma 

 - C1(1 - \beta )

\alpha 

\biggr) 
\leq \kappa m(\delta  - 1)

\biggl( 
\delta 

\xi 0

\biggr) 1 - \beta 

\xi 0m(\xi  - 1)

\biggl( 
\rho \beta (1 - \beta ) +

C2\beta (2 + C0\beta )\kappa 

1 - \beta 
 - C1(1 - \beta )

\alpha 

\biggr) 
,
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2958 CHANGXING MIAO AND LIUTANG XUE

which leads to the desired inequality (3.34) as long as \rho , \kappa are such that

\rho <
C1

2\alpha \beta 
, \kappa < min

\biggl\{ 
1

2C2\beta 
,

C1(1 - \beta )2

2C2(2 + C0\beta )\beta \alpha 

\biggr\} 
.(3.71)

Case 5: 0 < \xi 0 \leq \delta , \xi 0 \leq \xi \leq \delta . Similarly as obtaining (3.24), we have that by
setting \kappa \leq 1

2C2
and \gamma \leq \kappa ,

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) \leq  - 1

2
D(\xi , t) +

3C2

1 - \beta 
\beta 
\bigl( 
\kappa m(\delta  - 1)\delta 1 - \beta 

\bigr) 2
\xi 2\beta  - 1.(3.72)

For the contribution from the diffusion term, if \xi 0 \leq \xi 
4 , then from \xi  - 2\eta > \xi 0 for all

\eta \in [0, \xi 4 ] and by arguing as (3.26), we find

D(\xi , t) \leq C1

\int \xi 
4

0

\bigl( 
\omega (\xi + 2\eta , \xi 0) + \omega (\xi  - 2\eta , \xi 0) - 2\omega (\xi , \xi 0)

\bigr) m(\eta  - 1)

\eta 
d\eta 

\leq C1\partial \xi \xi \omega (\xi , \xi 0)

\int \xi 
4

0

\eta m(\eta  - 1)d\eta 

\leq  - C1\beta (1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta  - 2

\int \xi 
4

0

\eta m(\eta  - 1)d\eta 

\leq  - C1\beta (1 - \beta )\kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1+\alpha  - \sigma  - \beta \xi \beta  - 2

\int \xi 
4

0

\eta 1 - \alpha +\sigma d\eta 

\leq  - C1\beta (1 - \beta )\kappa 

32

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1+\alpha  - \sigma  - \beta \xi \beta  - \alpha +\sigma .(3.73)

Thus for \xi 0 \leq \xi 
4 , we get that by letting \kappa < C1(1 - \beta )2

192C2
,

\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) +D(\xi , t)

\leq \beta \kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1+\alpha  - \sigma  - \beta \xi \beta  - \alpha +\sigma \Biggl( 

3C2

1 - \beta 

\biggl( 
\delta 

\xi 

\biggr) 1 - \alpha +\sigma  - \beta 

\kappa  - C1(1 - \beta )

64

\Biggr) 

\leq \beta \kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1+\alpha  - \sigma  - \beta \xi \beta  - \alpha +\sigma 

\biggl( 
3C2

1 - \beta 
\kappa  - C1(1 - \beta )

64

\biggr) 
< 0,

whereas if \xi 0 \geq \xi 
4 , by using (3.35), the concavity of \omega (\eta , \xi 0) - \omega (0+, \xi 0) for \eta \geq 0, and

(3.67), we get

D(\xi , t) \leq  - C12\omega (0+, \xi 0)

\int \infty 

\xi 
2

m(\eta  - 1)

\eta 
d\eta 

\leq  - 2C1(1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta 0
\alpha 

m(\xi  - 1)

\leq  - C1(1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta 

2\alpha 
\xi \beta m(\xi  - 1)

\leq  - C1(1 - \beta )\kappa 

2\alpha 

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1+\alpha  - \sigma  - \beta \xi \beta  - \alpha +\sigma .

(3.74)

Thus combining this estimate with (3.72) yields that
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\Omega (\xi , t)\partial \xi \omega (\xi , \xi 0)+D(\xi , t)\leq \kappa 
\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 1+\alpha  - \sigma  - \beta \xi \beta  - \alpha +\sigma 

\biggl( 
3C2\beta 

1 - \beta 
\kappa  - C1(1 - \beta )

2\alpha 

\biggr) 
<0,

where the last inequality is ensured by setting \kappa < C1(1 - \beta )2

6C2\beta 
. Notice that in this case

the conditions on \kappa and \gamma are

\kappa < min
\Bigl\{ 1

2C2
,
C1(1 - \beta )2

192C2

\Bigr\} 
, \gamma \leq \kappa .(3.75)

Case 6: 0 < \xi 0 \leq \delta , \xi > \delta . This case is almost the same as Case 2 in the proof of
Lemma 3.1, and we omit the details. Note that the conditions on \kappa , \gamma are given by
(3.33).

Therefore, for the MOC \omega (\xi , \xi 0) defined by (3.8)--(3.9) and \xi 0 = \xi 0(t) defined by
(3.12) with \rho , \kappa , \gamma are appropriate constants satisfying (3.33), (3.49), (3.52), (3.56),
(3.57), (3.62), (3.71), (3.75), we justify (3.34) for all \xi > 0 and t > 0 based on the
above analysis and thus conclude Lemma 3.2. Observing that by suppressing the
dependence on the constants C1 = C1(d), C2 = C2(d), \~c, and C0, the conditions on
positive constants \rho , \kappa , \gamma are as follows:

\rho \leq 1

C

(1 - \beta )(\alpha  - \sigma )

\alpha 2
, \kappa \leq 1

C
(1 - \beta )2, \gamma \leq 1

C
min

\bigl\{ 
\beta (1 - \beta )2, (1 - \beta )3(\alpha  - \sigma )

\bigr\} (3.76)

with C > 0 some constant independent of \alpha , \sigma , \beta .

4. Proofs of Theorems 1.1 and 1.2. Consider the following approximate
system:

\partial t\theta 
\epsilon + u\epsilon \cdot \nabla \theta \epsilon + \scrL \theta \epsilon  - \epsilon \Delta \theta \epsilon = 0, u\epsilon = \scrP (\theta \epsilon ), \theta \epsilon | t=0 = \theta \epsilon 0 = \phi \epsilon \ast (\theta 01B1/\epsilon 

),
(4.1)

where \scrP is composed of zero-order pseudodifferential operators defined by (1.2), 1B1/\epsilon 

is the indicator function on the ball B1/\epsilon , \phi \epsilon (x) = \epsilon  - d\phi (\epsilon  - 1x), and \phi \in C\infty 
c (\BbbR d) is a

radial test function satisfying
\int 
\BbbR d \phi = 1.

4.1. Proof of Theorem 1.1: Eventual regularity of vanishing viscosity
solution. From \theta 0 \in L2(\BbbR d), we have \| \theta \epsilon 0\| L2 \leq \| \theta 0\| L2 , and \| \theta \epsilon 0\| Hs \lesssim \epsilon ,s \| \theta 0\| L2 for
every s > 0. For \epsilon > 0 and s > d/2 + 1, we have the following lemma concerning the
global well-posedness for the approximate system (4.1).

Lemma 4.1. For every \epsilon > 0, the Cauchy problem of the approximate drift-
diffusion equation (4.1) admits a uniquely global smooth solution \theta \epsilon (x, t) such that

\theta \epsilon \in C([0,\infty [;Hs(\BbbR d)) \cap C\infty (]0,\infty [\times \BbbR d) with s > d/2 + 1.

The proof of this lemma is more or less standard, and one can refer to [30, Theorem
1.4] (at the \alpha = 2 case) for the use of the nonlocal maximum principle method, and
we omit the details here.

Since u\epsilon is divergence-free, we can also show the uniform-in-\epsilon energy estimate.
By taking the L2-inner product of (4.1) with \theta \epsilon , and using the integration by parts,
we have

1

2

d

dt
\| \theta \epsilon (t)\| 2L2 +

\int 
\BbbR d

\scrL (\theta \epsilon )(x, t) \theta \epsilon (x, t)dx+ \epsilon \| \nabla \theta \epsilon (t)\| 2L2 = 0.(4.2)
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2960 CHANGXING MIAO AND LIUTANG XUE

Since the symbol of \scrL satisfies A(\zeta ) \geq 0 from (1.13) and (1.8)--(1.9), we see that\int 
\BbbR d

(\scrL \theta \epsilon )(x, t) \theta \epsilon (x, t)dx =

\int 
\BbbR d

A(\zeta )| \widehat \theta \epsilon (\zeta , t)| 2d\zeta \geq 0.(4.3)

Inserting (4.3) into (4.2) leads to d
dt\| \theta 

\epsilon (t)\| 2L2 \leq 0, which by integrating in time implies

\| \theta \epsilon (t)\| L2 \leq \| \theta \epsilon 0\| L2 \leq \| \theta 0\| L2 \forall t \geq 0.(4.4)

By applying Lemma 2.3, we also obtain\int 
\BbbR d

(\scrL \theta \epsilon )(x, t) \theta \epsilon (x, t)dx \geq C - 1

\int 
\BbbR d

| \zeta | \alpha  - \sigma | \widehat \theta \epsilon (\zeta , t)| 2d\zeta  - C

\int 
\BbbR d

| \widehat \theta \epsilon (\zeta , t)| 2d\zeta 
\geq C - 1\| \theta \epsilon \| 2

\.H
\alpha  - \sigma 

2
 - C\| \theta \epsilon \| 2L2 .

(4.5)

Plugging this estimate into (4.2), and using (4.4), we find

d

dt
\| \theta \epsilon (t)\| 2L2 +

2

C
\| \theta \epsilon (t)\| 2

\.H
\alpha  - \sigma 

2
\leq 2C\| \theta 0\| 2L2 ,

which ensures that for every T > 0,

sup
t\in [0,T ]

\| \theta \epsilon (t)\| 2L2 +
2

C

\int T

0

\| \theta \epsilon (t)\| 2
\.H

\alpha  - \sigma 
2

dt \leq (1 + 2CT )\| \theta 0\| 2L2 .(4.6)

Next based on the uniform L2-estimate, we can use the De Giorgi's method to
show the L\infty -improvement, that is, for any fixed t0 > 0 and every T \geq t0, there is a
constant C\ast > 0 independent of \epsilon and T so that

sup
t\in [t0,T ]

\| \theta \epsilon (t)\| L\infty 
x

\leq C\ast 

\biggl( 
1

t0
+ C

\biggr) d
2(\alpha  - \sigma )

(1 + 2CT )
1
2 \| \theta 0\| L2(4.7)

with C > 0 the constant appearing in (4.6). The proof is similar to that of [4,
Corollary 4] or [13, Theorem 2.1], and here we sketch the main process in obtaining
(4.7). Since the operator \scrL defined by (1.3) has nonnegative kernel K, by arguing
as obtaining a corresponding inequality for fractional Laplacian operator in [14], we
have that for every convex function \psi , \psi \prime (\theta \epsilon )\scrL (\theta \epsilon ) \geq \scrL (\psi (\theta \epsilon )). We also find for every
convex \psi ,  - \psi \prime (\theta \epsilon )\Delta \theta \epsilon \geq  - \Delta (\psi (\theta \epsilon )). For M > 0 chosen later (cf. (4.12)), applying
the above two inequalities with

\psi (\theta \epsilon ) = (\theta \epsilon  - Mk)+ =: \theta \epsilon k, Mk :=M(1 - 2 - k), k \in \BbbN ,(4.8)

we obtain the following pointwise inequality from (4.1):

\partial t\theta 
\epsilon 
k + u\epsilon \cdot \nabla \theta \epsilon k + \scrL \theta \epsilon k  - \epsilon \Delta \theta \epsilon k \leq 0.(4.9)

As deriving the energy estimate, we use (4.5) to get

1

2

d

dt
\| \theta \epsilon k(t)\| 2L2 + C - 1\| \theta \epsilon k(t)\| 2\.H \alpha  - \sigma 

2
+ \epsilon \| \nabla \theta \epsilon k(t)\| 2L2 \leq C\| \theta \epsilon k(t)\| 2L2 .(4.10)

Then for a fixed constant t0 > 0 and every T \geq t0, we denote Tk := t0(1  - 2 - k),
k \in \BbbN , and the level set of energy as
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U \epsilon 
k := sup

t\in [Tk,T ]

\| \theta \epsilon k(t)\| 2L2 +
2

C

\int T

Tk

\| \theta \epsilon k(t)\| 2\.H \alpha  - \sigma 
2

dt.

For some s \in [Tk - 1, Tk], we integrate (4.10) in time between s and t \in [Tk, T ] and
also between s and T to find

\| \theta \epsilon k(t)\| 2L2 \leq \| \theta \epsilon k(s)\| 2L2 + 2C

\int t

s

\| \theta \epsilon k(t)\| 2L2dt and

2

C

\int T

s

\| \theta \epsilon k(t)\| 2\.H \alpha  - \sigma 
2

dt \leq \| \theta \epsilon k(s)\| 2L2 + 2C

\int T

s

\| \theta \epsilon k(t)\| 2L2dt,

which implies U \epsilon 
k \leq 2\| \theta \epsilon k(s)\| 2L2 + 4C

\int T

s
\| \theta \epsilon k(t)\| 2\.H \alpha  - \sigma 

2

dt. Taking the mean in s on

[Tk - 1, Tk], we infer

U \epsilon 
k \leq 

\biggl( 
2k+1

t0
+ 4C

\biggr) \int T

Tk - 1

\| \theta \epsilon k(t)\| 2L2dt.(4.11)

The inequality (4.11) is almost identical with [13, (A.3)], and we can proceed further
to obtain

U \epsilon 
k \leq 

\biggl( 
2

t0
+ 4C

\biggr) 
2k(q - 1)

Mq - 2
(U \epsilon 

k - 1)
q/2 with q := 2 +

2(\alpha  - \sigma )

d
.

Since U \epsilon 
0 \leq (1 + 2CT )\| \theta 0\| 2L2 , by choosing M (owing to [37, Lemma 2.6]) to be

M = (1 + 2CT )1/2\| \theta 0\| L2

\biggl( 
22+

d
\alpha  - \sigma 

\biggl( 
2

t0
+ 4C

\biggr) \biggr) d
2(\alpha  - \sigma )

,(4.12)

we have limk\rightarrow \infty U \epsilon 
k = 0, which ensures \theta \epsilon \leq M for all t \in [t0, T ]. The same result

likewise holds for  - \theta \epsilon , and thus we conclude (4.7).
Hence, the uniform estimate (4.6) and (4.7) guarantee that, for some t0 > 0

and every T \geq t0, up to a subsequence \theta \epsilon converges weakly (weakly-\ast in L\infty 
t L

2
x and

L\infty ([t0, T ]\times \BbbR d)) to some function \theta belonging to

L\infty ([0, T ];L2(\BbbR d)) \cap L2([0, T ]; \.H
\alpha  - \sigma 

2 (\BbbR d)) \cap L\infty ([t0, T ]\times \BbbR d).(4.13)

Moreover, by using the compactness argument (e.g., [33, Proposition 6.3]), we can
show that \theta \epsilon \rightarrow \theta and u\epsilon \rightarrow u = \scrP (\theta ) both strongly in L2([0, T ];L2

loc(\BbbR d)). Thus we
can pass the weak limit \epsilon \rightarrow 0 in the approximate system (4.1) to show that \theta (x, t) is
a global weak solution for the original equation (1.1)--(1.2), which satisfies the energy
estimate (4.6) and L\infty -estimate (4.7) with \theta in place of \theta \epsilon .

Now applying Proposition 1.3 to the approximate equation (4.1) (with \~\theta \epsilon (t) :=
\theta \epsilon (t+ t0) replacing \theta 

\epsilon (t)) and Fatou's lemma, we get that for every \beta \in ]1 - \alpha + \sigma , 1[
and every T > t0 + t1,

sup
t\in [t0+t1,T ]

\| \theta (t)\| \.C\beta (\BbbR d) \leq C(\| \theta 0\| L2 , t0, \alpha , \beta , \sigma , d, T ),(4.14)

with t1 the time introduced above. Furthermore, (4.14) yields that for every \beta \in 
]1 - \alpha + \sigma , 1[,

sup
t\in [t0+t1,T ]

\| u(t)\| C\beta \leq C0 sup
t\in [t0+t1,T ]

\| \theta (t)\| L2 + C0 sup
t\in [t0+t1,T ]

\| \theta (t)\| \.C\beta 

\leq C0 C(\| \theta 0\| L2 , t0, \alpha , \beta , \sigma , d, T ),
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2962 CHANGXING MIAO AND LIUTANG XUE

which together with Lemma 2.5 implies the C\infty 
x,t-regularity of \theta (x, t) for all t \in ]t0 +

t1, T ].
Besides, if \alpha \in ]0, 1[ and \sigma = 0 in the condition (A3), i.e., m(y) \equiv C0| y| \alpha for all

| y| > 0, from (2.11), we have that there is no term  - \| \theta \epsilon \| 2L2 in (4.5) and the constant
C in the R.H.S. of (4.6), (4.7), and (4.12) can be replaced with 0, which guarantees
that T in (4.13)--(4.14) can be chosen to be \infty . Next by choosing \beta = 1 - \alpha 

2 , we see

that \gamma = \alpha 4

C , and (3.19) just reduces to

t1 \leq C

\alpha 

\biggl( 
C(1 - \alpha )

\alpha 5

\biggr) \alpha 
1 - \alpha 

\| \theta (t0)\| 
\alpha 

1 - \alpha 

L\infty ;(4.15)

moreover (4.7) becomes

\| \theta (t0)\| L\infty \leq 
\biggl( 
C2d/\alpha 

t0

\biggr) d/(2\alpha )

\| \theta 0\| L2 ,(4.16)

which combined with (4.15) leads to (1.19). Thus we finish the proof of Theorem 1.1.

4.2. Proof of Theorem 1.2: Global regularity result in the logarith-
mically supercritical case. Considering the \epsilon -regularized equation (4.1) under the
assumptions of Theorem 1.2, by virtue of the standard Bony's paradifferential calcu-
lus and Lemma 2.3, there is a uniquely global smooth solution \theta \epsilon (x, t) to the system
(4.1) so that \theta \epsilon \in C([0,\infty [;Hs(\BbbR d)) \cap C\infty (]0,\infty [\times \BbbR d) with s > d/2 + 1. Owing to
Lemma 2.4, we have the uniform-in-\epsilon L\infty -estimate supt\geq 0 \| \theta \epsilon (t)\| L\infty \leq B0 with

B0 :=

\Biggl\{ 
\| \theta 0\| L\infty if Case (II) is considered,

C(\| \theta 0\| L2\cap L\infty , \sigma , d) if Case (III) is considered,
(4.17)

and the uniform energy estimate \| \theta \epsilon (t)\| L2 \leq \| \theta 0\| L2 for all t \geq 0 if Case (III) is
considered.

We will apply the method of nonlocal maximum principle as in section 3 to show
the uniform-in-\epsilon global regularity result. Let A0 \leq c0

2 be a positive constant chosen
later (c0 is the constant appearing in (1.4)); then analogous with (3.8)--(3.9), we
introduce the family of moduli of continuity that for \xi 0 \in ]\delta , A0],

\omega (\xi , \xi 0) =
(4.18)

\left\{         
(1 - \beta )\kappa m(\delta  - 1)\delta +\gamma 

\int \xi 0
\delta 
m(\eta  - 1)d\eta  - \gamma m(\xi  - 1

0 )(\xi 0  - \delta )+\beta \kappa m(\delta  - 1)\xi for 0 \leq \xi \leq \delta ,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 0
\delta 
m(\eta  - 1)d\eta  - \gamma m(\xi  - 1

0 )\xi 0 + \gamma m(\xi  - 1
0 )\xi for \delta < \xi \leq \xi 0,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 

\delta 
m(\eta  - 1)d\eta for \xi 0 < \xi \leq c0,

\omega (c0, \xi 0) for \xi > c0,

and for \xi 0 \leq \delta ,

\omega (\xi , \xi 0) =

\left\{         
(1 - \beta )\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta 0+\beta \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta  - 1

0 \xi for 0 \leq \xi < \xi 0,

\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta for \xi 0 \leq \xi \leq \delta ,

\kappa m(\delta  - 1)\delta +\gamma 
\int \xi 

\delta 
m(\eta  - 1) d\eta for \delta < \xi \leq c0

\omega (c0, \xi 0) for \xi > c0,

(4.19)D
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where \beta \in ]\sigma , 1[, \kappa , \gamma , \delta are appropriate positive constants, and \xi 0 = \xi 0(t) is given by

d

dt
\xi 0 =  - \rho m(\xi  - 1

0 )\xi 0, \xi 0(0) = A0,(4.20)

with \rho > 0 some constant chosen later.
First we prove that under the condition (1.20), and by suitably choosing \delta , the

initial data \theta 0 strictly obeys the initial MOC \omega (\xi , \xi 0(0)) = \omega (\xi , A0). Indeed, it suffices
to show

\omega (0+, A0) > 2B0.(4.21)

Without loss of generality we also assume A0 \leq c - 1
2 (with c2 \geq 1 appearing in (1.20)),

and we see that

\omega (0+, A0) = (1 - \beta )\kappa m(\delta  - 1)\delta + \gamma 

\int A0

\delta 

m(\eta  - 1)d\eta  - \gamma m(A - 1
0 )(A0  - \delta )

\geq \gamma 

c2

\int A0

\delta 

1

\eta (log \eta  - 1)\mu 
d\eta  - \gamma m(1)

\geq \gamma 

c2

\int 1
\delta 

1
A0

1

\eta (log \eta )\mu 
d\eta  - \gamma m(1)(4.22)

\geq 

\left\{     
\gamma 

c2(1 - \mu )

\biggl( \bigl( 
log 1

\delta 

\bigr) 1 - \mu  - 
\Bigl( 
log 1

A0

\Bigr) 1 - \mu 
\biggr) 
 - \gamma m(1) if \mu \in [0, 1[,

\gamma 
c2

\Bigl( 
log log 1

\delta  - log log 1
A0

\Bigr) 
 - \gamma m(1) if \mu = 1.

In order to achieve (4.21), if \mu \in [0, 1[, we need

log
1

\delta 
>

\Biggl[ \biggl( 
log

1

A0

\biggr) 1 - \mu 

+
c2(1 - \mu )

\gamma 

\bigl( 
2B0 + \gamma m(1)

\bigr) \Biggr] 1
1 - \mu 

,

and from the inequality (a+b)
1

1 - \mu \leq C\mu (a
1

1 - \mu +b
1

1 - \mu ) for a, b > 0, it suffices to choose
\delta as

\delta = A
C\mu 

0 exp
\Bigl( 
 - C\mu 

\Bigl( c2(1 - \mu )

\gamma 

\bigl( 
3B0 + \gamma m(1)

\bigr) \Bigr) 1/(1 - \mu )\Bigr) 
,(4.23)

whereas if \mu = 1, it suffices to set \delta as

log log
1

\delta 
= log log

1

A0
+
c2
\gamma 

\bigl( 
3B0 + \gamma m(1)

\bigr) 
,

that is,

\delta = A
exp

\Bigl( 
c2
\gamma 

\bigl( 
3B0+\gamma m(1)

\bigr) \Bigr) 
0 .(4.24)

Next by using (4.22), we see that the MOC defined by (4.18)--(4.19) satisfies for
all 0 < \xi 0 \leq A0,

\omega (A0, \xi 0) \geq \omega (A0, 0+) > \gamma 

\int A0

\delta 

m(\eta  - 1)d\eta > 2B0;

thus according to Proposition 2.7, we only need to justify the criterion
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2964 CHANGXING MIAO AND LIUTANG XUE

 - \partial \xi 0\omega (\xi , \xi 0) \.\xi 0(t) + \Omega (\xi , t)\partial \xi \omega (\xi , \xi 0) +D(\xi , t) + \epsilon \partial \xi \xi \omega (\xi , \xi 0) < 0(4.25)

for all t > 0, 0 < \xi 0 \leq A0, 0 < \xi \leq A0 with A0 \leq c0
2 , and

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) + C1

\int \xi 
2

0

(\omega (\xi + 2\eta , \xi 0) + \omega (\xi  - 2\eta , \xi 0) - 2\omega (\xi , \xi 0))
m(\eta  - 1)

\eta 
d\eta 

+ C1

\int A0

\xi 
2

\bigl( 
\omega (2\eta + \xi , \xi 0) - \omega (2\eta  - \xi , \xi 0) - 2\omega (\xi , \xi 0)

\bigr) m(\eta  - 1)

\eta 
d\eta ,

(4.26)

and

\Omega (\xi , t) \leq  - C2

m(\xi  - 1)
D(\xi , t) + (C2 + C \prime 

2)\omega (\xi , \xi 0) + C2\xi 

\int \infty 

\xi 

\omega (\eta , \xi 0)

\eta 2
d\eta ,(4.27)

and C1 = C1(d), C2 = C2(d) > 0, and C \prime 
1, C

\prime 
2 are just 0 if Case (II) is assumed and

are the constants (depending only on d, \~\alpha , c0, c1) respectively appearing in (2.23) and
(2.29) if Case (III) is assumed.

By arguing as in Lemma 3.2, we indeed can prove the desired inequality (4.25) as
long as \rho , \kappa , \gamma are suitable constants satisfying (3.76) (maybe with slightly different
C) and A0 satisfying

0 < A0 \leq min

\Biggl\{ \biggl( 
C1\~cm(1)(1 - \beta )(1 - \sigma )

64C \prime 
1

\biggr) 1/(1 - \sigma )

,
c0
2
, c - 1

2

\Biggr\} 
.(4.28)

We will present the different points compared to the proof of Lemma 3.2 in the end
of this subsection.

Then at the time t1 satisfying \xi 0(t1) = 0, we have that \theta \epsilon (x, t1) uniformly-in-\epsilon 
obeys the MOC \omega (\xi ) = \omega (\xi , 0+) given by

\omega (\xi ) =

\left\{     
\kappa m(\delta  - 1)\delta 1 - \beta \xi \beta for 0 \leq \xi \leq \delta ,

\kappa m(\delta  - 1)\delta + \gamma 
\int \xi 

\delta 
m(\eta  - 1)d\eta for \delta < \xi \leq c0,

\omega (c0) for \xi > c0

(4.29)

with \kappa , \gamma > 0 the suitable constants satisfying (3.76). In a similar way as obtaining
(3.15), we moreover get that the MOC \omega (\xi ) given by (4.29) is uniformly-in-\epsilon strictly
preserved by the solution \theta \epsilon (x, t1). Then we can argue as in the proof of Lemma 3.1
and Cases 5--6 in the proof of (4.25) to show that for every t > t1 and 0 < \xi \leq A0,

\Omega (\xi , t)\omega \prime (\xi ) +D(\xi , t) + \epsilon \omega \prime \prime (\xi ) < 0,(4.30)

where D(\xi , t) and \Omega (\xi , t) are given by (4.26) and (4.27) with \omega (\cdot ) in place of \omega (\cdot , \xi 0),
which guarantees that \theta \epsilon (x, t) uniformly-in-\epsilon strictly preserve such a MOC \omega (\xi ) for
all time t \geq t1.

From (3.76), we can choose the positive constants \rho , \kappa , \gamma as

\rho = (1 - \beta )(1 - \sigma )/C, \kappa = (1 - \beta )2/C, \gamma = min
\bigl\{ 
\beta (1 - \beta )2, (1 - \beta )3(1 - \sigma )

\bigr\} 
/C,

with C > 0 the suitable constant depending only on d, C \prime 
2 (and a, | \Psi | ). Thanks to

(3.14), (1.20), and (3.7), we find that the eventual regularity time t1 satisfies
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t1 \leq 1

(1 - \sigma )\rho m(A - 1
0 )

\leq Cc2
(1 - \sigma )2(1 - \beta )

A0(logA
 - 1
0 )\mu \leq CC0c2

(1 - \sigma )2(1 - \beta )
A

1
2
0 ,

(4.31)

and for every \beta \in ]\sigma , 1[,

sup
t\in [t1,\infty [

\| \theta \epsilon (t)\| \.C\beta (\BbbR d) \leq \kappa m(\delta  - 1)\delta 1 - \beta \leq \kappa m(1)\delta  - \beta 

(4.32)

\leq 

\left\{     
Cm(1)
(1 - \beta )2A

 - C\mu \beta 
0 exp

\Bigl( 
\beta C\mu 

\Bigl( 
3c2(1 - \mu )B0

\gamma +c2(1 - \mu )m(1)
\Bigr) 1/(1 - \mu ) \Bigr) 

if \mu \in [0, 1[,

Cm(1)
(1 - \beta )2

\bigl( 
A - 1

0

\bigr) \beta exp
\bigl( 

3c2B0
\gamma +c2m(1)

\bigr) 
if \mu = 1.

Now for any t\ast >0, by virtue of (4.31), we also need A0 satisfies that
CC0c2

(1 - \sigma )2(1 - \beta )A
1
2
0

\leq t\ast 
2 , i.e., A0 \leq ( (1 - \sigma )2(1 - \beta )t\ast 

2CC0c2
)2; thus for each \sigma \in [0, 1[ and \beta \in ]\sigma , 1[, we can choose

A0 to be

A0 = min
\Bigl\{ \Bigl( C1\~cm(1)(1 - \beta )(1 - \sigma )

64C \prime 
1

\Bigr) 1/(1 - \sigma )

,
c0
2
, c - 1

2 ,
\Bigl( (1 - \sigma )2(1 - \beta )t\ast 

2CC0c2

\Bigr) 2\Bigr\} (4.33)

so that the uniform-in-\epsilon H\"older estimate (4.32) holds true. According to Lemma
2.5 and the Calder\'on--Zygmund theorem, we can further get \theta \epsilon \in C\infty ([t\ast ,\infty [\times \BbbR d)
uniformly in \epsilon .

If Case (III) is considered and div u = 0, \theta 0 \in L2 \cap L\infty (\BbbR d), in a similar
way as deriving (4.6), we apply Lemma 2.3 to get that \theta \epsilon \in L\infty ([0, T ];L2(\BbbR d)) \cap 
L2([0, T ]; \.H

1 - \sigma 
2 (\BbbR d)) uniformly-in-\epsilon for every T > 0. Since u is divergence-free, for any

T > 0, similarly as the corresponding part at subsection 4.1, we can pass \epsilon \rightarrow 0 in (4.1)

to obtain the existence of weak solution \theta \in L\infty ([0, T ];L2(\BbbR d))\cap L2([0, T ]; \.H
1 - \sigma 
2 (\BbbR d))

to (1.1)--(1.2) which also satisfies \theta \in C\infty ([t\ast , T ]\times \BbbR d), as desired.
If Case (II) is considered, \theta 0 \in C0(\BbbR d), and there is no divergence-free condition

of u, we can pass \epsilon \rightarrow 0 to get a limit function \theta \in L\infty ([0,\infty [\times \BbbR d)\cap C\infty ([t\ast ,\infty [\times \BbbR d).
For any t\ast > 0, the limit function \theta on the time period [t\ast ,\infty [ satisfies (1.1)--(1.2)
(but it is not so clear whether \theta is a weak solution to (1.1)--(1.2) on [0, t\ast ]).

Finally, we state the different points of proving (4.25) compared to the proof of
(3.34).

Case 1: \delta < \xi 0 \leq A0, 0 < \xi \leq \delta . Since \partial \eta \omega (\eta , \xi 0) = 0 for all \eta > c0, we can
prove the estimates analogous to (3.41) and (3.42) with C2 + C \prime 

2 in place of C2. For
the contribution from the diffusion term, we have (noting that \alpha = 1)

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) - 2C1\omega (0+, \xi 0)

\int A0

\xi 
2

m(\eta  - 1)

\eta 
d\eta 

\leq C \prime 
1\omega (\xi , \xi 0) - 2C1\omega (0+, \xi 0)

\biggl( 
\xi 

2

\biggr) 
m

\biggl( 
2

\xi 

\biggr) \int \xi 

\xi 
2

1

\eta 2
d\eta 

\leq C \prime 
1

\bigl( 
\omega (0+, \xi 0) + \beta \kappa m(\delta  - 1)\delta 

\bigr) 
 - C1\omega (0+, \xi 0)m(\xi  - 1)

\leq C \prime 
1\beta \kappa m(\delta  - 1)\delta  - C1

2
\omega (0+, \xi 0)m(\xi  - 1),(4.34)
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where in the last line we used the estimate m(\xi  - 1) \geq m(A - 1
0 ) \geq 2C\prime 

1

C1
, which is implied

by a stronger condition A0 \leq (C1m(1)
2C\prime 

1
)1/(1 - \sigma ). Since \omega (0+, \xi 0) \geq M\xi 0,\delta by (3.38), if

\xi 0 \leq N\delta with N \in \BbbN defined in (3.45), thanks to (3.46), we get

D(\xi , t)\leq C \prime 
1\beta \kappa m(\delta  - 1)\delta  - C1(1 - \beta )\kappa 

4
m(\delta  - 1)\delta m(\xi  - 1) - C1(1 - \sigma ) \gamma 

4
m(\xi  - 1

0 )\xi 0m(\xi  - 1)

\leq  - C1(1 - \beta )\kappa 

8
m(\delta  - 1)\delta m(\xi  - 1) - C1(1 - \sigma ) \gamma 

4
m(\xi  - 1

0 )\xi 0m(\xi  - 1),

where in the second line we used A0 \leq (C1m(1)(1 - \beta )
8C\prime 

1\beta 
)

1
1 - \sigma , whereas if \xi 0 \leq N\delta , by

virtue of (3.51), we see that through setting \gamma \leq (1 - \beta )(1 - \sigma )\kappa 
16 ,

D(\xi , t) \leq C \prime 
1\beta \kappa m(\delta  - 1)\delta  - C1

4

\bigl( 
(1 - \beta )\kappa m(\delta  - 1)\delta  - \gamma m(\xi  - 1

0 )\xi 0
\bigr) 
m(\xi  - 1)

\leq  - C1

4

\biggl( 
(1 - \beta )\kappa 

2
 - 4\gamma 

1 - \sigma 

\biggr) \bigl( 
m(\delta  - 1)

\bigr) 2
\delta \leq  - C1(1 - \beta )\kappa 

16

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta ,

where we also used A0 \leq (C1m(1)(1 - \beta )
8C\prime 

1\beta 
)

1
1 - \sigma . Hence under the conditions (3.49), (3.52)

(up to some pure numbers and C2 replaced by C2 + C \prime 
2), we show that (4.25) holds

in this case.
Case 2: \delta < \xi 0 \leq A0, \delta < \xi \leq \xi 0. The different points are quite similar to those

stated in Case 1 above, and under the (slightly modified) conditions (3.56) and (3.57),
we can show (4.25) in this case.

Case 3: \delta < \xi 0 \leq A0, \xi 0 < \xi \leq A0. We obtain (3.58) with C2 replaced by C2+C
\prime 
2.

For D(\xi , t), similarly as (3.59) and (4.34), we have

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) + C1

\bigl( 
\omega (2\xi , \xi 0) - 2\omega (\xi , \xi 0)

\bigr) \int A0

\xi 
2

m(\eta  - 1)

\eta 
d\eta 

\leq C \prime 
1\omega (\xi , \xi 0) +

C1

2

\bigl( 
\omega (2\xi , \xi 0) - 2\omega (\xi , \xi 0)

\bigr) 
m(\xi  - 1);

thus if \xi \geq \delta ( 1
21 - \sigma  - 1 )

1/\sigma , by using (3.61), we get

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) - 

C1\~c(1 - \sigma )

4
\omega (\xi , \xi 0)m(\xi  - 1) \leq  - C1\~c(1 - \sigma )

8
\omega (\xi , \xi 0)m(\xi  - 1),

where \~c = infx\in ]0,1]

\bigl\{ 
2x - 1

x

\bigr\} 
> 0 and in the last inequality we used A0 \leq 

(C1m(1)\~c (1 - \sigma )
8C\prime 

1
)

1
1 - \sigma . If \xi \leq \delta ( 1

21 - \sigma  - 1 )
1/\sigma , by arguing as (3.63) and (4.34), and us-

ing (3.64), we find

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) - 

\omega (0+, \xi 0)

2
m(\xi  - 1)

\leq C \prime 
1

\biggl( 
\kappa +

\~c\gamma 

2(1 - \sigma )

\biggr) 
m(\delta  - 1)\delta  - (1 - \beta )\kappa 

2
m(\delta  - 1)\delta m(\xi  - 1)

\leq  - (1 - \beta )\kappa 

4
m(\delta  - 1)\delta m(\xi  - 1),

where in the last line we used \gamma \leq \kappa and A0 \leq (C1m(1) (1 - \beta )(1 - \sigma )
4C\prime 

1
)

1
1 - \sigma . The remaining

proof is similar to Case 3 in the proof of Lemma 3.2, and (4.25) holds in this case
under (slightly modified) (3.62) and (3.65).
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Case 4: 0 < \xi 0 \leq \delta , 0 < \xi < \xi 0. We have (3.69) with C2 replaced by C2 +C \prime 
2. In

a similar treatment as (3.70) and (4.34), we infer

D(x, t) \leq C \prime 
1\omega (\xi , \xi 0) - 

C1

2
\omega (0+, \xi 0)m(\xi  - 1) \leq  - C1

4
\omega (0+, \xi 0)m(\xi  - 1),

where in the last inequality we used the fact \omega (\xi , \xi 0) \leq 1
1 - \beta \omega (0+, \xi 0) (from (3.66))

and the condition A0 \leq (C1m(1)(1 - \beta )
4C\prime 

1
)

1
1 - \sigma . Thus we can obtain (4.25) in this case

under (slightly modified) (3.71).
Case 5: 0 < \xi 0 \leq \delta , \xi 0 \leq \xi \leq \delta . We have (3.72) with C2 replaced by C2 + C \prime 

2. If
\xi 0 \leq \xi 

4 , (3.73), (3.67), and the formula \omega (\xi , \xi 0) = \kappa m(\delta  - 1)\delta 1 - \beta \xi \beta lead to

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) - 

C1\beta (1 - \beta )\kappa 

32
m(\delta  - 1)\delta 1 - \beta \xi \beta m(\xi  - 1)

\leq  - C1\beta (1 - \beta )\kappa 

64
(m(\delta  - 1))2\delta 2 - \sigma  - \beta \xi \beta  - 1+\sigma ,

where in the last line we used A0 \leq (C1m(1)\beta (1 - \beta )
64C\prime 

1
)

1
1 - \sigma , whereas if \xi 0 \geq \xi 

4 , by arguing

as (3.74) and (4.34), we obtain

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) - 

C1

2
\omega (0+, \xi 0)m(\xi  - 1)

\leq C \prime 
1\omega (\xi , \xi 0) - 

C1(1 - \beta )

8
\omega (\xi , \xi 0)m(\xi  - 1)

\leq  - C1(1 - \beta )\kappa 

16

\bigl( 
m(\delta  - 1)

\bigr) 2
\delta 2 - \sigma  - \beta \xi \beta  - 1+\sigma ,

where the last inequality is deduced from using A0 \leq (C1m(1)(1 - \beta )
16C\prime 

1
)

1
1 - \sigma . Thus we can

similarly obtain (4.25) in this case under (slightly modified) (3.75).
Case 6: 0 < \xi 0 \leq \delta , \delta < \xi \leq A0. We have (3.28) with C2 replaced by C2 + C \prime 

2.
Similarly as (3.29), (3.31), and (4.34), we get

D(\xi , t) \leq C \prime 
1\omega (\xi , \xi 0) + C1(\omega (2\xi , \xi 0) - 2\omega (\xi , \xi 0))

\int \xi 

\xi 
2

m(\eta  - 1)

\eta 
d\eta 

\leq C \prime 
1\omega (\xi , \xi 0) - 

C1\~c

8
(1 - \sigma )m(\xi  - 1)\omega (\xi , \xi 0) \leq  - C1\~c

16
(1 - \sigma )m(\xi  - 1)\omega (\xi , \xi 0),

where the last inequality is ensured by A0 \leq (C1\~cm(1)(1 - \sigma )
16C\prime 

1
)

1
1 - \sigma . Thus in this case we

deduce (4.25) under (slightly modified) (3.33).
Therefore, gathering the above results concludes (4.25) at all cases and thus The-

orem 1.2 is followed.

5. Appendix.

Justification of the statement in Remark 1.5. By using the standard Bony's para-
differential calculus and Lemma 2.3, we first can prove the local well-posedness result
that there exists a time T > 0 depending only on \| \theta 0\| Hs and d such that (1.1)--
(1.2) admits a uniquely local smooth solution \theta \in C([0, T [;Hs(\BbbR d))\cap C\infty (]0, T [\times \BbbR d).
Moreover, let T \ast be the maximal existence time of this solution; then by Lemma 2.5
and the Calder\'on--Zygmund theorem, we necessarily get that

if T \ast <\infty \Rightarrow \| \theta \| L\infty ([0,T\ast [; \.C\beta (\BbbR d)) = \infty \forall \beta \in ]1 - \alpha + \sigma , 1[.(5.1)
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Next we prove that the maximal lifespan solution \theta (t, x) on the time period [0, T \ast [
strictly preserves the MOC \omega (\xi ) given by (4.29) with \alpha \in ]0, 1], \sigma \in [0, \alpha [, \delta > 0,
0 < \gamma < \kappa < 1, which implies the desired uniform \beta -H\"older estimate of \theta and further
concludes the statement concerned.

Similarly as the deduction around (3.2), \omega (\xi ) is a MOC satisfying the needing

properties, and the mapping \xi \mapsto \rightarrow \omega (\xi )
\xi \beta 

for every \xi > 0 is nonincreasing.

Then we prove that under the assumption (1.23), the MOC (4.29) with fixed
\kappa , \gamma > 0 can be obeyed by the data \theta 0 for \delta small enough. For this purpose, noting
that | \theta 0(x)  - \theta 0(y)| \leq 2\| \theta 0\| L\infty , and | \theta 0(x)  - \theta 0(y)| \leq \| \theta 0\| \.C\beta | x  - y| \beta , it suffices to
prove

min
\bigl\{ 
2\| \theta 0\| L\infty , \| \theta 0\| \.C\beta \xi 

\beta 
\bigr\} 
< \omega (\xi ).(5.2)

Denote by a0 := ( 2\| \theta 0\| L\infty 

\| \theta 0\| \.C\beta 
)1/\beta , and if \xi \geq a0, then as long as

\omega (a0) > 2\| \theta 0\| L\infty ,(5.3)

we have that (5.2) holds for all \xi \geq a0, while if \xi \leq a0, by virtue of (5.3) and the

fact \omega (\xi )
\xi \beta 

\geq \omega (a0)

a\beta 
0

which is deduced from (3.5), we also obtain (5.2), as the following

deduction shows:

\| \theta 0\| \.C\beta \xi 
\beta \leq \| \theta 0\| \.C\beta 

a\beta 0
\omega (a0)

\omega (\xi ) \leq 2\| \theta 0\| L\infty 

\omega (a0)
\omega (\xi ) < \omega (\xi ).

Now we prove that for every \theta 0, the condition (5.3) can be guaranteed by the as-
sumption (1.23). Indeed, without loss of generality we assume that a0 \geq \delta ; then we
get

\omega (a0) \geq \gamma 

\int a0

\delta 

m(\eta  - 1)d\eta \rightarrow \infty as \delta \rightarrow 0+,(5.4)

hence (5.3) is ensured for \delta sufficiently small depending on \gamma and \| \theta 0\| \.C\beta \cap L\infty .
Recalling that B0 is the bound of \| \theta (\cdot , t)\| L\infty 

x
given by (2.13)--(2.14), and by letting

b0 \in ]\delta , c02 ] be a constant chosen later, we use (1.23) to deduce

\omega (b0) \geq \gamma 

\int b0

\delta 

m(\eta  - 1)d\eta > 2B0,(5.5)

provided that \delta is sufficiently small. Thus according to Proposition 2.7, it suffices to
show that for all 0 < t < T \ast and all 0 < \xi \leq b0,

\Omega (\xi , t)\omega \prime (\xi ) +D(\xi , t) < 0,(5.6)

where D(\xi , t) and \Omega (\xi , t) (by Lemmas 2.8 and 2.9) are respectively given by (4.26)
and (4.27) with \{ \omega (\cdot ), b0\} in place of \{ \omega (\cdot , \xi 0), A0\} .

In a similar way as the proof of (4.25) at Cases 5--6 and the proof of (3.21)
(noting that b0 plays the same role as A0 in showing (4.25)), we find that by set-

ting b0 = min\{ c0
2 , (

C1m(1)\~c2\beta (\alpha  - \sigma )
16C\prime 

1
)1/(\alpha  - \sigma )\} , and for \kappa , \gamma fixed constants satisfying

(3.33) (up to pure numbers and C2 replaced by C2 + C \prime 
2), and for \delta > 0 sufficiently

small constant satisfying (5.4)--(5.5), we conclude (5.6) at all the considered cases.
Hence, the statement concerned on the global well-posedness result for (1.1)--(1.2) is
justified.
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