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In this paper we consider the following modified quasi-geostrophic
equation

∂tθ + u · ∇θ + ν|D|αθ = 0, u = |D|α−1 R⊥θ, x ∈ R2

with ν > 0 and α ∈ ]0,1[ ∪ ]1,2[. When α ∈ ]0,1[, the equation
was firstly introduced by Constantin, Iyer and Wu (2008) in [11].
Here, by using the modulus of continuity method, we prove the
global well-posedness of the system. As a byproduct, we also show
that for every α ∈ ]0,2[, the Lipschitz norm of the solution has
a uniform exponential upper bound.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we focus on the following modified 2D dissipative quasi-geostrophic equation{
∂tθ + u · ∇θ + ν|D|αθ = 0,

u = |D|α−1 R⊥θ, θ |t=0 = θ0(x)
(1.1)

with ν > 0, α ∈ ]0,1[ ∪ ]1,2[, |D|β = (−�)
β
2 is defined via the Fourier transform

|̂D|β f (ζ ) = |ζ |β f̂ (ζ )
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and

R⊥θ = (−R2θ, R1θ) := |D|−1(∂2θ,−∂1θ)

where Ri (i = 1,2) are the usual Riesz transforms (cf. [16]).
When α = 0, this model describes the evolution of the vorticity of a two-dimensional damped in-

viscid incompressible fluid. The case of α = 1 just is the critical dissipative quasi-geostrophic equation
which arises in the geostrophic study of rotating fluids (cf. [8]). Although when α = 2 the flow term
in (1.1) vanishes, we can still view the model introduced in [17] as a meaningful generalization of this
endpoint case, where the model is derived from the study of the full magnetohydrodynamic equations
and the divergence-free three-dimensional velocity u satisfies u = M[θ] with M a nonlocal differential
operator of order 1. We also refer to [3–5] for other related generalized quasi-geostrophic models.

For convenience, we here recall the well-known 2D quasi-geostrophic equation

(QG)α

{
∂tθ + u · ∇θ + ν|D|αθ = 0,

u = R⊥θ, θ(0, x) = θ0(x),

where ν � 0 and 0 � α � 2. When ν > 0, α ∈ ]0,1[ ∪ ]1,2[, we observe that the system (1.1) is
almost the same with the quasi-geostrophic equation, and its only difference lies on introducing an
extra |D|α−1 in the definition of u. When α ∈ ]0,1[, |D|α−1 is a negative derivative operator and
always plays a good role; while when α ∈ ]1,2[, |D|α−1 is a positive derivative operator and always
takes a bad part. Moreover, corresponding to the dissipation operator |D|α in the equation (QG)α , this
additional operator makes it be a new balanced state: the flow term u · ∇θ scales the same way as
the dissipative term |D|αθ , i.e., Eq. (1.1) is scaling invariant under the transformation

θ(t, x) �→ θλ(t, x) := θ
(
λαt, λx

)
, with λ > 0.

We note that in the sense of scaling invariance, the system (1.1) is similar to the critical quasi-
geostrophic equation (QG)1.

Recently, when α ∈ ]0,1[, Constantin, Iyer and Wu in [11] introduced this modified quasi-
geostrophic equation and proved the global regularity of Leray–Hopf weak solutions to the system
with L2 initial data. Basically, they use the method from Caffarelli–Vasseur [2] which deals with the
same issue of 2D critical quasi-geostrophic equation (QG)1. We also remark that partially because
of its simple form and its internal analogy with the 3D Euler/Navier–Stokes equations, the quasi-
geostrophic equation (QG)α , especially the critical one (QG)1, has been extensively considered (see
e.g. [1–3,7–10,12,14,18,23] and references therein). While global regularity of Navier–Stokes equations
remains an outstanding challenge in mathematical physics, the global issue of the 2D critical dissi-
pative quasi-geostrophic equation has been in a satisfactory state. In [10], Constantin, Cordoba and
Wu showed the global well-posedness of the classical solution under the condition that the zero-
dimensional L∞ norm of the data is small. This smallness assumption was firstly removed by Kiselev,
Nazarov and Volberg in [18], where they obtained the global well-posedness for the arbitrary peri-
odic smooth initial data by using a modulus of continuity method. Almost at the same time, Caffarelli
and Vasseur in [2] resolved the problem to establish the global regularity of weak solutions asso-
ciated with L2 initial data by exploiting the De Giorgi method. We also cite the work of Abidi and
Hmidi [1] and Dong and Du [14], as extended work of [18], in which the authors proved the global
well-posedness with the initial data belonging to the (critical) space Ḃ0

∞,1 and H1 respectively with-
out the additional periodic assumption.

The main goal in this paper is to prove the global well-posedness of the system (1.1) with α ∈
]0,1[ ∪ ]1,2[. In contrast with the work of [11], we here basically follow the pathway of [18] to
obtain the global results by constructing suitable moduli of continuity. Precisely, we have

Theorem 1.1. Let ν > 0, α ∈ ]0,2[ and θ0 ∈ Hm(R2), m > 1, then there exists a unique global solution

θ ∈ C
([0,∞[; Hm) ∩ L2

loc

([0,∞[; Hm+ α
2
) ∩ C∞(]0,∞[ × R2)
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to the modified quasi-geostrophic equation (1.1). Moreover, if θ0 also satisfies ∇θ0 ∈ L∞(R2), we get the uni-
form exponential bound of the Lipschitz norm

sup
t�0

∥∥∇θ(t)
∥∥

L∞ � C‖∇θ0‖L∞ exp
{

C‖θ0‖L∞
}
, (1.2)

where C is an absolute constant depending only on α, ν .

The proof is divided into two parts. First through applying the energy method and para-differential
techniques, we obtain the local existence results (Proposition 4.1) and further build the blowup crite-
rion (Proposition 4.2). Then we adopt the nonlocal maximum principle method of Kiselev–Nazarov–
Volberg and finally manage to remove all the possible breakdown scenarios by constructing suitable
moduli of continuity.

Remark 1.1. The main new ingredient in the global existence part is a suitable modulus of continuity
with the explicit formula (5.12). For every α ∈ ]0,2[, such MOC has a logarithmic growth near infinity,
and this further yields the uniform exponential bound of the Lipschitz norm of the solution. In par-
ticular, when α = 1, (1.2) is an improvement of the corresponding bound in [20], where it is a double
exponential type.

The paper is organized as follows. In Section 2, we present some preparatory results. In Section 3,
some facts about modulus of continuity are discussed. In Section 4, we obtain the local results and
establish blowup criterion. Finally, we prove the global existence in Section 5.

2. Preliminaries

In this preparatory section, we present some notations, give the definitions and some related re-
sults of the Sobolev spaces and Besov spaces, and we also provide some necessary classical estimates.

We begin by introducing some notations.

� Throughout this paper C stands for a constant which may be different from line to line. We
sometimes use A � B instead of A � C B , and use A �β,γ ,... B instead of A � C(β,γ , . . .)B with
C(β,γ , . . .) a constant depending on β,γ , . . . . For A ≈ B we mean A � B � A.

� Denote by D(Rn) the space of test functions, by S(Rn) the Schwartz space of rapidly decreasing
smooth functions, by S ′(Rn) the space of tempered distributions, by S ′(Rn)/P (Rn) the quotient
space of tempered distributions which modulo polynomials.

� F f or f̂ denotes the Fourier transform, that is F f (ζ ) = f̂ (ζ ) = ∫
Rn e−ix·ζ f (x)dx, while F −1 f

the inverse Fourier transform, namely, F −1 f (x) = (2π)−n
∫

Rn eix·ζ f (ζ )dζ .
� Denote by [γ ] the integer part of the real number γ , and by N! the factorial of the positive

integer N .

Now we give the definition of L2-based Sobolev space. For s ∈ R, the inhomogeneous Sobolev
space

Hs :=
{

f ∈ S ′(Rn); ‖ f ‖2
Hs :=

∫
Rn

(
1 + |ζ |2)s∣∣ f̂ (ζ )

∣∣2
dζ < ∞

}
.

Also one can define the corresponding homogeneous space:

Ḣ s :=
{

f ∈ S ′(Rn)/P
(
Rn); ‖ f ‖2

Ḣ s :=
∫

n

|ζ |2s
∣∣ f̂ (ζ )

∣∣2
dζ < ∞

}
.

R
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To define Besov space we need the following dyadic partition of unity (see e.g. [6]). Choose two
nonnegative radial functions χ , ϕ ∈ D(Rn) be supported respectively in the ball {ζ ∈ Rn: |ζ | � 4

3 } and

the shell {ζ ∈ Rn: 3
4 � |ζ | � 8

3 } such that

χ(ζ ) +
∑
j�0

ϕ
(
2− jζ

) = 1, ∀ζ ∈ Rn;
∑
j∈Z

ϕ
(
2− jζ

) = 1, ∀ζ �= 0.

For all f ∈ S ′(Rn) we define the nonhomogeneous Littlewood–Paley operators

�−1 f := χ(D) f ; � j f := ϕ
(
2− j D

)
f , S j f :=

∑
−1�k� j−1

�k f , ∀ j ∈ N.

And the homogeneous Littlewood–Paley operators can be defined as follows

�̇ j f := ϕ
(
2− j D

)
f ; Ṡ j f :=

∑
k∈Z,k� j−1

�̇k f , ∀ j ∈ Z.

Now we introduce the definition of Besov spaces. Let (p, r) ∈ [1,∞]2, s ∈ R, the nonhomogeneous
Besov space

Bs
p,r := {

f ∈ S ′(Rn); ‖ f ‖Bs
p,r

:= ∥∥{
2 js‖� j f ‖L p

}
j�−1

∥∥
�r < ∞}

,

and the homogeneous space

Ḃs
p,r := {

f ∈ S ′(Rn)/P
(
Rn); ‖ f ‖Ḃs

p,r
:= ∥∥{

2 js‖�̇ j f ‖L p
}

j∈Z

∥∥
�r(Z)

< ∞}
.

We point out that for all s ∈ R, Bs
2,2 = Hs and Ḃs

2,2 = Ḣ s .
Next we introduce two kinds of space–time Besov spaces. The first one is the classical space–time

Besov space Lρ([0, T ], Bs
p,r), abbreviated by Lρ

T Bs
p,r , which is the set of tempered distribution f such

that

‖ f ‖Lρ
T Bs

p,r
:= ∥∥∥∥{

2 js‖� j f ‖L p
}

j�−1

∥∥
�r

∥∥
Lρ([0,T ]) < ∞.

The second one is the Chemin–Lerner’s mixed space–time Besov space L̃ρ([0, T ], Bs
p,r), abbreviated

by L̃ρ
T Bs

p,r , which is the set of tempered distribution f satisfying

‖ f ‖̃Lρ
T Bs

p,r
:= ∥∥{

2qs‖�q f ‖Lρ
T L p

}
q�−1

∥∥
�r < ∞.

Due to Minkowiski’s inequality, we immediately obtain

Lρ
T Bs

p,r ↪→ L̃ρ
T Bs

p,r, if r � ρ and L̃ρ
T Bs

p,r ↪→ Lρ
T Bs

p,r, if ρ � r.

These can similarly extend to the homogeneous one Lρ
T Ḃs

p,r and L̃ρ
T Ḃs

p,r .
Bernstein’s inequality is fundamental in the analysis involving Besov spaces (see [6]).
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Lemma 2.1. Let f ∈ La, 1 � a � b � ∞. Then for every (k,q) ∈ N2 there exists a constant C > 0 such that

sup
|α|=k

∥∥∂α Sq f
∥∥

Lb � C2q(k+n( 1
a − 1

b ))‖Sq f ‖La ,

C−12qk‖�q f ‖La � sup
|α|=k

∥∥∂α�q f
∥∥

La � C2qk‖�q f ‖La .

Finally we state the maximum principle for the transport-diffusion equation (cf. [12]).

Proposition 2.2. Let u be a smooth divergence-free vector field and f be a smooth function. Assume that θ is
the smooth solution of the equation

∂tθ + u · ∇θ + ν|D|αθ = f , div u = 0,

with initial datum θ0 and ν � 0, 0 � α � 2, then for every p ∈ [1,∞] we have

∥∥θ(t)
∥∥

L p � ‖θ0‖L p +
t∫

0

∥∥ f (τ )
∥∥

L p dτ . (2.1)

3. Moduli of continuity

In this section, we discuss the moduli of continuity which will play a key role in our global exis-
tence part.

We suppose that ω is a modulus of continuity (MOC), i.e., a continuous, increasing, concave
function on [0,∞) such that ω(0) = 0. We say that a function f : Rn → Rm has the modulus of
continuity ω if | f (x) − f (y)| � ω(|x − y|) for all x, y ∈ Rn , and that f has the strict modulus of
continuity if the inequality is strict for x �= y.

Next we introduce the pseudo-differential operators Rα, j which may be termed as the modified
Riesz transforms.

Proposition 3.1. Let α ∈ ]0,2[, 1 � j � n, n � 2, then for every f ∈ S(Rn),

Rα, j f (x) = |D|α−1 R j f (x) = cα,np.v.

∫
Rn

y j

|y|n+α
f (x − y)dy, (3.1)

where cα,n is the normalization constant such that

R̂α, j f (ζ ) = −i
ζ j

|ζ |2−α
f̂ (ζ ).

The proof is placed in Appendix A. Also note that when α ∈ ]0,1[, we do not need to introduce
the principle value of integral expression in the formula (3.1).

The pseudo-differential operators like the modified Riesz transforms do not preserve the moduli
of continuity generally, but they also do not destroy them too much either. Precisely, similarly as the
lemma in [18], we have

Lemma 3.2. If the function θ has the modulus of continuity ω, then u = (−Rα,2θ, Rα,1θ) (α ∈ ]0,2[) has
the modulus of continuity
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Ω(ξ) = Aα

( ξ∫
0

ω(η)

ηα
dη + ξ

∞∫
ξ

ω(η)

η1+α
dη

)
(3.2)

with some absolute constant Aα > 0 that may depend on α.

Proof. The modified Riesz transforms are pseudo-differential operators with kernels K (x) = S(x′)
|x|n−1+α

(in our special case, n = 2 and S(x′) = x j
|x| , j = 1,2), where x′ = x

|x| ∈ Sn−1. The function S ∈ C1(Sn−1)

and
∫

Sn−1 S(x′)dσ(x′) = 0. Assume that the function f : Rn → Rm has some modulus of continuity ω,
that is | f (x) − f (y)| � ω(|x − y|) for all x, y ∈ Rn . Then take any x, y with |x − y| = ξ , and consider
the difference ∫

K (x − t) f (t)dt −
∫

K (y − t) f (t)dt. (3.3)

First due to the cancelation property of S we have

∣∣∣∣ ∫
|x−t|�2ξ

K (x − t) f (t)dt

∣∣∣∣ =
∣∣∣∣ ∫
|x−t|�2ξ

K (x − t)
(

f (t) − f (x)
)

dt

∣∣∣∣ � C

2ξ∫
0

ω(r)

rα
dr.

Since ω is concave, we obtain

2ξ∫
0

ω(r)

rα
dr � 22−α

ξ∫
0

ω(r)

rα
dr. (3.4)

A similar estimate holds for the second integral in (3.3). Next, set z = x+y
2 , then∣∣∣∣ ∫

|x−t|�2ξ

K (x − t) f (t)dt −
∫

|y−t|�2ξ

K (y − t) f (t)dt

∣∣∣∣
=

∣∣∣∣ ∫
|x−t|�2ξ

K (x − t)
(

f (t) − f (z)
)

dt −
∫

|y−t|�2ξ

K (y − t)
(

f (t) − f (z)
)

dt

∣∣∣∣
�

∫
|z−t|�3ξ

∣∣K (x − t) − K (y − t)
∣∣∣∣ f (t) − f (z)

∣∣dt

+
∫

3ξ
2 �|z−t|�3ξ

(∣∣K (x − t)
∣∣ + ∣∣K (y − t)

∣∣)∣∣ f (t) − f (z)
∣∣dt

= I1 + I2.

To estimate the first integral, we use the smoothness condition of S to get

∣∣K (x − t) − K (y − t)
∣∣ � C

|x − y|
|z − t|n+α

when |z − t| � 3ξ,

thus
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I1 � Cξ

∞∫
3ξ

ω(r)

r1+α
dr � C3−αξ

∞∫
ξ

ω(3r)

r1+α
dr � Cξ

∞∫
ξ

ω(r)

r1+α
dr.

For the second integral, using the concavity of ω and (3.4), we have

I2 � 2Cω(3ξ)ξ1−α

∫
ξ�|x−t|� 7

2 ξ

1

|x − t|n dt

� Cω(ξ)ξ1−α � C2α

2ξ∫
ξ

ω(r)

rα
dr � C

ξ∫
0

ω(r)

rα
dr. �

Now we consider a special action of the fractional differential operators |D|α (α ∈ ]0,2[) on the
function having modulus of continuity. Precisely,

Lemma 3.3. If the function θ : R2 → R has modulus of continuity ω, and especially satisfies θ(T∗, x) −
θ(T∗, y) = ω(ξ) at some T∗ > 0 and x, y ∈ R2 with |x − y| = ξ > 0, then we have

[(−|D|α)
θ
]
(x) − [(−|D|α)

θ
]
(y) � Bα

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη

+ Bα

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη (3.5)

where Bα > 0 is an absolute constant.

Remark 3.1. In fact this result has occurred in [24,19], as a generalization of the one in [18], thus we
here omit the proof. Also note that due to concavity of ω, both terms on the right-hand side of (3.5)
are strictly negative.

4. Local existence and blowup criterion

Our purpose in this section is to prove the following local result:

Proposition 4.1. Let ν > 0, 0 < α < 2 and the initial data θ0 ∈ Hm, m > 1. Then there exists a positive T
depending only on α, ν and ‖θ0‖Hm such that the modified quasi-geostrophic equation (1.1) generates a unique
solution θ ∈ C([0, T ], Hm) ∩ L2([0, T ], Hm+ α

2 ). Moreover we have tγ θ ∈ L∞([0, T ], Hm+γα) for all γ � 0,
which implies θ ∈ C∞(]0, T ] × R2).

We further obtain the following criterion for the breakdown of smooth solutions:

Proposition 4.2. Let T ∗ be the maximal existence time of θ in C([0, T ∗[, Hm) ∩ L2([0, T ∗[, Hm+ α
2 ), m > 1. If

T ∗ < ∞ then we necessarily have

T ∗∫ ∥∥θ(t)
∥∥2

Ḃ
α
2∞,∞

dt = ∞,
0
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and

T ∗∫
0

∥∥∇θ(t)
∥∥α

L∞ dt = ∞. (4.1)

The method of proof for Proposition 4.1 is to regularize Eq. (1.1) by the standard Friedrich method,
and then pass to the limit for the regularization parameter.

Denote the frequency cutoff operator Jε : L2(R2) → Hm(R2), ε > 0, m � 0 by

(Jε f )(x) = F −1( f̂ (·)1B1/ε (·)
)
(x) = (2π)−2

∫
R2

eix·ζ f̂ (ζ )1{|·|� 1
ε }(ζ )dζ.

The following properties of Jε are obvious.

Lemma 4.3. Let Jε be the projection operator defined as above, m ∈ R+ , k ∈ R+ , δ ∈ [0,m[. Then

(i) for all f ∈ Hm, limε→0 ‖Jε f − f ‖Hm = 0,
(ii) for all f ∈ Hm, |D|m(Jε f ) = Jε(|D|m f ) and � j(Jε f ) = Jε(� j f ),

(iii) for all f ∈ Hm, ‖Jε f − f ‖Hm−δ � εδ‖ f ‖Hm and ‖Jε f ‖Hm+k � 1
εk ‖ f ‖Hm .

Then we regularize the modified quasi-geostrophic equation (1.1) as follows{
θε

t + Jε

((
Jεuε

) · ∇(
Jεθ

ε
)) + νJε |D|αθε = 0,

uε = |D|α−1 R⊥θε, θε
∣∣
t=0 = Jεθ0.

(4.2)

For this approximate system, we have

Proposition 4.4. Let the initial data θ0 ∈ L2 . Then for any ε > 0 there exists a unique global solution θε ∈
C∞([0,∞[, Jε L2) to the regularized equation (4.2).

Proof. We can write (4.2) as follows

d

dt
θε = Fε

(
θε

)
, θε

∣∣
t=0 = Jεθ0, (4.3)

with

Fε

(
θε

) = −Jε

((
Jεuε

) · ∇(
Jεθ

ε
)) − νJε |D|αθε.

For every ε > 0, we can show that (cf. [21])∥∥Fε( f )
∥∥

L2 �ε,ν ‖ f ‖L2 + ‖ f ‖2
L2 ,

and ∥∥Fε( f1, f2)
∥∥

L2 �ε,ν,‖ f i‖L2 ‖ f1 − f2‖L2 ,

where f , f1, f2 are all in L2. This means that Fε maps L2 into L2 and Fε is locally Lipschitz contin-
uous on L2. Hence the Cauchy–Lipschitz theorem ensures that for every θ0 ∈ L2, there exists a unique
solution θε ∈ C 1([0, Tε [, L2) with Tε > 0 is the maximal existence time.
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Moreover, using the L2 energy method, form div uε = 0 and Jεθ
ε ∈ C 1([0, Tε [, Jε L2), we get

1

2

d

dt

∥∥θε
∥∥2

L2 + ν
∥∥|D|α/2 Jεθ

ε
∥∥2

L2 = 0.

Thus

sup
t∈[0,Tε [

∥∥θε(t)
∥∥

L2 � ‖Jεθ0‖L2 � ‖θ0‖L2 . (4.4)

Then the classical continuation criterion guarantees Tε = ∞.
Further, since Jεθ

ε is also a solution of (4.2), from the uniqueness we find θε = Jεθ
ε . �

Remark 4.1. From the proof we know θε = Jεθ
ε , thus (4.2) will be written as follows{

θε
t + Jε

(
uε · ∇θε

) + ν|D|αθε = 0,

uε = |D|α−1 R⊥θε, θε
∣∣
t=0 = Jεθ0.

(4.5)

In the sequel we shall instead base on this form.

Next, we prove the main result in this section.

Proof of Proposition 4.1. Step 1: Uniform bounds.
We claim that: the regularized solution θε ∈ C∞(R+ × R2) to Eq. (4.2) satisfies

∥∥θε(t)
∥∥2

Bm
2,2

+ ν
∥∥|D| α

2 θε
∥∥2

L2
T Bm

2,2

� ‖θ0‖2
Bm

2,2
+ Cα

ν

t∫
0

(∥∥θε(τ )
∥∥2

Ḃ
α
2∞,∞

+ ∥∥θε(τ )
∥∥2

Ḣ
α
2

)∥∥θε(τ )
∥∥2

Bm
2,2

dτ . (4.6)

Indeed, for every q ∈ N, applying dyadic operator �q to both sides of the regularized equation (4.5)
yields

∂t�qθ
ε + Jε

((
Sq+1uε

) · ∇�qθ
ε
) + ν|D|α�qθ

ε = Jε

(
Fq

(
uε, θε

))
,

where

Fq
(
uε, θε

) = (
Sq+1uε

) · ∇�qθ
ε − �q

(
uε · ∇θε

)
.

Taking the L2 inner product in the above equality with �qθ
ε and using the divergence-free property,

we have

1

2

d

dt

∥∥�qθ
ε
∥∥2

L2 + ν
∥∥|D| α

2 �qθ
ε
∥∥2

L2 �
∣∣∣∣ ∫
R2

(
Fq

(
uε, θε

))
(x)Jε�qθ

ε(x)dx

∣∣∣∣
� 2−q α

2
∥∥Fq

(
uε, θε

)∥∥
L2 2q α

2
∥∥Jε�qθ

ε
∥∥

L2

� C02−q α
2
∥∥Fq

(
uε, θε

)∥∥
2

∥∥|D| α
2 �qθ

ε
∥∥

2 .
L L



C. Miao, L. Xue / J. Differential Equations 252 (2012) 792–818 801
Then by virtue of the Young inequality, we deduce

1

2

d

dt

∥∥�qθ
ε
∥∥2

L2 + ν

2

∥∥|D| α
2 �qθ

ε
∥∥2

L2 � C0

ν

(
2−q α

2
∥∥Fq

(
uε, θε

)∥∥
L2

)2
.

Integrating in time leads to

∥∥�qθ
ε(t)

∥∥2
L2 + ν

∥∥|D| α
2 �qθ

ε
∥∥2

L2
t L2 � ‖�q Jεθ0‖2

L2 + C0

ν

∫ (
2−q α

2
∥∥Fq

(
uε, θε

)
(τ )

∥∥
L2

)2
dτ . (4.7)

From the inequality (A.2) in Appendix A, we know that

2−q α
2
∥∥Fq

(
uε, θε

)∥∥
L2 �α

∥∥θε
∥∥

Ḃ
α
2∞,∞

( ∑
q′�q−4

2(q−q′)(1− α
2 )

∥∥�q′θε
∥∥

L2 +
∑

|q′−q|�4

∥∥�q′θε
∥∥

L2

)
. (4.8)

Plunging the estimate (4.8) into inequality (4.7), then multiplying both sides by 22qm (m > 1) and
summing up over q ∈ N, we obtain∑

q∈N

22qm
∥∥�qθ

ε
∥∥2

L2 + ν
∑
q∈N

22qm
∥∥|D| α

2 �qθ
ε
∥∥2

L2
t L2

�
∑
q∈N

22qm‖�qθ0‖2
L2 + Cα

ν

t∫
0

∥∥θε(τ )
∥∥2

Ḃ
α
2∞,∞

∥∥θε(τ )
∥∥2

Bm
2,2

dτ . (4.9)

On the other hand, we apply the low frequency operator �−1 to the regularized system (4.2) to get

∂t�−1θ
ε + ν|D|α�−1θ

ε = −Jε�−1
(
uε · ∇θε

)
.

Multiplying both sides by �−1θ
ε and integrating in the spatial variable, we obtain

1

2

d

dt

∥∥�−1θ
ε
∥∥2

L2 + ν
∥∥|D| α

2 �−1θ
ε
∥∥2

L2 �
∣∣∣∣ ∫
R2

div�−1
(
uεθε

)
(x)�−1 Jεθ

ε(x)dx

∣∣∣∣
�

∥∥�−1
(
uεθε

)∥∥
Ḣ1− α

2

∥∥Jε |D| α
2 �−1θ

ε
∥∥

L2

� C0

ν

∥∥�−1
(
uεθε

)∥∥2
L2 + ν

2

∥∥|D| α
2 �−1θ

ε
∥∥2

L2 .

Using the Bernstein inequality, the Sobolev embedding Ḣ1− α
2 ↪→ L

4
α (α ∈ ]0,2[) and the Hölder in-

equality, we see that∥∥�−1
(
uεθε

)∥∥
L2 �

∥∥�−1
(
uεθε

)∥∥
L

4
α+2

�
∥∥uε

∥∥
L

4
α

∥∥θε
∥∥

L2 �
∥∥uε

∥∥
Ḣ1− α

2

∥∥θε
∥∥

L2 �
∥∥θε

∥∥
Ḣ

α
2

∥∥θε
∥∥

L2 ,

thus from the energy estimate (4.4) we have

∥∥�−1θ
ε(t)

∥∥2
L2 + ν

∥∥|D| α
2 �−1θ

ε
∥∥2

L2
t L2 � ‖�−1θ0‖2

L2 + Cα

ν

t∫
0

∥∥θε(τ )
∥∥2

Ḣ
α
2

∥∥θε(τ )
∥∥2

Bm
2,2

dτ . (4.10)

Multiplying (4.10) by 2−2m and combining it with (4.9) leads to (4.6).
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Next, we prove that the solution family (θε) is uniformly bounded in Hm . First denote by

Z(t) := ∥∥θε(τ )
∥∥2

L∞
t Bm

2,2
+ ν

t∫
0

∥∥|D| α
2 θε(τ )

∥∥2
Bm

2,2
dτ ,

then from Bm
2,2 ↪→ Ḃm

2,2, m > 1, and by interpolation and Besov embedding, we get

∥∥θε
∥∥

L pm
t Ḃ

α
2∞,∞

�
∥∥θε

∥∥
L∞

t Bm−1∞,∞∩L2
t Ḃ

m−1+ α
2∞,∞

� Z(t)
1
2 ,

with pm ∈ ]2,∞] defined by

pm :=
{

α
1+α/2−m , m ∈ ]1,1 + α

2 [,
∞, m ∈ [1 + α

2 ,∞[.

Furthermore, from (4.6) and the upper estimate, we find

Z(t) � ‖θ0‖2
Bm

2,2
+ Cα

ν

t∫
0

(∥∥θε(τ )
∥∥2

Ḃ
α
2∞,∞

+ ∥∥θε(τ )
∥∥2

Ḣ
α
2

)
Z(τ )dτ

� ‖θ0‖2
Bm

2,2
+ Cα,νt1− 2

pm Z(t)2 + Cα,ν

t∫
0

∥∥θε(τ )
∥∥2

Ḣ
α
2

Z(τ )dτ . (4.11)

By the continuity method, we infer that for some T > 0 satisfying

Cα,ν T 1− 2
pm 2‖θ0‖2

Bm
2,2

exp
{

2Cα,ν‖θ0‖2
L2

}
<

1

2
⇐⇒ T <

(exp{−2Cα,ν‖θ0‖2
L2}

4Cα,ν‖θ0‖2
Bm

2,2

) pm
pm−2

,

we have

Z(t) � 2‖θ0‖2
Bm

2,2
exp

{
2Cα,ν‖θ0‖2

L2

}
, ∀t ∈ [0, T ].

From the fact that ‖ · ‖2
Bm

2,2
/C0 � ‖ · ‖2

Hm � C0‖ · ‖2
Bm

2,2
with C0 a universal number, we get that for every

t ∈ [0, T ],
∥∥θε

∥∥2
L∞

T Hm + ν
∥∥|D| α

2 θε
∥∥2

L2
T Hm � 2C2

0‖θ0‖2
Hm exp

{
2Cα,ν‖θ0‖2

L2

}
. (4.12)

This clearly implies that the family (θε) is uniformly bounded in C([0, T ], Hm) ∩ L2([0, T ]; Hm+ α
2 ),

m > 1, with respect to ε .

Step 2: Strong convergence.
We firstly claim that the solutions (θε) to Eq. (4.5) strongly converge in C([0, T ], L2(R2)) ∩

L2([0, T ]; Ḣ
α
2 (R2)). Indeed, for every 0 < ε̃ < ε , we assume that θε and θ ε̃ are two approximate

solutions, then from a direct calculation
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(
θε

t − θ ε̃
t , θε − θ ε̃

) = −ν
(|D|αθε − |D|αθ ε̃ , θε − θ ε̃

) − ((
Jε

(
uε · ∇θε

) − Jε̃

(
uε̃ · ∇θ ε̃

))
, θε − θ ε̃

)
,

we have

1

2

d

dt

∥∥θε(t) − θ ε̃(t)
∥∥2

L2 + ν
∥∥|D| α

2
(
θε − θ ε̃

)
(t)

∥∥2
L2

= (
(Jε − Jε̃ )

(
uε · ∇θε

)
, θε − θ ε̃

) + (
Jε̃

((
uε − uε̃

) · ∇θε
)
, θε − θ ε̃

)
+ (

Jε̃

(
uε̃ · ∇(

θε − θ ε̃
))

, θε − θ ε̃
)

:= II1 + II2 + II3.

For II1, by means of Lemma 4.3, divergence-free condition and the following simple inequality∥∥uε
∥∥

Ḣ1−α/2 = ∥∥|D|α−1 R⊥θε
∥∥

Ḣ2−α/2 �
∥∥θε

∥∥
Ḣ

α
2

�
∥∥θε

∥∥
Hm � M

1
2 ,

with M > 0 the uniform upper bound from (4.12), we have

|II1| �
∥∥(Jε − Jε̃ )

(
uε · ∇θε

)∥∥
Ḣ− α

2

∥∥|D| α
2
(
θε − θ ε̃

)∥∥
L2

� εαCν

∥∥uε · ∇θε
∥∥2

L2 + ν

4

∥∥|D| α
2
(
θε − θ ε̃

)∥∥2
L2

� εαCα,ν

∥∥uε
∥∥2

Ḣ1− α
2

∥∥∇θε
∥∥2

Ḣ
α
2

+ ν

4

∥∥|D| α
2
(
θε − θ ε̃

)∥∥2
L2

� εαCα,ν M
∥∥∇θε

∥∥2

Ḣ
α
2

+ ν

4

∥∥|D| α
2
(
θε − θ ε̃

)∥∥2
L2 ,

where in the second line we have used the classical product estimate (cf. [15]) that for every s, t < 1
and s + t > 0,

‖ f g‖Ḣ s+t−1 �s,t ‖ f ‖Ḣ s‖g‖Ḣt . (4.13)

For II2, using the Young inequality and (4.13) again, we directly obtain

|II2| �
∥∥(

uε − uε̃
) · ∇θε

∥∥
Ḣ− α

2

∥∥|D| α
2
(
θε − θ ε̃

)∥∥
L2

� Cα,ν

∥∥|D|α−1 R⊥(
θε − θ ε̃

)∥∥2
Ḣ1−α

∥∥∇θε
∥∥2

Ḣ
α
2

+ ν

4

∥∥|D| α
2
(
θε − θ ε̃

)∥∥2
L2

� Cα,ν

∥∥∇θε
∥∥2

Ḣ
α
2

∥∥θε − θ ε̃
∥∥2

L2 + ν

4

∥∥|D| α
2
(
θε − θ ε̃

)∥∥2
L2 .

For the last term, II3, from the divergence-free fact of uε̃ and Jε̃ θ
ε = Jεθ

ε = θε we get

II3 = ((
uε̃ · ∇(

θε − θ ε̃
))

, Jε̃

(
θε − θ ε̃

)) = 1

2

(
uε̃ ,∇(

θε − θ ε̃
)2) = 0.

Putting all these estimates together yields that

1

2

d

dt

∥∥θε − θ ε̃
∥∥2

L2 + ν

2

∥∥θε − θ ε̃
∥∥2

Ḣ
α
2

� εαCα,ν M
∥∥∇θε

∥∥2

Ḣ
α
2

+ Cα,ν

∥∥∇θε
∥∥2

Ḣ
α
2

∥∥θε − θ ε̃
∥∥2

L2 .

Thus the Grönwall inequality leads to the desired result:
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∥∥θε − θ ε̃
∥∥2

L∞
T L2 + ν

∥∥θε − θ ε̃
∥∥2

L2
T Ḣ

α
2

� e
Cα,ν‖|D| α

2 θε‖2
L2

T Hm (
εαCα,ν M

∥∥|D| α
2 θε

∥∥2
L2

T Hm + ∥∥θε
0 − θ ε̃

0

∥∥2
L2

)
� eCα,ν M(

εα + ∥∥θε
0 − θ ε̃

0

∥∥2
L2

)
�M,α,ν a(ε), (4.14)

where a(ε) := εα + ‖(Id − Jε)θ0‖2
L2 satisfies that a(ε) → 0 as ε → 0.

From (4.14), we deduce that the solution family (θε) is a Cauchy sequence in C([0, T ]; L2(R2)) ∩
L2([0, T ]; Ḣ

α
2 (R2)), so that it converges strongly to a function θ belonging to C([0, T ]; L2(R2)) ∩

L2([0, T ]; Ḣ
α
2 (R2)). This result combined with uniform bound of Z(t) and the interpolation inequality

in Sobolev spaces gives that for all 0 � s < m

∥∥θε − θ
∥∥

L∞
T Hs � Cs

∥∥θε − θ
∥∥1−s/m

L∞
T L2

∥∥θε − θ
∥∥s/m

L∞
T Hm

�s,M,α,ν a(ε)
1
2 (1− s

m )

and

∥∥|D| α
2
(
θε − θ

)∥∥
L2

T Hs � Cs
(∥∥|D| α

2
(
θε − θ

)∥∥1−s/m
L2

T L2

∥∥|D| α
2
(
θε − θ

)∥∥s/m
L2

T Hm

)
�s,M,α,ν a(ε)

1
2 (1− s

m ).

Hence we obtain the strong convergence in C([0, T ]; Hs(R2)) ∩ L2([0, T ]; Hs+ α
2 ) for all s < m. With

1 < s < m, this specially implies strong convergence in C([0, T ], C(R2)). Also from the equation

θε
t = −ν|D|αθε − Jε

(
uε · ∇θε

)
,

we find that θε
t strongly converges to −ν|D|αθ − u · ∇θ in L2([0, T ], L2(R2)). Since θε → θ , the

distribution limit of θε
t has to be θt . Thus θ ∈ H1([0, T ], L2(R2)) ∩ C([0, T ], C(R2)) is a solution to

the original equation (1.1). Using Fatou’s lemma, from (4.12), we also have θ ∈ L∞([0, T ], Hm(R2)) ∩
L2([0, T ], Hm+ α

2 (R2)).
Next, we show that θ ∈ C([0, T ], Hm(R2)). Indeed, from the deduction in Step 1, we can find that

the formula (4.11) remains true by replacing ‖θε‖L∞
t Bm

2,2
with ‖θε ‖̃L∞

t Bm
2,2

in the definition of Z(t).

Hence, we in fact obtain θε ∈ L̃∞([0, T ]; Bm
2,2(R

2)) uniformly in ε . Based on this fact and by a classical
process (cf. [7]), we can prove the continuity-in-time issue.

Step 3: Uniqueness.
Let θ1, θ2 ∈ L∞([0, T ], Hm(R2)) ∩ L2([0, T ]; Ḣ1+ α

2 (R2)) be two smooth solutions to the modified
quasi-geostrophic equation (1.1) with the same initial data. Denote by ui = |D|α−1 R⊥θ i , i = 1,2, δθ :=
θ1 − θ2, δu := u1 − u2, then we write the difference equation as

∂tδθ + u1 · ∇δθ + ν|D|αδθ = −δu · ∇θ2, δθ |t=0δθ0 ≡ 0.

We also use the L2 energy method, and in a similar way as treating the term II3, we obtain

1

2

d

dt

∥∥δθ(t)
∥∥2

L2 � Cα,ν

∥∥∇θ2(t)
∥∥2

Ḣ
α
2

∥∥δθ(t)
∥∥2

L2 .

Thus the Grönwall inequality ensures that
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∥∥δθ(t)
∥∥

L2 � ‖δθ0‖L2 exp
{

Cα,ν

∥∥∇θ2
∥∥2

L2
T Ḣ

α
2

} ≡ 0, ∀t ∈ [0, T ],

that is, θ1 ≡ θ2.

Step 4: Smoothing effect.
Precisely, we have that for all γ ∈ R+ and t ∈ [0, T ]∥∥tγ θ(t)

∥∥2
L∞

T Hm+γ α + ∥∥|D| α
2
(
tγ θ(t)

)∥∥2
L2

T Hm+γ α

� C
([γ ] + 1

)2(γ −[γ ])([γ ]!)2(
1 + T 2γ

)
MeCγ M, (4.15)

where M denotes an upper bound of ‖θ‖2
L∞

T Hm + ν‖|D| α
2 θ‖2

L2
T Hm and C is an absolute constant de-

pending only on α, ν , m. Notice that tγ θ (γ > 0) satisfies

∂t
(
tγ θ

) + u · ∇(
tγ θ

) + ν|D|α(
tγ θ

) = γ tγ −1θ,
(
tγ θ

)∣∣
t=0 = 0, (4.16)

which is a linear transport-diffusion equation with the velocity u = |D|α−1 R⊥θ , α ∈ ]0,2[. We first
treat the case γ ∈ Z+ . For γ = 1, in a similar way as obtaining (4.6) and using the maximum princi-
ple (2.1), we infer that∥∥tθ(t)

∥∥2
Bm+α

2,2
+ ν

∥∥|D| α
2
(
tθ(t)

)∥∥2
L2

T Bm+α
2,2

�
T∫

0

(∥∥θ(t)
∥∥2

Ḃ
α
2∞,∞

+ ∥∥θ(t)
∥∥2

Ḣ
α
2

)∥∥tθ(t)
∥∥2

Bm+α
2,2

dt + ∥∥|D| α
2 θ

∥∥2
L2

T Bm
2,2

+ ∥∥tθ(t)
∥∥

L2
T L2‖θ‖L2

T L2

�
T∫

0

(∥∥θ(t)
∥∥2

Ḃ
α
2∞,∞

+ ∥∥θ(t)
∥∥2

Ḣ
α
2

)∥∥tθ(t)
∥∥2

Bm+α
2,2

dt + M + ‖θ0‖2
L2 T 2.

Grönwall’s inequality yields that∥∥tθ(t)
∥∥2

Bm+α
2,2

+ ν
∥∥|D| α

2
(
tθ(t)

)∥∥2
L2

T Bm+α
2,2

� M
(
1 + T 2)eC M , (4.17)

where we have used the following estimates∥∥|D| α
2 θ

∥∥2
L2

T Ḃ0∞,∞ � M, and ‖θ‖2

L2
T Ḣ

α
2

� ‖θ0‖2
L2 � M.

Thus (4.15) with γ = 1 follows. Now suppose estimate (4.15) holds for γ = N , we shall consider the
case N + 1. We use Eq. (4.16) with γ = N + 1, and similarly as obtaining (4.17), only by replacing θ(t)
with tNθ(t) and m with m + Nα, we have∥∥tN+1θ(t)

∥∥2
Hm+(N+1)α + ∥∥|D| α

2
(
tN+1θ(t)

)∥∥2
L2

T Hm+(N+1)α

� eC M(
(N + 1)2

∥∥|D| α
2
(
tNθ(t)

)∥∥2
L2

T Hm+Nα + (N + 1)
∥∥tN+1θ(t)

∥∥
L2

T L2

∥∥tNθ(t)
∥∥

L2
T L2

)
� eC M(

(N + 1)2(N!)2(1 + T 2N)
MeC N M + (

(N + 1)!)2
T 2N+2‖θ0‖2

L2

)
�

(
(N + 1)!)2(

1 + T 2N+2)MeC(N+1)M,
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where in the second line we have used the following estimation (by repeatedly using the maximum
principle (2.1) N times)∥∥tNθ(t)

∥∥
L∞

T L2 � NT
∥∥tN−1θ(t)

∥∥
L∞

T L2 � (N!)T N‖θ0‖L2 .

Thus the induction method ensures the estimate (4.15) for all γ ∈ Z+ . Also notice that for γ = 0 the
inequality (4.15) is also satisfied. Hence we obtain estimate (4.15) for all γ ∈ N. For the general γ � 0,
we set [γ ] � γ < [γ ] + 1, and use the interpolation inequality in Sobolev spaces to get

∥∥tγ θ
∥∥2

L∞
T Hm+γ α �

∥∥t[γ ]θ
∥∥2([γ ]+1−γ )

L∞
T Hm+[γ ]α

∥∥t[γ ]+1θ
∥∥2(γ −[γ ])

L∞
T Hm+([γ ]+1)α

� C
([γ ] + 1

)2(γ −[γ ])([γ ]!)2(
1 + T 2γ

)
MeCγ M .

Similar estimate holds for ‖|D| α
2 (tγ θ(t))‖2

L2
T Hm+γα .

Therefore, we conclude Proposition 4.1. �
Now, we are devoted to building the blowup criterion.

Proof of Proposition 4.2. We first note that the equation has a natural blowup criterion: if T ∗ < ∞
then necessarily

‖θ‖L∞([0,T ∗[,Hm) = ∞.

Otherwise from the local result, the solution will continue over T ∗ .
In the same way as obtaining the estimate (4.6), we get the similar result for the original equa-

tion

∥∥θ(t)
∥∥2

Hm + ν
∥∥|D| α

2 θ(τ )
∥∥2

L2
t Hm � C0‖θ0‖2

Hm + Cα,ν

t∫
0

(∥∥θ(τ )
∥∥2

Ḃ
α
2∞,∞

+ ∥∥θ(τ )
∥∥2

Ḣ
α
2

)∥∥θ(τ )
∥∥2

Hm dτ .

Thus the Grönwall inequality and the energy estimate leads to

‖θ‖2
L∞

T Hm + ν
∥∥|D| α

2 θ
∥∥2

L2([0,T ],Hm)

� C0‖θ0‖2
Hm exp

{
Cα,ν

T∫
0

∥∥θ(t)
∥∥2

Ḃ
α
2∞,∞

dt + Cα,ν

T∫
0

∥∥θ(t)
∥∥2

Ḣ
α
2

dt

}

� C0‖θ0‖2
Hm exp

{
Cα,ν

T∫
0

∥∥θ(t)
∥∥2

Ḃ
α
2∞,∞

dt + Cα,ν‖θ0‖2
L2

}
.

Furthermore, if T ∗ < ∞ and the integral
∫ T ∗

0 ‖θ(t)‖2

Ḃ
α
2∞,∞

dt < ∞, then we directly have

sup0�t<T ∗ ‖θ(t)‖Hm < ∞, and this contradicts the upper natural blowup criterion. Thus, if T ∗ < ∞,

we necessarily have the equality
∫ T ∗

0 ‖θ(t)‖2

Ḃ
α
2∞,∞

dt = ∞.

On the other hand, from interpolation and the maximum principle (2.1), we obtain that for every
t ∈ [0, T ∗[
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∥∥θ(t)
∥∥

Ḃ
α
2∞,∞

�
∥∥θ(t)

∥∥1− α
2

Ḃ0∞,∞

∥∥θ(t)
∥∥ α

2

Ḃ1∞,∞

�
∥∥θ(t)

∥∥1− α
2

L∞
∥∥∇θ(t)

∥∥ α
2
L∞ � ‖θ0‖1− α

2
L∞

∥∥∇θ(t)
∥∥ α

2
L∞ .

Hence if T ∗ < ∞, we also necessarily need
∫ T ∗

0 ‖∇θ(t)‖α
L∞ dt = ∞. �

5. Global existence

In this section, we use the modulus of continuity argument developed by Kiselev, Nazarov and Vol-
berg [18] to prove the global result. Throughout this section, we assume T ∗ be the maximal existence
time of the solution in C([0, T ∗[, Hm) ∩ L2([0, T ∗[, Hm+ α

2 ).
From Proposition 4.1, we know that there exists T0 > 0 such that for all t ∈ [0, T0],

t
1
α
∥∥θ(t)

∥∥
Hm+1 � Cα,T0,‖θ0‖Hm .

Let λ > 0 be a real number which will be chosen later and T1 ∈ ]0, T0[ (note that if θ0 ∈ Lip(R2), we
can choose T1 = 0), then we define the set

I := {
T ∈ [

T1, T ∗[ ∣∣ ∀t ∈ [T1, T ], ∀x, y ∈ R2, x �= y,
∣∣θ(t, x) − θ(t, y)

∣∣ < ωλ

(|x − y|)},
where ω is a strict modulus of continuity also satisfying that ω′(0) < ∞, limη↘0 ω′′(η) = −∞ and

ωλ

(|x − y|) = ω
(
λ|x − y|).

The explicit expression of ω will be shown later (i.e. (5.11) in the below).
We first show that the set I is nonempty, that is, at least T1 ∈ I . The proof is almost the same

with the one in [1]. We omit it here and only note that to fit our purpose λ can be taken

λ = ω−1(3‖θ0‖L∞)

2‖θ0‖L∞

∥∥∇θ(T1)
∥∥

L∞ . (5.1)

Thus I is an interval of the form [T1, T∗[, where T∗ := supT ∈I T . We have three possibilities:

(a) T∗ = T ∗ ,
(b) T∗ < T ∗ and T∗ ∈ I ,
(c) T∗ < T ∗ and T∗ /∈ I .

For case (a), we necessarily have T ∗ = ∞, since the Lipschitz norm of θ does not blow up from
the definition of I which contradicts with (4.1). This is our goal.

For case (b), we observe that this is just the case treated in [1] or [14] showing that it is impossi-
ble. The proof only needs small modification, so we omit it either. We just point out in this case the
smoothing effects will also be used, since we need the fact that ‖∇2θ(T∗)‖L∞ is finite.

Then our task is reduced to get rid of the case (c). We prove by contradiction. If the case (c) is
satisfied, then by the time continuity of θ , we necessarily get

sup
x,y∈R2, x�=y

|θ(T∗, x) − θ(T∗, y)|
ωλ(|x − y|) = 1.

We further have the following assertion (with its proof in Appendix A).
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Lemma 5.1. If T∗ < T ∗ is the first time that the strict modulus of continuity ωλ is lost (i.e. case (c)), then there
exists x, y ∈ R2 , x �= y such that

θ(T∗, x) − θ(T∗, y) = ωλ(ξ), with ξ := |x − y|. (5.2)

Moreover, let � = x−y
|x−y| and v ∈ S1 be the unit vector perpendicular to �, we have

∂�θ(T∗, x) = ∂�θ(T∗, y) = ω′
λ(ξ), ∂vθ(T∗, x) = ∂vθ(T∗, y) = 0, (5.3)

where ∂� = � · ∇ and ∂v = v · ∇ are the directional derivatives along � and v respectively.

We shall show that this scenario (5.2) cannot happen, more precisely, we shall prove

f ′(T∗) < 0, with f (t) := θ(t, x) − θ(t, y).

This is impossible since we necessarily have f (t) � f (T∗), for all 0 � t � T∗ from the definition
of I .

We see that the modified quasi-geostrophic equation (1.1) can be defined in the classical sense
(from the smoothing effect), and thus

f ′(T∗) = −[
(u · ∇θ)(T∗, x) − (u · ∇θ)(T∗, y)

] + ν
[(−|D|αθ

)
(T∗, x) − (−|D|αθ

)
(T∗, y)

]
:= A1 + A2

with

u = |D|α−1 R⊥θ = R⊥
α θ := (−Rα,2θ, Rα,1θ)

where Rα, j are the modified Riesz transforms introduced in Section 3.
For the first term, A1, from (5.2), we find that

A1 = [(
u(T∗, x) − u(T∗, y)

) · �]ω′
λ(ξ)

= [(
u(T∗, x) − u(T∗, y)

) · �]λω′(λξ).

Lemma 3.2 gives us a rough estimate as follows

|A1| � Ωλ(ξ)λω′(λξ) = λα
(
Ωω′)(λξ),

where Ωλ(ξ) is defined from (3.2), i.e.,

Ωλ(ξ) = A

( ξ∫
0

ωλ(η)

ηα
dη + ξ

∞∫
ξ

ωλ(η)

η1+α
dη

)
= λα−1Ω(λξ). (5.4)

For the second term, A2, from Lemma 3.3 we get

A2 � νλαΥ (λξ),
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where

Υ (ξ) := B

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη + B

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη.

Thus we obtain

f ′(T∗) � λα
(
Ωω′ + νΥ

)
(λξ). (5.5)

Observe that when α ∈ ]1,2[ and ξ is a large number, the integral from 0 to ξ in the expres-
sion of Ω will produce much difficulty, roughly speaking, to ensure the right-hand side of (5.5) is
negative, we need that the contribution from this part ω(ξ)ω′(ξ) = c ω(ξ)

ξα with c > 0 a fixed small
number, thus it seems impossible to construct an appropriate unbounded MOC. However, basically
following an idea from [20], we can further develop the contribution of the dissipative term and use
the additional dissipation to control this “bad” part of the nonlinearity, so that we can construct an
appropriate unbounded MOC to guarantee f ′(T∗) < 0. Meanwhile, when α = 1 this method can also
slightly improve the MOC constructed in [18]. Precisely,

Lemma 5.2. Under the condition of Lemma 5.1 and for α ∈ [1,2[, we have

A2 � νλαΥ (λξ) + νλαΥ ⊥(λξ), (5.6)

where Υ ⊥ � 0 is a meaningful integral defined from θ and ω. Correspondingly, we can treat the drift term as
follows ∣∣(u(T∗, x) − u(T∗, y)

) · �∣∣ � λα−1Ω̃(λξ) (5.7)

with

Ω̃(ξ) = A

(
−ξΥ ⊥(ξ) + ξ

∞∫
ξ

ω(η)

η1+α
dη + ξ−α+1ω(ξ)

)
, (5.8)

where A is an absolute constant that may depend on α.

Remark 5.1. For the reader’s convenience, we give the explicit formula of Υ ⊥ . Set x0 := (
ξ
2 ,0), y0 :=

(− ξ
2 ,0), thus there exist a unique rotating transform ρ and a unique vector a ∈ R2 such that x =

ρx0 − a and y = ρ y0 − a, where x, y ∈ R2 are two points stated in Lemma 5.1. Then we have

Υ ⊥(ξ) � −C

∫
B+

r0ξ (x0)

fρ,a(η,μ)

|x0 − (η,μ)|2+α
dη dμ, (5.9)

where B+
r0ξ (x0) := {(η,μ) ∈ R2: |(η,μ) − x0| � r0ξ, μ > 0},

fρ,a(η,μ) := 2ω(2η) − θ̃ (T∗, η,μ) + θ̃ (T∗,−η,μ) − θ̃ (T∗, η,−μ) + θ̃ (T∗,−η,−μ) � 0,

and θ̃ (t, η,μ) := θ(t,ρ · (η,μ)−a). Notice that in the scenario described in Lemma 5.1, the expression
of Υ ⊥ is meaningful for all α ∈ [1,2[.
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Proof of Lemma 5.2. This is a direct consequence of Lemmas 5.5 and 5.6 in [22] when α ∈ ]1,2[, and
they can simply extend to the case α = 1. �

Hence when α ∈ [1,2[, based on Lemma 5.2, we also get

f ′(T∗) � λα
(
Ω̃ω′ + νΥ + νΥ ⊥)

(λξ). (5.10)

Next we shall construct our special modulus of continuity in the spirit of [18]. Let 0 < γ < δ < 1
be two small positive numbers chosen later, and define the continuous function ω as follows1

MOC

{
ω(ξ) = ξ − ξ1+ α

2 if 0 � ξ � δ,

ω′(ξ) = γ
4ξ

if ξ > δ,
(5.11)

equivalently,

ω(ξ) =
{

ξ − ξ1+ α
2 if 0 � ξ � δ,

δ − δ1+ α
2 + γ

4 log ξ
δ

if ξ > δ.
(5.12)

Note that, for small δ, the left derivative of ω at δ is about 1, while the right derivative equals γ
4δ

< 1
4 .

So ω is concave if δ is small enough. Clearly, ω(0) = 0, ω′(0) = 1 and limη→0+ ω′′(η) = −∞, and ω
is unbounded (it has the logarithmic growth at infinity).

Then our target is to show that, for this MOC ω, when α ∈ ]0,1[

Ω(ξ)ω′(ξ) + νΥ (ξ) < 0 for all ξ > 0, (5.13)

and when α ∈ [1,2[

Ω̃(ξ)ω′(ξ) + νΥ (ξ) + νΥ ⊥(ξ) < 0 for all ξ > 0. (5.14)

In the following we shall carefully check these two formulae.

Case I: When α ∈ ]0,1[.
Precisely, we shall check the following inequality

A

[ ξ∫
0

ω(η)

ηα
dη + ξ

∞∫
ξ

ω(η)

η1+α
dη

]
ω′(ξ) + νB

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη

+ νB

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη < 0 for all ξ > 0.

We further divide it into two cases.

1 Note that when α ∈ ]0,1[, we once adopted an equivalent expression that ω′(ξ) = γ
4(ξ+ξα )

if ξ > δ in the first version of
this paper, and the formula like (5.11) (only α ∈ ]0,1[) also occurs in [19].
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Case I.1: α ∈ ]0,1[ and 0 < ξ � δ.
Since ω(η)

η � ω′(0) = 1 for all η > 0 and η � ηα for η � δ < 1, we have

ξ∫
0

ω(η)

ηα
dη �

ξ∫
0

ω(η)

η
dη � ξ,

and

δ∫
ξ

ω(η)

η1+α
dη �

δ∫
ξ

1

ηα
dη = 1

1 − α

(
δ1−α − ξ1−α

)
� 1

1 − α
.

Furthermore,

∞∫
δ

ω(η)

η1+α
dη = 1

α

ω(δ)

δα
+ 1

α

∞∫
δ

γ

4η1+α
dη � 1

α
+ 1

α2

γ

δα
� 2

α
,

if γ < αδ. Clearly ω′(ξ) � ω′(0) = 1, so we get that the positive part is bounded by Aξ 2
α(1−α)

.
For the negative part, we have

νB

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη � νB

ξ
2∫

0

ω′′(ξ)2η2

η1+α
dη

= −νB
α(2 + α)

21−α(2 − α)
ξ1− α

2 � −α

2
νBξ1− α

2 .

But, clearly ξ(A 2
α(1−α)

− α
2 νBξ− α

2 ) < 0 on ]0, δ] when δ is small enough.

Case I.2: α ∈ ]0,1[ and ξ � δ.
For η � δ < 1 we still use ηα � η and for δ � η � ξ we use ω(η) � ω(ξ), then

ξ∫
0

ω(η)

ηα
dη � δ + ω(ξ)

1 − α

(
ξ1−α − δ1−α

)
� ω(ξ)

(
2

α
+ ξ1−α

1 − α

)
,

where the last inequality is due to α
2 δ < ω(δ) � ω(ξ) if δ is small enough (i.e. δ < (1 − α

2 )2/α ). Also

∞∫
ξ

ω(η)

η1+α
dη = 1

α

ω(ξ)

ξα
+ 1

α

∞∫
ξ

γ

4η1+α
dη � 1

α

ω(ξ)

ξα
+ 1

α2

γ

2

1

ξα
� 2

α

ω(ξ)

ξα

if γ < α2δ (thus γ /2 � αω(ξ)) and δ is small enough. Thus the positive term is bounded from above
by

Aω(ξ)

(
2

α
+

(
1

1 − α
+ 2

α

)
ξ1−α

)
ω′(ξ) � A

ω(ξ)

ξα

2

α(1 − α)

(
ξ + ξα

) γ

4ξ
� Aδα−1γ

α(1 − α)

ω(ξ)

ξα
.
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For the negative part, we first observe that for ξ � δ,

ω(2ξ) = ω(ξ) +
2ξ∫

ξ

ω′(η)dη = ω(ξ) + log 2

2
γ � 3

2
ω(ξ),

under the same assumptions on δ and γ as above. Also, taking advantage of the concavity we obtain
ω(2η + ξ) − ω(2η − ξ) � ω(2ξ) for all η � ξ

2 . Therefore

νB

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη � −νB

ω(ξ)

2

∞∫
ξ
2

1

η1+α
dη = −νB

2α

2α

ω(ξ)

ξα
.

But ω(ξ)
ξα (

Aδα−1γ
α(1−α)

− νB 2α

2α ) < 0 if γ is small enough (i.e. γ < min{α2δ,
ν(1−α)B2α

2A δ1−α}).

Case II: When α ∈ [1,2[.
Precisely, we shall check the following inequality

A

[
−ξΥ ⊥(ξ) + ξ−α+1ω(ξ) + ξ

∞∫
ξ

ω(η)

η1+α
dη

]
ω′(ξ) + νB

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη

+ νB

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη + νΥ ⊥(ξ) < 0 for all ξ > 0.

We also further divide it into two cases.

Case II.1: α ∈ [1,2[ and 0 < ξ � δ.
Since ω(η)

η � ω′(0) = 1 for all η > 0 and −Υ ⊥(ξ) � 0, we have −ξΥ ⊥(ξ) � −δΥ ⊥(ξ) and

ξ−α+1ω(ξ) � ξ2−α and

δ∫
ξ

ω(η)

η1+α
dη �

δ∫
ξ

1

ηα
dη �

{ 1
α−1ξ1−α, α ∈ ]1,2[,
log(δ/ξ), α = 1.

Further, integration by parts leads to

∞∫
δ

ω(η)

η1+α
dη = 1

α

ω(δ)

δα
+ 1

α

∞∫
δ

γ

4ηα+1
dη

� 1

α

1

δα−1
+ γ

4α2

1

δα
� 2

1

δα−1
� 2ξ1−α.

Clearly ω′(ξ) � ω′(0) = 1, so we get that the positive part is bounded by{
A(−δΥ ⊥(ξ) + ξ2−α 4

α−1 ), α ∈ ]1,2[,
A(−δΥ ⊥(ξ) + ξ(3 + log δ )), α = 1.
ξ
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For the negative part, we have

νB

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+α
dη � νB

ξ
2∫

0

ω′′(ξ)2η2

η1+α
dη

= −νB
α(2 + α)

21−α(2 − α)
ξ1− α

2 � −3νBξ1− α
2 .

But, clearly if δ is chosen small enough, we find that for every ξ ∈ ]0, δ]⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−Aδ + ν)Υ ⊥(ξ) + ξ2−α

(
A

4

α − 1
− 3νBξ

α
2 −1

)
< 0, α ∈ ]1,2[,

(−Aδ + ν)Υ ⊥(ξ) + ξ

(
3A + A log

δ

ξ
− 3νBξ− 1

2

)
< 0, α = 1.

Case II.2: α ∈ [1,2[ and ξ � δ.
For the positive part we have

∞∫
ξ

ω(η)

η1+α
dη = 1

α

ω(ξ)

ξα
+ 1

α

∞∫
ξ

γ

4ηα+1
dη

� 1

α

ω(ξ)

ξα
+ γ

4α2

1

ξα
� 2

ω(ξ)

ξα
,

where we have used the simple fact that γ � δ
2 � ω(δ) � ω(ξ). Thus the positive term is bounded

from above by

A
(−ξΥ ⊥(ξ) + 3ω(ξ)ξ1−α

)
ω′(ξ) = A

(−ξΥ ⊥(ξ) + 3ω(ξ)ξ1−α
) γ

4ξ
� −Aγ Υ ⊥(ξ) + Aγ

ω(ξ)

ξα
.

For the negative part, in a similar way as treating the corresponding part in Case I.2, we have

νB

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+α
dη � −νB

ω(ξ)

2

∞∫
ξ
2

1

η1+α
dη � −νB

2

ω(ξ)

ξα
.

But, clearly (−Aγ + ν)Υ ⊥(ξ) + ω(ξ)
ξα (Aγ − νB

2 ) < 0 if γ is small enough.
Therefore both Cases I and II yield f ′(T∗) < 0.
Finally, only case (a) occurs and we obtain T ∗ = ∞. Moreover∥∥∇θ(t)

∥∥
L∞ < λ, ∀t ∈ [0,∞[,

where the value of λ ∼ C‖∇θ0‖L∞ eC‖θ(T1)‖L∞ is given by (5.1).
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Appendix A

A.1. The formula for Rα, j f

Proof of Proposition 3.1. By applying the Fourier transformation to the operator Rα, j (α ∈ ]0,2[),
we know that the symbol of Rα, j is −iζ j/|ζ |2−α . Now we want to know the explicit formula of
F −1(−iζ j/|ζ |2−α). From the equality in the distributional sense

∂

∂x j
|x|−(n+α−2) = −(n + α − 2)p.v.

x j

|x|n+α
,

and the known formula that for every 0 < a < n (cf. [16])

(|x|−a)∧
(ζ ) = 2n−aπn/2Γ (n−a

2 )

Γ ( a
2 )

|ζ |−n+a,

we directly have (
p.v.

x j

|x|n+α

)∧
(ζ ) = − 1

n + α − 2

(
∂x j |x|−n−α+2)∧

(ζ )

= − iζ j

n + α − 2

(|x|−n−α+2)∧
(ζ )

= − iζ j

n + α − 2

22−απn/2Γ ( 2−α
2 )

Γ (n+α−2
2 )

|ζ |α−2

= −i
21−απn/2Γ ( 2−α

2 )

Γ (n+α
2 )

· ζ j

|ζ |2−α
. �

A.2. A commutator estimate

The key to the proof of the uniform estimate is the following commutator estimate:

Lemma A.1. Let v be a divergence-free vector field over Rn. For every q ∈ N, denote

Fq(v, f ) := Sq+1 v · ∇�q f − �q(v · ∇ f ).

Then for every β ∈ ]0,1[, there exists a positive constant C such that

2−qβ
∥∥Fq(v, f )

∥∥
L2 � C‖v‖

Ḃ1−β∞,∞

( ∑
q′�q+4

2q′−q‖�q′ f ‖L2 +
∑

q′�q−4

2(q−q′)(1−β)‖�q′ f ‖L2

)
, (A.1)

especially, in the case n = 2 and v = |D|α−1 R⊥ f (α ∈ ]0,2[), we further have for every β ∈ ]max{0,α −
1},1[ and every q ∈ N

2−qβ
∥∥Fq(v, f )

∥∥
L2 � C‖ f ‖

Ḃα−β∞,∞

( ∑
q′�q−4

2(q−q′)(1−β)‖�q′ f ‖L2 +
∑

|q′−q|�4

‖�q′ f ‖L2

)
. (A.2)

Moreover, when β = 0, α ∈ ]0,1[, (A.1) and (A.2) hold if we replace ‖v‖Ḃ1 by ‖∇v‖L∞ .
∞,∞
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Proof. Using Bony decomposition, we decompose Fq(v, f ) into
∑6

i=1 F i
q(v, f ) (cf. [13]), where

F 1
q (v, f ) = (Sq+1 v − v) · ∇�q f , F 2

q (v, f ) = [�−1 v,�q] · ∇ f ,

F 3
q (v, f ) =

∑
q′∈N

[Sq′−1 ṽ,�q] · ∇�q′ f , F 4
q (v, f ) =

∑
q′�−1

�q′ ṽ · ∇�q Sq′+2 f ,

F 5
q (v, f ) = −

∑
q′∈N

�q(�q′ ṽ · ∇ Sq′−1 f ), F 6
q (v, f ) = −

∑
q′�−1

div�q

(
�q′ ṽ

∑
i∈{±1,0}

�q′+i f

)
,

where [A, B] := AB − B A denotes the commutator operator and ṽ := v − �−1 v denotes the high
frequency part of v .

For F 1
q , from the divergence-free property of v we directly obtain that when 1 − β > 0

2−qβ
∥∥F 1

q (v, f )
∥∥

L2 �
∑

q′�q+1

2(1−β)(q−q′)2q′(1−β)‖�q′ v‖L∞‖�q f ‖L2

� ‖v‖
Ḃ1−β∞,∞

‖�q f ‖L2 .

For F 2
q , since F q

2(v, f ) = ∑
|q′−q|�1[�−1 v,�q] · ∇�q′ f , then from the expression formula of �q and

mean value theorem, we get that when β > 0

2−qβ
∥∥F 2

q (v, f )
∥∥

L2 � 2−qβ2−q‖∇�−1 v‖L∞
∑

|q′−q|�1

2q′ ‖�q′ f ‖L2

�
∑

−∞� j�−1

2 jβ
∥∥|D|1−β�̇ j v

∥∥
L∞

∑
|q′−q|�1

‖�q′ f ‖L2

� ‖v‖
Ḃ1−β∞,∞

∑
|q′−q|�1

‖�q′ f ‖L2 .

For F 3
q , similarly as estimating F 2

q , we infer

2−qβ
∥∥F 3

q (v, f )
∥∥

L2 � 2−qβ
∑

|q′−q|�4

2−q‖∇ Sq′−1 ṽ‖L∞ 2q′ ‖�q′ f ‖L2

�
∑

|q′−q|�4

∑
q′′�q′−2

2(q′′−q′)β∥∥|D|1−β�q′′ ṽ
∥∥

L∞‖�q′ f ‖L2

� ‖v‖
Ḃ1−β∞,∞

∑
|q′−q|�4

‖�q′ f ‖L2 .

For F 4
q and F 5

q , from the spectral property and the fact 2q′(1−β)‖�q′ ṽ‖L∞ ≈ ‖�q′ |D|1−β ṽ‖L∞ , we have

2−qβ
∥∥F 4

q (v, f )
∥∥

L2 �
∑

q′�q−2

2(q−q′)(1−β)2q′(1−β)‖�q′ ṽ‖L∞‖�q f ‖L2 � ‖v‖
Ḃ1−β∞,∞

‖�q f ‖L2 ,

2−qβ
∥∥F 5

q (v, f )
∥∥

L2 � 2−qβ
∑

|q′−q|�4

2q′ ‖�q′ ṽ‖L∞
∑

q′′�q′−2

2q′′−q′ ‖�q′′ f ‖L2

� ‖v‖
Ḃ1−β∞,∞

∑
q′′�q+2

2q′′−q‖�q′′ f ‖L2 .
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Besides, for F 5
q when v = |D|α−1 R⊥ f , we alternatively have the following improvement that when

β > α − 1

2−qβ
∥∥F 5

q (v, f )
∥∥

L2 � 2−qβ
∑

|q′−q|�4

∥∥�q′(Id − �−1)|D|α−1 R⊥ f
∥∥

L2‖∇ Sq′−1 f ‖L∞

�
∑

|q′−q|�4

‖�q′ f ‖L2

∑
−∞�q′′�q′−2

2(α−1−β)(q′−q′′)∥∥|D|α−β�̇q′′ f
∥∥

L∞

� ‖ f ‖
Ḃα−β∞,∞

∑
|q′−q|�4

‖�q′ f ‖L2 .

Finally, for F 6
q we easily have

2−qβ
∥∥F 6

q (v, f )
∥∥

L2 �
∑

q′�q−3

2(q−q′)(1−β)2q′(1−β)‖�q′ ṽ‖L∞
∑

i∈{±1,0}
‖�q′+i f ‖L2

� ‖v‖
Ḃ1−β∞,∞

∑
q′�q−4

2(q−q′)(1−β)‖�q′ f ‖L2 .

Combining the above estimates appropriately yields the inequalities (A.1) and (A.2). �
A.3. Proof of Lemma 5.1

Proof of Lemma 5.1. Set C ′ := ω−1(3‖θ0‖L∞), then from the maximum principle (2.1), we get

λ|x − y| � C ′ ⇒ ∣∣θ(T∗, x) − θ(T∗, y)
∣∣ <

2

3
ωλ

(|x − y|). (A.3)

Since ∇θ(t) ∈ C([T1, T ∗[, Hm(R2)), then for every ε > 0, there exists R > 0 such that∥∥∇θ(T∗)
∥∥

L∞(R2\B R )
� C0

∥∥∇θ(T∗)
∥∥

Hm(R2\B R )
� ε,

where B R is a ball centered at the origin with the radius R and R2 \ B R is its complement. Thus for
every x, y (x �= y) satisfying that λ|x − y| � C ′ and x or y belongs to R2 \ B R+C ′/λ , we get∣∣θ(T∗, x) − θ(T∗, y)

∣∣ �
∥∥∇θ(T∗)

∥∥
L∞(R2\B R )

|x − y| � ε|x − y|.

Taking advantage of the following inequality from the concavity of ω

ω(C ′)
C ′ λ|x − y| � ωλ

(|x − y|),
we can take ε small enough such that ε < 1

2
ω(C ′)

C ′ λ to obtain

λ|x − y| � C ′, x or y ∈ R2 \ B
R+ C ′

λ

⇒ ∣∣θ(T∗, x) − θ(T∗, y)
∣∣ <

1

2
ωλ

(|x − y|). (A.4)

Now it remains to consider the case when x, y ∈ B
R+ C ′

λ

. From the smoothing effect, we know

‖∇2θ(T∗)‖L∞ < ∞, thus we have (cf. [18])
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∥∥∇θ(T∗)
∥∥

L∞(B
R+ C ′

λ

)
< λω′(0).

Let δ′ � 1 small enough, then we see

∥∥θ(T∗)
∥∥

L∞(B
R+ C ′

λ

)
< λ

(
1 − δ′)ω(δ′)

δ′ .

Thus for every x, y (x �= y) satisfying that λ|x − y| � δ′ and both x, y belongs to B R+C ′/λ , we have

∣∣θ(T∗, x) − θ(T∗, y)
∣∣ �

∥∥∇θ(T∗)
∥∥

L∞(B
R+ C ′

λ

)
|x − y|

<
(
1 − δ′)ω(δ′)

δ′ λ|x − y| � (
1 − δ′)ωλ

(|x − y|). (A.5)

We set

Ω :=
{
(x, y) ∈ R2 × R2: max

{|x|, |y|} � R + C ′

λ
, |x − y| � δ′

λ

}
,

then from the above results we necessarily have

1 = sup
x�=y

|θ(T∗, x) − θ(T∗, y)|
ωλ(|x − y|) = sup

(x,y)∈Ω

|θ(T∗, x) − θ(T∗, y)|
ωλ(|x − y|) .

Thus the conclusion follows from the compactness of Ω .
For (5.3), it is from a direct computation under the scenario (5.2) (cf. Proposition 2.4 in [20]). �
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