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Abstract. In this paper we consider the following 2D Boussinesq—
Navier—Stokes systems
Ou+u-Vu+ Vp = —v|D|"u + Oes
90 4+u-V0 = —k|D|’0
divu =0

with v > 0,5 > 0 and 0 < 3 < a < 1. When 9=¥6(=0.888) < a < 1,
1—a < g < f(a), where f(a) < 1 is an explicit function as a technical
bound, we prove the global well-posedness results for the rough initial
data.
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1. Introduction

The 2D generalized Boussinesq systems are of the forms

Ou+u-Vu+ Vp+v|D|% = fey, (t,x) € RT x R?

00 +u-VO+k[DPO=0 (1.1)
divu =0 '
uli—g = u’, 0= = 0",

where v > 0,5 > 0,ea = (0,1) the canonical vector, (a,3) € [0,2]? and the
fractional differential operator |D|* is defined via the Fourier transform

DI f@) = gz [ SR

These systems are meaningful generalization of the simplified models widely
used in the modeling of the oceanic and atmospheric motions (cf. [16]). Here,
the divergence-free vector field u = (u',u?) denotes the velocity, scalar func-

tions @, p denote the temperature and the pressure respectively, the absolute
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constants v, k can be seen as the inverse of the Reynolds numbers. The term
fes in the velocity equation models the effect of gravity on the fluid motion. If
6° = 0, from the maximum principle of the transport-diffusion equation (i.e.
Proposition 2.2 below), the systems are naturally reduced to the 2D generalized
Navier—Stokes(Euler) equations.

From a mathematical view, the fully viscous model with v > 0,k > 0,a =
([ = 2 is the simplest one to study. It acts very similar to the 2D Navier—Stokes
equation and similar global results can be achieved. On the other hand, the
most difficult one for the mathematical study is the inviscid model, that is
when v = k = 0. Up to now, only local existence results can be proven.

Here we focus on the cases where the dissipation effect in the velocity
equation plays a dominant role. The most typical models are those with the
diffusion effect in the temperature equation neglected (v = 0,v > 0), and
there have been some recent important works on these Boussinesq systems.
For the case with the full viscosity, i.e. when o = 2, global well-posedness
results can be established in various functional spaces. In [3,13], the authors
independently proved that for large initial data (u°,0%) € H® x H® with s > 2
the system is global well-posed. Later on, Hmidi and Keraani in [9] showed
global well-posedness for less regular data (u’,0°) € H® x H® with s > 0.
In [8], Danchin and Paicu proved the unconditional uniqueness in the energy
space L? x L2. For the cases with weaker dissipation, i.e. when 1 < a < 2, the
problem is also solvable. When « €]1, 2], as in [9] through taking advantage of
the maximal regularity estimates for the semi-group e ~*1PI” one can prove the
global well-posedness (see also [18]). For the subtle critical case a = 1, Hmidi
et al. in [12] proved the global result for the rough data through exploiting the
new structural properties.

If we further weaken the viscosity effect in the velocity equation to the
«a < 1 case, then to obtain the global strong solutions, it seems that introduc-
ing the viscosity effect in the temperature equation (k > 0) is necessary and
meanwhile 3 should satisfy 8 > 1 — a. In fact, we have a rough observation
from the coupled system of temperature 6 and vorticity w, where w is defined
by w := curlu = d1u? — Gru'. The coupled system writes

Ow +u - Vw + v|D|*w = 0,0,
00 +u- VO + kD[P =0,
Wli=o = W :=curlu®, fl;—¢ = 0°.

As the known Beale-Kato—Majda blowup criterion (cf. [2]) shows, the global
continuation of the system (1.1) is closely related to the a priori bound of
[w[| g1 o - Thus to get the key uniform estimates on w, the maximal gain of
a derivative from the dissipation term should at least roughly compensate the
loss of one derivative in 6 in the vorticity equation with the help of the diffu-
sion effect in the temperature equation, from which at most 3 derivative in

0 is gained. Hence av+ (3 > 1 is needed. This is also the sense in which the case
{a=1,v >0,k =0} is called a critical case.
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In this paper we study the model when v > 0,k >0 and 0 < 8 < a < 1.
For brevity, we always set v = k = 1 in the following. We shall adopt the
subtle method introduced in [11,12] to study the delicate coupled effects of
these generalized cases. More precisely, our main result is the following

Theorem 1.1. Let (a, 8) € II :=]%= V6 XL — o, f(a)] (for IT see Fig. 1 in
the sequel) with f(a) := min{ 7+§‘[ -2, °\“([1 2“),2 —2a}. Assume that 6° €

H'*n B1 1 and u° is a divergence-free vector field belonging to H' N Wwtep
with p €] a+ﬁ 7,00, then the system (1.1) has a unique global solution (u,0)

such that for every o € |1

(e
bl 17a+2/p [)
we C(RY, HYY N LR, W)LY, (RY,BL ;) and

0 € C(R*, H'~* N B {) N Li (RY, H' =+ n BL 7).
Besides, if u® € H! ﬂBlz, we can also prove u € C(RT, H* N B 2)-

For the definitions of Besov spaces B, and the mixed space-time Besov

spaces LBy . see the next section below.
We now give some comments.

Remark 1.1. We note that the cases (o, 8) € Z :=]0,1?N{a + 3 > 1} are
definitely nontrivial cases, and it seems mathematically hard to deal with
these models, even for the sub-critical range. In fact, to obtain the global well-
posedness of (1.1), all the past works treated the cases needing o > 1 or
B > 1, and the regularization effects from the dominant viscosity terms are
strong enough so that it suffices to fully exploit these effects to overcome the
loss of one derivative in # in the vorticity equation (maybe except [11,12]).
But this way fails for the cases («, 5) € Z, and one has to truly take advan-
tage of the coupled regularization effects from both viscosity terms. It is a
pity that till now there are not very effective methods to treat these cases: if
one only relies on the standard energy method, then just as [17] shows, the
condition a4+ 3 > 2 is needed and can do nothing with the potential cases Z;
On the other hand, as we show in this paper, the method of applying the new
structures (in its current state) is workable but very restrictive.

Remark 1.2. In our cases II, we need a complicated explicit function f(«) as
an upper bound, and this is a technical assumption due to that we have to
consider |D|?~%0,0 as a forcing term (see below). But since it is commonly
believed that the viscosity terms are always good terms and the larger the
power « (or [3) is, the better effects they produce, our results strongly suggest
that all the cases («a, 3) €] 674\/67 1[x]1 — a, 1] should be globally well-posed.
Of course, it still needs a further strict proof.

Remark 1.3. We notice that the assumption on the initial data is immediately
satisfied if (0%, u") € H** x [H*2]? with s; > 2 —a and s3 >3 — a — 3.

The main idea in the proof of Theorem 1.1 is to use the structures of the
system solved by (w, ), which is motivated by [11,12]. To get a first glance,
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we shall neglect the nonlinear terms here, then the coupled system of (w,#)
reduces to

dyw +|D|%w =010, 8,0 +|D|’6 = 0.
Thus
dyw +|D|%(w — |D|7“0,0) =0, 9,0+ |D|?9 = 0.
Set Ry := |D|~“01, then
Ot(w — Rab) + |D|*(w — Rab) = |DIP~20:0, 0,0 + |D|P0 = 0.

If roughly o ~ 1, 3 ~ 0, the forcing term |D|?~%9;6 has much less loss of deriv-
atives than term 0;6 and indeed we have some good estimates on w — R,0.
These estimates will strongly help to obtain the important estimates on w.

To prove Theorem 1.1, we shall use the same idea: we shall study the
new equation to get a priori estimates on w — R0 and then return to obtain
the crucial estimates on w. During this process, some difficulty will be encoun-
tered. The first one is to estimate the commutator [Ry, u - V] which naturally
turns up when the nonlinear term is taken into account; the second is to derive
the LP estimates on the new unknown quantity w — R,0; another one is to
obtain estimates on w from estimates on w — R0 (since in contrast with the
Riesz transform, R, is not LP-bounded and roughly contains positive deriva-
tive of 1 — a power). We shall treat such commutator estimates in Sect. 3, and
carefully consider the range of (a, 3) to tackle the second difficulty, and yet
we shall sufficiently apply the regularization effect (Proposition 2.3 below) of
the temperature equation to overcome the third one.

The paper is organized as follows. Section 2 is devoted to present some
preparatory results on Besov spaces. Some estimates about linear transport-
diffusion equation are also given. In Sect. 3, commutator estimates involving
R, are studied. Section 4 is the main part dedicated to the proof of Theo-
rem 1.1. Finally, some technical lemmas are shown in Sect. 5.

2. Preliminaries

2.1. Notations
Throughout this paper the following notations will be used.

o The notation X < Y means that there exists a positive harmless con-
stant C' such that X < CY. X =Y means that both X <Y and Y < X
are satisfied.

¢ & denotes the Schwartz class, S’ the space of tempered distributions, and
S’ /P the quotient space of tempered distributions up to polynomials.

o We use Ff or fto denote the Fourier transform of a tempered distribu-
tion f.

o For any pair of operators A and B on some Banach space X, the
commutator [A, B] is defined by AB — BA.
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o For every k € Z™, the notion ®; denotes any function of the form
D (t) = Coexp(...exp(Cot) . ..),
—_————

k times

where Cj depends on the related norms of the initial data and its value

may be different from line to line up to some absolute constants.
2.2. Littlewood—Paley decomposition and Besov spaces
To define Besov space we need the following dyadic partition of unity (cf. [4]).
Choose two nonnegative radial functions x, ¢ € C°°(R™) be supported respec-
tively in the ball {¢ € R : [£| < 3} and the shell {¢ € R" : 3 < [¢] < 8} such
that

O+D 0@ %) =1, VEeR™ > p27%) =1, V{#£0.
72>0 qEZ
For all f € §'(R™) we define the nonhomogeneous Littlewood—Paley operators
A f=x(D)f; VgeN Ayf :=9(27"D)f and Syf:= > Af
—1<j<q-1
The homogeneous Littlewood—Paley operators are defined as follows
VgeZ, Auf:=¢@27D)f, Sof = > A;f
Jj<q-1
The paraproduct between two distributions f and g is defined by
Ttg:= Z Sq—1Aqg.
qeN
Thus we have the following formal decomposition known as Bony’s decompo-
sition
where
R(f,g) ==Y AgfAyg, and Ayi=Au 1+ A+ A
q=—1

Now we introduce the definition of Besov spaces. Let (p,r) € [1,0]?, s € R,
the nonhomogeneous Besov space B, ,. is defined as the set of tempered dis-
tribution f such that

\T

. < 00,

= ({2 1A¢fll 1o b o>
The homogeneous space B;T is the set of f € S’(R")/P(R") such that
P Te T N P e Py

We point out that for all s € R, B , = H* and 3572 = H".

Next we introduce two kinds of coupled space—time Besov spaces. The
first one L2([0,T1], By ,.), abbreviated by L7.Bj ., is the set of tempered distri-
bution f such that

TP [ T e e

< 00.

erllrg



712 C. Miao and L. Xue NoDEA

The second one L([0, T, B, ), abbreviated by Z%B;yr, is the set of tempered
distribution f satisfying

1 lzg s, = 1427 18l g o oz
Due to Minkowiski inequality, we immediately obtain

LB, , — E%B;T, ifr>p and E%B;T — LyB; ., if o>

o < o0.

We can similarly extend to the homogeneous ones L%B;T and Z%Bfmﬁ.
Berstein’s inequality is fundamental in the analysis involving Besov spaces

(cf. [4])
Lemma 2.1. Let f € L% 1 < a < b < oo. Then for every (k,q) € N? there
exists a constant C' > 0 such that

sup [0S, fl 0 < C20FFnG=ED 7]l
la|=k

C12% ||| o < ‘Slllpk”aaAquLa < C2% |||l
2.3. Transport-diffusion equation
In this subsection we shall collect some useful estimates for the smooth solu-
tions of the following linear transport-diffusion equation
00 +u-VO+|D|Po=f Be€l0,1]
(TD)s {divu —0, Oy = 6.

The L? estimate for (TD)g equation is shown in [6].

Proposition 2.2. Let u be a smooth divergence-free vector field of R™ and 0 be
a smooth solution of (TD)g. Then for every p € [1,00] we have

10 e < 1160l » +/0 1) o dr (2.1)

The following smoothing effect plays a key role in the proof.

Proposition 2.3. Let u be a smooth divergence-free vector field of R™ with
vorticity w and 0 be a smooth solution of (T'D)g. Then for every (p,o) €)1,
oo[%[1, 00] we have

spoen2’? 1800l g1 Sow 1001 + 100 e ol iz + 1y o -

Remark 2.1. For p=1,3 =1 and f = 0, the result has appeared in [11]. Here
with necessary modifications, this generalized case can be treated in a similar
way.

We also have the classical regularization effects as follows (cf. [10,15]).

Proposition 2.4. Let —1 < s < 1, (0, 01,p,7) € [1,00]*, 01 < 0 and u be a diver-
gence-free vector field belonging to L}, (RT; Lip(R™)). We consider a smooth

solution 8 of the equation (T'D)g, then there exists C > 0 such that for every
teRT,

1612055, + 104 = A0)6ll_ g < CEVO(Bullp, + Ly, ) (22

t =P,
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and

©[%

ol ..

th,r

< OO (ollzy, + 1L, o). (2:3)

By, r

where U(t) := fot [Vu(r)| oo dr-

3. Modified Riesz transform and commutators

First we introduce a pseudo-differential operator R, defined by R,:=
|D|=20; = |D|*"*R,0 < a < 1, where R = I%I is the usual Riesz trans-
form. For convenience we call R, the modified Riesz transform. We collect

some useful properties of this operator as follows.

Proposition 3.1. Let 0 < a < 1,9 € N and R, := |31a be the modified Riesz
transform.

(1) Let x € D(R™). Then for every (p,s) € [1,00]x]a — 1, 0],
_ 1—
DI XD Ra| 0, 200120,

~

(2) Let C be a ring. Then there exists ¢ € S(R™) whose spectrum does not
meet the origin such that

Rof =210170(27) « f
for every f with Fourier variable supported on 24C.

Remark 3.1. For the point (1), since |D|*x (279 D|)Rq =|D|*T17*x(279|D|)R,
it is thus reduced to the case treated in Proposition 3.1 of [11]. We here note
that |D|*x(]D]) R4 is a convolution operator with kernel K satisfying | K (z)| <
1/(1 + |z[)"TsT1=2 for all x € R™. For the point (2), it can be achieved by a
simple cut-off technique.

The following Lemma is useful in dealing with the commutator terms
(cf. [11]).

Lemma 3.2. Let p € [1,00],m > p,m = "5 be the dual number and f,g,h
belong to the suitable functional spaces. Then,

1hx (f9) = F(hx Do < llahllpm IV Fll Lo 191l s (3.1)

Ihx(fg) = fF(hxg)llpe < llxhllps [Vl gl - (32)
The next proposition concerns the crucial commutators involving R,,.

Proposition 3.3. Let o €]0,1[,u be a smooth divergence-free vector field of R"
and 6 be a smooth scalar function. Then,

(1) for every s €]0, o we have
IRas ulbll s S0 [Vl 2 101 pog + llull 22 16]] 22 -
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In particular, in the 2 dimensional case, if u := A™'V+w is given by the
Biot-Savart law and w := T + R0, we have for every s €]0, «f

IRasulbll s Sso TNz 10l pomg + 101 poc 101l rovi-za + [lull 2 [16]] 22 -
(3.3)
(2) for every (s,p,r) €] — 1, o[ x [2,00] X [1,00] we have

[[Rave- V1605, Soo (Vullps (I0llpesrn +160,) - (34)

Remark 3.2. All the above commutator estimates also hold in the homoge-
neous framework. For instance, with the same assumption as (3.4) one has

[[Resw- VIOl 5, Sowa V0l (100l peie + 100 ) - (35)

Proof of Proposition 3.3. (1) We here only treat the special case to get (3.3).
First due to Bony’s decomposition we split the commutator term into three
parts

[Rasulf = Z[Raa‘sq—lu]Aqe + Z[RaaAqu]Sq—la + Z [RaaAqu]an
q€N q€N >-1
=1+1I+1II

e Estimation of I.

Denote I := [Rq, Sq—1u]A40. Since for each ¢ € N the Fourier transform
of I, is supported in a ring of size 2%, from Proposition 3.1-(2) there exists
¢ € S(R?) whose spectrum is away from the origin such that

I, = [pg*, Sq_1 ATIVATIA0 + [pg*, Sy—1 AT VERL0]A,0,

where ¢,(z) = 20" 1= $(2473). Taking advantage of estimates (3.1) and
(3.2), Calderén—Zygmund theorem and Proposition 3.1-(1) we obtain

HIq”Lz < ||$¢qHL1 ”V‘S’q—lA_leFHL2 ”AanLoo +
+ll2dqll 1 IV Sq-1 AT VARG L | Agh]| 2
S 279 Tl 2 14011 oo + 2792707 |16]| 1o A8l 2 -
Thus from the support property we directly have
10 g7e = 1127 M gl 2 [le2
<P 181 e + 18] e 161 e -

e Estimation of I1.
Denote 11, := [Ra, Aqu]Sy—16. As before we have

11, = [pg, AgATIVAT]S, 10 + [pgx, AJATIVER 0], -16),
and again by using Lemma 3.2 we get
12,0 < ledgll VA AT VAT 12 (15,161
+lledgll 1 [VAAT VIR L2 |Sg-10ll o
279Dl o [1Sq10ll e + 27922907 ALD]| 2 [10]]
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Thus discrete Young inequality leads to for every s < «
[Tl s = 1127 gl 2 lle2
S Il 2 101 gozg + 11611 oo 161 grova-2a -

e Estimation of I11.
We divide the term into three parts

ITT = " Ra(Agulgt) + > Agu(RaAg0) + [Ra, A_ju]A_10

q=>0 q>0
= IIT" + I11* + I11°.
From the following fact that for every ¢ > 0

[Aqull 2 & 27 [Agwl 2 S 27 [AgD || 12 + 279 | A0l 2 , (3.6)
and by a direct computation we have
B 1
27| AT
SPEHT N [ Agull s 120 e
q=2j—3,420
ST N (271 AGL o + 277 A6 )1 A8l
92j—3
S D7 20 aerime) (0= A0 T g + 27172 A0 1] ) -
q2j—4

Thus discrete Young inequality (needing s + 1 — v > 0) yields
VLT . S T2 1805 + 100 1611

For IT1%, by using Proposition 3.1-(1) and (3.6) we obtain

20 | AT, S27° Y [Agul s [RaAg
q2j—3,9>0
S2° N (27| AGT |2 + 277 A 12) 2907 || A6 L
q>j—3
S D0 200 (2 A8 T o + 20612
q>j—4

X 1801 2 161l ).
Using convolution inequality (needing s > 0) again we have

[1172(| o Ssia Tl z2 116

By 10l poe 100 resa—2a -

For 1113, since A;ITI% = 0 for every j > 3, then from Bernstein inequality
and Calderéon-Zygmund theorem we immediately have

|111°

S 1Ra A yulA 1612
S 18-vul e (132100122 + [RaB10)]12)

S llull = 116112 -

[
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This concludes the estimate (3.3).
(2) Once again using Bony’s decomposition yields

[Ra,u-V]0
= [Rar Sqo1u- VIAD+Y [Ra, Agu- V]Sg 10+ Y [Ra, Agu- V]A0
qeN qeN q>—1
:= I+ II + L.

For 1, since for every ¢ € N the Fourier transform of S;_juA,0 is supported
in a ring of size 2%, then from Proposition 3.1-(2) and estimate (3.1), we have
for every j > —1

1A, S > [ldgr Sq—ru- VIAL,,
lg—j|<4

SO 27Vl 29 |40
l[g—j|<4

< 627 [ Vull o 0]l pgri-e s

where ¢y (z) 1= 29"+ $(297) with ¢ € S and (¢;);>_1 with ||c;][,. = 1.
Thus we obtain
s, < 190l 18] s -
For I1, as above from a direct calculation we have
AT, S D legr Agu- V]S, 6],
lg—j|<4,q€N
S S 2 Vul, VS 16l e
lg—jl<4
SIVull, 277 Y 2@l CHma A g

—1<q¢’'<j+2
Thus using discrete Young inequality we obtain for every s < «

e

s S IVl 0] porie -
For III, we further write

=) " div[Ra, AgulAg0 + Y [0Ra, A_yu']A_10 = TIT" + I11°.

q=0 1<i<n

For Bernstein inequality and Proposition 3.1-(1), we treat the term IIT" as
follows

12,1,

< Y AAVRA(AuAD) e+ D 1Adiv(AuRaALO) e
q>j—3,q>0 q>35—3,9>0
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< D0 (274 42729070979 | A V|, A0

q=2j—3

<Vl 9—is Z (Q(j—q)(s+2—a) + Q(j—q)(s+1))QQ(s+1—a) 12401,

q=j—4
Thus we obtain for every s > —1

] 5, < V| [16]

. s+l—a .
HB;T Bt

For the second term, from the spectral property, there exist x’ € D(R™) such
that

III2 = Z [aiRaX/(D)vA—lui}E—la'
1<i<n

The Proposition 3.1 shows that 9;R,x'(D) is a convolution operator with
kernel A’ satisfying

W (z)| < C(1+ |z])~" 2T, V& e R™

Thus from the fact that AjHI2 = 0 for every j > 3 and by applying Lemma 3.2
with m = p > 2, we have

(s SR, A ju)lA 10| 1o

I,
S b/ || o IV A_yull  |AZ16] 1o
S IVl 101 -

This ends the proof of estimate (3.4). O

4. Proof of Theorem 1.1

The outline of the proof is as follows: first we give some appropriate a priori
estimates, then we prove the uniqueness in a weaker functional framework,
and at last we show the existence and treat the continuity-in-time issues.

4.1. A priori estimates

Proposition 4.1. Let (u,0) be a smooth solution of the Boussinesq—
Navier—Stokes system (1.1) such that (u°,0°) € L? x L?. Then for every
m € [2,00] and t € RT

el .o <I16°] e, (4.1)

Ly Hm

2 2
l[ullfee 2 + ||U||L3H5 < Co(1+t7),
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Besides if 0° € LP for some p € [1,00], we further have
10 o < 116°] -

Proof of Proposition 4.1. The LP estimate for 6 is a direct consequence of
Proposition 2.2. For the L? estimate of @, by taking a L?-inner product with
f in the temperature equation we have

S I3 + 1602 5 = 0.

Integrating in time leads to
2 2 —_ 11p012
1072 + 206117, 5 = [16°)] -

Thus by interpolation we obtain the desired estimate (4.1). For the L? estimate
of u, from the standard L? energy estimate, we get

SO + Nl 5 < Nl 10

Thus we obtain
t
lu(®)ll g2 < |u’|lL2 +/0 10(T)| 2 d7 < [[u®[l 22 + [[6°]| 222

Putting this inequality in the previous one yields

1d 2
5o O + Ol 5 < 160052 (1e0llze + 16°) 221)
Integrating in time again leads to the desired result. O

Proposition 4.2. Let 6*4—‘/6 <a<ll—a<p< min{”?)‘/éa -2 a(l__a)

2 —2a}, (u, 0) be a smooth solution of the Boussinesq—Navier— Stokes system
(1.1) such that ° € H'=>nN Béo_f‘ and u® € H* N WP with p €]—2—
Then for every o € [1

a1l
’ 1—a+2/p[
lullzy gy, < Pa(t), (4.2)

[ullzoo s + lltell oo yirrr < P3(2),
HGHLN@"(Hl*'lmB;;‘f‘) + ||9HZ%(H1,Q+BQB;—7?+;3) < Do(t).
Moreover if u also belongs to B} ,, we have HUHE?’BT}:@ < Py(t).
Proof of Proposition 4.2. Denote I' := w — R,0. Considering the vorticity
equation
0w +u - Vw + |D|%w = 010,
and the acting of R,, := |D|'~*R on the temperature equation
RO+ 1u-VRuO+ |DIPRLO = —[Ra,u- V16,
we directly have

T +u-VI 4 |D|°T = [Ra,u- V|0 + |D|PR,6. (4.3)
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To obtain the key estimate (4.2) with 0 = 1, the procedure is as below: we first
obtain some “good” estimates on I' through studying the new equation (4.3),
and then combining with the estimates of # we return to some appropriate
estimates on w which lead to our target.
oStep 1: Estimation of |T'[| o 72
From the classical energy method we get for every s; € [0
5 3 T + Tl 5

— [ div([Ra, ul0)(t, 2)T(t, 2)dz + / \DIP=20,60(t, 2)T(t, 2)da
R2

S[Ra, W@ 15 IT@l g + 1OEN 18-a—or ITE) | go1 -
Interpolation inequality and Young inequality yield

0@ zrr+5-a-e1

=1

1_7

uwwmpl5u9&mHHﬁﬁWHnr@m;gur<nuz
< ClIFpra-aey +CTE)]32 + fnr<mH2-

Inserting this inequality into the previous one, and from the continuous embed-
ding H'~% <« H'~% and Young inequality again we have

d
2 PO + T @)%
< 2||[Ra wlf(B)ll51-5 +2C [0(1) [3gres-a-r +2C ITD)72 - (44)

Applying Proposition 3.3 and Proposition 4.1 we have for every « 6]%, 1]

||[Ra,u]9(t)||H17%
STz 100N i-sp + 10O a-sg 10D + a2 102

SITON 2 101 + 1O o-sp 16°]2 + (1 +1)
STl Lz + 100 - 5p + (L +1).

Putting the upper estimate in (4.4) we obtain

d
pn ITONZ2+IT@ s S ITONZ 1015 + 10 Frrso—amoy +(147).

Gronwall inequality thus leads to
MYHH+/HF T 7 SCreCt (1 + (012, amsp + 103 prainaar):

If % <a<? 5, we choose 51 = 5, and for 1 — a < # < 3a — 2, then clearly

by using Proposition 4.1 and interpolation inequality we easily get

[ [ R
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If%<a<1,wechoose51:272a€]0,%[, and for 1 —a < 8 < 2 —2a, then

M\Q

0<pf-1+a
we also get
HQHLZHQ** + HQHLQHB 14 < 1+t

Hence for every («, ) € Iy := ] %, 1[ X ]1 — a,min{3a — 2,2 — 2a}] we have

IT )17 +/0 IT(T) 154 dr < ®1(0). (4.5)

oStep 2: Estimation of |I'|| o 1= for every T € [2,7] and for somer € [2,4]
Multiplying (4.3) by |T|"7?T" and integrating in the spatial variable we
obtain for every s, s3 €]0, §] (s3 < s2 and both will be chosen later)

L4 Tl + [ DIy 2r(as

g/ div[Ra,u}mrv—?r(t)dH/ D|P~*0,0|T~2D(¢)dx
RZ

< |[[Ra, u]0(t)[| gra—so

Lemma 3.3 in [14] and continuous embedding H% < L7« lead to

||F|r 21-\

P20 | oy + 10O sy

||H53 :

2
[ aprerey2rae 2 iy 2w
R2 HT

By using Lemma 5.1 in the Appendix we find

IPr=2Tl e,

geita-He-ay V= 2,3.

Collecting the upper estimates we have

d T T
LIr@1;, + 1T
-2
S MRa w0 gz ITO g ra-2 ) ITON 2
r—2
FNO | grrvo-a—ss ITEN esra-2)@-m) ||F(t)||L22fr

Then we choose s3 such that sy + (1 — 2)(2 - a) =
— (1= 2)(2 - a) €]0, ], this is plausible if o €]3==3
83 < s9, by mterpolatlon we have

& 1-0 é
PO gosra-2)-a) S IO g IT@NL2" < @) IT@ 5 -

where § := 2(s3 + (1 — 2)(2 — «)). Also noticing that if v €]2=8 1], we have
1 — s5 €]0,af, then from the point (1) of Proposition 3.3 and estimate (4.5)

which calls for sy =

2 W
8 1[ for r € [2,4]. Since
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we further get

IR, ulO ()] -2
< IIF(t)IILz 10 s + MO oo 10| ra-2a-sz + [[u(®)ll 2 [0l 2
S IIF(t)IILz 1O oo + [|0°]] e OO 22000 + (14 1)
D1(t) + [10(0) | gr2-20—c2 -

Therefore,

d T T
7 W@z +clIFOI 2

S (@1(t) +10) ]| r2-2a—ss ) ||F(t)||;22%a T g5
r— 1)
+@1(8) (10| grrvo-a—ss [T (2) Lﬁw s -
According to the following Young inequality
A1 4> As| < C'| AT +C"| Al + 1] As| 72, W6 €)0,1],

we obtain

d , i
2 PO + 1T 2

4— 67‘ . 27
SO + 10O 5T 2a s + PO 5+ PIONPOIET ey i 325 22
10t )”HHH a—sy s Olherwise.

Integrating in time yields

t
Il + / 1D e dr
()H9|4‘“ i

<)+ 017 + e s
LA~ " H2-20-s2 ||9||L2H1+f3 a-sy , Otherwise.

IT(

Note that we have used (4.5) in the above deduction, thus it means («, ) € Il
at least.
Let r € [2,4]. If 6]9’" 12 °87=81 " we choose s3 := 55 = 24 + 4 — 2,

—8 7 Tr—4 2r r
and for 8 €]1 — a, g’“ ia—2]7we have
4 — 4 —
0<2-20-s<— " 0<1+f-a-s< -4
2r 2r

from estimate (4.1) and interpolation inequality we find

191 2= +116] S+t
L} —T f[14+B—a—sy L4 TH2 2a—s9

If e]?::i,l[ we choose s3 := 2 — 2 < 83, then 6 = %(2—2@—&— %2(2—00)

and for 8 €]1 — « mln{Wa

2 — 2a}] we also get

4—46
0<f-1ta<— "5 0<f-l+a<

@

thus

L4 T fies- + ||0||L%Hl+ﬁ_“_s3 Si+t
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a-f3 range

0

0.7 0.75 0.8 0.85 0.9 0.95 1

FiGure 1. IT1I D I1 D T with IIT — TIs, 1T — 5,505 = 11,
and I — I3 ’

Note that as r € [2,4[ increases, the range of (a, ) will monotonously shrink
(e.g. see Fig. 1). Hence for some r € [2,4][, (o, 8) € I1,. := ] 987’;182, 1[ X ]1 -,
min g::ja -2, %, 2 — 2a}|, and for every 7 € [2,r] we have for every
teRT

—a

Il + / [P e dr < @ (1) (4.6)

oStep 3: Estimation of [|wl|y = for every T € [2,7] and for some 1 € [2,4]
Since 5 > 1 — a, there exists a fixed constant p > 1 such that % >1—a.
From the explicit formula of I' we have for every 7 € [2,r]

lwllzrzr < Tz e + 1RabllLypo

< @u(t) + 177 |Rabllzppo -

£l
By a high-low frequency decomposition and a continuous embedding Bf _ —

B;flo‘ we find

S Al ppps +(Td= A8 s
L{BY

S Ve I
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Inserting this estimate into the previous one and applying Proposition 2.3 we
obtain

1—1
lwll s < @1(0) + CE5 [l e

where (' is an absolute constant depending only on 7, p and [|0°|| .. If C’tlf%:%,
equivalently, ¢t = (%)p/(’)_l) := Tp, then for every ¢t < Ty

lwll e < @1(0):

Furthermore, if we evolve the system (1.1) from the initial data (u(Tp), 6(Tp)),
then using the time translation invariance and the fact that [|6(7o)| . <
16°]| .=, we have for every t < Ty

||w||L1 L7 S @1(T0 + t).

[To,To+t]

Iterating like this, we finally get for every t € R
[wllpy e < @1 (2). (4.7)

oStep 4: Estimation of ”FHE o2 foro el
t 1
Set I'; := A I for every ¢ € N. Applying the frequency localization
operator A, to the equation (4.3) we get

a _ . 842V6
, 1704”/1”[ and r = ro:=""%

Oy +u- VT, +|D|°Ty = —[Ag,u- VT + Ay([Ra,u-V]0) + Ay D[P R0
= fq-

Since Ty, is real-valued, then after multiplying the upper equation by |T'y|" 2T,
and integrating in the spatial variable we obtain

1d . o _ —
~a el +/(|D| Tg)|Ty|"2Tda < [Tg(&)|" 1 o)l -
RZ
Taking advantaging of the following generalized Bernstein inequality (cf. [5])
JADITIE, e = e
R2

with some positive constant ¢ independent of ¢, we have

1 d r qo r r—1

~ap Wa@®llzr + 2 0@l < 1@l £ @)l -
Thus

t
Pyl < e rgl,. +/O e | o) e d
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By taking the L7([0,¢]) norm and using the Young inequality we find for every
qgeN

207

< 9u(2-2) ||F°|| 4+ 2a(G+14p—a—2 )HAqe”L%Lr

Lrw

+2q(%+1,a,%)/ 94(a—1) 1[Ag,u- VIT(7T)| - dT

0
t

pteima®) M iRVl a4
0

For the second term of the RHS, by using Proposition 2.3, Proposition 4.1 and
estimate (4.7) we get for each ¢ € N

”AIIHHL}LT S ||00|

~

rt H00||Loc HWHLgLr) <27 (t). (4.9)

For the fourth term of the RHS of (4.8), we apply estimate (3.4) with s = a—1,
Proposition 4.1 and estimate (4.7) to obtain

t t

/0 21 | [Rau- VIO()| . dr < / Il (1O e + 100
S HWHL%LT QOHLOODLT

< ®y(1). (4.10)

For the third term of the RHS of (4.8), in view of Lemma 5.2-(1) and the
specific relationship between u and 6 we infer for every ¢ € N

200D [ Ag,u- VIT@) e S (V6 g + )] 2) 1T 5y
S ATl + 10 - +1+ ) [T(¢ )II
< (0 L)z - o

To make the series in the sequel summable, we need % +1—a—2 <0, that
is,

o 247 9r—12
l1<o<— % {77}< <1, 2<r<Ad.
=7 1—a+2/r 2r 7 8 —8 @ "
Since for r € [2,4[ the function Zf” is monotonously decreasing and %—L2

monotonously increasing, to obtain the largest range of a, we have to choose

r=ry:= SJr?)f‘/g such that 22'7 = QST;lSQ = 6%4‘/6. This leads to

(F7 e e -l

1 — a,min
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Let @ € N be a number chosen later. By gathering estimates (4.8)-(4.11)
together we find

IFII~ a2 = = > 2 Pl gpr + D 29 [Tl g

<@ q=Q
<298, (1) + 27 D10 1 + 2-QE+a=1=D) (g, (1)
+e @) T, 2 )

1Br

< Dy(1)297 427G (1) HFHZaB% :
i B

We choose @ such that

a 1
2 Q1= (1)
2
thus we obtain for every t € RT
r < Dy (t). 4.12
Il 2 < 010 (112)
By embedding this immediately leads to
Tz po, , < ®1(2)- (4.13)

oStep 5: Estimation of |[ul 1 p1
By virtue of estimate (4.13) with o = 1 and continuous embedding Bgo,lﬁ

L? — [P for all p € [2,p] (p €] o0l), we get

2
FTa=T’
HWHL,}M < HFHL}(BQC)IﬂLZ) + ||Ra9“L}B271
< @1(8) + 1177 [Rabll gy o
Thus in a similar way as obtaining (4.7), we have for every p €]rg, p]
HWHL}M < @4(t).
From Proposition 2.3, we naturally deduce that
sup 297 (|2l y 1 S NN o + 116°]] 2o lwll Lo < @1(E).
qe

Since 8 > 1 —« and p >
1—a—|—pl.Thus

%1671, there exists a p, €]rg,p] such that g >

lllsme , < ITNoimo , + IRabllrip

S (I)l(t) + HAflRaGHL,}Loo + Z HAqRaGHL%Loo
qeN
< u() + [0l e o+ D 270705 5up 297 | AL
t = geN t
< By(t).
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This immediately yields

1

||UHLgB;Q1 S HA—IU”L}LOO + Z HAqVUHL}Lw S lull e + ”WHL}B&),
qeN

< Dy (t). (4.14)
e Step 6: Estimation of ||9||Z?O(H1,QOB;?) Nwllpee o and so on.
By Proposition 2.4 and estimate (4.14), we directly obtain
052 oy + 1030508519
S ||‘9||Z§°(H1—anB;;;¥) + H(Id - A71)9||Z;(H1—a+ﬁ03;;g+ﬁ)"‘”AfleHL,}L?mLoo

< eC”V’U’HL%LOC ||00

~ ”HlfamB;;? + t||90||L2ﬂL°°
< SMletel s < gy (1). (4.15)

For p e]%ﬁfl, oo, in light of equation (4.3) and Proposition 2.2 we find

t t
D) 10 < T 2o + / [Ra - V]O(T)|| 1 dT + / [1DI"Rab(7)]| ., dr.

For the first integral of the RHS, using estimate (3.4) with s = 0 yields
IRasu-VIO(T) Lo < [[[Rayu-VIO(T)] o,
S IVu)le W0 grzg + 16001 o)
< @o(7) lw(T) 1o - (4.16)

For the second integral of the RHS, using Proposition 2.4 again we infer

t
| DR 0 S N80350 + 100 = A)0l 5y s

ClIVull 11 100
S ||9HL}LP e e ||90||B;3”
< Po(t). (4.17)
Hence gathering the upper estimates we have

lw®llLe < IT@ Lo + [Rab@)]] Lo

t

<0u(t)+ [ 0a(r) ()]
0
Gronwall inequality ensures
Jw(®)ll 10 < Bs(t). (4.18)

Taking estimates (4.18) and (4.15) into account, we return to Step 4 and
further find for every o € [1, =557

r 2+ ||ul|7o < Ds(t). 4.19
T,y + oz, < 20 (4.19)
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In the proof of the continuity issue below, we also need some a priori
bounds on wu. First, denote F := [Rq,u - V] + |D|PR,0, and estimating as
(4.16) and (4.17) we find

1l e < ®a(t) [l o+ Da(t) < B ().
Then, from Proposition 2.4 and estimate (4.15) we obtain
[l g2 < Iz g2 + [RaBle1o
S MV (100 g2 4+ Pll g g2 ) + 10N e g
< Do(t).
Thus we directly have
lull g S A1l e g + ol e 2 < D(d):

If moreover u” € Bl -2, We can also obtain that u € Et‘x’le,Q We note that due
to B}) s Whp Wlth pEl—5— +ﬂ 7,00[, all the Step 1-Step 5 are satisfied. Then,
as above, the key is to estimate ||I‘||i§<,3212. By virtue of (2.3) with g; = 1 and
(4.14), we get

1Tz o, S 2T g0, + I F gy 0 )-

From (3.5), (4.15), (4.18) and the continuous embedding B1 ¢ BLIY 5 we
find

IRasu- VIO o, S IVul®ll Lo (10 g1-g + 10@)]]Lr) < Ps().

According to (2.3) and the continuous embedding H!=% N B1 T B; 5%,
obtain

DI RaBz, o, S 16115y g1 < @260l 51 0 < P(0):
Hence we have
Il e, < @2(0) (o, + 16° g1 e + @5(8)) < Do (0),
This in turn combining with the relation w =T+ R0 and (4.15) leads to
lullze s, S lzep, SITIzxs0, + 101z 150 < P3(2)-
This finally ends the proof of Proposition 4.2. O

4.2. Uniqueness

We shall prove a uniqueness result for the system (1.1) with («, 5) € II in the
following space

Zp:=LyH'NLypBL , x LFL* N Ly BT
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Let (u;,0;)€ Zr be two solutions of the system (1.1) with the initial data
(u?,69), i =1,2. Set 6u := uy — uz, 66 := 61 — 5 and dp := p; — po. Then

Oou +ug - Vou+ |D|*0u+ Vép = —du - Vug + 06es
D100 +uy - V30 + | D[P0 = —6u - Vo,
(0u,60)|1=0 = (5u0,690).

To estimate du, by means of Lemma 5.3 (and its remark) in the appendix, we
choose g9 = 1 for term —du - Vug and p = oo for term dfes to get for every
te[0,T]

t
Clluall
I6u(t)l g S o4 (1600l + [ 160 Vua(r)ll g dr
0

H(1+ 1) ||59||Ls°3;,:o>- (4.20)
For the integral term of the RHS, we directly get
16w - Vus|[gg S l|0u-Vusllzz S 10ull L2 luzllp:_, -

Using the logarithmic interpolation inequality stated in Lemma 6.10 of [12] we
have

1
[6ull 2 < [|6ull gg _ log (6 + ||5U||0> log(e + [|0ul[ 1)-
' B5 o

Thus
18w~ Vuallgy < sl o los(e + ull (6l sy ). (421)

where p(z) := zlog(e + 1). For the last term of the RHS of (4.20), by virtue
of Proposition 2.4, we have for every ¢ € [0, T]

1061 e e, S € (1660 e + / lou V03(7)| g A7) (4:22)
Taking advantage of Lemma 5.2 and the logarithmic interpolation inequality
again we obtain

0 Vbl 5o S 1002 102l s
S 1102l p1-g log(e + [oull go)n(loul gy ) (4.23)

Denote Z(t) := [|0ul e pg _ + ||69HL$OB;¢1 . Gathering estimates (4.20)-(4.23)
together yields , '

20) < 5 (20) + | ()l + 102075 Y Z()ar).

where f(t) is an explicit function which continuously and increasingly depends
on |[|(ui, ;)] z, and time ¢. Since
ot : 1
lim ——dr > lim log(1+1log —) = oo,
r—0-+ z ’LL(T') z—0-+ x
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then the classical Osgood lemma (cf. Theorem 5.2.1 in [4]) ensures the unique-
ness. Moreover, this lemma also shows some quantified estimates as follows
2(0) < o(T) = Z(T) < b(T) (2(0))" ", (4.24)

where a, b,y are explicit functions depending continuously on || (u;,6;)|| z,. and
time 7.

4.3. Existence

First we smooth the data to get the following approximate system
O™ + u™ . vu™ 4 Vp) 4 | D) = gy,
20 4+ u(™ . v 1 | DPH™) =0,
divu(™ =0,
u™|izg = Spul, 0o = S,6°.

(4.25)

Since S,,u’, S,,0° € H* for every s € R, from the classical theory of quasi-linear
hyperbolic systems, we have the local well-posedness of the approximate sys-
tem. We also have a blowup criterion as follows: if the quantity ||Vu"| LhLe
is finite, the time 7" can be continued beyond. Then the a priori estimate (4.2)
with ¢ = 1 ensures that the solution (u(™,0() is globally defined. Moreover,

we also have for o € [1, %57,

1™z gy, + 1Nz g+ 1l gerirns < 3(T),
10 e r1-anmizgy + 10 s -arsppiosrey < Bo(T).

Thus there exists (u,f) satisfying the above estimates such that (u(™),§(™)
weakly converges to (u, @) up to the extraction of a subsequence. Furthermore,
from (4.24), if

dnm = [|(Sn — Sm)UOHBgoc + 1(Sn — Sm)Q[)||B£; <a(T)
then we have
[0 =g+ 10 =0 e < BT ().

This means that (u(")) is of Cauchy and thus it converges strongly to u in
L%OBS,OO. By interpolation, we obtain the strong convergence of u(™ to u in
L?([0,T] x R?). Thus u(™ @ u(™ strongly converges in L'([0,T] x R?). But
due to that () weakly converges to 6 in L?([0,T] x R?), we have u(™§")
converges weakly to uf. It then suffices to pass to the limit in (4.25) and we
finally get that (u,0) is a solution of our original system (1.1).

4.4. Continuity in time

We first prove the continuity-in-time of € in Béo_f‘ Lete > 0,7 >0,and J € N
be a number chosen later. Then for every 0 < s <t < T,

16() = 0(s)]| g1 < Z 277 | A0() — A0(s) || e
’ —1<j<J

49 Z 9i(1-a) ||Aj9HL9;Loo
§>J
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Due to HQHEOCBl—? < ®5(T) < o0, we can choose J € N large enough so that
T oo,

Z 2j(17a) ”AjeHLoTCLoc 5 €.

§>J
For the first term of the RHS, since for every —1 < j < J,
14;0(t) — A;0(s)] Lo < /llAjaﬁ(T)HLoo dr < (t = 5)27 [|8;0;0]| e 12
<(t- 3)22j ”a"GHL%OBiiO )
and from the equation of § and Bony decomposition,

oo

S llullpg 2 10 pgs poe + 10l g2 <1+ T, (4.26)

10-00l e g1, < IV - (WO e g + D10l e o1

we obtain

Yo 2N — A0(s) | e S ()27 TV T).

—1<5<d

This indeed ensures the continuity in B;f‘ To prove 0 € C([0,T], H'=%), as
we have ||9HZ%OH1_Q < ®5(T) and (4.26), the program is almost the same with
the above, and thus we omit it.

Now we turn to the continuity issue of the velocity u. First we consider
in the topology of H*. Since we have HuHZ%OHl < ®y(T), similarly as above, it
suffices to bound H(‘)TuHLQTHfH%. In fact, from the following formula of d,u

O-u = —|D|*u — P(u - Vu) — P(fes)

with P the Leray projection operator, we use the Bony decomposition and
Sobolev embedding to obtain

10rull 2 r-2+g < llull tlueulls y-rrg + 10l L2

L2H
S T2 Jull g+ Nl Nl s + T2 160 10

S1+ T2 (4.27)

Then, for the continuity-in-time issue in WP we do not know how to treat
it, but alternatively we can prove the continuity in a stronger topology 31172'
In fact, since we have ||uHL°°Bl < ®3(T), the program is natural. Let € > 0
and J € N be a fixed number 1arge enough. Then by a direct computation, we

have for everype]aJrﬁ_l, oofand 0 < s <t <T
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(e = (), < S 229 Agu(t) — Agu(s) 2 + ¢

lil<J
, to 2
< Z (2y(2_2/p)/ ||Aj87u(7,-)||deT) T
li1<J ®

S(t—s) S PO A 0 ul2, a + e
F1

_4 g
S (=) (TIA10,ulg 1o +27 737 |0rul, yoavg ) e

Thus the bound (4.27) definitely ensures the continuity property.
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5. Appendix: Technical lemmas

Lemma 5.1. Let v € [2,00[, s €]0,1], e]%, 2[. Then for every smooth func-
tion f we have

A2 1 g < ||f||7

et -me-a -

Proof of Lemma 5.1. This result is a generalization of Lemma 6.9 in [12], and
here we sketch the proof. In fact, by Bernstein inequality, it reduces to prove
the following stronger result

P21 e S Hfll”

Bs

where 7 := Cal 3 For s €]0, 1[, we use the characterization of H*,

T=(v=2)(2~a

117215 =

/ =2 f @ +) = 1F 2O de
Rn

|| |
By using the simple inequality
[lal""2a = [B[720] Sy la = bl(la]" "2 + [0]"7%), Va,beR,
and Holder inequality we have for every a E]%, 2[
P2+ ) =12l e S G+ = FOls 172 s
S+ =FOls ||sz2% :

2)(2 o)
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Hence, from the characterization of homogeneous Besov space again we get

Hf||2'y 4 / If(z+-) — f()”%'v dz

|[?* [

IF7=2F 1. <
~ Hf||2” CNF13

Bé'

Next we state some useful estimates in Besov framework.

Lemma 5.2. Let u be a smooth divergence-free vector field of R™ and f be a
smooth scalar function. Then

(1) for every a €]0,1] and p € [2, ]

sup 29" [Ag, u- VIfll 1 Sa (IVull g + lull o) £ 5o,

q>—1
(2) for every s € [—1,0]
-V fllag S Ml s

Proof of Lemma 5.2. Note that point (2) is just the one in Lemma 6.10 of [12],
thus we only need to prove point (1). From Bony’s decomposition we have

[Agu-VIf = > [AySiu-VIA f+ D [Ag,Aju- V]S, i f
li—ql<4 li—ql<4

+ > (A M)A f
Jj2q—3,1<i<n

=1, + 11, + 111,

For I, since A, := hy(-)x = 29"h(27-)% with h € S(R™), then from (3.1) we
get for every oo < 1

Mall e S D llzhgll o IV Sj—rul 1 27 18 1l e

l7—ql<4
S ”f”BgoM llzh|| . Z 9i—a9i(1-a)
li—ql<4
X 30 20D ATl
k<j—2

< 290 |V gos [ £llps,_ -

thus

sup 21D Ll S IVull gzt 11l o,
o
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For II,, we also use (3.1) to find

Ml S D0 lehalln VAUl 18521V Fl o
li—ql<4

SIVullges Y 2792079 3" 2% |ALf| e
li—ql<4 k<j—2
<2007 IVullgg 2 11l 5o, __
thus
sup 29"V, ||, S IVull ga=a 115y,

>
For III,, we further write
M, = Y [0, A ]A f + > [Ag0;, Ayu']A_y f o= TIT) 41117
j>q-3.j€EN; 1<i<n
For the first term, by direct computation we have for every a > 0
I, < >0 1080w A )lle + > [8;u'0:A0A; f|Le
Jj=q—3,j€N;i j>q—3,5EN;i
< gu(i-a) Z 9lg—j)agj(a—1) 1A;Vaull,, | Nj
j>q—3,j€N
o 207 Vul| acs 1 fll go,

p,00

thus
sup 20D ||, Koo Vel gt [y
q>—1

For the second term, due to IIIg = 0 for every ¢ > 3, we obtain for p > 2

sup iVl S IA-vullpe (A1 fllze S lull e 1 1o,
ot ,

This concludes the proof. O

The following estimates on the linearized velocity equation is useful in
the proof of the uniqueness part.

Lemma 5.3. Let s €]—1,1[, 0 € [1,00] and v be a smooth divergence-free vector
field of R™. If u be a smooth solution of the linear system

u+v-Vu+ |D|%u+Vp=f, divu=0.
with o € [0,2] and ul,—g = u®, then for every t € R* we have

||u\|L?oB;w < OO ([l 5y +AHETE NS, orna),

QBZ oo
where V (t fo V(7)o dr.

Remark 5.1. The proof can be done in a similar way as obtaining Proposition
4.3 in [12]. We also note that if f = f1 + f2, one can choose different g1, 02 to
suit f1, fo respectively.
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