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Abstract. In this paper we consider the following 2D Boussinesq–
Navier–Stokes systems

∂tu + u · ∇u + ∇p = −ν|D|αu + θe2

∂tθ + u · ∇θ = −κ|D|βθ

divu = 0

with ν > 0, κ > 0 and 0 < β < α < 1. When 6−√
6

4
(
.
=0.888) < α < 1,

1 − α < β ≤ f(α), where f(α) < 1 is an explicit function as a technical
bound, we prove the global well-posedness results for the rough initial
data.
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1. Introduction

The 2D generalized Boussinesq systems are of the forms
⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u + ∇p + ν|D|αu = θe2, (t, x) ∈ R
+ × R

2

∂tθ + u · ∇θ + κ|D|βθ = 0
divu = 0
u|t=0 = u0, θ|t=0 = θ0,

(1.1)

where ν ≥ 0, κ ≥ 0, e2 = (0, 1) the canonical vector, (α, β) ∈ [0, 2]2 and the
fractional differential operator |D|α is defined via the Fourier transform

|D|αf(x) =
1

4π2

∫

R2
eix·ξ|ξ|αF(f)(ξ)dξ.

These systems are meaningful generalization of the simplified models widely
used in the modeling of the oceanic and atmospheric motions (cf. [16]). Here,
the divergence-free vector field u = (u1, u2) denotes the velocity, scalar func-
tions θ, p denote the temperature and the pressure respectively, the absolute
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constants ν, κ can be seen as the inverse of the Reynolds numbers. The term
θe2 in the velocity equation models the effect of gravity on the fluid motion. If
θ0 = 0, from the maximum principle of the transport-diffusion equation (i.e.
Proposition 2.2 below), the systems are naturally reduced to the 2D generalized
Navier–Stokes(Euler) equations.

From a mathematical view, the fully viscous model with ν > 0, κ > 0, α =
β = 2 is the simplest one to study. It acts very similar to the 2D Navier–Stokes
equation and similar global results can be achieved. On the other hand, the
most difficult one for the mathematical study is the inviscid model, that is
when ν = κ = 0. Up to now, only local existence results can be proven.

Here we focus on the cases where the dissipation effect in the velocity
equation plays a dominant role. The most typical models are those with the
diffusion effect in the temperature equation neglected (κ = 0, ν > 0), and
there have been some recent important works on these Boussinesq systems.
For the case with the full viscosity, i.e. when α = 2, global well-posedness
results can be established in various functional spaces. In [3,13], the authors
independently proved that for large initial data (u0, θ0) ∈ Hs ×Hs with s > 2
the system is global well-posed. Later on, Hmidi and Keraani in [9] showed
global well-posedness for less regular data (u0, θ0) ∈ Hs × Hs with s > 0.
In [8], Danchin and Paicu proved the unconditional uniqueness in the energy
space L2 × L2. For the cases with weaker dissipation, i.e. when 1 ≤ α < 2, the
problem is also solvable. When α ∈]1, 2[, as in [9] through taking advantage of
the maximal regularity estimates for the semi-group e−t|D|α , one can prove the
global well-posedness (see also [18]). For the subtle critical case α = 1, Hmidi
et al. in [12] proved the global result for the rough data through exploiting the
new structural properties.

If we further weaken the viscosity effect in the velocity equation to the
α < 1 case, then to obtain the global strong solutions, it seems that introduc-
ing the viscosity effect in the temperature equation (κ > 0) is necessary and
meanwhile β should satisfy β ≥ 1 − α. In fact, we have a rough observation
from the coupled system of temperature θ and vorticity ω, where ω is defined
by ω := curlu = ∂1u

2 − ∂2u
1. The coupled system writes

⎧
⎨

⎩

∂tω + u · ∇ω + ν|D|αω = ∂1θ,
∂tθ + u · ∇θ + κ|D|βθ = 0,
ω|t=0 = ω0 := curlu0, θ|t=0 = θ0.

As the known Beale–Kato–Majda blowup criterion (cf. [2]) shows, the global
continuation of the system (1.1) is closely related to the a priori bound of
‖ω‖L1

t L∞ . Thus to get the key uniform estimates on ω, the maximal gain of
α derivative from the dissipation term should at least roughly compensate the
loss of one derivative in θ in the vorticity equation with the help of the diffu-
sion effect in the temperature equation, from which at most β derivative in
θ is gained. Hence α+β ≥ 1 is needed. This is also the sense in which the case
{α = 1, ν > 0, κ = 0} is called a critical case.
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In this paper we study the model when ν > 0, κ > 0 and 0 < β < α < 1.
For brevity, we always set ν = κ = 1 in the following. We shall adopt the
subtle method introduced in [11,12] to study the delicate coupled effects of
these generalized cases. More precisely, our main result is the following

Theorem 1.1. Let (α, β) ∈ Π :=]6−√
6

4 , 1[×]1 − α, f(α)] (for Π see Fig. 1 in
the sequel) with f(α) := min{ 7+2

√
6

5 α − 2, α(1−α)√
6−2α

, 2 − 2α}. Assume that θ0 ∈
H1−α ∩ B1−α

∞,1 and u0 is a divergence-free vector field belonging to H1 ∩ Ẇ 1,p

with p ∈] 2
α+β−1 ,∞[, then the system (1.1) has a unique global solution (u, θ)

such that for every σ ∈ [1, α
1−α+2/p [,

u ∈ C(R+,H1) ∩ L∞(R+, Ẇ 1,p) ∩ L̃σ
loc(R

+, B1
∞,1) and

θ ∈ C(R+,H1−α ∩ B1−α
∞,1 ) ∩ L̃1

loc(R
+,H1−α+β ∩ B1−α+β

∞,1 ).

Besides, if u0 ∈ H1 ∩ Ḃ1
p,2, we can also prove u ∈ C(R+,H1 ∩ Ḃ1

p,2).

For the definitions of Besov spaces Bs
p,r and the mixed space–time Besov

spaces L̃�
T Bs

p,r see the next section below.
We now give some comments.

Remark 1.1. We note that the cases (α, β) ∈ Ξ :=]0, 1[2∩{α + β ≥ 1} are
definitely nontrivial cases, and it seems mathematically hard to deal with
these models, even for the sub-critical range. In fact, to obtain the global well-
posedness of (1.1), all the past works treated the cases needing α ≥ 1 or
β ≥ 1, and the regularization effects from the dominant viscosity terms are
strong enough so that it suffices to fully exploit these effects to overcome the
loss of one derivative in θ in the vorticity equation (maybe except [11,12]).
But this way fails for the cases (α, β) ∈ Ξ, and one has to truly take advan-
tage of the coupled regularization effects from both viscosity terms. It is a
pity that till now there are not very effective methods to treat these cases: if
one only relies on the standard energy method, then just as [17] shows, the
condition α + β ≥ 2 is needed and can do nothing with the potential cases Ξ;
On the other hand, as we show in this paper, the method of applying the new
structures (in its current state) is workable but very restrictive.

Remark 1.2. In our cases Π, we need a complicated explicit function f(α) as
an upper bound, and this is a technical assumption due to that we have to
consider |D|β−α∂1θ as a forcing term (see below). But since it is commonly
believed that the viscosity terms are always good terms and the larger the
power α (or β) is, the better effects they produce, our results strongly suggest
that all the cases (α, β) ∈]6−√

6
4 , 1[×]1 − α, 1[ should be globally well-posed.

Of course, it still needs a further strict proof.

Remark 1.3. We notice that the assumption on the initial data is immediately
satisfied if (θ0, u0) ∈ Hs1 × [Hs2 ]2 with s1 > 2 − α and s2 > 3 − α − β.

The main idea in the proof of Theorem 1.1 is to use the structures of the
system solved by (ω, θ), which is motivated by [11,12]. To get a first glance,
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we shall neglect the nonlinear terms here, then the coupled system of (ω, θ)
reduces to

∂tω + |D|αω = ∂1θ, ∂tθ + |D|βθ = 0.

Thus

∂tω + |D|α(ω − |D|−α∂1θ) = 0, ∂tθ + |D|βθ = 0.

Set Rα := |D|−α∂1, then

∂t(ω − Rαθ) + |D|α(ω − Rαθ) = |D|β−α∂1θ, ∂tθ + |D|βθ = 0.

If roughly α ∼ 1, β ∼ 0, the forcing term |D|β−α∂1θ has much less loss of deriv-
atives than term ∂1θ and indeed we have some good estimates on ω − Rαθ.
These estimates will strongly help to obtain the important estimates on ω.

To prove Theorem 1.1, we shall use the same idea: we shall study the
new equation to get a priori estimates on ω − Rαθ and then return to obtain
the crucial estimates on ω. During this process, some difficulty will be encoun-
tered. The first one is to estimate the commutator [Rα, u · ∇] which naturally
turns up when the nonlinear term is taken into account; the second is to derive
the Lp estimates on the new unknown quantity ω − Rαθ; another one is to
obtain estimates on ω from estimates on ω − Rαθ (since in contrast with the
Riesz transform, Rα is not Lp-bounded and roughly contains positive deriva-
tive of 1−α power). We shall treat such commutator estimates in Sect. 3, and
carefully consider the range of (α, β) to tackle the second difficulty, and yet
we shall sufficiently apply the regularization effect (Proposition 2.3 below) of
the temperature equation to overcome the third one.

The paper is organized as follows. Section 2 is devoted to present some
preparatory results on Besov spaces. Some estimates about linear transport-
diffusion equation are also given. In Sect. 3, commutator estimates involving
Rα are studied. Section 4 is the main part dedicated to the proof of Theo-
rem 1.1. Finally, some technical lemmas are shown in Sect. 5.

2. Preliminaries

2.1. Notations

Throughout this paper the following notations will be used.

	 The notation X � Y means that there exists a positive harmless con-
stant C such that X ≤ CY . X ≈ Y means that both X � Y and Y � X
are satisfied.

	 S denotes the Schwartz class, S ′ the space of tempered distributions, and
S ′/P the quotient space of tempered distributions up to polynomials.

	 We use Ff or f̂ to denote the Fourier transform of a tempered distribu-
tion f .

	 For any pair of operators A and B on some Banach space X , the
commutator [A,B] is defined by AB − BA.
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	 For every k ∈ Z
+, the notion Φk denotes any function of the form

Φk(t) = C0 exp(. . . exp
︸ ︷︷ ︸

k times

(C0t) . . .),

where C0 depends on the related norms of the initial data and its value
may be different from line to line up to some absolute constants.

2.2. Littlewood–Paley decomposition and Besov spaces

To define Besov space we need the following dyadic partition of unity (cf. [4]).
Choose two nonnegative radial functions χ,ϕ ∈ C∞(Rn) be supported respec-
tively in the ball {ξ ∈ R

n : |ξ| ≤ 4
3} and the shell {ξ ∈ R

n : 3
4 ≤ |ξ| ≤ 8

3} such
that

χ(ξ) +
∑

j≥0

ϕ(2−qξ) = 1, ∀ξ ∈ R
n;

∑

q∈Z

ϕ(2−qξ) = 1, ∀ξ �= 0.

For all f ∈ S ′(Rn) we define the nonhomogeneous Littlewood–Paley operators

Δ−1f := χ(D)f ; ∀q ∈ N Δqf := ϕ(2−qD)f and Sqf :=
∑

−1≤j≤q−1

Δjf.

The homogeneous Littlewood–Paley operators are defined as follows

∀q ∈ Z, Δ̇qf := ϕ(2−qD)f, Ṡqf :=
∑

j≤q−1

Δ̇jf.

The paraproduct between two distributions f and g is defined by

Tfg :=
∑

q∈N

Sq−1fΔqg.

Thus we have the following formal decomposition known as Bony’s decompo-
sition

fg = Tfg + Tgf + R(f, g),

where

R(f, g) :=
∑

q≥−1

ΔqfΔ̃qg, and Δ̃q := Δq−1 + Δq + Δq+1.

Now we introduce the definition of Besov spaces. Let (p, r)∈ [1,∞]2, s∈ R,
the nonhomogeneous Besov space Bs

p,r is defined as the set of tempered dis-
tribution f such that

‖f‖Bs
p,r

:=
∥
∥{2qs ‖Δqf‖Lp}q≥−1

∥
∥

�r < ∞,

The homogeneous space Ḃs
p,r is the set of f ∈ S ′(Rn)/P(Rn) such that

‖f‖Ḃs
p,r

:= ‖{2qs‖Δ̇qf‖Lp}q∈Z‖�r(Z) < ∞.

We point out that for all s ∈ R, Bs
2,2 = Hs and Ḃs

2,2 = Ḣs.
Next we introduce two kinds of coupled space–time Besov spaces. The

first one L�([0, T ], Bs
p,r), abbreviated by L�

T Bs
p,r, is the set of tempered distri-

bution f such that

‖f‖L�
T Bs

p,r
:=
∥
∥
∥
∥{2qs ‖Δqf‖Lp}q≥−1

∥
∥

�r

∥
∥

L�
T

< ∞.



712 C. Miao and L. Xue NoDEA

The second one L̃�([0, T ], Bs
p,r), abbreviated by L̃�

T Bs
p,r, is the set of tempered

distribution f satisfying

‖f‖L̃�
T Bs

p,r
:= ‖{2qs ‖Δqf‖L�

T Lp}q≥−1‖�r < ∞.

Due to Minkowiski inequality, we immediately obtain

L�
T Bs

p,r ↪→ L̃�
T Bs

p,r, if r ≥ ρ and L̃�
T Bs

p,r ↪→ L�
T Bs

p,r, if � ≥ r.

We can similarly extend to the homogeneous ones L�
T Ḃs

p,r and L̃�
T Ḃs

p,r.
Berstein’s inequality is fundamental in the analysis involving Besov spaces

(cf. [4])

Lemma 2.1. Let f ∈ La, 1 ≤ a ≤ b ≤ ∞. Then for every (k, q) ∈ N
2 there

exists a constant C > 0 such that

sup
|α|=k

‖∂αSqf‖Lb ≤ C2q(k+n( 1
a − 1

b )) ‖f‖La ,

C−12qk ‖f‖La ≤ sup
|α|=k

‖∂αΔqf‖La ≤ C2qk ‖f‖La

2.3. Transport-diffusion equation

In this subsection we shall collect some useful estimates for the smooth solu-
tions of the following linear transport-diffusion equation

(TD)β

{
∂tθ + u · ∇θ + |D|βθ = f, β ∈ [0, 1]
divu = 0, θ|t=0 = θ0.

The Lp estimate for (TD)β equation is shown in [6].

Proposition 2.2. Let u be a smooth divergence-free vector field of R
n and θ be

a smooth solution of (TD)β. Then for every p ∈ [1,∞] we have

‖θ(t)‖Lp ≤ ‖θ0‖Lp +
∫ t

0

‖f(τ)‖Lp dτ. (2.1)

The following smoothing effect plays a key role in the proof.

Proposition 2.3. Let u be a smooth divergence-free vector field of R
n with

vorticity ω and θ be a smooth solution of (TD)β. Then for every (p, �) ∈]1,
∞[×[1,∞] we have

supq∈N
2q β

� ‖Δqθ‖L�
t Lp ��,p

∥
∥θ0
∥
∥

Lp +
∥
∥θ0
∥
∥

L∞ ‖ω‖L1
t Lp + ‖f‖L1

t Lp .

Remark 2.1. For � = 1, β = 1 and f = 0, the result has appeared in [11]. Here
with necessary modifications, this generalized case can be treated in a similar
way.

We also have the classical regularization effects as follows (cf. [10,15]).

Proposition 2.4. Let −1 < s < 1, (�, �1, p, r) ∈ [1,∞]4, �1 ≤ � and u be a diver-
gence-free vector field belonging to L1

loc(R
+;Lip(Rn)). We consider a smooth

solution θ of the equation (TD)β, then there exists C > 0 such that for every
t ∈ R

+,

‖θ‖L̃∞
t Bs

p,r
+ ‖(Id − Δ−1)θ‖

L̃�
t B

s+ β
�

p,r

≤ CeCU(t)
(‖θ0‖Bs

p,r
+ ‖f‖L1

t Bs
p,r

)
, (2.2)
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and

‖θ‖
L̃�

t Ḃ
s+ β

�
p,r

≤ CeCU(t)
(‖θ0‖Ḃs

p,r
+ ‖f‖

L̃
�1
t Ḃ

s+ β
�1

−β

p,r

)
, (2.3)

where U(t) :=
∫ t

0
‖∇u(τ)‖L∞ dτ .

3. Modified Riesz transform and commutators

First we introduce a pseudo-differential operator Rα defined by Rα:=
|D|−α∂1 = |D|1−αR, 0 < α < 1, where R := ∂1

|D| is the usual Riesz trans-
form. For convenience we call Rα the modified Riesz transform. We collect
some useful properties of this operator as follows.

Proposition 3.1. Let 0 < α < 1, q ∈ N and Rα := ∂1
|D|α be the modified Riesz

transform.

(1) Let χ ∈ D(Rn). Then for every (p, s) ∈ [1,∞]×]α − 1,∞[,
∥
∥|D|sχ(2−q|D|)Rα

∥
∥

L(Lp)
� 2q(s+1−α).

(2) Let C be a ring. Then there exists φ ∈ S(Rn) whose spectrum does not
meet the origin such that

Rαf = 2q(n+1−α)φ(2q·) � f

for every f with Fourier variable supported on 2qC.

Remark 3.1. For the point (1), since |D|sχ(2−q|D|)Rα = |D|s+1−αχ(2−q|D|)R,
it is thus reduced to the case treated in Proposition 3.1 of [11]. We here note
that |D|sχ(|D|)Rα is a convolution operator with kernel K satisfying |K(x)| �
1/(1 + |x|)n+s+1−α for all x ∈ R

n. For the point (2), it can be achieved by a
simple cut-off technique.

The following Lemma is useful in dealing with the commutator terms
(cf. [11]).

Lemma 3.2. Let p ∈ [1,∞],m ≥ p, m̄ = m
m−1 be the dual number and f, g, h

belong to the suitable functional spaces. Then,

‖h � (fg) − f(h � g)‖Lp ≤ ‖xh‖Lm̄ ‖∇f‖Lp ‖g‖Lm , (3.1)

‖h � (fg) − f(h � g)‖Lp ≤ ‖xh‖L1 ‖∇f‖L∞ ‖g‖Lp . (3.2)

The next proposition concerns the crucial commutators involving Rα.

Proposition 3.3. Let α ∈]0, 1[, u be a smooth divergence-free vector field of R
n

and θ be a smooth scalar function. Then,

(1) for every s ∈]0, α[ we have

‖[Rα, u]θ‖Hs �s,α ‖∇u‖L2 ‖θ‖Bs−α
∞,2

+ ‖u‖L2 ‖θ‖L2 .
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In particular, in the 2 dimensional case, if u := Δ−1∇⊥ω is given by the
Biot–Savart law and ω := Γ + Rαθ, we have for every s ∈]0, α[

‖[Rα, u]θ‖Hs �s,α ‖Γ‖L2 ‖θ‖Bs−α
∞,2

+ ‖θ‖L∞ ‖θ‖Hs+1−2α + ‖u‖L2 ‖θ‖L2 .

(3.3)

(2) for every (s, p, r) ∈] − 1, α[× [2,∞] × [1,∞] we have

‖[Rα, u · ∇]θ‖Bs
p,r

�s,α ‖∇u‖Lp

(
‖θ‖Bs+1−α∞,r

+ ‖θ‖Lp

)
. (3.4)

Remark 3.2. All the above commutator estimates also hold in the homoge-
neous framework. For instance, with the same assumption as (3.4) one has

‖[Rα, u · ∇]θ‖Ḃs
p,r

�s,α ‖∇u‖Lp

(
‖θ‖Ḃs+1−α∞,r

+ ‖θ‖Lp

)
. (3.5)

Proof of Proposition 3.3. (1) We here only treat the special case to get (3.3).
First due to Bony’s decomposition we split the commutator term into three
parts

[Rα, u]θ =
∑

q∈N

[Rα, Sq−1u]Δqθ +
∑

q∈N

[Rα,Δqu]Sq−1θ +
∑

q≥−1

[Rα,Δqu]Δ̃qθ

:= I + II + III.

• Estimation of I.
Denote Iq := [Rα, Sq−1u]Δqθ. Since for each q ∈ N the Fourier transform

of Iq is supported in a ring of size 2q, from Proposition 3.1-(2) there exists
φ ∈ S(R2) whose spectrum is away from the origin such that

Iq = [φq�, Sq−1Δ−1∇⊥Γ]Δqθ + [φq�, Sq−1Δ−1∇⊥Rαθ]Δqθ,

where φq(x) := 2q(n+1−α)φ(2qx). Taking advantage of estimates (3.1) and
(3.2), Calderón–Zygmund theorem and Proposition 3.1-(1) we obtain

‖Iq‖L2 ≤ ‖xφq‖L1 ‖∇Sq−1Δ−1∇⊥Γ‖L2 ‖Δqθ‖L∞ +

+ ‖xφq‖L1 ‖∇Sq−1Δ−1∇⊥Rαθ‖L∞ ‖Δqθ‖L2

� 2−qα ‖Γ‖L2 ‖Δqθ‖L∞ + 2−qα2q(1−α) ‖θ‖L∞ ‖Δqθ‖L2 .

Thus from the support property we directly have

‖I‖Hs ≈ ‖2qs ‖Iq‖L2 ‖�2

� ‖Γ‖L2 ‖θ‖Bs−α
∞,2

+ ‖θ‖L∞ ‖θ‖Hs+1−2α .

• Estimation of II.
Denote IIq := [Rα,Δqu]Sq−1θ. As before we have

IIq = [φq�,ΔqΔ−1∇⊥Γ]Sq−1θ + [φq�,ΔqΔ−1∇⊥Rαθ]Sq−1θ,

and again by using Lemma 3.2 we get

‖IIq‖L2 ≤ ‖xφq‖L1 ‖∇ΔqΔ−1∇⊥Γ‖L2 ‖Sq−1θ‖L∞

+ ‖xφq‖L1 ‖∇ΔqΔ−1∇⊥Rαθ‖L2 ‖Sq−1θ‖L∞

� 2−qα ‖Γ‖L2 ‖Sq−1θ‖L∞ + 2−qα2q(1−α) ‖Δqθ‖L2 ‖θ‖L∞ .
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Thus discrete Young inequality leads to for every s < α

‖II‖Hs ≈ ‖2qs ‖IIq‖L2 ‖�2

� ‖Γ‖L2 ‖θ‖Bs−α
∞,2

+ ‖θ‖L∞ ‖θ‖Hs+1−2α .

• Estimation of III.
We divide the term into three parts

III =
∑

q≥0

Rα(ΔquΔ̃qθ) +
∑

q≥0

Δqu(RαΔ̃qθ) + [Rα,Δ−1u]Δ̃−1θ

:= III1 + III2 + III3.

From the following fact that for every q ≥ 0

‖Δqu‖L2 ≈ 2−q ‖Δqω‖L2 � 2−q ‖ΔqΓ‖L2 + 2−qα ‖Δqθ‖L2 , (3.6)

and by a direct computation we have

2js
∥
∥ΔjIII1

∥
∥

L2

� 2j(s+1−α)
∑

q≥j−3,q≥0

‖Δqu‖L2 ‖Δ̃qθ‖L∞

� 2j(s+1−α)
∑

q≥j−3

(2−q ‖ΔqΓ‖L2 + 2−qα ‖Δqθ‖L2)‖Δ̃qθ‖L∞

�
∑

q≥j−4

2(j−q)(s+1−α)
(
2q(s−α) ‖Δqθ‖L∞ ‖Γ‖L2 + 2q(s+1−2α) ‖Δqθ‖L2 ‖θ‖L∞

)
.

Thus discrete Young inequality (needing s + 1 − α > 0) yields
∥
∥III1

∥
∥

Hs �s,α ‖Γ‖L2 ‖θ‖Bs−α
∞,2

+ ‖θ‖L∞ ‖θ‖Hs+1−2α .

For III2, by using Proposition 3.1-(1) and (3.6) we obtain

2js
∥
∥ΔjIII2

∥
∥

L2 � 2js
∑

q≥j−3,q≥0

‖Δqu‖L2 ‖RαΔ̃qθ‖L∞

� 2js
∑

q≥j−3

(
2−q ‖ΔqΓ‖L2 + 2−qα ‖Δqθ‖L2

)
2q(1−α)‖Δ̃qθ‖L∞

�
∑

q≥j−4

2(j−q)s
(
2q(s−α) ‖Δqθ‖L∞ ‖Γ‖L2 + 2q(s+1−2α)

×‖Δqθ‖L2 ‖θ‖L∞

)
.

Using convolution inequality (needing s > 0) again we have
∥
∥III2

∥
∥

Hs �s,α ‖Γ‖L2 ‖θ‖Bs−α
∞,2

+ ‖θ‖L∞ ‖θ‖Hs+1−2α .

For III3, since ΔjIII3 = 0 for every j ≥ 3, then from Bernstein inequality
and Calderón–Zygmund theorem we immediately have

∥
∥III3

∥
∥

Hs � ‖[Rα,Δ−1u]Δ̃−1θ‖L2

� ‖Δ−1u‖L2

(
‖Δ̃−1θ‖L2 + ‖RαΔ̃−1θ‖L2

)

� ‖u‖L2 ‖θ‖L2 .
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This concludes the estimate (3.3).
(2) Once again using Bony’s decomposition yields

[Rα, u · ∇]θ

=
∑

q∈N

[Rα, Sq−1u · ∇]Δqθ+
∑

q∈N

[Rα,Δqu · ∇]Sq−1θ+
∑

q≥−1

[Rα,Δqu · ∇]Δ̃qθ

:= I + II + III.

For I, since for every q ∈ N the Fourier transform of Sq−1uΔqθ is supported
in a ring of size 2q, then from Proposition 3.1-(2) and estimate (3.1), we have
for every j ≥ −1

‖ΔjI‖Lp �
∑

|q−j|≤4

‖[φq�, Sq−1u · ∇]Δqθ‖Lp

�
∑

|q−j|≤4

2−qα ‖∇u‖Lp 2q ‖Δqθ‖L∞

� cj2−js ‖∇u‖Lp ‖θ‖Bs+1−α∞,r
,

where φq(x) := 2q(n+1−α)φ(2qx) with φ ∈ S and (cj)j≥−1 with ‖cj‖�r = 1.
Thus we obtain

‖I‖Bs
p,r

� ‖∇u‖Lp ‖θ‖Bs+1−α∞,r
.

For II, as above from a direct calculation we have

‖ΔjII‖Lp �
∑

|q−j|≤4,q∈N

‖[φq�,Δqu · ∇]Sq−1θ‖Lp

�
∑

|q−j|≤4

2−qα ‖∇u‖Lp ‖∇Sq−1θ‖L∞

� ‖∇u‖Lp 2−js
∑

−1≤q′≤j+2

2(q′−j)(α−s)2q′(s+1−α) ‖Δq′θ‖L∞ .

Thus using discrete Young inequality we obtain for every s < α

‖II‖Bs
p,r

� ‖∇u‖Lp ‖θ‖Bs+1−α∞,r
.

For III, we further write

III =
∑

q≥0

div[Rα,Δqu]Δ̃qθ +
∑

1≤i≤n

[∂iRα,Δ−1u
i]Δ̃−1θ := III1 + III2.

For Bernstein inequality and Proposition 3.1-(1), we treat the term III1 as
follows
∥
∥ΔjIII1

∥
∥

Lp

≤
∑

q≥j−3,q≥0

‖ΔjdivRα(ΔquΔ̃qθ)‖Lp +
∑

q≥j−3,q≥0

‖Δjdiv(ΔquRαΔ̃qθ)‖Lp
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�
∑

q≥j−3

(
2j(2−α) + 2j2q(1−α)

)
2−q ‖Δq∇u‖Lp ‖Δ̃qθ‖L∞

� ‖∇u‖Lp 2−js
∑

q≥j−4

(
2(j−q)(s+2−α) + 2(j−q)(s+1)

)
2q(s+1−α) ‖Δqθ‖L∞

Thus we obtain for every s > −1
∥
∥III1

∥
∥

Bs
p,r

� ‖∇u‖Lp ‖θ‖Bs+1−α∞,r
.

For the second term, from the spectral property, there exist χ′ ∈ D(Rn) such
that

III2 =
∑

1≤i≤n

[∂iRαχ′(D),Δ−1u
i]Δ̃−1θ.

The Proposition 3.1 shows that ∂iRαχ′(D) is a convolution operator with
kernel h′ satisfying

|h′(x)| ≤ C(1 + |x|)−n−2+α, ∀x ∈ R
n.

Thus from the fact that ΔjIII2 = 0 for every j ≥ 3 and by applying Lemma 3.2
with m = p ≥ 2, we have

∥
∥III2

∥
∥

Bs
p,r

� ‖[h′�,Δ−1u]Δ̃−1θ‖Lp

� ‖xh′‖Lp̄ ‖∇Δ−1u‖Lp ‖Δ̃−1θ‖Lp

� ‖∇u‖Lp ‖θ‖Lp .

This ends the proof of estimate (3.4). �

4. Proof of Theorem 1.1

The outline of the proof is as follows: first we give some appropriate a priori
estimates, then we prove the uniqueness in a weaker functional framework,
and at last we show the existence and treat the continuity-in-time issues.

4.1. A priori estimates

Proposition 4.1. Let (u,θ) be a smooth solution of the Boussinesq–
Navier–Stokes system (1.1) such that (u0, θ0) ∈ L2 × L2. Then for every
m ∈ [2,∞] and t ∈ R

+

‖θ‖
Lm

t Ḣ
β
m

� ‖θ0‖L2 , (4.1)

‖u‖2
L∞

t L2 + ‖u‖2

L2
t Ḣ

α
2

≤ C0(1 + t2),
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Besides if θ0 ∈ Lp for some p ∈ [1,∞], we further have

‖θ(t)‖Lp ≤ ‖θ0‖Lp .

Proof of Proposition 4.1. The Lp estimate for θ is a direct consequence of
Proposition 2.2. For the L2 estimate of θ, by taking a L2-inner product with
θ in the temperature equation we have

1
2

d

dt
‖θ(t)‖2

L2 + ‖θ(t)‖2

Ḣ
β
2

= 0.

Integrating in time leads to

‖θ(t)‖2
L2 + 2 ‖θ‖2

L2
t Ḣ

β
2

=
∥
∥θ0
∥
∥2

L2 .

Thus by interpolation we obtain the desired estimate (4.1). For the L2 estimate
of u, from the standard L2 energy estimate, we get

1
2

d

dt
‖u(t)‖2

L2 + ‖u(t)‖2

Ḣ
α
2

≤ ‖u(t)‖L2 ‖θ(t)‖L2 .

Thus we obtain

‖u(t)‖L2 ≤ ‖u0‖L2 +
∫ t

0

‖θ(τ)‖L2 dτ ≤ ‖u0‖L2 + ‖θ0‖L2t.

Putting this inequality in the previous one yields
1
2

d

dt
‖u(t)‖2

L2 + ‖u(t)‖2

Ḣ
α
2

≤ ‖θ0‖L2

(‖u0‖L2 + ‖θ0‖L2t
)
.

Integrating in time again leads to the desired result. �

Proposition 4.2. Let 6−√
6

4 < α < 1, 1 − α < β ≤ min{ 7+2
√

6
5 α − 2, α(1−α)√

6−2α
,

2 − 2α}, (u, θ) be a smooth solution of the Boussinesq–Navier–Stokes system
(1.1) such that θ0 ∈ H1−α ∩ B1−α

∞,1 and u0 ∈ H1 ∩ Ẇ 1,p with p ∈] 2
α+β−1 ,∞[.

Then for every σ ∈ [1, α
1−α+2/p [

‖u‖L̃σ
t B1

∞,1
≤ Φ3(t), (4.2)

‖u‖L̃∞
t H1 + ‖u‖L∞

t Ẇ 1,p ≤ Φ3(t),

‖θ‖L̃∞
t (H1−α∩B1−α

∞,1 ) + ‖θ‖L̃1
t (H1−α+β∩B1−α+β

∞,1 ) ≤ Φ2(t).

Moreover if u0 also belongs to Ḃ1
p,2, we have ‖u‖L̃∞

t Ḃ1
p,2

≤ Φ3(t).

Proof of Proposition 4.2. Denote Γ := ω − Rαθ. Considering the vorticity
equation

∂tω + u · ∇ω + |D|αω = ∂1θ,

and the acting of Rα := |D|1−αR on the temperature equation

∂tRαθ + u · ∇Rαθ + |D|βRαθ = −[Rα, u · ∇]θ,

we directly have

∂tΓ + u · ∇Γ + |D|αΓ = [Rα, u · ∇]θ + |D|βRαθ. (4.3)
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To obtain the key estimate (4.2) with σ = 1, the procedure is as below: we first
obtain some “good” estimates on Γ through studying the new equation (4.3),
and then combining with the estimates of θ we return to some appropriate
estimates on ω which lead to our target.

•Step 1: Estimation of ‖Γ‖L∞
t L2

From the classical energy method we get for every s1 ∈ [0, α
2 ]

1
2

d

dt
‖Γ(t)‖2

L2 + ‖Γ(t)‖2

Ḣ
α
2

=
∫

R2
div([Rα, u]θ)(t, x)Γ(t, x)dx +

∫

R2
|D|β−α∂1θ(t, x)Γ(t, x)dx

≤ ‖[Rα, u]θ(t)‖
Ḣ1− α

2
‖Γ(t)‖

Ḣ
α
2

+ ‖θ(t)‖Ḣ1+β−α−s1 ‖Γ(t)‖Ḣs1 .

Interpolation inequality and Young inequality yield

‖θ(t)‖Ḣ1+β−α−s1 ‖Γ(t)‖Ḣs1 � ‖θ(t)‖Ḣ1+β−α−s1 ‖Γ(t)‖
2s1
α

Ḣ
α
2

‖Γ(t)‖1− 2s1
α

L2

≤ C ‖θ(t)‖2
Ḣ1+β−α−s1 + C ‖Γ(t)‖2

L2 +
1
4

‖Γ(t)‖2

Ḣ
α
2

.

Inserting this inequality into the previous one, and from the continuous embed-
ding H1− α

2 ↪→ Ḣ1− α
2 and Young inequality again we have

d

dt
‖Γ(t)‖2

L2 + ‖Γ(t)‖2

Ḣ
α
2

≤ 2 ‖[Rα, u]θ(t)‖2

H1− α
2

+ 2C ‖θ(t)‖2
Ḣ1+β−α−s1 + 2C ‖Γ(t)‖2

L2 . (4.4)

Applying Proposition 3.3 and Proposition 4.1 we have for every α ∈]23 , 1[

‖[Rα, u]θ(t)‖
H1− α

2

� ‖Γ(t)‖L2 ‖θ(t)‖
B

1− 3α
2

∞,2

+ ‖θ(t)‖
H2− 5α

2
‖θ(t)‖L∞ + ‖u(t)‖L2 ‖θ(t)‖L2

� ‖Γ(t)‖L2 ‖θ(t)‖L∞ + ‖θ(t)‖
H2− 5α

2
‖θ0‖L∞ + (1 + t)

� ‖Γ(t)‖L2 + ‖θ(t)‖
H2− 5α

2
+ (1 + t).

Putting the upper estimate in (4.4) we obtain

d

dt
‖Γ(t)‖2

L2 +‖Γ(t)‖2

Ḣ
α
2

� ‖Γ(t)‖2
L2 +‖θ(t)‖2

H2− 5α
2

+‖θ(t)‖2
Ḣ1+β−α−s1 +(1+t2).

Gronwall inequality thus leads to

‖Γ(t)‖2
L2 +

∫ t

0

‖Γ(τ)‖2

Ḣ
α
2

dτ ≤C1e
C1t(1 + t2 + ‖θ‖2

L2
t H2− 5α

2
+ ‖θ‖2

L2
t Ḣ1+β−α−s1 ).

If 3
4 < α ≤ 4

5 , we choose s1 = α
2 , and for 1 − α < β ≤ 3α − 2, then clearly

0 ≤ 2 − 5α

2
≤ β

2
, 0 ≤ 1 + β − 3α

2
≤ β

2
,

by using Proposition 4.1 and interpolation inequality we easily get

‖θ‖2

L2
t H2− 5α

2
+ ‖θ‖2

L2
t Ḣ1+β− 3α

2
� 1 + t.
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If 4
5 < α < 1, we choose s1 = 2 − 2α ∈]0, α

2 [, and for 1 − α < β ≤ 2 − 2α, then

0 ≤ β − 1 + α ≤ β

2
,

we also get

‖θ‖2

L2
t H2− 5α

2
+ ‖θ‖2

L2
t Ḣβ−1+α � 1 + t.

Hence for every (α, β) ∈ Π2 :=
]
3
4 , 1
[ × ]

1 − α,min{3α − 2, 2 − 2α}] we have

‖Γ(t)‖2
L2 +

∫ t

0

‖Γ(τ)‖2

Ḣ
α
2

dτ ≤ Φ1(t). (4.5)

•Step 2: Estimation of ‖Γ‖L∞
t Lr̃ for every r̃ ∈ [2, r] and for some r ∈ [2, 4[

Multiplying (4.3) by |Γ|r−2Γ and integrating in the spatial variable we
obtain for every s2, s3 ∈]0, α

2 ] (s3 ≤ s2 and both will be chosen later)

1
r

d

dt
‖Γ(t)‖r

Lr +
∫

R2
|D|αΓ|Γ|r−2Γ(t)dx

≤
∫

R2
div[Rα, u]θ|Γ|r−2Γ(t)dx +

∫

R2
|D|β−α∂1θ|Γ|r−2Γ(t)dx

≤ ‖[Rα, u]θ(t)‖Ḣ1−s2

∥
∥|Γ|r−2Γ(t)

∥
∥

Ḣs2
+ ‖θ(t)‖Ḣ1+β−α−s3

∥
∥|Γ|r−2Γ(t)

∥
∥

Ḣs3
.

Lemma 3.3 in [14] and continuous embedding Ḣ
α
2 ↪→ L

4
2−α lead to

∫

R2
(|D|αΓ)|Γ|r−2Γdx �

∥
∥
∥|Γ|r/2

∥
∥
∥

2

Ḣ
α
2

�
∥
∥
∥|Γ|r/2

∥
∥
∥

2

L
4

2−α
= ‖Γ‖r

L
2r

2−α
.

By using Lemma 5.1 in the Appendix we find
∥
∥|Γ|r−2Γ

∥
∥

Ḣsi
� ‖Γ‖r−2

L
2r

2−α
‖Γ‖

Ḣsi+(1− 2
r

)(2−α) , i = 2, 3.

Collecting the upper estimates we have

d

dt
‖Γ(t)‖r

Lr + ‖Γ(t)‖r

L
2r

2−α

� ‖[Rα, u]θ(t)‖Ḣ1−s2 ‖Γ(t)‖
Ḣs2+(1− 2

r
)(2−α) ‖Γ(t)‖r−2

L
2r

2−α

+ ‖θ(t)‖Ḣ1+β−α−s3 ‖Γ(t)‖
Ḣs3+(1− 2

r
)(2−α) ‖Γ(t)‖r−2

L
2r

2−α

Then we choose s2 such that s2 + (1 − 2
r )(2 − α) = α

2 , which calls for s2 =
α
2 − (1 − 2

r )(2 − α) ∈]0, α
2 ], this is plausible if α ∈]4r−8

3r−4 , 1[ for r ∈ [2, 4[. Since
s3 ≤ s2, by interpolation we have

‖Γ(t)‖
Ḣs3+(1− 2

r
)(2−α) � ‖Γ(t)‖δ

Ḣ
α
2

‖Γ(t)‖1−δ
L2 ≤ Φ1(t) ‖Γ(t)‖δ

Ḣ
α
2

.

where δ := 2
α (s3 + (1 − 2

r )(2 − α)). Also noticing that if α ∈]6r−8
5r−4 , 1[, we have

1 − s2 ∈]0, α[, then from the point (1) of Proposition 3.3 and estimate (4.5)
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we further get

‖[Rα, u]θ(t)‖H1−s2

� ‖Γ(t)‖L2 ‖θ(t)‖
B

1−s2−α
∞,2

+ ‖θ(t)‖L∞ ‖θ(t)‖H2−2α−s2 + ‖u(t)‖L2 ‖θ(t)‖L2

� ‖Γ(t)‖L2 ‖θ(t)‖L∞ +
∥
∥θ0
∥
∥

L∞ ‖θ(t)‖H2−2α−s2 + (1 + t)

� Φ1(t) + ‖θ(t)‖H2−2α−s2 .

Therefore,
d

dt
‖Γ(t)‖r

Lr + c ‖Γ(t)‖r

L
2r

2−α
�
(
Φ1(t) + ‖θ(t)‖H2−2α−s2

) ‖Γ(t)‖r−2

L
2r

2−α
‖Γ(t)‖

Ḣ
α
2

+Φ1(t) ‖θ(t)‖Ḣ1+β−α−s3 ‖Γ(t)‖r−2

L
2r

2−α
‖Γ(t)‖δ

Ḣ
α
2

.

According to the following Young inequality

|A1A2A3| ≤ C ′|A1|
2r

4−rδ̃ + C ′′|A2|
2
δ̃ +

c

4
|A3| r

r−2 , ∀δ̃ ∈]0, 1],

we obtain

d

dt
‖Γ(t)‖r

Lr + ‖Γ(t)‖r

L
2r

2−α

� Φ1(t) + ‖θ(t)‖
2r

4−r

H2−2α−s2 + ‖Γ(t)‖2

Ḣ
α
2

+

{

Φ1(t) ‖θ(t)‖
2r

4−δr

Ḣ1+β−α−s3
, if 2r

4−δr ≥ 2

‖θ(t)‖2
Ḣ1+β−α−s3 , otherwise.

Integrating in time yields

‖Γ(t)‖r
Lr +

∫ t

0

‖Γ(τ)‖r

L
2r

2−α
dτ

� Φ1(t) + ‖θ‖
2r

4−r

L
2r

4−r
t H2−2α−s2

+

⎧
⎨

⎩

Φ1(t) ‖θ‖
2r

4−δr

L
2r

4−δr
t Ḣ1+β−α−s3

, if 2r
4−δr ≥ 2

‖θ‖2
L2

t Ḣ1+β−α−s3 , otherwise.

Note that we have used (4.5) in the above deduction, thus it means (α, β) ∈ Π2

at least.
Let r ∈ [2, 4[. If α ∈]9r−12

8r−8 , 8r−8
7r−4 ], we choose s3 := s2 = 3r−4

2r α + 4
r − 2,

and for β ∈]1 − α, 5r−4
3r−4α − 2], we have

0 ≤ 2 − 2α − s2 ≤ 4 − r

2r
β, 0 ≤ 1 + β − α − s2 ≤ 4 − r

2r
β,

from estimate (4.1) and interpolation inequality we find

‖θ‖
L

2r
4−r
t Ḣ1+β−α−s2

+ ‖θ‖
L

2r
4−r
t H2−2α−s2

� 1 + t.

If α ∈]8r−8
7r−4 , 1[, we choose s3 := 2 − 2α < s2, then δ = 2

α (2 − 2α + r−2
r (2 − α))

and for β ∈]1 − α,min{ 1−α
4
α (1− 1

r )−2
, 2 − 2α}] we also get

0 ≤ β − 1 + α ≤ 4 − δr

2r
β, 0 ≤ β − 1 + α ≤ β

2
,

thus

‖θ‖
L

2r
4−δr
t Ḣ1+β−α−s3

+ ‖θ‖L2
t Ḣ1+β−α−s3 � 1 + t.
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Figure 1. I I I ⊃ I I ⊃ I with I I I → Π2, I I → Π 8+2
√

6
5

≡ Π,
and I → Π3

Note that as r ∈ [2, 4[ increases, the range of (α, β) will monotonously shrink
(e.g. see Fig. 1). Hence for some r ∈ [2, 4[, (α, β) ∈ Πr :=

]
9r−12
8r−8 , 1

[ × ]
1 − α,

min{ 5r−4
3r−4α − 2, 1−α

4
α (1− 1

r )−2
, 2 − 2α}], and for every r̃ ∈ [2, r] we have for every

t ∈ R
+

‖Γ(t)‖r̃
Lr̃ +

∫ t

0

‖Γ(τ)‖r̃

L
2r̃

2−α
dτ ≤ Φ1(t). (4.6)

•Step 3: Estimation of ‖ω‖L1
t Lr̃ for every r̃ ∈ [2, r] and for some r ∈ [2, 4[

Since β > 1 − α, there exists a fixed constant ρ > 1 such that β
ρ > 1 − α.

From the explicit formula of Γ we have for every r̃ ∈ [2, r]

‖ω‖L1
t Lr̃ ≤ ‖Γ‖L1

t Lr̃ + ‖Rαθ‖L1
t B0

r̃,1

≤ Φ1(t) + t1− 1
ρ ‖Rαθ‖L̃ρ

t B0
r̃,1

.

By a high-low frequency decomposition and a continuous embedding B
β
ρ

r̃,∞ ↪→
B1−α

r̃,1 we find

‖Rαθ‖L̃ρ
t B0

r̃,1
≤ ‖Δ−1Rαθ‖L̃ρ

t B0
r̃,1

+ ‖(Id − Δ−1)θ‖L̃ρ
t B1−α

r̃,1

� ‖Δ−1θ‖Lρ
t Lr̃ + ‖(Id − Δ−1)θ‖

L̃ρ
t B

β
ρ

r̃,∞

� t
1
ρ

∥
∥θ0
∥
∥

Lr̃ + supq∈N
2q β

ρ ‖Δqθ‖Lρ
t Lr̃ .
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Inserting this estimate into the previous one and applying Proposition 2.3 we
obtain

‖ω‖L1
t Lr̃ ≤ Φ1(t) + Ct1− 1

ρ ‖ω‖L1
t Lr̃ ,

where C is an absolute constant depending only on r̃, ρ and ‖θ0‖L∞ . If Ct1− 1
ρ = 1

2 ,
equivalently, t = ( 1

2C )ρ/(ρ−1) := T0, then for every t ≤ T0

‖ω‖L1
t Lr̃ ≤ Φ1(t).

Furthermore, if we evolve the system (1.1) from the initial data (u(T0), θ(T0)),
then using the time translation invariance and the fact that ‖θ(T0)‖Lr̃ ≤
‖θ0‖Lr̃ , we have for every t ≤ T0

‖ω‖L1
[T0,T0+t]L

r̃ ≤ Φ1(T0 + t).

Iterating like this, we finally get for every t ∈ R
+

‖ω‖L1
t Lr̃ ≤ Φ1(t). (4.7)

•Step 4: Estimation of ‖Γ‖
L̃σ

t B
2
r
r,1

for σ ∈ [1, α
1−α+2/r [ and r = r0:= 8+2

√
6

5

Set Γq := ΔqΓ for every q ∈ N. Applying the frequency localization
operator Δq to the equation (4.3) we get

∂tΓq + u · ∇Γq + |D|αΓq = −[Δq, u · ∇]Γ + Δq([Rα, u · ∇]θ) + Δq|D|βRαθ

:= fq.

Since Γq is real-valued, then after multiplying the upper equation by |Γq|r−2Γq

and integrating in the spatial variable we obtain

1
r

d

dt
‖Γq(t)‖r

Lr +
∫

R2

(|D|αΓq)|Γq|r−2Γdx ≤ ‖Γq(t)‖r−1
Lr ‖fq(t)‖Lr .

Taking advantaging of the following generalized Bernstein inequality (cf. [5])
∫

R2

(|D|αΓq)|Γq|r−2Γdx ≥ c2qα ‖Γq‖r
Lr ,

with some positive constant c independent of q, we have

1
r

d

dt
‖Γq(t)‖r

Lr + c2qα ‖Γq(t)‖r
Lr ≤ ‖Γq(t)‖r−1

Lr ‖fq(t)‖Lr .

Thus

‖Γq(t)‖Lr ≤ e−ct2qα ∥
∥Γ0

q

∥
∥

Lr +
∫ t

0

e−c(t−τ)2qα ‖fq(τ)‖Lr dτ.
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By taking the Lσ([0, t]) norm and using the Young inequality we find for every
q ∈ N

2q 2
r ‖Γq‖Lσ

t Lr � 2q( 2
r − α

σ )
∥
∥Γ0

q

∥
∥

Lr + 2q( 2
r +1+β−α− α

σ ) ‖Δqθ‖L1
t Lr

+2q( 2
r +1−α− α

σ )

∫ t

0

2q(α−1) ‖[Δq, u · ∇]Γ(τ)‖Lr dτ

+2q( 2
r +1−α− α

σ )

∫ t

0

2q(α−1) ‖[Rα, u · ∇]θ‖Lr dτ. (4.8)

For the second term of the RHS, by using Proposition 2.3, Proposition 4.1 and
estimate (4.7) we get for each q ∈ N

‖Δqθ‖L1
t Lr � 2−qβ(

∥
∥θ0
∥
∥

Lr +
∥
∥θ0
∥
∥

L∞ ‖ω‖L1
t Lr ) ≤ 2−qβΦ1(t). (4.9)

For the fourth term of the RHS of (4.8), we apply estimate (3.4) with s = α−1,
Proposition 4.1 and estimate (4.7) to obtain

∫ t

0

2q(α−1) ‖[Rα, u · ∇]θ(τ)‖Lr dτ �
∫ t

0

‖∇u(τ)‖Lr (‖θ(τ)‖L∞ + ‖θ(τ)‖Lr ) dτ

� ‖ω‖L1
t Lr

∥
∥θ0
∥
∥

L∞∩Lr

≤ Φ1(t). (4.10)

For the third term of the RHS of (4.8), in view of Lemma 5.2-(1) and the
specific relationship between u and θ we infer for every q ∈ N

2q(α−1) ‖[Δq, u · ∇]Γ(t)‖Lr � (‖∇u(t)‖Bα−1
r,∞ + ‖u(t)‖L2) ‖Γ(t)‖B0∞,∞

� (‖Γ(t)‖Lr + ‖θ(t)‖Lr + 1 + t) ‖Γ(t)‖
B

2
r
r,1

≤ Φ1(t) ‖Γ(t)‖
B

2
r
r,1

. (4.11)

To make the series in the sequel summable, we need 2
r + 1 − α − α

σ < 0, that
is,

1 ≤ σ <
α

1 − α + 2/r
, max

{2 + r

2r
,
9r − 12
8r − 8

}
< α < 1, 2 ≤ r < 4.

Since for r ∈ [2, 4[ the function 2+r
2r is monotonously decreasing and 9r−12

8r−8

monotonously increasing, to obtain the largest range of α, we have to choose
r = r0 := 8+2

√
6

5 such that 2+r
2r = 9r−12

8r−8 = 6−√
6

4 . This leads to

(α, β) ∈ Π =
]6 − √

6
4

, 1
[

×
]
1 − α,min

{7 + 2
√

6
5

α − 2,
α(1 − α)√

6 − 2α
, 2 − 2α

}]
.
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Let Q ∈ N be a number chosen later. By gathering estimates (4.8)-(4.11)
together we find

‖Γ‖
L̃σ

t B
2
r
r,1

=
∑

q<Q

2q 2
r ‖Γ‖Lσ

t Lr +
∑

q≥Q

2q 2
r ‖Γ‖Lσ

t Lr

� 2Q 2
r Φ1(t) + 2−Q( α

σ − 2
r )‖Γ0‖Lr + 2−Q( α

σ +α−1− 2
r )(Φ1(t)

+ Φ1(t) ‖Γ‖
L1

t B
2
r
r,1

)

≤ Φ1(t)2Q 2
r + 2−Q( α

σ +α−1− 2
r )Φ1(t) ‖Γ‖

L̃σ
t B

2
r
r,1

.

We choose Q such that

2−Q( α
σ +α−1− 2

r )Φ1(t) ≈ 1
2
,

thus we obtain for every t ∈ R
+

‖Γ‖
L̃σ

t B
2
r
r,1

≤ Φ1(t). (4.12)

By embedding this immediately leads to

‖Γ‖L̃σ
t B0

∞,1
≤ Φ1(t). (4.13)

•Step 5: Estimation of ‖u‖L1
t B1

∞,1

By virtue of estimate (4.13) with σ = 1 and continuous embedding B0
∞,1∩

L2 ↪→ Lp̃ for all p̃ ∈ [2, p] (p ∈] 2
β+α−1 ,∞[), we get

‖ω‖L1
t Lp̃ ≤ ‖Γ‖L1

t (B0∞,1∩L2) + ‖Rαθ‖L1
t B0

p̃,1

≤ Φ1(t) + t1− 1
ρ ‖Rαθ‖L̃ρ

t B0
p̃,1

.

Thus in a similar way as obtaining (4.7), we have for every p̃ ∈]r0, p]

‖ω‖L1
t Lp̃ ≤ Φ1(t).

From Proposition 2.3, we naturally deduce that

sup
q∈N

2qβ ‖Δqθ‖L1
t Lp̃ � ‖θ0‖Lp̃ + ‖θ0‖L∞ ‖ω‖L1

t Lp̃ ≤ Φ1(t).

Since β > 1 − α and p > 2
α+β−1 , there exists a pα ∈]r0, p] such that β >

1 − α + 2
pα

. Thus

‖ω‖L1
t B0

∞,1
≤ ‖Γ‖L1

t B0
∞,1

+ ‖Rαθ‖L1
t B0

∞,1

� Φ1(t) + ‖Δ−1Rαθ‖L1
t L∞ +

∑

q∈N

‖ΔqRαθ‖L1
t L∞

� Φ1(t) + t ‖θ‖L∞
t L2 +

∑

q∈N

2q(1−α+ 2
pα

−β) sup
q∈N

2qβ ‖Δqθ‖L1
t Lpα

≤ Φ1(t).
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This immediately yields

‖u‖L1
t B1

∞,1
� ‖Δ−1u‖L1

t L∞ +
∑

q∈N

‖Δq∇u‖L1
t L∞ � ‖u‖L2 + ‖ω‖L1

t B0
∞,1

≤ Φ1(t). (4.14)

• Step 6: Estimation of ‖θ‖L̃∞
t (H1−α∩B1−α

∞,1 ) , ‖ω‖L∞
t Lp and so on.

By Proposition 2.4 and estimate (4.14), we directly obtain

‖θ‖L̃∞
t (H1−α∩B1−α

∞,1 ) + ‖θ‖L̃1
t (H1−α+β∩B1−α+β

∞,1 )

� ‖θ‖L̃∞
t (H1−α∩B1−α

∞,1 ) + ‖(Id − Δ−1)θ‖L̃1
t (H1−α+β∩B1−α+β

∞,1 )+‖Δ−1θ‖L1
t L2∩L∞

� e
C‖∇u‖

L1
t L∞ ‖θ0‖H1−α∩B1−α

∞,1
+ t‖θ0‖L2∩L∞

� e
C‖u‖

L1
t B1∞,1 ≤ Φ2(t). (4.15)

For p ∈] 2
α+β−1 ,∞[, in light of equation (4.3) and Proposition 2.2 we find

‖Γ(t)‖Lp ≤ ‖Γ0‖Lp +
∫ t

0

‖[Rα, u · ∇]θ(τ)‖Lp dτ +
∫ t

0

∥
∥|D|βRαθ(τ)

∥
∥

Lp dτ.

For the first integral of the RHS, using estimate (3.4) with s = 0 yields

‖[Rα, u · ∇]θ(τ)‖Lp ≤ ‖[Rα, u · ∇]θ(τ)‖B0
p,1

� ‖∇u(τ)‖Lp (‖θ(τ)‖B1−α
∞,1

+ ‖θ(τ)‖Lp)

≤ Φ2(τ) ‖ω(τ)‖Lp . (4.16)

For the second integral of the RHS, using Proposition 2.4 again we infer
∫ t

0

∥
∥|D|βRαθ(τ)

∥
∥

Lp dτ � ‖Δ−1θ‖L1
t Lp + ‖(Id − Δ−1)θ‖L1

t B1−α+β
p,1

� ‖θ‖L1
t Lp + e

C‖∇u‖
L1

t L∞ ‖θ0‖B1−α
p,1

≤ Φ2(t). (4.17)

Hence gathering the upper estimates we have

‖ω(t)‖Lp ≤ ‖Γ(t)‖Lp + ‖Rαθ(t)‖Lp

≤ Φ2(t) +
∫ t

0

Φ2(τ) ‖ω(τ)‖Lp dτ.

Gronwall inequality ensures

‖ω(t)‖Lp ≤ Φ3(t). (4.18)

Taking estimates (4.18) and (4.15) into account, we return to Step 4 and
further find for every σ ∈ [1, α

1−α+2/p [

‖Γ‖
L̃σ

t B
2
p
p,1

+ ‖u‖L̃σ
t B1∞,1

≤ Φ3(t). (4.19)



Vol. 18 (2011) Global well-posedness of BNS system 727

In the proof of the continuity issue below, we also need some a priori
bounds on u. First, denote F := [Rα, u · ∇]θ + |D|βRαθ, and estimating as
(4.16) and (4.17) we find

‖F‖L1
t L2 ≤ Φ2(t) ‖ω‖L1

t L2 + Φ2(t) ≤ Φ2(t).

Then, from Proposition 2.4 and estimate (4.15) we obtain

‖ω‖L̃∞
t L2 ≤ ‖Γ‖L̃∞

t L2 + ‖Rαθ‖L̃∞
t L2

� e
C‖∇u‖

L1
t L∞

(
‖Γ0‖L2 + ‖F‖L1

t L2

)
+ ‖θ‖L̃∞

t H1−α

≤ Φ2(t).

Thus we directly have

‖u‖L̃∞
t H1 � ‖Δ−1u‖L∞

t L2 + ‖ω‖L̃∞
t L2 ≤ Φ2(t).

If moreover u0 ∈ Ḃ1
p,2, we can also obtain that u ∈ L̃∞

t Ḃ1
p,2. We note that due

to Ḃ1
p,2 ↪→ Ẇ 1,p with p ∈] 2

α+β−1 ,∞[, all the Step 1-Step 5 are satisfied. Then,
as above, the key is to estimate ‖Γ‖L̃∞

t Ḃ0
p,2

. By virtue of (2.3) with �1 = 1 and
(4.14), we get

‖Γ‖L̃∞
t Ḃ0

p,2
� Φ2(t)(‖Γ0‖Ḃ0

p,2
+ ‖F‖L̃1

t Ḃ0
p,2

).

From (3.5), (4.15), (4.18) and the continuous embedding B1−α
∞,1 ↪→ Ḃ1−α

∞,2 we
find

‖[Rα, u · ∇]θ(t)‖Ḃ0
p,2

� ‖∇u(t)‖Lp (‖θ(t)‖Ḃ1−α
∞,2

+ ‖θ(t)‖Lp) ≤ Φ3(t).

According to (2.3) and the continuous embedding H1−α ∩ B1−α
∞,1 ↪→ Ḃ1−α

p,2 , we
obtain

‖|D|βRαθ‖L̃1
t Ḃ0

p,2
� ‖θ‖L̃1

t Ḃ1−α+β
p,2

≤ Φ2(t)‖θ0‖Ḃ1−α
p,2

≤ Φ2(t).

Hence we have

‖Γ‖L̃∞
t Ḃ0

p,2
≤ Φ2(t)

(
‖ω0‖Ḃ0

p,2
+ ‖θ0‖Ḃ1−α

p,2
+ Φ3(t)

)
≤ Φ3(t).

This in turn combining with the relation ω = Γ + Rαθ and (4.15) leads to

‖u‖L̃∞
t Ḃ1

p,2
� ‖ω‖L̃∞

t Ḃ0
p,2

� ‖Γ‖L̃∞
t Ḃ0

p,2
+ ‖θ‖L̃∞

t Ḃ1−α
p,2

≤ Φ3(t).

This finally ends the proof of Proposition 4.2. �

4.2. Uniqueness

We shall prove a uniqueness result for the system (1.1) with (α, β) ∈ Π in the
following space

ZT := L∞
T H1 ∩ L1

T B1
∞,1 × L∞

T L2 ∩ L1
T B1−α

∞,1 .
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Let (ui, θi)∈ ZT be two solutions of the system (1.1) with the initial data
(u0

i , θ
0
i ), i = 1, 2. Set δu := u1 − u2, δθ := θ1 − θ2 and δp := p1 − p2. Then

∂tδu + u1 · ∇δu + |D|αδu + ∇δp = −δu · ∇u2 + δθe2

∂tδθ + u1 · ∇δθ + |D|βδθ = −δu · ∇θ2

(δu, δθ)|t=0 = (δu0, δθ0).

To estimate δu, by means of Lemma 5.3 (and its remark) in the appendix, we
choose � = 1 for term −δu · ∇u2 and � = ∞ for term δθe2 to get for every
t ∈ [0, T ]

‖δu(t)‖B0
2,∞

� e
C‖u1‖

L1
t B1∞,1

(
‖δu0‖B0

2,∞ +

t∫

0

‖δu · ∇u2(τ)‖B0
2,∞

dτ

+(1 + t) ‖δθ‖L∞
t B−α

2,∞

)
. (4.20)

For the integral term of the RHS, we directly get

‖δu · ∇u2‖B0
2,∞

� ‖δu · ∇u2‖L2 � ‖δu‖L2 ‖u2‖B1
∞,1

.

Using the logarithmic interpolation inequality stated in Lemma 6.10 of [12] we
have

‖δu‖L2 � ‖δu‖B0
2,∞

log

(

e +
1

‖δu‖B0
2,∞

)

log(e + ‖δu‖H1).

Thus

‖δu · ∇u2‖B0
2,∞

� ‖u2‖B1∞,1
log(e + ‖δu‖H1)μ(‖δu‖B0

2,∞
), (4.21)

where μ(x) := x log(e + 1
x ). For the last term of the RHS of (4.20), by virtue

of Proposition 2.4, we have for every t ∈ [0, T ]

‖δθ‖L∞
t B−α

2,∞
� e

C‖u1‖
L1

t B1∞,1

(
‖δθ0‖B−α

2,∞
+
∫ t

0

‖δu · ∇θ2(τ)‖B−α
2,∞

dτ
)
. (4.22)

Taking advantage of Lemma 5.2 and the logarithmic interpolation inequality
again we obtain

‖δu · ∇θ2‖B−α
2,∞

� ‖δu‖L2 ‖θ2‖B1−α
∞,1

� ‖θ2‖B1−α
∞,1

log(e + ‖δu‖H1)μ(‖δu‖B0
2,∞

). (4.23)

Denote Z(t) := ‖δu‖L∞
t B0

2,∞
+ ‖δθ‖L∞

t B−α
2,∞

. Gathering estimates (4.20)-(4.23)
together yields

Z(t) ≤ f(t)
(
Z(0) +

∫ t

0

(
‖u2(τ)‖B1∞,1

+ ‖θ2(τ)‖B1−α
∞,1

)
μ(Z(τ))dτ

)
,

where f(t) is an explicit function which continuously and increasingly depends
on ‖(ui, θi)‖Zt

and time t. Since

lim
x→0+

∫ 1

x

1
μ(r)

dr ≥ lim
x→0+

log(1 + log
1
x

) = ∞,
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then the classical Osgood lemma (cf. Theorem 5.2.1 in [4]) ensures the unique-
ness. Moreover, this lemma also shows some quantified estimates as follows

Z(0) ≤ a(T ) =⇒ Z(T ) ≤ b(T ) (Z(0))γ(T )
, (4.24)

where a, b, γ are explicit functions depending continuously on ‖(ui, θi)‖ZT
and

time T .

4.3. Existence

First we smooth the data to get the following approximate system
⎧
⎪⎪⎨

⎪⎪⎩

∂tu
(n) + u(n) · ∇u(n) + ∇p(n) + |D|αu(n) = θ(n)e2,

∂tθ
(n) + u(n) · ∇θ(n) + |D|βθ(n) = 0,

divu(n) = 0,
u(n)|t=0 = Snu0, θ(n)|t=0 = Snθ0.

(4.25)

Since Snu0, Snθ0 ∈ Hs for every s ∈ R, from the classical theory of quasi-linear
hyperbolic systems, we have the local well-posedness of the approximate sys-
tem. We also have a blowup criterion as follows: if the quantity ‖∇un‖L1

T L∞

is finite, the time T can be continued beyond. Then the a priori estimate (4.2)
with σ = 1 ensures that the solution (u(n), θ(n)) is globally defined. Moreover,
we also have for σ ∈ [1, α

1−α+2/p [,

‖u(n)‖L̃σ
T B1

∞,1
+ ‖u(n)‖L̃∞

T H1 + ‖u(n)‖L∞
T Ẇ 1,p ≤ Φ3(T ),

‖θ(n)‖L̃∞
T (H1−α∩B1−α

∞,1 ) + ‖θ(n)‖L̃1
t (H1−α+β∩B1−α+β

∞,1 ) ≤ Φ2(T ).

Thus there exists (u, θ) satisfying the above estimates such that (u(n), θ(n))
weakly converges to (u, θ) up to the extraction of a subsequence. Furthermore,
from (4.24), if

dn,m := ‖(Sn − Sm)u0‖B0
2,∞ + ‖(Sn − Sm)θ0‖B−α

2,∞
≤ a(T )

then we have

‖u(n) − u(m)‖L∞
T B0

2,∞ + ‖θ(n) − θ(m)‖L∞
T B−α

2,∞
≤ b(T )(dn,m)γ(T ).

This means that (u(n)) is of Cauchy and thus it converges strongly to u in
L∞

T B0
2,∞. By interpolation, we obtain the strong convergence of u(n) to u in

L2([0, T ] × R
2). Thus u(n) ⊗ u(n) strongly converges in L1([0, T ] × R

2). But
due to that θ(n) weakly converges to θ in L2([0, T ] × R

2), we have u(n)θ(n)

converges weakly to uθ. It then suffices to pass to the limit in (4.25) and we
finally get that (u, θ) is a solution of our original system (1.1).

4.4. Continuity in time

We first prove the continuity-in-time of θ in B1−α
∞,1 . Let ε > 0, T > 0, and J ∈ N

be a number chosen later. Then for every 0 ≤ s ≤ t ≤ T ,

‖θ(t) − θ(s)‖B1−α
∞,1

≤
∑

−1≤j≤J

2j(1−α) ‖Δjθ(t) − Δjθ(s)‖L∞

+2
∑

j>J

2j(1−α) ‖Δjθ‖L∞
T L∞
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Due to ‖θ‖L̃∞
T B1−α

∞,1
≤ Φ2(T ) < ∞, we can choose J ∈ N large enough so that

∑

j>J

2j(1−α) ‖Δjθ‖L∞
T L∞ � ε.

For the first term of the RHS, since for every −1 ≤ j ≤ J ,

‖Δjθ(t) − Δjθ(s)‖L∞ ≤
t∫

s

‖Δj∂τθ(τ)‖L∞ dτ ≤ (t − s)2j ‖Δj∂τθ‖L∞
T L2

≤ (t − s)22j ‖∂τθ‖L∞
T B−1

2,∞
,

and from the equation of θ and Bony decomposition,

‖∂τθ‖L∞
T B−1

2,∞
≤ ‖∇ · (uθ)‖L∞

T B−1
2,∞

+ ‖|D|βθ‖L∞
T B−1

2,∞

� ‖u‖L∞
T L2 ‖θ‖L∞

T L∞ + ‖θ‖L∞
T L2 ≤ 1 + T, (4.26)

we obtain
∑

−1≤j≤J

2j(1−α) ‖Δjθ(t) − Δjθ(s)‖L∞ � (t − s)2J(3−α)(1 + T ).

This indeed ensures the continuity in B1−α
∞,1 . To prove θ ∈ C([0, T ],H1−α), as

we have ‖θ‖L̃∞
T H1−α ≤ Φ2(T ) and (4.26), the program is almost the same with

the above, and thus we omit it.
Now we turn to the continuity issue of the velocity u. First we consider

in the topology of H1. Since we have ‖u‖L̃∞
T H1 ≤ Φ2(T ), similarly as above, it

suffices to bound ‖∂τu‖
L2

T H−2+ α
2
. In fact, from the following formula of ∂τu

∂τu = −|D|αu − P(u · ∇u) − P(θe2)

with P the Leray projection operator, we use the Bony decomposition and
Sobolev embedding to obtain

‖∂τu‖
L2

T H−2+ α
2

� ‖u‖
L2

T H−2+ 3α
2

+ ‖u ⊗ u‖
L2

T H−1+ α
2

+ ‖θ‖L2
T L2

� T 1/2 ‖u‖L∞
T L2 + ‖u‖

L2
T H

α
2

‖u‖L∞
T L2 + T 1/2 ‖θ‖L∞

T L2

� 1 + T 2. (4.27)

Then, for the continuity-in-time issue in Ẇ 1,p we do not know how to treat
it, but alternatively we can prove the continuity in a stronger topology Ḃ1

p,2.
In fact, since we have ‖u‖L̃∞

T Ḃ1
p,2

≤ Φ3(T ), the program is natural. Let ε > 0
and J ∈ N be a fixed number large enough. Then by a direct computation, we
have for every p ∈] 2

α+β−1 ,∞[ and 0 ≤ s ≤ t ≤ T
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‖u(t) − u(s)‖2
Ḃ1

p,2
≤
∑

|j|≤J

22j‖Δ̇ju(t) − Δ̇ju(s)‖2
Lp + ε

�
∑

|j|≤J

(
2j(2−2/p)

∫ t

s

‖Δ̇j∂τu(τ, ·)‖L2dτ
)2

+ ε

� (t − s)
∑

|j|≤J

2j(4−4/p)‖Δ̇j∂τu‖2
L2

T L2 + ε

� (t − s)
(
J ‖Δ−1∂τu‖2

L2
T L2 +2J(8− 4

p −α) ‖∂τu‖2

L2
T H−2+ α

2

)
+ε

Thus the bound (4.27) definitely ensures the continuity property.
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5. Appendix: Technical lemmas

Lemma 5.1. Let γ ∈ [2,∞[, s ∈]0, 1[, α ∈]γ−4
γ−2 , 2[. Then for every smooth func-

tion f we have
∥
∥|f |γ−2f

∥
∥

Ḣs � ‖f‖γ−2

L
2γ

2−α

‖f‖
Ḣ

s+( n
2 − n

γ
)(2−α) .

Proof of Lemma 5.1. This result is a generalization of Lemma 6.9 in [12], and
here we sketch the proof. In fact, by Bernstein inequality, it reduces to prove
the following stronger result

∥
∥|f |γ−2f

∥
∥

Ḣs � ‖f‖γ−2

L
2γ

2−α

‖f‖Ḃs
γ̃,2

.

where γ̃ := 2γ
γ−(γ−2)(2−α) . For s ∈]0, 1[, we use the characterization of Ḣs,

∥
∥|f |γ−2f

∥
∥2

Ḣs ≈

∫

Rn

∥
∥|f |γ−2f(x + ·) − |f |γ−2f(·)∥∥2

L2

|x|2s

dx

|x|n .

By using the simple inequality
∣
∣|a|γ−2a − |b|γ−2b

∣
∣ �γ |a − b|(|a|γ−2 + |b|γ−2), ∀a, b ∈ R,

and Hölder inequality we have for every α ∈]γ−4
γ−2 , 2[

∥
∥|f |γ−2f(x + ·) − |f |γ−2f

∥
∥

L2 � ‖f(x + ·) − f(·)‖Lγ̃

∥
∥|f |γ−2

∥
∥

L
2γ

(γ−2)(2−α)

� ‖f(x + ·) − f(·)‖Lγ̃ ‖f‖γ−2

L
2γ

2−α

.
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Hence, from the characterization of homogeneous Besov space again we get

‖|f |γ−2f‖2
Ḣs � ‖f‖2γ−4

L
2γ

2−α

∫

Rn

‖f(x + ·) − f(·)‖2
Lγ̃

|x|2s

dx

|x|n
≈ ‖f‖2γ−4

L
2γ

2−α

‖f‖2
Ḃs

γ̃,2
.

�

Next we state some useful estimates in Besov framework.

Lemma 5.2. Let u be a smooth divergence-free vector field of R
n and f be a

smooth scalar function. Then

(1) for every α ∈]0, 1[ and p ∈ [2,∞]

sup
q≥−1

2q(α−1) ‖[Δq, u · ∇]f‖Lp �α (‖∇u‖Bα−1
p,∞ + ‖u‖L2) ‖f‖B0∞,∞

.

(2) for every s ∈ [−1, 0]

‖u · ∇f‖Bs
2,∞

� ‖u‖L2 ‖f‖Bs+1
∞,1

.

Proof of Lemma 5.2. Note that point (2) is just the one in Lemma 6.10 of [12],
thus we only need to prove point (1). From Bony’s decomposition we have

[Δq, u · ∇]f =
∑

|j−q|≤4

[Δq, Sj−1u · ∇]Δjf +
∑

|j−q|≤4

[Δq,Δju · ∇]Sj−1f

+
∑

j≥q−3,1≤i≤n

[Δq∂i,Δju
i]Δ̃jf

:= Iq + IIq + IIIq.

For Iq, since Δq := hq(·)� = 2qnh(2q·)� with h ∈ S(Rn), then from (3.1) we
get for every α < 1

‖Iq‖Lp �
∑

|j−q|≤4

‖xhq‖L1 ‖∇Sj−1u‖Lp 2j ‖Δjf‖L∞

� ‖f‖B0∞,∞
‖xh‖L1

∑

|j−q|≤4

2j−q2j(1−α)

×
∑

k≤j−2

2(j−k)(α−1)2k(α−1) ‖Δk∇u‖Lp

� 2q(1−α) ‖∇u‖Bα−1
p,∞ ‖f‖B0∞,∞

,

thus

sup
q≥−1

2q(α−1) ‖Iq‖Lp � ‖∇u‖Bα−1
p,∞ ‖f‖B0∞,∞

.
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For IIq, we also use (3.1) to find

‖IIq‖Lp �
∑

|j−q|≤4

‖xhq‖L1 ‖∇Δju‖Lp ‖Sj−1∇f‖L∞

� ‖∇u‖Bα−1
p,∞

∑

|j−q|≤4

2−q2j(1−α)
∑

k≤j−2

2k ‖Δkf‖L∞

� 2q(1−α) ‖∇u‖Bα−1
p,∞ ‖f‖B0∞,∞

,

thus

sup
q≥−1

2q(α−1) ‖IIq‖Lp � ‖∇u‖Bα−1
p,∞ ‖f‖B0∞,∞

.

For IIIq, we further write

IIIq =
∑

j≥q−3,j∈N;i

[Δq∂i,Δju
i]Δ̃jf +

∑

1≤i≤n

[Δq∂i,Δ−1u
i]Δ̃−1f := III1q + III2q.

For the first term, by direct computation we have for every α > 0
∥
∥III1q

∥
∥

Lp ≤
∑

j≥q−3,j∈N;i

‖∂iΔq(Δju
iΔ̃jf)‖Lp +

∑

j≥q−3,j∈N;i

‖Δju
i∂iΔqΔ̃jf‖Lp

� 2q(1−α)
∑

j≥q−3,j∈N

2(q−j)α2j(α−1) ‖Δj∇u‖Lp ‖Δ̃jf‖L∞

�α 2q(1−α) ‖∇u‖Bα−1
p,∞ ‖f‖B0∞,∞

,

thus

sup
q≥−1

2q(α−1)
∥
∥III1q

∥
∥

Lp �α ‖∇u‖Bα−1
p,∞ ‖f‖B0∞,∞

.

For the second term, due to III2q = 0 for every q ≥ 3, we obtain for p ≥ 2

sup
q≥−1

2q(α−1)
∥
∥III2q

∥
∥

Lp � ‖Δ−1u‖Lp ‖Δ̃−1f‖L∞ � ‖u‖L2 ‖f‖B0∞,∞
.

This concludes the proof. �

The following estimates on the linearized velocity equation is useful in
the proof of the uniqueness part.

Lemma 5.3. Let s ∈]−1, 1[, � ∈ [1,∞] and v be a smooth divergence-free vector
field of R

n. If u be a smooth solution of the linear system

∂tu + v · ∇u + |D|αu + ∇p = f, divu = 0.

with α ∈ [0, 2] and u|t=0 = u0, then for every t ∈ R
+ we have

‖u‖L∞
t Bs

2,∞
≤ CeCV (t)

(∥
∥u0
∥
∥

Bs
2,∞

+ (1 + t1− 1
� ) ‖f‖

L̃�
t B

s+ α
�

−α

2,∞

)
,

where V (t) :=
∫ t

0
‖∇v(τ)‖L∞ dτ .

Remark 5.1. The proof can be done in a similar way as obtaining Proposition
4.3 in [12]. We also note that if f = f1 + f2, one can choose different �1, �2 to
suit f1, f2 respectively.
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