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Abstract
In this paper we address the regularity issue of weak solution for the following linear drift–
diffusion system with pressure

∂t u + b · ∇u − �u + ∇ p = 0, div u = 0, u|t=0(x) = u0(x),

where x ∈ R
n and b is a given divergence-free vector field. Under some assumptions of

the drift field b in the critical sense, and for the initial data u0 ∈ (L2(Rn))n , we prove
that there exists a weak solution u(t) to this system such that u(t) for any time t > 0 is
α-Hölder continuous with α ∈ (0, 1). The proof of the Hölder regularity result utilizes a
maximum-principle type method to improve the regularity of weak solution step by step.

Mathematics Subject Classification 76D03 · 35Q35 · 35Q30 · 35K15

1 Introduction

We consider the Cauchy problem of the following linear drift–diffusion systemwith pressure
⎧
⎪⎨

⎪⎩

∂t u + b · ∇u − �u + ∇ p = 0,

∇ · u = 0,

u(x, 0) = u0(x),

(1.1)

where x ∈ R
n , n ≥ 2, u(x, t) = (

u1(x, t), u2(x, t), . . . , un(x, t)
)
is the unknownvector field

ofR
n , and the drift velocity b(x, t) = (b1(x, t), b2(x, t), . . . , bn(x, t)) is a given divergence-

free vector field (i.e. div b = 0). The pressure field p can be derived from u and b by the
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expression formula
p = (−�)−1div

(
b · ∇u

)
. (1.2)

The drift–diffusion system (1.1) corresponds to the Stokes system with a drift term, which
is a coupled system instead of a scalar equation.

The drift–diffusion system with pressure (1.1) shares a fundamental scaling property:
under the following scaling transformations that for each s ∈ R and for every λ > 0,

u(x, t) �→ u(λ)(x, t) := λsu(λx, λ2t), (1.3)

b(x, t) �→ b(λ)(x, t) := λb(λx, λ2t), (1.4)

p(x, t) �→ p(λ)(x, t) := λs+1 p(λx, λ2t), (1.5)

the drift–diffusion system with pressure (1.1) remains invariant, that is,

∂t u
(λ) + b(λ) · ∇u(λ) − �u(λ) + ∇ p(λ) = 0, ∇ · u(λ) = 0.

If the system (1.1) does not have the nonlocal pressure term, it is essentially not a coupled
system and each component satisfies the same equation; thus wemay assume u : R

n ×R
+ →

R is a scalar field, and it reduces to the classical drift–diffusion equation

∂t u + b · ∇u − �u = 0, u|t=0 = u0, (1.6)

with x ∈ R
n , n ≥ 2, and b a given divergence-free vector field. The Hölder regularity issue

of the weak solution for (1.6) with a given vector field b has been a classical problem, which
is as follows: under which conditions of b, the weak solution u is Hölder continuous for
any t > 0? The required regularity on b is usually expressed as b ∈ (X )n = X × · · ·X ,
with X some suitable space–time function space. Noting that the scaling transformations
corresponding to the system (1.6) are (1.3), (1.4), we here call that b is under a critical
assumption if b(λ) defined by (1.4) is invariant under the assumed norm ‖ · ‖X for all λ > 0,
that is, ‖b(λ)‖X = ‖b‖X (e.g. X = L p([0,∞); Lq(Rn)) with 2

p + n
q = 1, p ∈ [2,∞]);

we call that the assumption of b is subcritical (resp. supercritical) if b(λ) has smaller (resp.
larger) norm than b for all λ > 0 small enough.

So far, by using currentmethods it seems impossible to obtain aHölder regularity result for
(1.6) with a supercritical assumption on b, since the drift part of the equation would be much
stronger than the diffusion part at small scales (corresponding to small λ). If b satisfies the
subcritical assumption, the drift part would be relatively negligible compared with diffusion
at small scales, and one generally can treat the Eq. (1.6) as a perturbation of the linear heat
equation, so that some regularity results can be achieved. For instance, if b ∈ (L p

t Lq
x )n with

2
p + n

q < 1, p ∈ (2,∞] ([1]) or b satisfies some Kato’s class condition (e.g. [30]), on can
get the desired Hölder regularity result. If b satisfies the critical assumption, the regularity
problem is more subtle. Since the drift part would not be negligible at any scale, in order
to get some regularity results depending on the scaling-invariant norms of b, one has to use
the non-perturbative methods. As far as we know, the variations of De Giorgi–Nash–Moser
theory ([7,22,23]) seem to be the only workable ways to derive the Hölder regularity result,
which states that weak solutions of (1.6) are α-Hölder continuous for all t > 0 and for
small α ∈ (0, 1). There are some noticeable works in this direction concerning b in different
scaling-invariant functional spaces: one can refer to [17, Chapter 3] for the condition that
b ∈ (L p

t Lq
x )n with 2

p + n
q = 1, p ∈ [2,∞]; and for b belonging to a space–timeMorrey space,

one can see [24]; and for b belonging to (L∞
t W −1,∞

x )n , or more generally for b belonging
to (L∞

t B M O−1
x )n , one can respectively see [25] and [11,27]. We also refer to [31] and [26]
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for the Hölder regularity result with the divergence-free velocity field b satisfying a form of
boundedness conditions.

For the drift–diffusion system with pressure (1.1), if the drift velocity field b satisfies the
subcritical condition, it seems that the perturbative methods can also be applied to get the
Hölder regularity result, and one can see [31] for the regularity result under the condition
that b belongs to the Kato’s class. But if b satisfies the critical assumption, since it is hard
in extending the De Giorgi–Nash–Moser type methods to the coupled systems, there is not
much regularity results for the weak solution of (1.1). We here only mention a regularity
result of Hölder continuity: Silvestre and Vicol [29] proved that if u0 ∈ (Cα(Rn))n , and

b ∈ (
L p([0, T ];M 2−p

p )
)n with p ∈ [1,∞), T > 0, the L1-basedMorrey–Campanato space

Mβ (β ∈ [−1, 1]) defined by

Mβ :=
{

f ∈ L1
loc(R

n)

∣
∣
∣‖ f ‖Mβ = sup

x∈Rn
sup

0<r<1

1

rβ

1

|Br (x)|
∫

Br (x)

| f (z)− f̄ (x, r)|dz < ∞
}
,

(1.7)
and f̄ (x, t) chosen to be 0 if β ∈ [−1, 0), the average of f over Br (x) if β ∈ [0, 1], then
there exists a weak solution u to the system (1.1) which preserves the Cα-regularity over
all [0, T ]. The proof of [29] relies on a maximum-principle type argument to control the
growth of some local average of u (one can see [10] for the same method applied to the
kinematic dynamo equations, and see [14,15] for similar methods applied to the surface
quasi-geostrophic equation).

In this paper, motivated by [29], we address the regularity problem of weak solution for
the coupled system (1.1) with b satisfying some critical assumptions and u0 ∈ (L2(Rn))n ,
and we derive the Hölder regularity estimate depending on the scaling-invariant norms of b.
Our main result is as follows.

Theorem 1.1 Let T > 0 be any given. Assume that b : [0, T )×R
n → R

n is a divergence-free
vector field satisfying that b ∈ (

L p([0, T ); Ṁ p(Rn))
)n

with p ∈ [1, 2] and

Ṁ p(Rn) :=

⎧
⎪⎨

⎪⎩

Ẇ 1,∞(Rn), if p = 1;
Ċ

2−p
p (Rn), if p ∈ (1, 2);

L∞(Rn), if p = 2.

(1.8)

For p ∈ [1, 2), additionally suppose that

P≤1b ∈ (L1([0, T ); L∞(Rn)))n, (1.9)

where P≤1 is the low-frequency operator given by (1.14) below. Let u0 ∈ (L2(Rn))n, then
there is a weak solution (see Definition 2.1 below) u : R

n ×[0, T ) → R
n to the drift–diffusion

system (1.1) such that u ∈ (
L∞((0, T ); Cα(Rn))

)n
for any α ∈ (0, 1). More precisely, for

every t ′ > 0, we have

‖u‖L∞([t ′,T );Ċα(Rn)) ≤ C‖u0‖L2(Rn)

t ′ n+2α
4

exp

{

C
∫ T

0
‖b(τ )‖p

Ṁ p(Rn)
dτ

}

, (1.10)

where the constant C depends only on n, α, p.
Besides, if p = 2 in the above, the obtained weak solution u : R

n × [0, T ) → R
n is

unique.

For Theorem1.1,we first prove the existence ofweak solution to the drift–diffusion system
with pressure (1.1). The proof in nature shares much similarity with the existence proof of the
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Leray–Hopf weak solution (e.g. see [18,20]) for the incompressible Navier–Stokes system
(i.e. b = u in (1.1)). But since the drift field b is a given vector field in the system (1.1) while
the drift field b is just the unknown velocity field u in the Navier–Stokes system, there are
also many different points, especially concerning the convergence of the terms involving bε

and pε in the approximate system (2.9). We present the detailed proof of existence part in
Sect. 2.1.

For the uniqueness result at p = 2 case in Theorem 1.1, the assumption on the divergence-
free drift field is b ∈ (L2([0, T ); L∞(Rn)))n , and it is reminiscent of the Serrin’s uniqueness
criteria (e.g. see [18,28]) at endpoint case for the Navier–Stokes system. Here, by first molli-
fying the weak solutions ui (i = 1, 2) and considering the approximate Eq. (2.24), and then
passing to the limit, we manage to prove the crucial equality (2.22) at p = 2 case, which
can be used to yield the uniqueness result. One can see Sect. 2.2 for the uniqueness proof in
detail.

In order to prove the Hölder regularity result, which is the core of Theorem 1.1, we mainly
apply a novel idea of [14,21] to the procedure of [29] to improve the regularity step by step.
Recalling that the general strategy of [29] is to show that for any x ∈ R

n and ξ > 0,
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy <
(

f (t)ω(ξ)
)2 = (

f (t)
)2

ξ2α, ∀t ≥ 0, (1.11)

with ū the average given by (2.38) and f (t) some chosen time-dependent function, which
according to Campanato [5] yields the α-Hölder regularity of u(t) (see also Lemma 2.4
below). Here, in difference with [29], we introduce a new modulus ω(ξ, ξ0) defined by
(2.35) to substitute ω(ξ) = ξα , which is derived by only replacing the function ω(ξ) at the
range (0, ξ0] with its tangent line at the point (ξ0, ω(ξ0)). By setting ξ0 = ξ0(t) given by
(2.36) a time-dependent function, we firstly prove that the following strict preservation holds:
for every x ∈ R

n and ξ > 0,

I1(x, ξ, t) = ξn
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy <
(

f1(t)ω(ξ, ξ0(t))
)2

, ∀t ≥ 0,

(1.12)
with some suitable f1(t). Since ω(ξ, 0+) = ω(ξ) = ξα and ξ0(t) = 0 for t ≥ t1 with t1 > 0
which can be chosen arbitrarily small, we in fact get an improvement of regularity after a
short time

I2(x, ξ, t) = ξn−2α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ f1(t)
2, ∀t ≥ t1.

We then prove that this quantity I2(x, ξ, t) will further strictly preserve the modulus f2(t −
t1)ω(ξ, ξ0(t − t1)) with some appropriate f2(t), which implies that

I3(x, ξ, t) = ξn−4α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ f2(t − t1)
2, ∀t ≥ 2t1.

By repeating the process for a finite time, say nα-time, we get

ξ−2α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ fnα

(
t − (nα − 1)t1

)2
, ∀t ≥ nαt1,

with fnα (·) some chosen function, which ensures the Hölder regularity of u(t) for t ≥ nαt1.
Due to the arbitrariness of t1, we indeed obtain the desired Cα-regularity of weak solution
u(t) for every t > 0, which also satisfies the explicit Hölder regularity estimate (1.10), as
desired. The main proof of the regularity result is given in Sect. 2.3.
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Remark 1.2 TheMorrey–Campanato spaceM
2−p

p considered in [29] has the following prop-
erties: if p = 1, it corresponds to the space of Lipschitz functions W 1,∞(Rn); and if

p ∈ (1, 2), it is exactly the space of Hölder continuous functions C
2−p

p (Rn); and if p = 2, it
is the class of functions having bounded mean oscillation B M O(Rn). Thus for p ∈ [1, 2),
due to that the assumption on b is essentially the same and the regularity condition on u0 is
removed, Theorem 1.1 generalizes the regularity continuity result of [29] in this case to the
Hölder regularity result. But if p = 2, since Ṁ2(Rn) = L∞(Rn) is continuously embedded
inM0 = B M O(Rn) and the class B M O(Rn) is strictly larger than the space L∞(Rn) (e.g.
see [9, Chapter 6]), Theorem 1.1 needs a stronger assumption b ∈ (L2([0, T ); L∞(Rn)))n to
ensure the Hölder regularization, rather than the assumption b ∈ (L2([0, T ); B M O(Rn)))n

used in [29].
Themain technical reason is that the preservation of (1.11) for all time (the symbol “ <′′ in

(1.11) can be replaced by “ ≤′′) guarantees that u(t) ∈ Ċα(Rn) for all t ≥ 0 (see Campanato
[5] or (2.34) below), which implies that |u(x, t)−u(y, t)| ≤ C f (t)|x − y|α for all x, y ∈ R

n

and this property plays an important role in the estimates of terms containing the drift b (see
[29]), but for the following preservation used in this paper [or its variants like (1.12)]
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ (
f (t)ω(ξ, ξ0(t))

)2
, ∀ξ > 0, x ∈ R

n,∀t ≥ 0,

(1.13)
withω(ξ, ξ0(t)) defined by (2.35)–(2.37), it is not so clear that such a preservation will imply
an analogous pointwise estimates of u(t), more precisely, it is not clear whether or not we
can use (1.13) to get the estimate that |u(x, t) − u(y, t)| ≤ C f (t)ω(|x − y|, ξ0(t)) for all
x, y ∈ R

n and t ≥ 0.

Remark 1.3 If the spatial dimension n = 3 and b = u (noting that the corresponding scaling
transformations are (1.3)–(1.5) with s = 1), then the system (1.1) reduces to the classi-
cal 3D incompressible Navier–Stokes system, and associated with u0 ∈ (L2(R3))3, the
Navier–Stokes system generates the Leray-Hopf weak solution u ∈ (L∞(R+; L2(R3)) ∩
L2(R+; Ḣ1(R3)))n (e.g. see [18]). Noticing that the condition (1.9) is only used in the
existence part of Theorem 1.1, thus Theorem 1.1 directly leads to that under the additional
condition that u ∈ (L p([0, T ); Ṁ p(R3)))3 (1 ≤ p ≤ 2), there is a Leray-Hopf weak solution
u(t) (unique at p = 2 case) which is Hölder continuous with any index α ∈ (0, 1) for any
t ∈ (0, T ). This result is consistent and compatiblewith someprevious regularity results of 3D
Navier–Stokes system which state that under the condition that u ∈ (L p([0, T ); Ṁ p(R3)))3

(for p = 2 see [13], and for p ∈ [1, 2) see [2,3,12], and for [6,12,16] etc. for various gen-
eralizations), the corresponding Leray-Hopf weak solution u is infinitely smooth (and also
unique) on R

3 × (0, T ).

Remark 1.4 It is not clear for the authors to show the uniqueness of the constructed weak
solution stated in Theorem 1.1 at p ∈ [1, 2) cases. The main reason is that under the assump-
tions of drift field b and the energy estimate (2.1) of weak solution ui (i = 1, 2), we do not
know how to show that the last line of (2.24) has a limit as ε → 0 and moreover the limit
vanishes.

The following notations are used throughout this paper.

• C stands for a constant which may be different from line to line, and X � Y means that
there is a harmless constant C such that X ≤ CY , and X ≈ Y means that X � Y and
Y � X simultaneously.
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• We use Br (x0) := {x ∈ R
n : |x − x0| < r} to denote the ball of R

n , and use Br (x0)c :=
{x ∈ R

n : |x−x0| ≥ r} as the complementary set of Br (x0); we also abbreviate Br (0) and
Br (0)c as Br and Bc

r respectively. The notation S
n−1 := {x ∈ R

n : |x | = 1} corresponds
to the unit ball of R

n .
• For A = (A1, . . . , An) and B = (B1, . . . , Bn) two vectors, A ⊗ B is the tensor product

of A and B which corresponds to a n ×n matrix with each (i, j)-element equaling Ai B j .
• For a vector field v = (v1, . . . , vn) and a function space X , the notation (X)n is the

abbreviation of the product space X ×· · ·× X , and v ∈ (X)n means that vi ∈ X for each
i ∈ {1, . . . , n}. For a matrix valued function V = (Vi j )n×n , the notation V ∈ (X)n×n

means that Vi j ∈ X for every i, j ∈ {1, . . . , n}.
• The notation D(Rn), D([0, T )) or D([0, T ) × R

n) denotes the space of C∞-smooth
functions with compact support on R

n , [0, T ) or [0, T ) × R
n , respectively. Denote by

D′(Rn),D′([0, T )) orD′([0, T )×R
n) the space of distributions, which is the dual space

of D(Rn), D([0, T )) or D([0, T ) × R
n) (see [18]).

• The notation S(Rn) is the Schwartz class of rapidly decreasing C∞-smooth functions,
and S ′(Rn) is the space of tempered distributions which is the dual space of S(Rn).

• For m ∈ N, r ∈ [1,+∞], s ∈ R, we denote by W m,r (Rn) (Ẇ m,r (Rn)) and Hs(Rn)

(Ḣ s(Rn)) the usual Lr -based and L2-based inhomogeneous (homogenous) Sobolev
spaces, and by Cβ(Rn), Ċβ(Rn) with β ∈ (0, 1) the inhomogeneous and homogeneous
Hölder spaces (e.g. see [8]).

• We use F( f ) (or f̂ ) and F−1( f ) to denote the Fourier transform and the inverse Fourier
transform of a function f , that is, F( f )(ζ ) = ∫

Rn ei x ·ζ f (x)dx and F−1(g)(x) =
1

(2π)n

∫

Rd ei x ·ζ g(ζ )dζ .
• Denote by P≤1 the low frequency operator which is defined as a multiplier operator:

P≤1 := ψ(D) = F−1(ψ)∗, (1.14)

where D = ∇
i = ∇√−1

and ψ ∈ D(Rn) is such that ψ ≡ 1 on B1(0), suppψ ⊂ B2(0).

2 Proof of Theorem 1.1

The outline of the proof is as follows. In Sect. 2.1, we give the proof of the existence of a
weak solution to the drift–diffusion system (1.1); we show the uniqueness proof at p = 2
case in Sect. 2.2; we then prove the core Hölder regularization result in Sect. 2.3; and in
Sect. 2.4 we present the proof of some auxiliary results used in Sect. 2.3.

2.1 Existence of weak solution to the drift–diffusion systemwith pressure (1.1)

First we introduce the definition of weak solution (i.e. distributional solution) for the system
(1.1).

Definition 2.1 (Weak solutions) Let T > 0 be anygiven. For a divergence-free vector fieldb ∈
(L1([0, T ); L2

loc(R
n)))n , we call that a vector field u : [0, T )× R

n → R
n is a weak solution

to the drift–diffusion system with pressure (1.1), if it satisfies the following properties.

(1) u ∈ (
L∞([0, T ); L2(Rn)) ∩ L2([0, T ); Ḣ1(Rn))

)n satisfies that

‖u(t)‖2L2(Rn)
+ 2

∫ t

0
‖∇ ⊗ u(τ )‖2L2(Rn)

dτ ≤ ‖u0‖2L2(Rn)
, ∀t ∈ [0, T ). (2.1)
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(2) limt→0+ ‖u(t) − u0‖L2(Rn) = 0.
(3) There is a distribution p ∈ D′([0, T ) × R

n) such that (u, b) solves the first equation
of (1.1) in the distributional sense, that is, for every test function χ = (χ1, . . . , χn) ∈
(D([0, T ) × R

n))n ,

−
∫ T

0

∫

Rn

(
u · (∂tχ + b · ∇χ + �χ) + p divχ

)
dxdt =

∫

Rn
u0(x)χ(x, 0)dx . (2.2)

(4) For any test function χ̃ ∈ D([0, T ) × R
n),

∫ T

0

∫

Rn
u · ∇χ̃(x, τ ) dxdτ = 0. (2.3)

Recalling that et� is the heat semigroup andP := Id+∇(−�)−1div is theLeray projection
operator (e.g. see [18, Chapter 11]), we also have the following equivalence results about
different formulations of weak solutions to the system (1.1).

Proposition 2.2 Let b ∈ (L1([0, T ); L∞(Rn)))n be a divergence-free vector field. Assume
that u ∈ (L∞([0, T ); L2(Rn)))n is a vector field of R

n satisfies (2.3). Then the following
statements are equivalent.

(1) There exists a distribution p ∈ D′([0, T )×R
n) such that ∂t u−�u+∇·(b⊗u)+∇ p = 0

in (D′([0, T ) × R
n))n and limt→0 u = u0 in (S ′(Rn))n.

(2) u satisfies that ∂t u − �u + P∇ · (b ⊗ u) = 0 in (D′([0, T ) × R
n))n and limt→0 u = u0

in (S ′(Rn))n.
(3) u satisfies that u = et�u0 − ∫ t

0 e(t−τ)�
P∇ · (b ⊗ u)dτ .

Proof of Proposition 2.2 Recall that if b = u, the drift–diffusion system (1.1) reduces to
the classical incompressible Navier–Stokes system, and Lemarié-Rieusset in [18, Theorems
11.1, 11.2] proved the above equivalence under very general assumptions that

u ∈ (L2
uloc,x L2

t ([0, T ) × R
n))n (2.4)

and the following decaying condition

lim
R→∞ sup

x∈Rn

1

Rn

∫ t1

t0

∫

|x−x0|≤R
|u|2dxdt = 0, 0 ≤ t0 < t1 < T , (2.5)

where the notation L p
uloc,x Lq

t ([0, T ) × R
n) for every 1 ≤ p, q < ∞ is the space of

Lebesguemeasurable functions f on [0, T )×R
n such that the norm supx0∈Rn

( ∫

|x−x0|≤1(
∫ T
0

| f (x, t)|qdt)p/qdx
)1/p is finite. It is clear that our assumption u ∈ (L∞([0, T ); L2(Rn)))n

guarantees the conditions (2.4), (2.5). Also note that in the case of Navier–Stokes system,
the a priori information of u ⊗ u is that u ⊗ u ∈ (L1

uloc,x L1
t ([0, T ) × R

n)n×n , while in our

case of drift–diffusion system (1.1), we get b⊗u ∈ (L1([0, T ); L2(Rn)))n×n , which directly
implies b ⊗ u ∈ (L1

uloc,x L1
t ([0, T ) × R

n))n×n . Hence we can follow the same arguments as
[18, Theorems 11.1, 11.2] to prove Proposition 2.2, and we here omit the details. ��

We now sketch the proof that the drift–diffusion system (1.1) generates a weak solution
u : R

n × [0, T ) → R
n .

Let ϕ ∈ D(Rn) and η ∈ D(R) be two smooth cut-off functions such that
∫

Rn ϕdx = 1
and supp η ⊂ (−1, 1),

∫

R
ηdt = 1. Set ϕε(x) := 1

εn ϕ( x
ε
), ηε(t) := 1

ε
η( t

ε
), ε > 0. Denote
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by u0,ε(x) = ϕε ∗ u0(x), by bε(x, t) = (ηεϕε) ∗ b(x, t) if t ∈ [ε, T − ε], while bε(x, t) = 0
if t ∈ [0, ε) ∪ (T − ε, T ). We consider the following approximate system that for ε > 0,

{
∂t u + bε · ∇u − �u + ∇ p = 0,

div u = 0, u|t=0 = u0,ε .
(2.6)

Due to that u0∈(L2(Rn))n , b∈(L p([0, T ); Ṁ p(Rn))
)n and P≤1b∈(L1([0, T ); L∞(Rn))

)n ,
then for every ε > 0, we have u0,ε ∈ (Hm(Rn))n , and bε ∈ (

L∞([0, T ); W m,∞(Rn))
)n ,

m ∈ N ∩ ( n
2 + 2,∞), which can be seen by the follows: ‖u0,ε‖Hm (Rn) ≤ Cε−m‖u0‖L2(Rn),

and

‖bε‖L∞([0,T );W m,∞(Rn)) = ‖bε‖L∞([ε,T −ε];W m,∞(Rn))

≤ Cε−1‖ϕε ∗ b‖L1([0,T );W m,∞) ≤ Cε−1‖ϕε‖W m,1‖b‖L1([0,T );L∞)

≤ Cε−m−1(‖b‖L p([0,T );Ṁ p(Rn) + ‖P≤1b‖L1([0,T );L∞(Rn))

)
.

By means of the mild formulation of u

u(x, t) = et�u0,ε −
∫ t

0
e(t−τ)�

P∇ · (bε ⊗ u)(x, τ )dτ, (2.7)

and by using the following estimate (from Plancherel’s therem and Hölder’s inequality) that
for every 0 < T1 < T ,
∥
∥
∥
∥

∫ t

0
e(t−τ)�

P∇ · (bε ⊗ u)dτ

∥
∥
∥
∥

L∞([0,T1];Hm (Rn))

≤ C

∥
∥
∥
∥

∫ t

0
e−(t−τ)|ζ |2 |ζ |(1 + |ζ |2) m

2 |F(bε ⊗ u)(ζ, τ )|dτ
∥
∥
∥
∥

L∞([0,T1];L2)

≤ C

∥
∥
∥
∥
∥

(∫ t

0
e−2(t−τ)|ζ |2 |ζ |2dτ

)1/2 (∫ t

0
(1 + |ζ |2)m |F(bε ⊗ u)(ζ, τ )|2dτ

)1/2
∥
∥
∥
∥
∥

L∞([0,T1];L2)

≤ C

(∫ T1

0
‖bε ⊗ u(τ )‖2Hm dτ

)1/2

≤ CT 1/2
1 ‖bε‖L∞([0,T );W m,∞)‖u‖L∞([0,T1];Hm ),

we can apply Picard’s iteration to show that there is a time T1 > 0 depending only on
‖bε‖L∞([0,T );W m,∞) and dimension n so that the Eq. (2.7) admit a unique solution uε ∈
(C([0, T1]; Hm(Rn)))n . From the following estimate

‖P(bε · ∇uε)‖L∞([0,T1];Hm−2(Rn)) + ‖bε · ∇uε‖L∞([0,T1];Hm−2(Rn))

≤ C‖bε uε‖L∞([0,T1];Hm−1(Rn)) ≤ C‖bε‖L∞([0,T1];W m,∞(Rn))‖uε‖L∞([0,T );Hm (Rn)),

and using (2.7), we have (e.g. see [18, Chapter 11])

∂t uε = �uε − P(bε · ∇uε),

and thanks to that u ∈ (C([0, T1]; Hm(Rn)))n and bε ∈ (C([0, T1]; W m,∞(Rn)))n , we can
obtain uε ∈ (C1([0, T1]; Hm−2(Rn)))n . We define the function

pε = (−�)−1div
(
bε · ∇uε

) = (−�)−1div∇ · (bε ⊗ uε) (2.8)

which belongs to L∞([0, T ); Hm(Rn)), and thus (from the definition of P)

∂t uε + bε · ∇uε − �uε + ∇ pε = 0, div uε = 0. (2.9)
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Moreover, noting that the time increment T1 > 0 is a uniform constant and is independent
of the starting time, we can consider the time interval [T1, 2T1], [2T1, 3T1], . . ., and finally
[kT1, (k + 1)T1] ∩ [0, T ) for some k ∈ N, so that by using the time connectivity, we obtain a
unique solution uε ∈ (C([0, T ); Hm(Rn)) ∩ C1([0, T ); Hm−2(Rn)))n to the system (2.6).
Thanks to the continuous embedding Hm(Rn) ↪→ W 2,∞(Rn) and Hm−2(Rn) ↪→ L∞(Rn)

for m > n
2 +2, we see that uε and pε satisfy the system (2.9) in the classical pointwise sense.

Since ‖u0,ε‖L2(Rn) ≤ ‖u0‖L2(Rn), in view of the divergence-free property of bε and the
classical energy estimate, we get the following L2-estimate of uε :

‖uε(t)‖2L2(Rn)
+ 2

∫ t

0
‖∇uε(τ )‖2L2(Rn)

dτ ≤ ‖u0‖2L2(Rn)
, ∀t ∈ [0, T ), (2.10)

which corresponds to that uε ∈ (
L∞([0, T ); L2(Rn)) ∩ L2([0, T ); Ḣ1(Rn))

)n uniformly
in ε. Owing to the weak (weak-∗) compactness lemmas (e.g. see [4, Theorems 3.16, 3.18]),
this implies that there exists a vector field u = (u1, . . . , un) such that uε , up to a sub-
sequence, denoting by uεk , weakly converges to u in the space

(
L∞([0, T ); L2(Rn)) ∩

L2([0, T ); Ḣ1(Rn))
)n (weakly-* converges in L∞-topology) as εk → 0. Since for any

T > 0, uεk ∈ L2([0, T )×R
n) uniformly in ε, uεk (up a subsequence if necessary) is weakly

convergent to u in L2([0, T ) × R
n), which also implies that uεk → u in D′([0, T ) × R

n).
By setting β(t) ∈ D([0, T )), and using the weak convergence of βuεk in (L2([0, T )×R

n))n

and the weak convergence of ∇ ⊗ uεk in (L2([0, T ) × R
n))n×n [from the convergence in

(D′)n×n and uniform control (2.10)], we obtain that
∫ ∫

Rn
|β(t)|2|u(x, t)|2dxdt + 2

∫

|β(t)|2
(∫ t

0

∫

Rn
|∇ ⊗ u(x, τ )|2dxdτ

)

dt

≤ lim inf
εk→0

∫ ∫

Rn
|β(t)|2|uεk (x, t)|2dxdt + 2

∫

|β(t)|2
(∫ t

0

∫

Rn
|∇ ⊗ uεk (x, τ )|2dxdτ

)

dt

≤
∫

|β(t)|2dt ‖u0‖2L2(Rn)
.

For any t0 > 0, we choose β(t) = 1√
δ
θ( t−t0

δ
), δ > 0 with θ ∈ D(R) satisfying

∫ |θ(t)|2dt =
1, then we get

lim sup
δ→0

∫ ∫

Rn

1

δ

∣
∣
∣
∣θ

(
t − t0

δ

)∣
∣
∣
∣

2

|u(x, t)|2dxdt + 2
∫ t0

0

∫

Rn
|∇u(x, τ )|2dxdτ ≤ ‖u0‖2L2(Rn)

.

If t0 > 0 is a Lebesgue point of the measurable function t �→ ‖u(t)‖L2(Rn), the limit in the
left-hand side of the above inequality equals ‖u(t0)‖2L2(Rn)

, thus we prove the inequality (2.1)
for almost every t ∈ [0, T ) (later we shall show that (2.1) indeed holds for any t ∈ [0, T )),
which also implies that

‖u‖L∞([0,T );L2(Rn)) ≤ ‖u0‖L2(Rn), and ‖u‖L2([0,T );L2(Rn)) ≤ ‖u0‖L2(Rn). (2.11)

By using b ∈ (L p([0, T ); Ṁ p(Rn)))n , p ∈ [1, 2], and P≤1b ∈ (L1([0, T ); L∞(Rn)))n ,
we have that (from the high-low frequency decomposition)

b ∈ (L1([0, T ); L∞(Rn)))n, (2.12)

and also b ∈ (L1([0, T ); L4
loc(R

n)))n , thus bε strongly converges to b in (L1([0, T );
L4
loc(R

n)))n as ε → 0 (e.g. see [8, Appendix C.4]).
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It is clear to see that uεk and bεk satisfy (2.2), (2.3) with (u, b) replaced by (uεk , bεk ). We
also find that for every test function χ ∈ (D([0, T ) × R

n))n ,
∣
∣
∣
∣
∣

∫ T

0

∫

Rn
(uεk ⊗ bεk ) · (∇ ⊗ χ)dxdτ −

∫ T

0

∫

Rn
(u ⊗ b) · (∇ ⊗ χ)dxdτ

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ T

0

∫

Rn
(uεk ⊗ (bεk − b)) · (∇ ⊗ χ)dxdτ

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ T

0

∫

Rn
((uεk − u) ⊗ b) · (∇ ⊗ χ)dxdτ

∣
∣
∣
∣
∣

≤ ‖uεk ‖L∞([0,T );L2)‖bεk − b‖L1([0,T );L4
loc)

‖∇ ⊗ χ‖L∞([0,T );L4)

+
∣
∣
∣
∣
∣

∫ T

0

∫

Rn
((uεk − u) ⊗ b) · (∇ ⊗ χ)dxdτ

∣
∣
∣
∣
∣

−→ 0, as εk → 0, (2.13)

where the last convergence (2.13) is deduced from (2.10), the strong convergence result of bεk ,
the weak (weak-*) convergence of uεk in (L∞([0, T ); L2(Rn)))n and the fact b · (∇ ⊗ χ) ∈(
L1([0, T ); L2(Rn))

)n . From (2.8), we next intend to prove that

pεk → p := (−�)−1div div (b ⊗ u), in D′([0, T ) × R
n). (2.14)

Recall that RiR j := ∂xi ∂x j (−�)−1 (i, j = 1, . . . , n) is a Fourier multiplier operator with

multiplier m(ζ ) = − ζi ζ j

|ζ |2 which has the following expression formula (e.g. see [9, Theorem
4.13])

RiR j f (x) = ai j f (x) + Ti j f (x), (2.15)

where ai j = − 1
n for i = j and ai j = 0 for i �= j , and Ti j is a singular integral operator

Ti j f (x) := p.v.
∫

Rn
Ki j (x − y) f (y)dy = lim

ε→0

∫

|x−y|>0
Ki j (x − y) f (y)dy, (2.16)

with the kernel Ki j (x) = �i j (x̂)

|x |n , ∀x �= 0, x̂ = x
|x | , and �i j (x̂) ∈ C∞(Sn−1) satisfying the

zero-average property. We thus have that for every χ ∈ (D([0, T ) × R
n))n ,

∫ T

0

∫

Rn
(pεk − p)(divχ)dxdτ =

∫ T

0

∫

Rn
RiR j (bεk ,i uεk , j − bi u j )(divχ)dxdτ

=
∫ T

0

∫

Rn
(bεk ,i uεk , j − bi u j )RiR j (divχ)dxdτ

= ai j

∫ T

0

∫

Rn
(bεk ,i uεk , j − bi u j ) (divχ)dxdτ

+
∫ T

0

∫

Rn
(bεk ,i uεk , j − bi u j ) Ti j (divχ)dxdτ, (2.17)

where the Einstein summation convention on repeated indices is also used. Similarly as
(2.13), we obtain

ai j

∣
∣
∣
∣

∫ T

0

∫

Rn
(bεk ,i uεk , j − bi u j ) (divχ)dxdτ

∣
∣
∣
∣ → 0, as εk → 0. (2.18)

Let χ be supported in the space–time domain [τ0, τ1]× BR0 with 0 ≤ τ0 < τ1 < T and some
R0 > 0. By letting R ≥ R0 be some constant chosen later and using the support property,
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we see that for every x ∈ Bc
2R ,

|Ti j (divχ)(x, τ )| =
∣
∣
∣
∣p.v.

∫

Rn

�(x̂ − y)

|x − y|n (divχ)(y, τ )dy

∣
∣
∣
∣

≤ C
∫

BR0

1

|x − y|n |(divχ)(y, τ )|dy ≤ C
1

|x |n ‖divχ‖L∞([0,T );L1).

(2.19)

For any ε > 0, by using (2.10), (2.11), (2.12), (2.19) and Hölder’s inequality, we deduce that
∣
∣
∣
∣
∣

∫ T

0

∫

Bc
2R

(bεk ,i uεk , j − bi u j ) Ti j (divχ)dxdτ

∣
∣
∣
∣
∣

≤ C‖divχ‖L∞
t L1

x

∫ T

0

∫

Bc
2R

|bεk ,i uεk , j − bi u j |
|x |n dxdτ

≤ C‖divχ‖L∞
t L1

x

(
‖bεk ‖L1

t L∞
x

‖uεk ‖L∞
t L2

x
+ ‖b‖L1

t L∞
x

‖u‖L∞
t L2

x

)
(∫

Bc
2R

1

|x |2n
dx

)1/2

≤ C‖divχ‖L∞
t L1

x
‖b‖L1

t L∞
x

‖u0‖L2(Rn)

1

Rn/2 < ε, (2.20)

where the last inequality can be ensured by choosing some fixed R such that

R ≥ max

{

2R0,
2C

ε
‖divχ‖L∞

t L1
x
‖b‖L1

t L∞
x

‖u0‖L2

}

.

By arguing as (2.13), and using the facts that ‖Ti j (divχ)‖L∞
t L4

x
≤ C‖∇χ‖L∞

t L4
x
and

‖Ti j (divχ)‖L∞
t L2

x
≤ C‖χ‖L∞

t H1
x
, we also infer that

∣
∣
∣
∣

∫ T

0

∫

B2R

(bεk ,i uεk , j − bi u j ) Ti j (divχ)dxdτ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

∫

B2R

(uεk , j (bεk ,i − bi )) Ti j (divχ)dxdτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0

∫

B2R

((uεk , j − u j ) bi )Ti j (divχ)dxdτ

∣
∣
∣
∣

≤ ‖uεk ‖L∞([0,T );L2)‖bεk − b‖L1([0,T );L4
loc)

‖∇χ‖L∞([0,T );L4)

+
∣
∣
∣
∣

∫ T

0

∫

Rn
(uεk , j − u j ) (bi Ti j (divχ))dxdτ

∣
∣
∣
∣

−→ 0, as εk → 0. (2.21)

Hence, gathering (2.17) and the estimates (2.18), (2.20), (2.21) leads to

lim
εk→0

∣
∣
∣
∣

∫ T

0

∫

Rn
(pεk − p)(divχ)dxdτ

∣
∣
∣
∣ < ε,

thus from the arbitrariness of ε > 0, we conclude the desired convergence (2.14). Therefore
we can pass the limit εk → 0 to show that u indeed satisfies (2.2) and (2.3), that is, u solves
the drift–diffusion system (1.1) in the distributional sense.

Next we show that the solution u is weakly continuous from [0, T ) to (L2(Rn))n after a
redefinition on a null set of [0, T ). Indeed, from ∂t u = �u +P∇ ·(b⊗u) in the distributional
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sense and the following estimate

‖P∇ · (b ⊗ u)‖L1([0,T );H−2) ≤ C‖b ⊗ u‖L1([0,T );L2) ≤ ‖b‖L1([0,T );L∞)‖u‖L∞([0,T );L2),

we have ∂t u ∈ (L1([0, T ); H−2(Rn)))n , thus u(t) for every t ∈ [0, T ) is continuous in
(S ′(Rn))n . Due to that the inequality (2.1) is satisfied for almost every t ∈ [0, T ), there is a
null set N ⊂ [0, T ) such that (2.1) holds on [0, T ) \ N , and we can redefine the values of
u on N so that ‖u(t)‖L2(Rn) ≤ C for every t ∈ N . Hence, by using the facts that t �→ u is
bounded in L2-norm for every t ∈ [0, T ) and S(Rn) is dense in L2(Rn), we can prove that
u is weakly continuous in (L2(Rn))n for every t ∈ [0, T ), as desired.

We now prove the energy estimate (2.1) for every t ∈ [0, T ) and also limt→0+ ‖u(t) −
u0‖L2(Rn) = 0. Indeed, for any t ∈ [0, T ), recalling that (2.1) is valid for every t ∈
[0, T ) \ N with null set N , there exists a sequence of times {t j }∞j=1 ⊂ [0, T ) \ N such

that t j → t as j → ∞, thus we deduce that ‖u(t)‖2
L2(Rn)

≤ lim inf t j →t ‖u(t j )‖2L2(Rn)
and

∫ t
0

∫

Rn |∇u|2dxdτ = limt j →t
∫ t j
0

∫

Rn |∇u|2dxdτ ; hence (2.1) holds for every t ∈ [0, T ). For
the strong continuity property of u at time t = 0, due to that u(t) is weakly L2-continuous at
t = 0, we only need to show that limt→0+ ‖u(t)‖2

L2(Rn)
= ‖u0‖2L2(Rn)

. But this equality can

be seen from ‖u0‖2L2(Rn)
≤ lim inf t→0+ ‖u(t)‖2

L2(Rn)
which is from the weak convergence,

and also lim supt→0+ ‖u(t)‖2
L2(Rn)

≤ ‖u0‖2L2(Rn)
which is ensured by (2.1).

Therefore, basedon the above analysis,we construct aweak solutionu : [0, T )×R
n → R

n

to the drift–diffusion system with pressure (1.1) in the sense of Definition 2.1.

2.2 Uniqueness of weak solutions to the drift–diffusion systemwith pressure (1.1)
at p = 2 case

Assume that u1 and u2 are two weak solutions to the system (1.1) associated with the
same initial data u0 ∈ (L2(Rn))n , that is, ui (i = 1, 2) belongs to

(
L∞([0, T ); L2(Rn)) ∩

L2([0, T ); Ḣ1(Rn))
)n and satisfies (2.2), (2.3).

We first have the following result which plays an important role in the uniqueness issue.

Proposition 2.3 Let T > 0 be any given. Assume that u1 and u2 defined on [0, T ) × R
n

are two weak solutions to the system (1.1) with the same data u0 ∈ (L2(Rn))n. Addi-
tionally suppose that b is a divergence-free (in distributional sense) vector field satisfying
b ∈ (L2([0, T ); L∞(Rn)))n. Then the map t �→ ∫

Rn u1(x, t) ·u2(x, t)dx for every t ∈ [0, T )

is continuous, and we have the equality that for every 0 ≤ s < t < T ,
∫

Rn
u1(x, t) · u2(x, t)dx + 2

∫ t

s

∫

Rn
(∇ ⊗ u1) · (∇ ⊗ u2)dxdτ =

∫

Rn
u1(x, s) · u2(x, s)dx .

(2.22)

Proof of Proposition 2.3 Let ϕε(x) := 1
εn ϕ( x

ε
), ηε(t) := 1

ε
η( t

ε
), ε > 0 with ϕ ∈ D(Rn)

and η ∈ D(R) satisfying
∫

Rn ϕdx = 1 and supp η ⊂ (−1, 1),
∫

R
ηdt = 1. Set ωε(x, t) :=

ϕε(x)ηε(t). Then ωε ∗ ui (i = 1, 2) is a smooth function on [ε, T − ε] × R
n , and we have

∂t
(
(ωε ∗ u1) · (ωε ∗ u2)

) = (
∂t (ωε ∗ u1)

) · (ωε ∗ u2) + (ωε ∗ u1) · (∂t (ωε ∗ u2)
)

= (ωε ∗ ∂t u
1) · (ωε ∗ u2) + (ωε ∗ u1) · (ωε ∗ ∂t u

2),
(2.23)

where the notation ∗ means the space–time convolution. Since ui (i = 1, 2) solves the first
equation of (1.1) in the distributional sense, we infer that for i, j ∈ {1, 2},
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(ωε ∗ ∂t u
i ) · (ωε ∗ u j ) = (ωε ∗ �ui ) · (ωε ∗ u j )

− (ωε ∗ ∇ pi ) · (ωε ∗ u j )

− (ωε ∗ ∇ · (b ⊗ ui )) · (ωε ∗ u j )

= ∇ · ((ωε ∗ ∇ ⊗ ui ) · (ωε ∗ u j )
) − (ωε ∗ ∇ ⊗ ui ) · (ωε ∗ ∇ ⊗ u j )

− ∇ · ((ωε ∗ pi ) · (ωε ∗ u j )
)

− ∇ · ((ωε ∗ (b ⊗ ui )) · (ωε ∗ u j )
) + (ωε ∗ (b ⊗ ui )) · (ωε ∗ ∇ ⊗ u j ).

Let γ (t) ∈ D([ε, T − ε]) andψ(x) ∈ D(Rn)with ψ ≡ 1 on B1. Observe that for a vector
field Fε ∈ (L1([ε, T − ε] × R

n))n uniformly in ε and R > 0, we get
∫ T

0

∫

Rn
∇ · Fε(x, t)γ (t)ψ

( x

R

)
dxdt = − 1

R

∫ T

0

∫

|x |≥R
γ (t)Fε(x, t) · (∇ψ)

( x

R

)
dxdt

−→ 0, as R → ∞.

Also noticing that

‖(ωε ∗ (∇ ⊗ ui )) · (ωε ∗ u j )‖L1([ε,T −ε]×Rn)

≤ ‖ωε ∗ (∇ ⊗ ui )‖L2([ε,T −ε]×Rn)‖ωε ∗ u j‖L2([ε,T −ε]×Rn)

≤ ‖∇ ⊗ ui‖L2([0,T )×Rn)‖u j‖L2([0,T )×Rn) < T
1
2 ‖u0‖2L2(Rn)

,

and

‖(ωε ∗ (b ⊗ ui )) · (ωε ∗ u j )‖L1([ε,T −ε]×Rn)

≤ ‖ωε ∗ (b ⊗ ui )‖L1([ε,T −ε];L2(Rn))‖ωε ∗ u j‖L∞([ε,T −ε];L2(Rn))

≤ ‖b‖L1([0,T );L∞)‖ui‖L∞([0,T );L2)‖u j‖L∞([0,T );L2) ≤ ‖b‖L1([0,T );L∞(Rn))‖u0‖2L2(Rn)
,

and (from pi = (−�)−1div div (b ⊗ ui ), see Proposition 2.2)

‖(ωε ∗ pi ) · (ωε ∗ u j )‖L1([ε,T −ε]×Rn) ≤ ‖pi‖L1([0,T );L2(Rn))‖u j‖L∞([0,T );L2(Rn))

≤ ‖b‖L1([0,T );L∞)‖ui‖L∞([0,T );L2)‖u j‖L∞([0,T );L2) ≤ ‖b‖L1([0,T );L∞(Rn))‖u0‖2L2(Rn)
,

we take an inner product of the equality (2.23) with γ (t)ψ( x
R ) (R > 0) and then let R → ∞,

we find that in D′([ε, T − ε]),
∂t

∫

Rn
(ωε ∗ u1) · (ωε ∗ u2)dx + 2

∫

Rn
(ωε ∗ (∇ ⊗ u1)) · (ωε ∗ (∇ ⊗ u2))dx

=
∫

Rn
(ωε ∗ (b ⊗ u1)) · (ωε ∗ (∇ ⊗ u2))dx +

∫

Rn
(ωε ∗ (∇ ⊗ u1)) · (ωε ∗ (b ⊗ u2))dx

=
∫

Rn
(ωε ∗ (b ⊗ u1)) · (ωε ∗ (∇ ⊗ u2))dx −

∫

Rn
(ωε ∗ u1) · (ωε ∗ ∇ · (b ⊗ u2))dx .

(2.24)

Nowwe pass ε to 0 in the above quantities. Notice that as ε → 0, for some g ∈ L2([0, T )×
R

n), ωε ∗ g1 strongly converges to g in L2([0, T ) × R
n). We thus obtain that in D′([0, T )),

∂t

∫

Rn
(ωε ∗ u1) · (ωε ∗ u2)dx → ∂t

∫

Rn
u1 · u2dx, (2.25)

1 This function can be defined on [0, T ) × R
n by first defining ωε ∗ g as space–time convolution on [ε, T −

ε] × R
n and then extending it by 0 on ([0, ε) ∪ (T − ε, T )) × R

n .
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and

2
∫

Rn
(ωε ∗ (∇ ⊗ u1)) · (ωε ∗ (∇ ⊗ u2))dx → 2

∫

Rn
(∇ ⊗ u1) · (∇ ⊗ u2)dx, (2.26)

and
∫

Rn
(ωε ∗(b⊗u1))·(ωε ∗(∇⊗u2))dx →

∫

Rn
(b⊗u1)·(∇⊗u2)dx =

∫

Rn
b ·(∇⊗u2)·u1dx .

(2.27)
Since b ∈ (L2([0, T ); L∞(Rn)))n with div b = 0, and u2 ∈ (L2([0, T ); H1(Rn)))n , we
have ∇ · (b ⊗ u2) = b · ∇u2 in (D′([0, T ) × R

n))n . Indeed, we may first get the equality for
the smooth vector field ωε ∗ b and ωε ∗ u2, and then pass to the limit ε → 0. Thus we infer
that in D′([0, T )),

∫

Rn
(ωε ∗ u1) · (ωε ∗ ∇ · (b ⊗ u2))dx =

∫

Rn
(ωε ∗ u1) · (ωε ∗ (b · (∇ ⊗ u2)))dx .

Due to that ‖ωε ∗ u1‖L∞([0,T );L2(Rn)) ≤ ‖u1‖L∞([0,T );L2(Rn)) ≤ ‖u0‖L2(Rn), as ε → 0, we
have ωε ∗ u1 (up to a subsequence, still denoting by ωε ∗ u1) weakly-∗ converges to u1 in
(L∞([0, T ); L2(Rn)))n (e.g. see [4, Theorem 13.6]). From

‖b · (∇ ⊗ u2)‖L1([0,T );L2(Rn)) ≤ ‖b‖L2([0,T );L∞)‖∇ ⊗ u2‖L2([0,T )×Rn)

≤ ‖b‖L2([0,T );L∞(Rn))‖u0‖L2 , (2.28)

we also deduce thatωε∗(b·(∇⊗u2)) strongly converges to b·(∇⊗u2) in L1([0, T ); L2(Rn)).
Hence for every γ (t) ∈ D([0, T )),
∣
∣
∣
∣

∫ T

0

∫

Rn
γ (t)(ωε ∗ u1) · (ωε ∗ (b · (∇ ⊗ u2)))dxdt −

∫ T

0

∫

Rn
γ (t)u1 · (b · (∇ ⊗ u2))dxdt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ T

0

∫

Rn
γ (t)

(
ωε ∗ u1 − u1) · (b · (∇ ⊗ u2))dxdt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T

0

∫

Rn
γ (t)(ωε ∗ u1) · (ωε ∗ (b · (∇ ⊗ u2)) − b · (∇ ⊗ u2)

)
dxdt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T

0

∫

Rn
γ (t)

(
ωε ∗ u1 − u1) · (b · (∇ ⊗ u2))dxdt

∣
∣
∣
∣

+ ‖γ ‖L∞‖ωε ∗ (b · (∇ ⊗ u2)) − b · (∇ ⊗ u2)‖L1([0,T );L2)‖u0‖L2

−→ 0, as ε → 0,

which directly leads to that in D′([0, T )),
∫

Rn
(ωε ∗u1) · (ωε ∗∇ · (b ⊗u2))dx →

∫

Rn
u1 · (b · (∇ ⊗u2))dx =

∫

Rn
(b · (∇ ⊗u2)) ·u1dx .

(2.29)
Gathering (2.24) and the convergence results (2.25)–(2.29), we conclude that in D′([0, T )),

∂t

∫

Rn
(u1 · u2)dx + 2

∫

Rn

(
(∇ ⊗ u1) · (∇ ⊗ u2)

)
dx = 0. (2.30)

Since ui (i = 1, 2) is a weak solution to the drift–diffusion system (1.1), it also satisfies
that following integral equation

ui (x, t) = et�u0 −
∫ t

0
e(t−τ)�

P(b · ∇ui )(x, τ )dτ. (2.31)
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We claim that

ui (i = 1, 2) is strongly L2 − continuous for every t ∈ [0, T ). (2.32)

Indeed, from u0 ∈ (L2(Rn))n , et�u0 for every t is continuous in (L2(Rn))n ; while

recalling that for g ∈ L
2

2−β ([0, T ); Ḣ−β(Rn)) with some β ∈ [0, 1], the function t �→∫ t
0 e(t−τ)�

Pg(τ )dτ is continuous in t with values in L2(Rn) (see [12, Pg. 392]), thus thanks
to (2.28), the function

∫ t
0 e(t−τ)�

P(b · ∇ui )dτ is also L2-continuous about the time variable;
hence together with (2.31), the assertion (2.32) is followed.

Therefore, by virtue of (2.32) themap t �→ ∫

Rn u1·u2dx for every t ∈ [0, T ) is continuous.
We can integrate the equality (2.30) to get the desired equality (2.22). ��

Based on Proposition 2.3 and the energy estimate (2.1), we now prove the uniqueness
result. We have that for every t ∈ [0, T ),

‖u1(t) − u2(t)‖2L2(R2)
= ‖u1(t)‖2L2(Rn)

+ ‖u2(t)‖2L2(Rn)
− 2

∫

Rn
u1(x, t) · u2(x, t) dx

= ‖u1(t)‖2L2(Rn)
+‖u2(t)‖2L2(Rn)

+4
∫ t

0

∫

Rn
(∇ ⊗ u1) · (∇ ⊗ u2)dxdτ − 2‖u0‖2L2(Rn)

≤ −2
∫ t

0

∫

Rn
|∇ ⊗ u1|2dxdτ − 2

∫ t

0

∫

Rn
|∇ ⊗ u2|2dxdτ

+ 4
∫ t

0

∫

Rn
(∇ ⊗ u1) · (∇ ⊗ u2)dxdτ

≤ −2
∫ t

0

∫

Rn
|∇ ⊗ u1(x, τ ) − ∇ ⊗ u2(x, τ )|2dxdτ.

Hence u1 ≡ u2 on [0, T )×R
n , and we conclude the uniqueness of weak solutions for system

(1.1) at the p = 2 case.

2.3 Proof of Hölder regularity result

Throughout this subsection, let φ ∈ D(Rn) be a radially symmetric test function such that

φ ≡ 1, on B1/2; suppφ ⊂ B1;
∫

Rn
φ dx = 1.

We first recall the definition of the L2-based Morrey–Campanato space L2,λ(Rn), which is
very useful in the proof: the Morrey–Campanato space L2,λ(Rn) with λ ∈ (0, n + 2) is the
set of f ∈ L2

loc(R
n) such that

‖ f ‖L2,λ(Rn) := sup
x0∈Rn ,r>0

(
1

rλ

∫

Br (x0)
| f (x) − f̄ (x0, r)|2φ

(
x − x0

r

)

dx

)1/2

= sup
x0∈Rn ,r>0

(
1

rλ−n

∫

B1

| f (x0 + ry) − f̄ (x0, r)|2φ (y) dy

)1/2

< ∞,

(2.33)

with f̄ (x0, r) := ∫

B1
f (x0 +ry)φ(y)dy. The L2-based Morrey–Campanato space L2,λ(Rn)

has the following important equivalence property (e.g. see [19, Pg. 361]).
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Lemma 2.4 We have

L2,λ(Rn) =

⎧
⎪⎨

⎪⎩

B M O(Rn), if λ = n,

Ċ
λ−n
2 (Rn), if λ ∈ (n, n + 2),

Ẇ 1,∞(Rn), if λ = n + 2,

(2.34)

where B M O(Rn) is the space of functions with bounded mean oscillation (e.g. see [9, Chapter
6]).

In this subsection, the following modulus of continuity is also of frequent use

ω(ξ, ξ0) =
{

(1 − α)ξα
0 + αξα−1

0 ξ, if 0 < ξ ≤ ξ0,

ξα, if ξ > ξ0,
(2.35)

where α ∈ (0, 1), ξ0 = ξ0(t) satisfies that

ξ̇0 = −ρξ−1
0 , ξ0(0) = A0, (2.36)

with some constants ρ, A0 > 0, that is,

ξ0(t) =
√

A2
0 − 2ρt . (2.37)

Noticing that as ξ0 → 0, ω(ξ, ξ0) reduces to ω(ξ, 0+) = ω(ξ) = ξα which is the modulus
of continuity of the α-Hölder continuity.

Since we can first consider the approximate solution uε (ε > 0) solving the system
(2.9) with pε = (−�)−1div (bε · ∇uε) and then pass to the limit ε → 0, we here only
focus on the a priori estimates and always assume that u(x, t) ∈ (C([0, T ); Hm(Rn)) ∩
C1([0, T ); Hm−2(Rn)))n (m ∈ ( n

2 + 2,∞) ∩ N) is a classical solution to the Eqs. (1.1),
(1.2). In order to show the a priori estimate concerning the improvement of the solution from
u(t) ∈ L2(Rn) to u(t) ∈ Ċα(Rn), we divide the proof into three steps.

Step 1 A priori estimate of u(t) on the improvement from L2(Rn) to L2,2α(Rn).
By setting the weighted mean of u on Bξ (x) as

ū(x, ξ, t) =
∫

B1

u(x + ξ y, t)φ(y)dy, (2.38)

with φ ∈ D(Rn) the same test function in (2.33), we firstly intend to control the following
quantity

I1(x, ξ, t) = ξn
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy (2.39)

through the suitable modulus of continuity ω1(ξ, t)2, which is precisely given by

ω1(ξ, t) = f1(t)ω(ξ, ξ0) =
{

f1(t)
(
(1 − α)ξα

0 + αξα−1
0 ξ

)
, if 0 < ξ ≤ ξ0,

f1(t)ξα, if ξ > ξ0,
(2.40)

with f1(t) > 0 a non-decreasing differentiable function chosen later [see (2.70) below]. That
is, for such defined I1 and ω1, we shall prove that for every x ∈ R

n and ξ > 0,

I1(x, ξ, t) < ω1(ξ, t)2, for all t ∈ [0, T ). (2.41)

Before proving (2.41), we first show the direct consequence of this uniform inequality

(2.41). From the expression formula of (2.37), we see that ξ0(t1) = 0 at the time t1 := A2
0

2ρ
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with ρ given by (2.66) below, thus for t ≥ t1, ω1(ξ, t) reduces to f1(t)ξα , and (2.41) implies
that for every x ∈ R

n and ξ > 0,

ξn−2α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ f1(t)
2, ∀t ≥ t1, (2.42)

which according to (2.33) means that u(t) for every t ≥ t1 belongs to theMorrey–Campanato
space L2,2α(Rn).

Next we proceed to prove (2.41) for all x ∈ R
n , ξ > 0 and t ∈ [0, T ). Observing that

I1(x, ξ, 0) = ξn
∫

B1

|u0(x + ξ y) − ū(x, ξ, 0)|2φ(y)dy

= ξn
∫

B1

|u0(x + ξ y)|2φ(y)dy − ξn |ū(x, ξ, 0)|2 ≤
∫

Bξ (x)
|u0(y)|2dy ≤ ‖u0‖2L2(Rn)

,

(2.43)
and ω1(ξ, 0) ≥ f1(0)ω(0+, ξ0(0)) = (1 − α) f1(0)Aα

0 , we infer that by choosing f1(0) to
be large enough so that

f1(0) ≥
√
2‖u0‖L2(Rn)

(1 − α)Aα
0

, (2.44)

we have I1(x, ξ, 0) < ω1(ξ, 0)2 for all x ∈ R
n and ξ > 0.

Nowwe assume that the strict inequality I1(x, ξ, t) < ω1(ξ, t)2 is firstly lost at some time
t∗ ∈ (0, T ) (without loss of generality). Since u is a smooth function that has spatial decay
at infinity, from the time continuity, we get

I1(x, ξ, t∗) ≤ ω1(ξ, t∗), for all x ∈ R
n, ξ > 0. (2.45)

A direct consequence of (2.45) is the following result.

Lemma 2.5 Assume that the assumption (2.45) is satisfied, then there exists a positive con-
stant C = C(n, α) so that for every (x, ξ) ∈ R

n × (0,∞) and for every j ∈ N,

ξn
∫

B2 j

|u(x + ξ y, t∗) − ū(x, ξ, t∗)|2dy ≤ C( j + 1)22 j(n+2α)ω1(ξ, t∗)2. (2.46)

Proof of Lemma 2.5 Thanks to the change of variables, the support property of φ andHölder’s
inequality, we deduce that

ξn
∫

B2 j

|u(x + ξ y, t∗) − ū(x, ξ, t∗)|2dy

= ξn2( j+1)n
∫

B1/2

|u(x + 2 j+1ξ y, t∗) − ū(x, ξ, t∗)|2dy

≤ ξn2( j+1)n

×
∫

B1

|u(x + 2 j+1ξ y, t∗) − ū(x, ξ, t∗)|2φ(y)dy

≤ ξn2( j+1)n+1
∫

B1

|u(x + 2 j+1ξ y, t∗) − ū(x, 2 j+1ξ, t∗)|2φ(y)dy

+ ξn2( j+1)n+1

×
⎛

⎝
j∑

k=0

|ū(x, 2k+1ξ, t∗) − ū(x, 2kξ, t∗)|
⎞

⎠

2
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≤ 2ω1(2
j+1ξ, t∗)2 + ξn2( j+1)n+1( j + 1)

×
j∑

k=0

∫

B1

|u(x + 2kξ y, t∗) − ū(x, 2k+1ξ, t∗)|2φ(y)dy

≤ 2ω1(2
j+1ξ, t∗)2 + ξn2( j+2)n+1( j + 1)

×
j∑

k=0

∫

B1/2

|u(x + 2k+1ξ y, t∗) − ū(x, 2k+1ξ, t∗)|2dy

≤ 2ω1(2
j+1ξ, t∗)2 + 2( j+2)n+1( j + 1)

j∑

k=0

2−(k+1)nω1(2
k+1ξ, t∗)2

≤ C02
( j+2)n( j + 1)2ω1(2

j+1ξ, t∗)2. (2.47)

Then we control ω1(2 j+1ξ, t∗) from ω1(ξ, t∗). If 0 < ξ ≤ ξ0, we get ω1(ξ, t∗) ≥ (1 −
α) f1(t∗)ξα

0 andω1(2 j+1ξ, t∗) ≤ 2( j+1)α f1(t∗)ξα
0 , thusω1(2 j+1ξ, t∗)≤ 1

1−α
2( j+1)αω1(ξ, t∗).

Whereas if ξ > ξ0, we directly see that ω1(2 j+1ξ, t∗) ≤ 2( j+1)αω1(ξ, t∗). Hence
ω1(2 j+1ξ, t∗) ≤ 1

1−α
2( j+1)αω1(ξ, t∗) for all ξ > 0. Inserting this estimate into (2.47) yields

(2.46). ��
Besides, we have the following breakdown criterion.

Lemma 2.6 Let t∗ ∈ (0, T ) be the first time that the strict preservation (2.41) is lost, then
there exists some x ∈ R

n and ξ > 0 such that

I1(x, ξ, t∗) = ω1(ξ, t∗)2. (2.48)

The proof of this lemma is postponed in Sect. 2.4.
Since I1(x, ξ, t∗) attains its maximum at x for fixed (x, ξ) in (2.48), we get

∇x I1 = 2ξn
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · (∇x ⊗ u(x + ξ y, t∗)

−∇x ⊗ ū(x, ξ, t∗)) φ(y)dy = 0. (2.49)

From the definition of ū (2.38), we also see that
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · ∇x ⊗ u(x + ξ y, t∗)φ(y)dy = 0. (2.50)

By virtue of the fact I1(x, ξ, t) < ω1(ξ, t)2 for all t ∈ [0, t∗), we have

∂tω1(ξ, t∗)2 ≤ ∂t I1(x, ξ, t∗),

which leads to that

ω1(ξ, t∗)∂tω1(ξ, t∗) ≤ ξn
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · (∂t u(x + ξ y, t∗)

−∂t ū(x, ξ, t∗)) φ(y)dy

= ξn
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · ∂t u(x + ξ y, t∗)φ(y)dy.

(2.51)
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Plugging the Eq. (1.1) into the right-hand-side of (2.51) yields

ω1(ξ, t∗)∂tω1(ξ, t∗) ≤ − ξn
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · (b(x + ξ y, t∗)

·∇x ⊗ u(x + ξ y, t∗)) φ(y)dy

+ ξn
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · �x u(x + ξ y, t∗)φ(y)dy

− ξn
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗)) · ∇x p(x + ξ y, t∗)φ(y)dy

:= C(x, ξ, t∗) + D(x, ξ, t∗) + P(x, ξ, t∗). (2.52)

Recalling that ω1(ξ, t) and ξ0(t) are defined by (2.40) and (2.36) respectively, we obtain
that for 0 < ξ < ξ0(t∗),

∂tω1(ξ, t∗) = f ′
1(t∗)

(
(1 − α)ξα

0 + αξα−1
0 ξ

)

+ f1(t∗)
(
α(1 − α)ξα−1

0 ξ̇0 − α(1 − α)ξα−2
0 ξ̇0ξ

)

= f ′
1(t∗)

(
(1 − α)ξα

0 + αξα−1
0 ξ

)
− ρα(1 − α) f1(t∗)

(
ξα−2
0 − ξα−3

0 ξ
)

≥ (1 − α) f ′
1(t∗)ξα

0 − ρα(1 − α) f1(t∗)ξα−2
0 ,

(2.53)
and for ξ ≥ ξ0(t∗),

∂tω1(ξ, t∗) = f ′
1(t∗)ξα. (2.54)

For the contribution from the convection term C, taking advantage of (2.50), ∇x ⊗ u(x +
ξ y, t∗) = 1

ξ
∇y ⊗ u(x + ξ y, t∗) = 1

ξ
∇y ⊗ (

u(x + ξ y, t∗) − ū(x, ξ, t∗)
)
, the divergence-free

property of b and the integration by parts, we get

C = − ξn−1
∫

B1

(u(x + ξ y, t∗) − ū(x, ξ, t∗))

· ((b(x + ξ y, t∗) − b̄(x, ξ, t∗)
) · ∇y ⊗ u(x + ξ y, t∗)

)
φ(y)dy

= − 1

2
ξn−1

∫

B1

(
b(x + ξ y, t∗) − b̄(x, ξ, t∗)

) · ∇y
(|u(x + ξ y, t∗) − ū(x, ξ, t∗)|2

)
φ(y)dy

= 1

2
ξn−1

∫

B1

|u(x + ξ y, t∗) − ū(x, ξ, t∗)|2
(
b(x + ξ y, t∗) − b̄(x, ξ, t∗)

) · ∇φ(y)dy.

(2.55)

Thanks to the following estimate [deduced from (1.8)] that for every y ∈ B1:

|b(x + ξ y, t∗) − b̄(x, ξ, t∗)| ≤
∫

B1

|b(x + ξ y, t∗) − b(x + ξ z, t∗)|φ(z)dz

≤ ‖b(t∗)‖Ṁ p ξ
2−p

p

∫

B1

|y − z| 2−p
p φ(z)dz ≤ 2‖b(t∗)‖Ṁ p ξ

2−p
p ,

(2.56)
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and using Lemma 2.5, we infer that

C(x, ξ, t∗) ≤ 1

ξ
C0‖b(t∗)‖Ṁ p ξ

2−p
p ξn

∫

B1

|u(x + ξ y, t∗) − ū(x, ξ, t∗)|2dy

≤ C‖b(t∗)‖Ṁ p ξ
2
p −2

ω1(ξ, t∗)2

≤
{

C‖b(t∗)‖Ṁ p ω1(ξ, t∗) f (t∗)ξ
2
p −2

ξα
0 , if 0 < ξ ≤ ξ0(t∗);

C‖b(t∗)‖Ṁ p ω1(ξ, t∗) f (t∗)ξ
2
p +α−2

, if ξ > ξ0(t∗).

(2.57)

For the contribution of the dissipation term D, we shall use the following crucial lemma
which is a modification of [29, Lemma 3.4]:

Lemma 2.7 For fixed x, ξ and t∗ appearing in (2.48), there exists a small constant c∗ > 0
depending only on n and φ so that

−D(x, ξ, t∗) ≥ c∗
(
(n + 2)I1(x, ξ, t∗) − ξ∂ξ I1(x, ξ, t∗)

)2

ξ2 I1(x, ξ, t∗)

= c∗
(
(n + 2)ω1(ξ, t∗) − 2ξ∂ξω1(ξ, t∗)

)2

ξ2
. (2.58)

For the proof of Lemma 2.7, one can see Sect. 2.4 below.
According to Lemma 2.7, if 0 < ξ ≤ ξ0(t∗), we see that ω1(ξ, t∗) = f1(t∗)(

(1 − α)ξα
0 + αξα−1

0 ξ
)

≤ f1(t∗)ξα
0 , ∂ξω1(ξ, t∗) = α f1(t∗)ξα−1

0 , and

(n + 2)ω1(ξ, t∗) − 2ξ∂ξω1(ξ, t∗) = f1(t∗)
(
(n + 2)(1 − α)ξα

0 + nαξα−1
0 ξ

)

≥ 2 f1(t∗)(1 − α)ξα
0 ,

thus

D(x, ξ, t∗) ≤ −c∗
4(1 − α)2 f1(t∗)2ξ2α0

ξ2
≤ −4c∗(1 − α)2ω1(ξ, t∗) f1(t∗)ξα

0 ξ−2; (2.59)

whereas if ξ > ξ0(t∗), we see that ω1(ξ, t∗) = f1(t∗)ξα , ∂ξω1(ξ, t∗) = α f1(t∗)ξα−1 and
(n + 2)ω1(ξ, t∗) − 2ξ∂ξω1(ξ, t∗) = f1(t∗)(n + 2 − 2α)ξα , thus

D(x, ξ, t∗) ≤ −c∗
4(1 − α)2 f1(t∗)2ξ2α

ξ2
≤ −4c∗(1 − α)2ω1(ξ, t∗) f1(t∗)ξα−2. (2.60)

Next we consider the contribution of the pressure termP . Thanks to the following expres-
sion [deduced from (1.2) and divergence-free property of u]

∇x p(x + ξ y, t∗) = ∇x (−�x )
−1divx (b(x + ξ y, t∗) · ∇x ⊗ u(x + ξ y, t∗))

= 1

ξ
∇y(−�y)

−1divy
(
b(x + ξ y, t∗) · ∇y ⊗ (u(x + ξ y, t∗) − ū(x, ξ, t∗))

)

= 1

ξ
∇y(−�y)

−1divy
((

b(x + ξ y, t∗) − b̄(x, ξ, t∗)
)

·∇y ⊗ (u(x + ξ y, t∗) − ū(x, ξ, t∗))
)
,

we have

P(x, ξ)
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= −1

ξ

∫

B1

(
u(x + yξ) − ū(x, ξ)

) · ∇y(−�y)
−1 divy

(
(b(x + ξ y) − b̄(x, ξ)) · ∇y

⊗ (u(x + ξ y) − ū(x, ξ))
)
φ(y)dy

= −1

ξ

∫

B1

(
uk(x + yξ) − ūk(x, ξ)

)
∂yk (−�y)

−1∂yi

(
(b j (x + ξ y)

− b̄ j (x, ξ)) ∂y j (ui (x + ξ y) − ūi (x, ξ))
)
φ(y)dy

= −1

ξ

∫

B1

(
uk(x + yξ) − ūk(x, ξ)

)

× ∂yk ∂yi ∂y j (−�y)
−1((b j (x + ξ y) − b̄ j (x, ξ)) (ui (x + ξ y) − ūi (x, ξ))

)
φ(y)dy,

where we suppressed the t∗-dependence in the above formula and we also used the Einstein
convention on repeated indices. Through the integration by parts and using the divergence-
free property of u and b, we find

P(x, ξ)

= ξn−1
∫

Rn
∂yi ∂y j (−�y)−1 ((bi (x + ξ y) − b̄i (x, ξ)

) (
u j (x + ξ y) − ū j (x, ξ)

))
(u(x + yξ)

−ū(x, ξ)) · ∇φ(y)dy

= ξn−1
∫

Rn

(
bi (x + ξ y) − b̄i (x, ξ)

) (
u j (x + ξ y) − ū j (x, ξ)

)
RiR j ((u(x + yξ)

−ū(x, ξ)) · ∇φ(y)) dy,

where Ri = ∂yi (−�)− 1
2 (i = 1, . . . , n) is the classical Riesz transform (e.g. see [9, Eq.

(4.7)]). Note that the operator RiR j := F−1(− ζi ζ j

|ζ |2 ) (i, j = 1, . . . , n) has the expression
formula [see (2.15)]

RiR j g(y) = ai j g(y) + Ti j g(y), (2.61)

where ai j = − 1
n for i = j and ai j = 0 for i �= j , and Ti j is a singular integral operator

Ti j g(y) := p.v.
∫

Rn
Ki j (y − z)g(z)dz = lim

ε→0

∫

|y−z|>0
Ki j (y − z)g(z)dz, (2.62)

with the kernel Ki j (y) = �i j (ŷ)

|y|n , ∀y �= 0, ŷ = y
|y| , and �i j (ŷ) ∈ C∞(Sn−1) satisfying the

zero-average property. Thus taking advantage of (2.56), we get

P ≤ C‖b‖Ṁ p ξ
n+ 2

p −2
∫

B1

|u(x + ξ y) − ū(x, ξ)|2dy

+ C‖b‖Ṁ p ξ
n+ 2

p −2
∫

|y|≤2
|u(x + ξ y) − ū(x, ξ)|

∣
∣
∣Ti j

((
u(x + ξ y) − ū(x, ξ)

) · ∇φ(y)
)∣
∣
∣dy

+ C‖b‖Ṁ p ξ
n+ 2

p −2
∫

|y|≥2
|y| 2−p

p |u(x + ξ y) − ū(x, ξ)|
∣
∣
∣Ti j

((
u(x + ξ y) − ū(x, ξ)

) · ∇φ(y)
)∣
∣
∣dy

:=P1 + P2 + P3.

The first term P1 can be exactly estimated as (2.57). For the second term P2, by virtue of
the Hölder inequality, the Calderón–Zygmund theorem (e.g. see [9, Chapter 4]) and Lemma
2.5, we obtain

P2 ≤ C‖b‖Ṁ p ξ
n+ 2

p −2
(∫

|y|≤2
|u(x + ξ y) − ū(x, ξ)|2dy

)1/2
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×
(∫

Rn

∣
∣
(
u(x + ξ y) − ū(x, ξ)

) · ∇φ(y)
∣
∣2dy

)1/2

≤ C‖b‖Ṁ p ξ
n+ 2

p −2
∫

|y|≤2
|u(x + ξ y) − ū(x, ξ)|2dy ≤ C‖b‖Ṁ p ξ

2
p −2

ω1(ξ, t∗)2.

(2.63)

For P3, from the integration by parts and the mean-free property of (u − ū)φ, we find

Ti j
((

u(x + ξ y) − ū(x, ξ)
) · ∇φ(y)

) = p.v.
∫

Rn
Ki j (y − z)

((
u(x + ξ z) − ū(x, ξ)

) · ∇zφ(z)
)
dz

= p.v.
∫

Rn
φ(z)

(
u(x + ξ z) − ū(x, ξ)

) · ∇Ki j (y − z)dz

= p.v.
∫

Rn
φ(z)

(
u(x + ξ z) − ū(x, ξ)

) · (∇Ki j (y − z) − ∇Ki j (y)
)
dz,

thus thanks to the following estimate (deduced from the mean value theorem and support
property)

|Ki j (y − z) − Ki j (y)| ≤ C0|∇2Ki j (y)||z| ≤ C0
1

|y|n+2 , ∀y ∈ Bc
2, z ∈ B1,

and using Hölder’s inequality and (2.46), we infer that

P3 ≤ C‖b‖Ṁ p ξ
n+ 2

p −2
∫

|y|≥2
|y| 2−p

p
1

|y|n+2 |u(x + ξ y) − ū(x, ξ)|dy

×
(∫

B1

|u(x + ξ z) − ū(x, ξ)|2φ(z)dz

)1/2

≤ C‖b‖Ṁ p ω1(ξ, t∗)ξ
n
2 + 2

p −2
∞∑

j=1

∫

2 j ≤|y|≤2 j+1

1

|y|n+3−2/p
|u(x + ξ y) − ū(x, ξ)|dy

≤ C‖b‖Ṁ p ω1(ξ, t∗)ξ
n
2 + 2

p −2
∞∑

j=1

1

2 j(n/2+3−2/p)

(∫

|y|≤2 j+1
|u(x + ξ y) − ū(x, ξ)|2dy

)1/2

≤ C‖b‖Ṁ p ω1(ξ, t∗)2ξ
2
p −2

∞∑

j=1

2− j(3−2/p−α)( j + 2)

≤ C‖b‖Ṁ p ξ
2
p −2

ω1(ξ, t∗)2. (2.64)

Collecting the estimates on P1, P2 and P3 yields

P(x, ξ, t∗) ≤ C‖b‖Ṁ p ξ
2
p −2

ω1(ξ, t∗)2. (2.65)

Hence we insert the above estimates (2.53), (2.54), (2.57), (2.59)–(2.60) and (2.65) into
(2.52) to get that for 0 < ξ ≤ ξ0(t∗),

f ′
1(t∗)ξα

0 − ρα(1−α) f1(t∗)ξα−2
0 ≤ C‖b(t∗)‖Ṁ p f1(t∗)ξ

2
p −2

ξα
0 − 4c∗(1−α)2 f1(t∗)ξα

0 ξ−2,

and for ξ > ξ0(t∗),

f ′
1(t∗)ξα ≤ C‖b(t∗)‖Ṁ p f1(t∗)ξ

2
p +α−2 − 4c∗(1 − α)2 f1(t∗)ξα−2.
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If 0 < ξ ≤ ξ0(t∗), by letting
ρ := 2c∗(1 − α)

α
, (2.66)

we have
f ′
1(t∗) ≤ f1(t∗)

(
C‖b(t∗)‖Ṁ p ξ

2
p −2 − 2c∗(1 − α)2ξ−2

)
; (2.67)

whereas if ξ > ξ0(t∗),

f ′
1(t∗) ≤ f1(t∗)

(
C‖b(t∗)‖Ṁ p ξ

2
p −2 − 4c∗(1 − α)2ξ−2

)
. (2.68)

By maximizing values of the right-hand-side terms of the above two formulas, we find that

f ′
1(t∗) ≤ C1‖b(t∗)‖p

Ṁ p f1(t∗), (2.69)

with C1 > 0 a constant depending only on n, α, p.
Hence, if we set f1(t) to be defined by f ′

1(t) = 2C1‖b(t)‖Ṁ p f1(t), that is,

f1(t) = f1(0) exp

{

2C1

∫ t

0
‖b(τ )‖p

Ṁ pdτ

}

(2.70)

where f1(0) can be chosen as
2‖u0‖L2(Rn )

(1−α)Aα
0

(satisfying (2.44)), we have that (2.69) can not

hold true and thus I1(x, ξ, t) < ω1(ξ, t)2 for all (x, ξ, t) ∈ R
n × (0,∞) × [0, T ) with

ω1(ξ, t) = f1(t)ω(ξ, ξ0).
Step 2 A priori estimate of u(t) on the improvement from L2,2α(Rn) to L2,n(Rn) =

B M O(Rn).
We can further repeat the above process to show a similar improvement. By setting

Ii (x, ξ, t) := ξn−2α(i−1)
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy, for every i = 1, 2 . . . ,

(2.71)
the conclusion of the above step (2.42) reads as

I2(x, ξ, t) ≤ f1(t)
2, ∀t ∈ [t1, T ), (2.72)

with t1 = A2
0

2ρ and f1(t) defined by (2.70). Based on (2.72), we shall similarly prove that

I2(x, ξ, t) < ω2(ξ, t − t1)
2, for all t ∈ [t1, T ), (2.73)

with ω2(ξ, ·) = f2(·)ω(ξ, ξ0(·)) and f2(·) > 0 a non-decreasing function chosen later [see
(2.81)].

Since I2(x, ξ, t1) ≤ f1(t1)2 and ω2(ξ, 0) ≥ ω2(0, 0) = f2(0)(1 − α)Aα
0 , we see that

(2.73) holds true for t = t1 by choosing f2(0) = 2 f1(t1)
Aα
0 (1−α)

. If we suppose that t∗ ∈ (t1, T ) is

the first time that the strict inequality (2.73) is lost, then there exists some x ∈ R
n and ξ > 0

such that
I2(x, ξ, t∗) = ω2(ξ, t∗ − t1)

2, (2.74)

and by denoting t∗,1 := t∗ − t1, similarly as above we get

ω2(ξ, t∗,1)∂tω2(ξ, t∗,1) (2.75)

≤ −ξn−2α
∫

B1

(
u(x + ξ y, t∗) − ū(x, ξ, t∗)

) · (b(x + ξ y, t∗) · ∇x ⊗ u(x + ξ y, t∗)
)
φ(y)dy
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+ ξn−2α
∫

B1

(
u(x + ξ y, t∗) − ū(x, ξ, t∗)

) · �x u(x + ξ y, t∗)φ(y)dy

− ξn−2α
∫

B1

(
u(x + ξ y, t∗) − ū(x, ξ, t∗)

) · ∇x p(x + ξ y, t∗)φ(y)dy

:= C(x, ξ, t∗) + D(x, ξ, t∗) + P(x, ξ, t∗). (2.76)

Noting that [analogous with (2.46)]

ξn−2α
∫

B2 j

|u(x + ξ y, t∗) − ū(x, ξ, t∗)|2dy ≤ C( j + 1)22 j(n+2α)ω2(ξ, t∗,1)
2,

∀(x, ξ) ∈ R
n × (0,∞), (2.77)

and by arguing as (2.53), (2.54), (2.57), (2.63)–(2.65) and (2.58)–(2.60), we infer that

∂tω2(ξ, t∗,1) ≥
{

(1 − α) f ′
2(t∗,1)ξ

α
0 − ρα(1 − α) f2(t∗,1)ξ

α−2
0 , if 0 < ξ ≤ ξ0(t∗,1),

f ′
2(t∗,1)ξ

α, if ξ > ξ0(t∗,1),

and

C(x, ξ, t∗) + P(x, ξ, t∗) ≤
{

C‖b(t∗)‖Ṁ p ω2(ξ, t∗,1) f (t∗,1)ξ
2
p −2

ξα
0 , if 0 < ξ ≤ ξ0(t∗,1),

C‖b(t∗)‖Ṁ p ω2(ξ, t∗,1) f (t∗,1)ξ
2
p +α−2

, if ξ > ξ0(t∗,1),

and (with c∗ > 0 the same constant appearing in Lemma 2.7)

D(x, ξ, t∗) ≤ −c∗
(
(n + 2 − 2α)ω2(ξ, t∗,1) − 2ξ∂ξω2(ξ, t∗,1)

)2

ξ2

≤
{

−4c∗(1 − α)2ω2(ξ, t∗,1) f2(t∗,1)ξ
α
0 ξ−2, if 0 < ξ ≤ ξ0(t∗,1),

−4c∗(1 − α)2ω2(ξ, t∗,1) f2(t∗,1)ξ
α−2, if ξ > ξ0(t∗,1).

Hence, we obtain that for every 0 < ξ ≤ ξ0(t∗,1),

f ′
2(t∗,1)ξ

α
0 − ρα(1 − α) f2(t∗,1)ξ

α−2
0 ≤ C‖b(t∗)‖Ṁ p f2(t∗,1)ξ

2
p −2

ξα
0

−4c∗(1 − α)2 f2(t∗,1)ξ
α
0 ξ−2, (2.78)

and for every ξ > ξ0(t∗,1),

f ′
2(t∗,1)ξ

α ≤ C‖b(t∗)‖Ṁ p f2(t∗,1)ξ
2
p +α−2 − 4c∗(1 − α)2 f2(t∗,1)ξ

α−2. (2.79)

By choosing ρ > 0 as (2.66), we see that for some constant C2 > 0 depending only on
n, α, p,

f ′
2(t∗,1) ≤ C2‖b(t∗)‖p

Ṁ p f2(t∗,1). (2.80)

But if we set f2(·) > 0 as

f2(t − t1) = 2 f1(t1)

Aα
0 (1 − α)

exp

{

2C2

∫ t

t1
‖b(τ )‖p

Ṁ pdτ

}

, ∀t ≥ t1, (2.81)

we see that (2.80) does not hold true, which in turn concludes the uniform inequality (2.73).
Due to that ξ0(t − t1) = 0 for all t ≥ 2t1, the preservation (2.73) and the definition of f (t)
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(2.70) imply that

I3(x, ξ, t) = ξn−4α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ f2(t − t1)
2

≤
16‖u0‖2L2(Rn)

A4α
0 (1 − α)4

exp

{

4C
∫ t

0
‖b(τ )‖p

Ṁ pdτ

}

, ∀t ∈ [2t1, T ),

(2.82)

which also guarantees thatu(t) (t ≥ 2t1)belongs to theMorrey–Campanato spaceL2,4α(Rn).
If α ∈ ( 12 , 1) and n = 2, we see that n − 2α > 0 and n − 4α < 0, thus by letting

θ̄ = 4α−n
2α ∈ (0, 1), and using (2.72) and (2.82), we have that for every t ∈ [2t1, T ),

∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ I2(x, ξ, t)θ̄ I3(x, ξ, t)1−θ̄

≤ f1(t)
2θ̄ f2(t − t1)

2−2θ̄

≤
16‖u0‖2L2(Rn)

An
0(1 − α)n/α

exp

{

4C
∫ t

0
‖b(τ )‖p

Ṁ pdτ

}

,

which ensures that u(t) (t ≥ 2t1) belongs to the Morrey–Campanato space L2,n(Rn) =
B M O(Rn).

For other scope of α and n, we can iterate the above process for a finite times to show the
desired estimate. Under the condition that for i = 1, 2, . . . , [ n

2α ] (with [ n
2α ] the integer part

of the number n
2α )

Ii+1(x, ξ, t) ≤ fi (t − (i − 1)t1)
2, ∀t ∈ [i t1, T ), (2.83)

we intend to show that

Ii+1(x, ξ, t) < ωi+1(ξ, t − i t1)
2, ∀t ∈ [i t1, T ), (2.84)

where ωi+1(ξ, t) = fi+1(t − i t1)ω(ξ, ξ0(t − i t1)) and fi+1(t − i t1) is a suitable non-
decreasing function (see (2.89)). Indeed, firstly by choosing fi+1(0) = 2 fi (t1)

Aα
0 (1−α)

we see that

(2.84) is satisfied for t = i t1; then if we assume that t∗ ∈ (t1, T ) is the first time that (2.84)
is lost, then there exists some x ∈ R

n and ξ > 0 such that

Ii+1(x, ξ, t∗) = ωi+1(ξ, t∗ − i t1)
2, (2.85)

and by denoting t∗,i := t∗ − i t1, we can deduce (as above) that for every 0 < ξ ≤ ξ0(t∗,i ),

f ′
i+1(t∗,i )ξ

α
0 − ρα(1 − α) fi+1(t∗,i )ξ

α−2
0 ≤ C‖b(t∗)‖Ṁ p fi+1(t∗,i )ξ

2
p −2

ξα
0

−4c∗(1 − α)2 fi+1(t∗,i )ξ
α
0 ξ−2, (2.86)

and for every ξ > ξ0(t∗,i ),

f ′
i+1(t∗,i )ξ

α ≤ C‖b(t∗)‖Ṁ p fi+1(t∗,i )ξ
2
p +α−2 − 4c∗(1 − α)2 fi+1(t∗,i )ξ

α−2, (2.87)

where c∗ > 0 is just the same number appraring in Lemma 2.7. By choosing ρ > 0 as (2.66),
we see that for some constant Ci+1 > 0 depending only on n, α, p,

f ′
i+1(t∗,i ) ≤ Ci+1‖b(t∗)‖p

Ṁ p fi+1(t∗,i ). (2.88)
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But if we set fi+1(t − i t1) > 0 as

fi+1(t − i t1) = 2 fi (t1)

Aα
0 (1 − α)

exp

{

2Ci+1

∫ t

i t1
‖b(τ )‖p

Ṁ pdτ

}

, ∀t ≥ i t1 (2.89)

we conclude that (2.88) does not hold,which in turn proves the inequality (2.84). Furthermore,
thanks to ξ0(t − i t1) = 0 for all t ≥ (i + 1)t1 = (i+1)A0

2ρ , we have

Ii+2(x, ξ, t) = ξn−(i+1)2α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ fi+1(t − i t1)
2

≤
4i+1‖u0‖2L2(Rn)

(1 − α)2(i+1) A2(i+1)α
0

exp

{

4C
∫ t

0
‖b(τ )‖p

Ṁ pdτ

}

, ∀t ∈ [(i + 1)t1, T ).

(2.90)
Notice that we finally can obtain the estimates of Ii (x, ξ, t) and Ii+1(x, ξ, t) for i = iα :=

[ n
2α ]. Due to that n −2α(iα +1) < 0 and n −2αiα ≥ 0, by setting θα := 2α(iα+1)−n

2α ∈ (0, 1],
and from (2.90), we conclude that for all t ≥ (iα + 1)t1,
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy ≤ Iiα+1(x, ξ, t)θα Iiα+2(x, ξ, t)1−θα

≤ fiα (t − (iα − 1)t1)
2θα fiα+1(t − iαt1)

2(1−θα)

≤
4iα+1‖u0‖2L2(Rn)

An
0(1 − α)n/α

exp

{

4C
∫ t

0
‖b(τ )‖p

Ṁ pdτ

}

,

(2.91)
which implies that u(t) (t ≥ (iα +1)t1) belongs to theMorrey–Campanato spaceL2,n(Rn) =
B M O(Rn).

Step 3 A priori estimate of u(t) on the improvement from L2,n(Rn) to L2,n+2α(Rn) =
Ċα(Rn).

Based on (2.91), we can further intend to show that for every t ∈ [(iα + 1)t1, T ),
∫

B1

|u(x + yξ, t) − ū(x, ξ, t)|2φ(y)dy ≤ ωiα+2(ξ, t − (iα + 1)t1)
2, (2.92)

with ωiα+2(ξ, t̃) = fiα+2(t̃)ω(ξ, ξ0(t̃)) (t̃ := t − (iα + 1)t1) and fiα+2(·) an appropriate
non-decreasing function. Indeed, the proof is almost the same as the deduction at the above
two steps, and by letting fiα+2 be defined as:

fiα+2(t − (iα + 1)t1) = fiα+2(0) exp

{

2Ciα+2

∫ t

(iα+1)t1
‖b(τ )‖p

Ṁ pdτ

}

, (2.93)

with fiα+2(0) = 2
Aα
0 (1−α)

fiα (2t1)θα fiα+1(t1)1−θα and Ciα+2 some constant depending only

on n, α, p, we can show that (2.92) holds true. (2.92) also guarantees that for all t ∈ [(iα +
2)t1, T ),

ξ−2α
∫

B1

|u(x + ξ y, t) − ū(x, ξ, t)|2φ(y)dy

≤ fiα+2(t − (iα + 1)t1)
2

≤
4iα+2‖u0‖2L2(Rn)

An+2α
0 (1 − α)(n+2α)/α

exp

{

4C
∫ t

0
‖b(τ )‖p

Ṁ pdτ

}

,

(2.94)

which corresponds to that u(t) (t ∈ [(iα +2)t1, T )) belongs to the Morrey–Campanato space
L2,n+2α(Rn), or equivalently, Hölder space Ċα(Rn).

123



On the Hölder regularity of the weak solution to a drift… Page 27 of 33  153 

Therefore, for t ′ > 0 any small number fixed, we can choose t1 and A0 small enough so

that t ′ ∈ [(iα + 2)t1, T ). Recalling that t1 = A2
0

2ρ , ρ = 2c∗(1−α)
α

, iα = [ n
2α ], we can let

A0 =
(

2c∗(1 − α)
([ n

2α

] + 2
)
α

t ′
)1/2

, (2.95)

that is, t ′ = 2(iα +2)t1, thus we conclude that u(t) for every t ∈ [t ′, T ) belongs to the Hölder
space Ċα(Rn), and (2.94) with such an A0 immediately leads to (1.10). In combination with
the preservation of L2-norm of u(t), this moreover yields that u(t) for every t ∈ [t ′, T )

belongs to the inhomogeneous Hölder space Cα(Rn), and due to the arbitrariness of t ′, we
complete the proof of Theorem 1.1.

2.4 Proofs of auxiliary results

We first show the proof of the crucial breakdown scenario (2.48).

Proof of Lemma 2.6 We prove by contradiction. We suppose that there is no point (x, ξ) ∈
R

n × (0,∞) so that the equality I1(x, ξ, t∗) = ω1(ξ, t∗)2 holds. Denoting by

F1(x, ξ, t) = I1(x, ξ, t)

ω1(ξ, t)2
, (2.96)

and from F1(x, ξ, t) < 1 for all t ∈ (0, t∗), we see that F1(x, ξ, t∗) ≤ 1 for all x ∈ R
n and

ξ > 0. Since we suppose that (2.48) is not true, we necessarily get F1(x, ξ, t∗) < 1 for all
x ∈ R

n and ξ > 0.
The following deduction is divided into several cases according to the values of (x, ξ).

Recalling that ω1(ξ, t) is defined by (2.40), if ξ is large enough so that ω1(ξ, t∗)2 ≥ 2‖u0‖2L2

and ξ ≥ A0 = ξ0(0), that is, for ξ ≥ C1 := max{(
√
2‖u0‖L2

f1(t∗) )
1
α , A0}, then by using the

energy estimate ‖u(t)‖L2 ≤ ‖u0‖L2 for all t ∈ (0, T ) and the nondecreasing property
ω1(ξ, t) ≥ ω1(ξ, t∗) for ξ ≥ A0 and t ∈ [t∗, T ), we argue as (2.43) to get that for all
t ∈ [t∗, T ),

I1(x, ξ, t) ≤ ‖u(t)‖2L2 ≤ ‖u0‖2L2 ≤ 1

2
ω1(ξ, t∗)2 ≤ 1

2
ω1(ξ, t)2. (2.97)

If ξ > 0 is small enough and ξ0(t∗) > 0, there exists a small constant h1 = h1(t∗) > 0
such that ξ0(t∗ + h1) > 0 and t∗ + h1 < T , then due to that ω1(ξ, t) ≥ ω1(0, t) =
(1 − α) f1(t) ξ0(t)α > 0 for t ∈ [t∗, t∗ + h1] and

lim
ξ→0+ I1(x, ξ, t) ≤ lim

ξ→0+ C‖∇u(t)‖2L∞ξn+2 = 0, for every t ∈ [t∗, t∗ + h1],

there exists a small constant c1 = c1(t∗, h1) > 0 so that for all 0 < ξ ≤ c1 and t ∈ [t∗, t∗+h1]
we have

I1(x, ξ, t) ≤ 1

2
ω1(ξ, t)2. (2.98)

If ξ > 0 is small enough and ξ0(t∗) = 0, then ω1(ξ, t) = f1(t)ξα for all ξ > 0 and
t ∈ [t∗, T ), and by virtue of the estimate I1(x, ξ, t) ≤ C‖∇u(t)‖2L∞ξn+2 for t ∈ [t∗, T ),
there also exists small constant h2 > 0 and c′

1 = c′
1(t∗, h2) > 0 so that (2.98) also holds

for 0 < ξ ≤ c′
1 and t ∈ [t∗, t∗ + h2]. Thus by denoting c̃1 := min{c1, c′

1}, we only need
to consider the case c̃1 ≤ ξ ≤ C1. Since u has the spatial decay near infinity, there exists a
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small constant h3 = h3(t∗) > 0 and a large number M = M(t∗, h3) > 0 such that for all
t ∈ [t∗, t∗ + h3] and |z| ≥ M ,

|u(z, t)| ≤ 1

2
C−n/2
1 f1(t∗)ω(c̃1, ξ0(t∗ + h2)) ≤ 1

2
C−n/2
1 ω1(c̃1, t),

then for x ∈ {|x | ≥ M + C1} and t ∈ [t∗, t∗ + h3], we have
I1(x, ξ, t) = ξn

∫

B1

|u(x + ξ y, t)|2φ(y)dy − ξn |ū(x, ξ, t)|2 ≤ 1

2
ω1(c̃1, t)2 ≤ 1

2
ω1(ξ, t)2.

(2.99)
Then it suffices to consider the continuous function F1(x, ξ, t) = I1(x,ξ,t)

ω1(ξ,t)2
on the compact

set
K = {

(x, ξ) ∈ R
n × R

+∣∣|x | ≤ M + C1, c̃1 ≤ ξ ≤ C1
} ;

and due to F1(x, ξ, t∗) < 1, there exists a small constant h4 = h4(t∗) > 0 such that
F1(x, ξ, t) < 1 for all t ∈ [t∗, t∗ + h4] and (x, ξ) ∈ K.

Let h = min{h1, h2, h3, h4}, then h > 0 and F1(x, ξ, t) < 1 on t ∈ [t∗, t∗ + h] for all
(x, ξ) ∈ R

n × (0,∞), which clearly contradicts with the definition of t∗. Hence there is
indeed some (x, ξ) ∈ K so that F1(x, ξ, t∗) = 1, that is, the scenario (2.48) holds as claimed.

��
Next we turn to proving the key Lemma 2.7.

Proof of Lemma 2.7 Note that the quantity I1(x, ξ, t∗) defined by (2.39) can be expressed as

I1(x, ξ, t∗) = ξn

2

∫

B1

∫

B1

|u(x + ξ y, t∗) − u(x + ξ z, t∗)|2φ(y)φ(z)dydz. (2.100)

Since at the point x ∈ R
n the quantity I1(·, ξ, t∗) attains its maximum, we have

0 ≥ �x I1(x, ξ, t∗)

= ξn
∫

B1

∫

B1

(
u(x + ξ y, t∗) − u(x + ξ z, t∗)

)

· (�x u(x + ξ y, t∗) − �x u(x + ξ z, t∗)
)
φ(y)φ(z)dydz

+ ξn
∫

B1

∫

B1

|∇ ⊗ u(x + ξ y, t∗) − ∇ ⊗ u(x + ξ z, t∗)|2φ(y)φ(z)dydz

= 2D(x, ξ, t∗) + ξn
∫

B1

∫

B1

|∇ ⊗ u(x + ξ y, t∗) − ∇ ⊗ u(x + ξ z, t∗)|2φ(y)φ(z)dydz,

which implies that

−D(x, ξ, t∗) ≥ ξn

2

∫

B1

∫

B1

|∇⊗u(x+ξ y, t∗)−∇⊗u(x+ξ z, t∗)|2φ(y)φ(z)dydz. (2.101)

Notice also that

∂ξ I1(x, ξ, t∗)

= n

2
ξn−1

∫

B1

∫

B1

|u(x + ξ y, t∗) − u(x + ξ z, t∗)|2φ(y)φ(z)dydz

+ ξn
∫

B1

∫

B1

(
u(x + ξ y, t∗) − u(x + ξ z, t∗)

) · (y · ∇ ⊗ u(x + ξ y, t∗)

− z · ∇ ⊗ u(x + ξ z, t∗)
)
φ(y)φ(z)dydz.

��
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We shall adapt the following key lemma (see [29, Lemma 3.5]) to analyse the relations
among the quantities I1(x, ξ, t∗), ∂ξ I1(x, ξ, t∗) and D(x, ξ, t∗).

Lemma 2.8 Let f = ( f1, . . . , fn) : B1 → R
n be a vector field satisfying f ∈ (H1(Rn))n,

and φ ∈ D(Rn) be a radially-symmetric non-increasing (in radius) smooth function sup-
ported on B1. Then there is a constant C depending only on n and φ such that

∫∫

B1×B1

( f (y) − f (z))2φ(y)φ(z)dydz −
∫∫

B1×B1

(
y · ∇ ⊗ f (y)

− z · ∇ ⊗ f (z)
) · ( f (y) − f (z))φ(y)φ(z)dydz

≤ C

(∫∫

B1×B1

(∇ ⊗ f (y) − ∇ ⊗ f (z))2φ(y)φ(z)dydz

)1/2

×
(∫∫

B1×B1

( f (y) − f (z))2φ(y)φ(z)dydz

)1/2

.

Due to that the proof of this lemma presented in [29] seems a little bit obscure, we here give
an explicit and elementary proof of Lemma 2.8, which is placed in the end of this subsection.

The estimate on the dissipation term (2.58) is now a direct consequence of Lemma 2.8.
By letting f (y) = u(x + ξ y, t∗) and using the scaling transform, we get

2I1(x, ξ, t∗)−
(
ξ∂ξ I1(x, ξ, t∗)−nI1(x, ξ, t∗)

) ≤ C
(−2ξ2D(x, ξ, t∗)

)1/2
(2I1(x, ξ, t∗))1/2,

which leads to

− D(x, ξ, t∗) ≥ c∗
(
(n + 2)I1(x, ξ, t∗) − ξ∂ξ I1(x, ξ, t∗)

)2

ξ2 I1(x, ξ, t∗)
. (2.102)

The second equality of (2.58) is just followed from the equality (2.48).
At last we show the proof of the crucial Lemma 2.8.

Proof of Lemma 2.8 Observe that from [29, Lemma 3.5] it suffices to control the quantity E
defined as

E : =
∫∫

B1×B1

∫ 1

0

((∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)
) · y

−(∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (z)
) · z

)2
φ(y)φ(z)dsdydz,

by the following quantity

� :=
∫∫

B1×B1

|∇ ⊗ f (y) − ∇ ⊗ f (z)|2φ(y)φ(z)dydz, (2.103)

more precisely, we only need to prove that

E ≤ C�.

Denoting by

E1 :=
∫∫

B1×B1

∫ 1

0

(∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)
)2

φ(y)φ(z) dsdydz, (2.104)

and from E ≤ C0E1 + C0�, it moreover reduces to show the following inequality

E1 ≤ C�. (2.105)
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For simplicity, we here also suppose that φ ∈ D(Rn) satisfies that2

2−1− 1
1−|y| ≤ φ(y) ≤ 2− 1

1−|y| for 3/4 ≤ |y| < 1. (2.106)

If y ∈ B3/4, z ∈ B3/4, we see that φ(y) ≈ φ(z) ≈ φ(sy + (1 − s)z) for s ∈ [0, 1], thus by
the changing of variables we have
∫∫

B3/4×B3/4

∫ 1

0
|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)|2φ(y)φ(z) dsdydz

≤ C
∫∫

B3/4×B3/4

∫ 1/2

0
|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)|2φ(y)φ(sy + (1 − s)z) dsdydz

+ C
∫∫

B3/4×B3/4

∫ 1

1/2
|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (z)|2φ(sy + (1 − s)z)φ(z) dsdydz

+ C
∫∫

B3/4×B3/4

|∇ ⊗ f (y) − ∇ ⊗ f (z)|2φ(y)φ(z) dydz

≤ C
∫∫ ∫ 1/2

0
|∇ ⊗ f (z̃) − ∇ ⊗ f (y)|2(1 − s)−nφ(y)φ(z̃) dsdydz̃

+ C
∫∫ ∫ 1

1/2
|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2s−nφ(ỹ)φ(z) dsd ỹdz + C�

≤ C�. (2.107)

Without loss of generality, we assume |y| ≤ |z| in the sequel, since otherwise it can be
similarly treated. For the case y ∈ B3/4 and z ∈ Bc

3/4, we infer that there is an absolute
constant s0 ∈ (0, 1) such that φ(y) ≤ C0φ(sy + (1 − s)z) for s ∈ [s0, 1] (the dangerous
case is that y and z is of the same direction), and also from |sy + (1 − s)z| ≤ |z| we get
φ(z) ≤ φ(sy + (1 − s)z), thus we can follow the above argument by dividing the interval
s ∈ [0, 1] into s ∈ [0, s0] and s ∈ [s0, 1] to show that

∫

Bc
3/4

∫

B3/4

∫ 1

0
|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)|2φ(y)φ(z) dsdydz ≤ C�. (2.108)

By denoting C j := {y ∈ B1 : 2− j−1 ≤ φ(y) ≤ 2− j } for j ∈ N, we next consider y ∈ C j and
z ∈ C j+k for j ∈ N ∩ [4,∞) and k ∈ N, and for such y and z, from (2.106), it leads to that

y ∈
{

R
n : 1 − 1

j
≤ |y| ≤ 1 − 1

j + 1

}

, and z ∈
{

R
n : 1 − 1

j + k
≤ |z| ≤ 1 − 1

j + k + 1

}

.

Let θ ∈ [0, 2π) be the angle between y ∈ C j and z ∈ C j+k so that ẑ = ŷeiθ , where ŷ := y
|y|

and ẑ := z
|z| . If θ ∈ [π

2 , 3π
2 ], then the considered case is similar to the case of y ∈ B3/4 and

z ∈ Bc
3/4, and we omit the details. If θ ∈ [0, π

2 ) (the case of θ ∈ ( 3π2 , 2π) is the same), we
deduce that

|sy + (1 − s)z| = ∣
∣s|y|ŷ + (1 − s)|z|eiθ ŷ

∣
∣

=
√

|y|2s2 + 2|y||z|s(1 − s) cos θ + (1 − s)2|z|2 ≤ s|y| + (1 − s)|z|

2 One can similarly consider the test function φ with other faster spatial decay, like φ(y) ≈ 2
− 1

1−|y|2 for
3/4 ≤ |y| < 1.
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and

|sy + (1 − s)z| ≥
√

|y|2s2 + |z|2(1 − s)2 ≥ |y|
√

s2 + (1 − s)2 ≥
√
2

2
|y| ≥ 1

2
,

which implies that φ( 12 ) ≥ φ(sy + (1 − s)z) ≥ φ(s|y| + (1 − s)|z|). According to (2.106)
and the following facts that

s|y| + (1 − s)|z| ≤ s

(

1 − 1

j + 1

)

+ (1 − s)

(

1 − 1

j + k + 1

)

= 1 −
(

s

j + 1
+ 1 − s

j + k + 1

)

,

we obtain that

φ(s|y| + (1 − s)|z|) ≥ 2− ( j+1)( j+k+1)
s( j+k+1)+(1−s)( j+1) = 2−( j+1)2− (1−s)( j+1)k

j+1+sk ≥ 1

2
φ(y)2− (1−s)( j+1)k

j+1+sk ,

(2.109)
thus by choosing σ to be 1

4 if k ≤ 4, and to be 1
k2

if k ≥ 4, we find that φ(sy + (1 − s)z) ≈
φ(s|y|+ (1− s)|z|) ≈ φ(y) for every s ∈ [1−σ, 1] and y ∈ C j ∩{|sy + (1− s)z| ≥ 1− 1

j },
and furthermore

∞∑

j=4

∑

k∈N

∫

y∈C j

∫

z∈C j+k ,θ∈[0, π
2 )

∫ 1

1−σ

|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (z)|2φ(y)φ(z) dsdydz

≤ C
∞∑

j=4

∑

k∈N

∫

ỹ∈{1− 1
j ≤|ỹ|≤1− 1

j+k+1 }

∫

z∈C j+k

∫ 1

1−σ

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2φ(ỹ)φ(z)s−ndsd ỹdz

+ C
∞∑

j=4

∑

k∈N

∫

ỹ∈{ 12 ≤|ỹ|≤1− 1
j }

∫

z∈C j+k

∫ 1

1−σ

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 φ(y)

φ(ỹ)
φ(ỹ)φ(z)s−ndsd ỹdz

≤ C
∞∑

j=4

∑

k∈N

k∑

l=0

∫

ỹ∈C j+l

∫

z∈C j+k

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 σ φ(ỹ)φ(z) dydz

+ C
∞∑

j=4

∑

k∈N

j−2∑

l=1

∫

ỹ∈C j−l

∫

z∈C j+k

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 σ 2−lφ(ỹ)φ(z) dydz

≤ C
∞∑

j=4

∞∑

k=4

k∑

l=0

1

k2

∫

ỹ∈C j+l

∫

z∈C j+k

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 φ(ỹ)φ(z) dydz

+ C

( ∞∑

l=1

2−l

) ∞∑

j=4

∞∑

k=4

1

k2

∫

ỹ∈B1

∫

z∈C j+k

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 φ(ỹ)φ(z) dydz + C�

≤ C
∞∑

j=4

∞∑

l=0

∑

k≥max{4,l}

1

k2

∫

ỹ∈C j+l

∫

z∈C j+k

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 φ(ỹ)φ(z) dydz

+ C
∞∑

k=4

1

k2

∫

ỹ∈B1

∫

z∈B1

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 φ(ỹ)φ(z) dydz + C�

≤ C
∞∑

j=4

∞∑

l=0

1

max{42, l2}
∫

ỹ∈C j+l

∫

z∈Bc
3/4

|∇ ⊗ f (ỹ) − ∇ ⊗ f (z)|2 φ(ỹ)φ(z) dydz + C�

≤ C�. (2.110)
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Now for the case s ∈ [0, 1− σ ], from φ(sy + (1− s)z) ≥ φ(s|y| + (1− s)|z|) ≥ φ(z) and
(2.109), we infer that

φ(z)

φ(sy + (1 − s)z)
≤ φ(z)

φ(s|y| + (1 − s)|z|)≤
2−( j+k)

2−( j+1)2− (1−s)( j+1)k
j+1+sk

≤ 2−k+12(1−s)k = 2−sk+1,

thus we have

∞∑

j=4

∑

k∈N

∫

y∈C j

∫

z∈C j+k ,θ∈[0, π
2 )

∫ 1−σ

0
|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)|2φ(y)φ(z) dsdydz

≤
∞∑

j=4

∑

k∈N

∫

y∈C j

∫

z∈C j+k ,θ∈[0, π
2 )

∫ 1−σ

1
2

|∇ ⊗ f (sy + (1 − s)z)

− ∇ ⊗ f (y)|22−sk+1φ(y)φ(sy + (1 − s)z) dsdydz

+
∫

y∈Bc
3/4

∫

Bc
3/4∩{|z|≥|y|}

∫ 1
2

0
|∇ ⊗ f (sy + (1 − s)z) − ∇ ⊗ f (y)|2φ(y)φ(sy + (1 − s)z) dsdydz

≤
∞∑

j=4

∑

k∈N,k≥4

∫

y∈C j

∫

z̃∈B1

∫ 1− 1
k2

1
2

|∇ ⊗ f (z̃) − ∇ ⊗ f (y)|2(1 − s)−n2−sk+1φ(y)φ(z̃) dsdydz̃

+
∞∑

j=4

4∑

k=0

∫

y∈C j

∫

z̃∈B1

∫ 3
4

1
2

|∇ ⊗ f (z̃) − ∇ ⊗ f (y)|2(1 − s)−n2−sk+1φ(y)φ(z̃) dsdydz̃

+
∫

y∈Bc
3/4

∫

z̃∈B1

∫ 1
2

0
|∇ ⊗ f (z̃) − ∇ ⊗ f (y)|2(1 − s)−nφ(y)φ(z̃) dsdydz̃

≤ C

( ∑

k∈N,k≥4

k2ne− 1
2 k
)∫

Bc
3/4

∫

z̃∈B1

|∇ ⊗ f (z̃) − ∇ ⊗ f (y)|2φ(y)φ(z̃) dydz̃

+ C
∫

y∈B1

∫

z̃∈B1

|∇ ⊗ f (z̃) − ∇ ⊗ f (y)|2φ(y)φ(z̃) dydz̃

≤ C�. (2.111)

Gathering the above estimates (2.107)–(2.111) leads to the desired inequality (2.105), and
furthermore concludes Lemma 2.8. ��
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