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We study one-dimensional Eulerian dynamics with nonlocal alignment interactions, fea-
turing strong short-range alignment, and long-range misalignment. Compared with the
well-studied Euler-alignment system, the presence of the misalignment brings different
behaviors of the solutions, including the possible creation of vacuum at infinite time,
which destabilizes the solutions. We show that with a strongly singular short-range
alignment interaction, the solution is globally regular, despite the effect of misalignment.
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1. Introduction

Mathematical modeling on collective behaviors has attracted lots of attention in
the recent decades, and has a vast amount of applications in biology, engineering,
physics, socio-economic and life sciences, see for instance the book (Ref. 26), the
reviews (Refs. Bl [, 25 and B5) and references therein. Many celebrated models in
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different scales have been proposed and analyzed. They enjoy rich mathematical
structures that lead to intriguing emergent phenomena.
One novel agent-based model is proposed by Cucker and Smale in Ref. [7

Ty =v;, U= NZ¢ vj — V),
J#i
describing the emergent phenomenon of animal flocks. The pairwise alignment inter-
action is governed by the influence function ¢. When ¢ > 0, the velocity v; intends
to align with v; as time evolves, leading to the flocking phenomenon 13
Ha and Tadmor in Ref. [14] derive a macroscopic model of the Cucker—Smale
dynamics. It is known as the pressureless Fuler-alignment system. In one dimension,

the system reads

Orp + 0u(pu) = 0, (1.1)
Dt + 1 Dyt = / o(z — y) (u(y) — u(z))p(y)dy, (12)
R
with initial data
(p,u)]t=0(x) = (po,uo)(x), (1.3)

where p and u represent the density and velocity, respectively.

The Euler-alignment system has been studied extensively in recent years, for var-
ious choices of alignment interactionsM###2%31 Although the global well-posedness
theory is still incomplete in higher dimensions (one can see Refs. [0l [15] 27 [31] for
interesting partial results), the theory on the 1D Euler-alignment system (IT])-
([2) has been well-established, under the assumption that influence function ¢ is
non-negative, symmetric, and decreasing in R*.

The behavior of ¢ near the origin plays an important role in the global regularity
of the system. If ¢ is bounded, whether the solution is globally regular depends on
the choice of initial data. In Ref. [5, a sharp critical threshold on the initial data
is derived, which distinguishes global smooth solutions and finite time singularity
formations. If ¢ is weakly singular, namely unbounded but integrable at the origin,
a different critical threshold has been obtained in Ref. 33l If ¢ is strongly singular,
namely non-integrable at the origin, the strong short-range alignment is known to
bring dissipation which prevents finite time singularity formations, for all smooth
periodic initial data which stays away from vacuum (pg > 0). Global regularity is
shown in Refs. [11], 28| and [29]

The non-negativity assumption on ¢ is also crucial for the stability, as well as
the long-time behavior of the system. Indeed, one can calculate the dynamics of
energy fluctuation

dt / /R2 y)*p(x)p(y)dady

- / . d(z — y)|u(x) — u(y)]p(x)p(y)dady. (1.4)
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If ¢ has a positive lower bound, it is easy to see that the energy fluctuation decays
exponentially in time. It leads to a velocity alignment as the time approaches infin-
ity. In Ref. [31l such fast alignment with an exponential decay rate has been shown
for any ¢ which delays sufficiently slow at infinity, such that fooo o(r)ydr = +oo.
Finally, if ¢ > 0 and degenerate (namely compactly supported), velocity align-
ment can be shown only for periodic initial data away from vacuum/™ with a
sub-exponential rate of convergence.

In this paper, we focus on a new type of influence function, which is not nec-
essarily non-negative. When ¢(x — y) < 0, the velocity u(z) intends to misalign
with u(y). The misalignment behavior plays an interesting role in learning and con-
trols of collective behaviors®# On the other hand, it could bring instability to the
system. Indeed, it is easy to see from ([4]) that the energy fluctuation no longer
decays in time. One natural question is, how does the misalignment affect the global
well-posedness and long-time behavior of the system.

A typical choice of the influence function of our concern is

Co cg
(ba,ﬁ(x) = |1‘|1+o‘ _M|Z‘|1+B’ (15)

where the parameter 0 < 5 < a < 2, the coefficient 1 > 0, and ¢4, cg are positive
constants, defined in (7). This influence function has two main features:

e Strong alignment in the short range: ¢o () behaves like |#| =1~ near the origin.
More precisely,

_1
Ca Cq Ca a—p

—* < <—2 . Yo<|z|< )

Slapira < Pesl®) < i = <2M05>

e Misalignment in the long range: ¢ g(r) becomes negative if |x| is large enough.
More precisely,

Paplr) <0, V|z ><—) .
5(2) ol > (22

The system ([I)—(T2) with influence function (LH]) is closely related to the
following Burgers type equation

Opt + 1w g = —A%u + pAPu,  uli—o = uo, (1.6)
where the fractional differential operator A% = (—92)% has the expression formula

f(z) — f(y) 2°T (H42)
Af(z) =capv. | TF—dy, Co=—=—257 (1.7)
R |z —y|te Valr(—4)]

Equation (LG can be obtained by formally enforcing p(x,t) = 1 in the velocity
dynamics ([2)) associated with ¢(z) = ¢q,g(x). When p =0, (L) is known as the
fractal Burgers equation. It was studied in Ref.[19 and global regularity is obtained
if and only if a > 1.
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When p > 0, Eq. (L6) can be viewed as a nonlocal analog of the notable
Kuramoto—Sivashinsky equation (which corresponds to o =4, 8 = 2 in (IL6])). The
linear pseudo-differential term A%u — puAPu gives long-wave instability and short-
wave stability. The case where o > 1 and < « was first introduced and studied
by Granero—Belinchén and Hunter in Ref. [I21 They proved the global existence,
uniqueness and instant analyticity of solutions and also the existence of a compact
attractor for Eq. (CO). We remark that by applying the same process as in Ref. [23]
one can show the global well-posedness for the critical case « = 1 with 5 < 1. Also,
finite time blowup can be shown in the case 0 < o, 8 < 1.

For our system ([CI)-(T2), the constant density profile p(z,t) = 1 does not
preserve in time. For p = 0, a remarkable discovery in Ref. [11] is that, with a
density-dependent fractional dissipation, the global behavior of the solution differs
from the fractal Burgers equation. In particular, global regularity can be obtained
for « € (0,1).

The main goal of this paper is on the global well-posedness of the Eulerian
system ([LI)-(T2), with the influence function ¢ containing misalignment. We will
focus on periodic initial data (pg,up) where z € T, and po(z) > 0 away from
the vacuum. Without loss of generality, we can set the period to be 1, and let
T=[-44)

As a suitable generalization of example (L)), we will consider the influence func-
tion ¢(x) = ¢(—x) belonging to C*(R\{0}) which satisfies the following assump-
tions.

(A1) Strong alignment in the short range: There exist constants « € (0,2), ag > 0
and ¢; > 1 such that
1 1 C1

- < < ., YO0 < |z| < ao, 1.8

cp |zt — ¢lz) < |z[1+e 2l < a0 (18)
dip(x) c1 .

dai = |x|1+j+a7 J = 17273747 Vo< |1‘| < ao, (19)

the mapping r — ¢(r) is non-increasing in r on (0, ag. (1.10)

(A2) Possible misalignment in the long range: There exists a constant c¢o > 0 such

that
/ 2}
|z|>ao

Such a function is indeed the kernel function of the following Lévy operator

Lf(x) = pv. / oz — ) (@) — F())dy. (1.12)

which corresponds to the infinitesimal generator of stable Lévy process (see Ref. [16]).
Under the periodic setup, the alignment term can be expressed as

/T 65 ( — ) (u(y) — u(z))p(y)dy

dip(z )
% dr <cy, j7=0,1,2,3,4. (1.11)
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with the periodic influence function

¢%(z) =Y ¢z +k), Vel (1.13)

kEZ

When ¢ satisfies assumptions (A1) and (A2), we assume ag < 3 with no loss of
generality, and noting that >, o [¢(z + k)| < 3co for every z € T and » ;5 [p(z +
k)| < ca(1+ag?) for every |z| € [ag, 3], ¢° has the following similar properties.

(A1%) Strong alignment in the short range:

1
2¢q x| e

1 \T=
ro = min{ag, (60102) } (114)

(A2%) Possible misalignment in the long range:

201
< ¢5(z) < P Vx| € (0, ro],

|05 (x)| <3, VY|x| €[ro,1/2], c3= cer_(H'a) +e(l+agt).  (1.15)

Condition (LCIH) allows ¢° to be negative in the long range. This corresponds
to the misalignment effect. Figure [ illustrates a typical periodic influence function
satisfying (A1°) and (A2°) with misalignment.

Now, let us state our main result.

Theorem 1.1. (Global regularity) Let the symmetric influence function ¢ €
C*(R\{0}) be under assumptions (A1) and (A2) with 0 < o < 2. Let s > 3 if
o €(0,1] and s > 2 if a € (1,2). Assume that the initial data satisfy

po € H*(T), m%npo >0, wuy€ HT7(T), and

Go = Ogug — Lpo € Hs_%(T).

!
!
|
|
|
|
|
|
|
|
}
T
!
!
|
|

0 : | . x
T 1
0 R\o\/ 1
> >
Strong alignment Misalignment Strong alignment

Fig. 1. The illustration of the periodic influence function.
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Then for any T > 0, the Fuler-alignment system (LI))-(L2) with associated periodic
initial data (po,uo) generates a unique global smooth solution (p,u) on the time
interval [0,T1].

As a direct corollary, the theorem says that with ¢(z) = ¢q g(x) given by (1),
global regularity of the Euler-alignment system ([LI)—(T2) can be obtained for the
full range 0 < 8 < a < 2, g > 0. In particular, the behavior differs from Eq. (L6
when « € (0,1), where blowup can occur. This is the same phenomenon as the
w =0 case.

We shall emphasize, however, the presence of misalignment makes a big dif-
ference in the regularity estimates, as well as the long-time behaviors of the
solutions.

When the misalignment effect is relatively weak (e.g. p is small in (CH])), then
#°(z) > 0 for any € T. In this case, there is overall no misalignment. Global
regularity and fast alignment then follow. See related discussions in Ref. 21l In
particular, two important bounds can be derived. First, the density has a uniform-
in-time lower bound (see Remark [Z1]), namely, there exists a positive constant
pm > 0, such that

p(z,t) > pm, YzeT and t>0.

Second, the density oscillation ||0.p(-,t)|| L~ is bounded uniformly in time.

When the misalignment effect is strong enough (e.g. y is big in (I5)), then ¢ is
not necessarily positive everywhere and the typical case is illustrated in Fig.[Il With
the long-range misalignment, the density no longer has a uniform-in-time positive
lower bound. Indeed, as verified by numerical experiments, the lower bound on den-
sity can decay to zero as the time approaches infinity. The presence of the vacuum
is known to lead to destabilization of the system, and the singularity formations 22
Lack of the uniform lower bound on density creates additional difficulties toward
the global well-posedness theory.

To prove Theorem [T} we first obtain lower/upper bound estimates on density
p, stated in Lemmas[ZT] and 221 It guarantees that the density is uniformly-in-time
bounded and also stays positive in any finite time, although it could go to zero
as the time approaches infinity, with an exponential decay rate. Next, with the
lower /upper bound estimates, we establish the local well-posedness theory, using
energy and commutator estimates. Since we consider a large class of general influ-
ence functions ¢, the crucial commutator estimates need to be extended to general
Lévy operators L that are related to ¢. Moreover, a sufficient condition that ensures
the global regularity is shown, which extends the result in Refs. [11] and 21l to a
more general setting. The sufficient condition, described in ([B1), is related to the
boundedness of the density oscillation ||0zp(-,t)||L= for the case a € (0,1] and
102p(-,t)||L for the case a € (1,2). Finally, we prove that these density oscilla-
tions can be bounded in any finite time, using the novel method on the modulus
of continuity, invented in Ref. 20l and with applications to the Euler-alignment sys-
tem in Ref. [I1. We adapt it to the Euler-alignment system (LI)-(T2]) with general
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influence function ¢. There are two major difficulties. First, the case a € [1,2) does
not simply follow the same procedures as the « € (0, 1) case. See Remark 2] as well
as Sec. for related discussions. Second, with the presence of the misalignment,
there is a lack of uniform lower bound on the density, and thus ||0zp(-, )| L~ and
102p(+,t)|| L=~ can grow in time. We manage to get a bound of ||0,p(-,t)|| L~ with
double exponential growth in time and a bound of ||82p(-, )|/~ with triple expo-
nential growth in time. These bounds ensure the global regularity anyway. However,
the solutions could be very unstable as the time approaches infinity.

The rest of the paper is organized as follows. In Sec. [2] we state and show some
important lemmas, including the critical lower/upper bound estimates on density
and some properties of Lévy operator £. In Sec. Bl we establish the local well-
posedness theory, as well as the blowup criteria. In Sec. [l we show global regularity
of the considered system, and finish the proof of Theorem [Tl In Sec. Bl we present
the detailed proof of auxiliary lemmas related to modulus of continuity, which play

crucial roles in the global regularity part. deals with the commutator
estimates that are useful in the local well-posedness.

2. Auxiliary Lemmas
2.1. Reformulation of the Euler-alignment system

The alignment force in (IZ2) is known to have a commutator structure. Using the
expression formula (ILI2)) of Lévy operator £, we can write

/R oz — 1) (uly) — u(@)p(y)dy = —(C(ou) — ullp)) = — (L, ulp.

Note that in the case ¢ = ¢ g given by (LH), the corresponding operator £ =
AY — pAP.

To capture the commutator structure, we follow the idea of Ref. 5l Apply the
operator L to the p-equation (II]) and get

O Lp=—0,L(pu) = —0:([L,ulp) — 0x(u(Lp)).
Apply 9, to the u-equation (L2) and get
0t (0gu) + Oy (u 0zu) = —05([L, u)p).

Combining these two equations together will yield a nice cancelation on the term
0:([L, p]u). Define

G = 0yu — Lp. (2.1)
We get

0:G + 0,(Gu) = 0. (2.2)
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The Euler-alignment system (LI)—(TZ) can be reformulated as the following
system for p and G:
Op + Ox(pu) =0,
0:G + 0, (Gu) =0, (2.3)
0.u =G+ Lp.
For smooth solutions (p, G), we can reconstruct the velocity u from (Z3) as

follows.
First, by integrating Eq. (LT in x, we get the conservation of mass

[ ptatie = [ mia)da = o (2.4)

where we denote pg as the average density in T.
Since G also satisfies the continuity equation (22]), we have

/TG(xj)dx: /TGo(x)dx
= [ocu@a+ [ [ 65w =u)iont@) - po(w)azdy = 0.

0(x7t) :p(xvt) — Po, (25)
so that [ 6(z,t)dz = 0. Thus we deduce that the primitive functions of f(z,t) and
G(z,t) are periodic. Denote by (¢, %) the mean-free primitive functions of (8, G):

We also set

0(z.t) = Dppla, 1), /T ol t)dz = 0 (2.6)
and
Glz.1) = Oyl t), /T Wz, t)de = 0, 2.7)
Hence, from the relation (ZI), we see that
u(z,t) = P(x,t) + Lo(x,t) + In(t). (2.8)

In order to determine Iy(t), we make use of the conservation of momentum.
Indeed, from the system (LCI)—(L2), we have the dynamics of the momentum

01(pu) + 0,(pu) = pla) [ 6 (@ = )(ut) =~ u(@)(0)dy. (2.9)
Integrating (Z9) on T and using the fact that ¢° is an even function on T, it yields

d

G L= [ [ 56—t - u@hp@pmay - o.

Then, we get

/Tp(x,t)u(x,t)dx:/Tpo(x)uo(a:)dx.
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The above conservation can be used to determine Iy(t) in (28):

(0) = o [ mtountote -~ [ plotwte e - [ plo 0otz ta).

From (ZI)-(2.0) and the property of Lévy operator £ (e.g. see (220))), we infer
that

/Tp(a:,t)ﬁgo(x,t)dx = ﬁo/ﬂ‘ﬁgo(x,t)dx —|—/Tam<ﬂ($,t)£<p(a:,t)da: =0.

Therefore,

0(0) = o [ mustite - [ plo. vtz ta). (2.10)

In particular, if G(x,t) = 0, we have ¢¥(z,t) = 0, and Iy(¢) is a time-independent
constant.

2.2. Bounds on the density

We first derive a crucial lower bound on p, which guarantees no creation of vacuum
at a finite time.

Lemma 2.1. Assume the influence function ¢(x) = ¢(—z) € C*(R\{0}) satisfies
assumptions (A1) and (A2) with « € (0,2). Let (p,u) be a smooth solution to the
Euler-alignment system (LI)-(L3) for 0 <t < T, with smooth periodic initial data
(po, ug) satisfying miny po(x) > 0. Then, there exists a positive constant My > 0,
depending only on cs and the initial data, such that

p(x,t) > Moe= Pt VzecT, 0<t<T. (2.11)

Proof. We first observe that the quantity F' = G/p satisfies the following transport
equation

OHF + ud,F =0. (2.12)
It implies
VF@llpeiry < [ Follzmin = || 202200 <o (2.13)
Po L>=(T)
Recall the dynamics of p
Oep + udypp = —pdyu = —pLp — p°F. (2.14)

Assume T, < T is the maximal time that minget p(,t) remains strictly positive.
The positiveness of T is ensured by minget pg > 0 and the smoothness of p. For
every 0 <t < T,, we assume that € T is a point that 6(z,t) attains its minimum
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(z may depend on ¢ and is not necessarily unique). From ([LI2) and (ILI3), we get

—£Mgﬂ=pw4¢@—@@@ﬁ—p@ﬁﬂy

:pv/hﬂw@@+gw—mem%
T

where ¢° satisfies estimates (LI4)—(LI5). Since —c3 < 0 is a lower bound of ¢° on
T, we have

—Lp(z,t) > —63/TF (p(y +z,t) — p(z,t))dy = —c3(po — plz,1)).  (2.15)
Combining (2I4) with (ZI3) and 2I5), we obtain

Oip(z,t) > —capo p(z, t) — || Follpeplz, t)?.

Direct calculation then yields

min p(x,t) > ———— T capo —
€T (capo(ming po) = + || Fo| Lo )eaPot — || Fo || Lo

3P0 —c3pot

~ c3po(ming po) !+ [|Fol| L
for any 0 < t < T.. Moreover, the above formula implies that T, = 7. So (211
holds as long as the solution stays smooth. O

)

Remark 2.1. If the periodic influence function ¢° has a non-negative lower bound
on T, that is,

¢%(x) > ¢, Vax €T, with some constant ¢, >0,
a similar estimate as (ZI0) implies

—Lp(z,t) > dm (ﬁO - p(z, t))

Consequently, we have

0ep(z,t) = dmpo p(z,t) = ([ Follzes + Smpo) plz )%,

where the right-hand side stays positive if p(z,t) < M’%. This leads to a

uniform-in-time lower bound on p
min p(x,t) > min {mlnpo, _—— 5.
Tx[0,7] (=) T | Foll zoe + ¢mpo
Compared with Lemma 2.1, we observe a major difference between systems

with or without misalignment. Lack of uniform-in-time lower bound on the density
brings additional difficulties to the local and global well-posedness theory.

Next we show a uniform upper bound of density p.

Lemma 2.2. Let the assumptions of Lemma 2.1l be satisfied. Then, there exists a
positive constant My > 0, depending on «, ro, c1, ¢3, and (po,up), but independent
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of T, such that
plz,t) <M;, VzeT, 0<t<T. (2.16)

Proof. Assume that for every 0 < ¢t < T, a smooth solution 6(z,t) attains its
maximum at some point T € T (T may depend on ¢ and is not necessarily unique).
We aim to derive a lower bound of Lp(7T,t). Compute

Lp(@,1) = p.v. / 65 (2)(p(@,t) — p(@ + 2, 1))dy.

C1 _ —
zp.v./ ——(p(x,t) — p(T + 2,t))dy
S0 o+ 0)

om0t

1
2

C1 _ —
> p.v. ————(0(z,t) — 6(T + 2,1))d
P /ZSTO 2|z|1+0‘( (T, 1) — 0( ))dy
- 63(1 - 27‘0)[)(5, t)v (217)

where we have used estimates (ILI4)(I5) on ¢°. In order to estimate the integral
on the right-hand side of (217, we use the nonlinear maximum principle originated
in Ref. [6l Let @ € C*°(R) be a test function such that

0<w<1l, w=0 on[-1/2,1/2],

(2.18)
w=1 onR\[-1,1], and [@|pe(m) <4

Denote @, (x) = w(%) for every r > 0. Let r € (0, 7) be a constant to be chosen
later. Then,

Lo, 1) > pv. /R mzﬁﬁwr(z)u oy (2)) (B, £) — O(F + 2,8))dz — cap(T, )

_ c1
> 6(x7t)/ _a g,
r<lzl<p 20zt

— /R 2|zTﬁwr(z)(l — @ (2))0:0(T + 2, t)dz — c3p(T, t)
(p(®.1) - po) ( - (%0)_&)
- Hlele= [ [o- (w’"(z)“ et

PR )‘dz—@,p(i,t).
Let us assume p(T,t) > 2pg so that p(T,t) — po > 2p(T,1). [|o(t)||L=(r) can be
estimated by

>

218

el @) = el Loy < N0y < le®llzrer) + po = 2p0-  (2.19)
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And the remaining integral

()L~ 1y (2
Lo )

|z T+e
Combining these estimates, we obtain

— 1 To\TYY 80cy _ —
) > — a_ (9 ) — — (14a) _ Jt).
Lp(Z,t) 5 <7" ( ) ) p(Z,t) por csp(T,t)

< 8 —ata),

o 2
Now, let us pick r satisfying £p(z, t)r—* = 22 ppr —(1+e) that is
320p0
p(Z,t)

Note that r € (0, ) if we assume p(7,t) > 640"0 . Then, it follows that

T =

2¢c
— 1+« 1 —« —
Colm0) 2 om0 0 = (et X ) g, (220)

Applying (ZI3) and (Z20) to the p-equation (ZI4]), we have
0ip(@, 1) < —p(@, )Lo(T, 1) + | F(t)l|~p(T)*

€1 ——a (= 1\24+a 2c1 o — 1\2
< “5 10alo p(Z, 1) + <03 + o o + |F0|L°°> p(T,t)

2+«

Cl __o -
S_l()TapO p(T;1) <0,

if p(T,t) is large enough so that
1
p(@,t) > (10°c; ! (czar + 2e1m5® + || Fo||L=ax)) ™ po. (2.21)

Note that the condition (Z21)) implies p(T,t) > 2py and p(T,t) > %. Hence, p
stops growing if (Z21)) holds. We conclude the desired uniform-in-time upper bound

1
p(Z,t) < max {mﬂgxpo, po - (10%;  (csa + 2e1m5 * + || Fol| o)) ® } O
As a direct consequence of Lemmas [2.1] and 2.2] we see that

()] <C, Ytelo,T), (2.22)

where C' depends only on the influence function ¢ and the initial data (po,uo).
Indeed, in light of relation (Z7)) and estimates (Z13), (Z16), we get

[YO)leeemy < IG@) |z < [ F ()= llp®)llLe < Mi|[Folle.  (2.23)
Therefore, from 2I0) and 24), it yields

1
0] < = (|uo||Loo [ etz + o [ p(x,wdx) < llwollz + Ma]| ol .
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2.3. Some properties of Lévy operator L

Throughout this subsection, we assume that £ is the Lévy operator defined by
([I2) with kernel function ¢(z) = ¢(—x) € C*(R\{0}) satisfying assumptions (A1)
and (A2) with a € (0,2).

Taking the Fourier transform on L, we get

Lf(C)=Af(Q), VCeR, (2.24)

where the symbol A(() is given by the Lévy—Khintchine formula (see Eq. (3.217)
of Ref. [16)

AQQ) = / (1 — cos(¢ 2))(x)dx. (2.25)
R\{0}

The next lemma concerns the pointwise lower and upper bound estimates of the
symbol.

Lemma 2.3. The symbol A(() given by ([Z28) of the considered Lévy operator L
satisfies that

A(Q) > CTHgI = C'/2, YCER (2.26)

and
AQ) S ClK*+C, V(ER, (2.27)
where « € (0,2) and C, C" are positive constants depending only on « and ag, 1, Ca.

Remark 2.2. From estimate (Z.26]), it is clear that C' + A(() is strictly positive.
We thus can define the operator /C'Id + L as the following multiplier operator

FWVCTI+ L)) =V +AQF(), V(eR. (2.28)
Proof of Lemma|[2.3l For every a € (0, 2) we have (e.g. see Eq. (3.219) of Ref. [16)
1
] = e / (1 - cos(z () —mmdz, VCER. (2.29)
R\{0} ||
From conditions (L8] and (IT]), we obtain

AQ zat [

0<|z|<ag

1
(1 = cos(z C))de - /|I|>a0 (1= cos(z())|o(x)|dx
! — cos(x —1 x
> ¢ /|I|>0(1 ( C))|x|l+ad

_ 1
—C 1 /$Za0 (1 — COS(Z‘ C)) de — /$2a0 |¢(1‘)|d1‘
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and
A(Q) < a /<|I|<a0(1 — cos(x C))| |}+a da + /w>a0 (1 = cos(z())|p(x)|dx
<a /$>0(1 - cos(zO) s |11+a dz + 2/@@0 6(2)|dz < erec[C]* + 26,
as desired. O

The differentiability property of ¢(z) in assumptions (A1) and (A2) is mainly
used to show the following property of the symbol A(().

Lemma 2.4. The symbol A(C) given by 228) of the considered Lévy operator L
satisfies that forn =1,2,3,4,

d"A(C)’ _ {cma", for ¢ > max{ag ', 1},

d¢n ci¢Cl™™,  for |¢| < max{aal7 1}, (2:30)

where C' > 0 is a constant depending only on coefficients «, ag, c1,ce in L.

Proof. Let w(z) € C* be a test function satisfying ([2I]), and w,(z) = w(
with 7 > 0. From (Z28]) and the integration by parts, we have

38

)

[A'(Q)] =

[0t = contw ) (@ @)oo + (1= 20(0)) ()
R\{0}

1
I<1 Jry g0y

" / ol sin(z )| (1 = @ (x)) [¢()| da

(1 — cos(x C))!@r (z @, (2)9(x)) |dx

S Ly (@I0@1 [ (2)] 1166+ el 6 @)

+ / 22 Cll6(x) da + / 2l lp(@)|de.  (2.31)
o< |z|<r |z ¢|<1 o< |z|<r, |z (]|>1

If the spectrum |(| is large enough, that is, |¢| > max{ay',1}, we let r <
min{ao, |¢|7!,1} = |¢|7! and thus

1
413 | 7).
SRS [¢lr <|z|<r |5E| |C| <|z|<ao |9C|1+°‘

L (16()] + |zllé (@) dz + [¢] j2?|6() da

1<l Ji2)>a0 0<z|<r, |z ¢|<1

1 1 1
< 2—«
e g TR e
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oose r = e conclude that < . is such that <
Ch 2\<\W lude th A(¢ Cle|eL. If |¢] i h th ¢
max{ay ', 1}, we let 7 = min{ag, 1} (which satisfies » < [¢|7!). From Z3I) we
directly have

, 1 C1 1 /
A(Q] < — 4 — + d
A (O] < iC] /§<|m|<ao EET x " (|¢(x)| ||| (x)|) x

|z|>a0
C1
+/ —a_ldx
o<|z|<r ||

Sle (2.32)

Hence ([230) with n = 1 follows.
For higher-order derivatives A(™((), n = 2,3,4, we use conditions (L8) (L)
and (LII) to obtain

1A ()] = / A7 (1 = cos(xC)) (wr(2)(x) + (1 — @, (2))p(a))da
R\{0}
1 o
S /]R\{O}(1 — cos(2())|07 (2" (x)p(x)) |dx

L = o )t

S L (Ol @) e oo )

n dz.
4 / o @

If ¢ is such that |¢| > max{ay’,1}, we let » = 2|¢|~! (which satisfies r <
min{ag, 1}), and then

1 . .
AP ()] < / / 219169 (2)1da
| o= |<|n 3<|z|<ao |x|l+a |C|n Z |$|Zao| 16 ()]

—|—/ crlz[" T ¥de
o<|z|<r

1 1
S el SR (4
[ i
If |¢| < max{ay*, 1}, we let 7 = min{ag, 1}, and use a similar argument as (232
to obtain the bound A (¢) < |¢]~". O

Remark 2.3. Based on Lemmas 23] and 24, we find that for n = 1,2, 3,4,

d"OFAQ)| _ [ClglE, for [¢] > max{ay ', 1},
¢ ~ ol for [¢] < max{ag ', 1},

where C > 0 is a constant depending only on coefficients o, C’, ag, c1, co.

(2.33)




Math. Models Methods Appl. Sci. 2021.31:473-524. Downloaded from www.worldscientific.com
by BEIJING NORMAL UNIVERSITY on 02/17/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

488 Q. Miao, C. Tan & L. Xue

As an application of Lemma 2.4, we have the L*°-boundedness property of the
Lévy operator L.

Lemma 2.5. There exists a constant C > 0 depending only on « such that the
considered Lévy operator L satisfies

ILfll < ClifllBg, . (2.34)
where BY, | denotes the Besov space (see (BT) below for definition).
Proof. We here adopt the notation of Littelewood—Paley theory introduced in the

appendix. Denoting by ko := [ay'] + 1, and using estimate (Z30), the result of
Lemma 2.2 in Ref. [1l directly implies that for every k > kg and every p € [1, o0],

[ALLF e < 25| Akf]| L,

with C' > 0 a constant depending on the coefficients in L. For the operator
x(27% D)L, its kernel function hy, () = Cy [ €™ Sx(27%¢) A(¢)d( indeed satisfies
that ||, ||1 < C (due to Lemma[ZA and from an easy computation as in (A.13)),
so that we have that for every p € [1, x|,

Ix@2 " D)Lf|Le < CllfllLo-

Thus the desired estimate ([2:34])) follows from the high-low frequency decomposition:

Ll < IX@ D) fll + > [ARLF ||z

k>ko
< Clflle=+C Y 2*|Akflr= < Clfle -

k>ko

3. Local Well-Posedness

In this section, we establish the local well-posedness result for the smooth solution
to the Euler-alignment system (CI)—(L3).

Theorem 3.1. Assume the influence function ¢p(z) = ¢p(—z) € CH(R\{0}) satisfies
assumptions (A1) and (A2) with o € (0,2). Let s > 3 if « € (0,1] and let s > 3 if
€ (1,2). Suppose that the initial data (pg,ug) satisfies

po € H*(T), minpo >0, Go := Dyuo — Lpo € H* %(T).

Then there exists a time To > 0 depending only on ¢ and (pg,ug) such that system
@3) admits a unique strong solution (p(x,t),u(z,t)) on [0,Ty], which satisfies

p € C([0,To); H5(T)) N L*([0, To); H*T2(T)), wu € C([0,To); HF1=2(T)).
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Moreover, let T* > 0 be the maximal existence time of the above strong solution
(p,u), then if T* < 0o, we necessarily have

.
/ 10,0(8)|2 eyt = 00, for o € (0,1],
0 (3.1)

-
/0 H@ip(t)”%oo(mdt =00, forae€(1,2).

Proof. The proof of Theorem Bl uses the same procedure as that of Theorem
3.1 of Ref. [I1] taking into account the misalignment effect. We deal with a general
class of Lévy operator £ with a larger scope of a belonging to (0,2), which adds
difficulties in the analysis. We here mainly sketch the proof on the a priori estimates
and the blowup criteria (B1)).

We begin with the equivalent system (Z3]), and intend to obtain a priori esti-
mate of the following quantity

Y (t) = oMl oy + IGO.- 4 (3-2)

on the small time interval [0,Tp] with 7o > 0 a constant depending only on the
influence function and the initial data. Applying the differential operator A® to the
p-equation in (Z3]), multiplying both sides with A®p, and integrating in x, it follows
that

1d

t 2‘gz—/AS A0, (pu)dz
55t = = [ A% A0, ou)

= —/Asp- (A®°Ozu p) dx—/Asp-(uaa:Asp)dx
T T

— / A°p - [A°Oy, u, plda
T
— [+ I+ 111, (3.3)

where in 1T we use the notation [L, f, g] to denote the commutator

(L, f.g] = L(f 9) — f(Lg) — g(Lf).
For the term I, using the relation d,u = G + Lp, we have the following splitting

I = —/E(Asﬁp) : (pAsp)dx—/T(As_%G) A% (pA°p)da

—/(AS\/C’Id+£p)~\/C"Id—|—£(pASp)dx+C'/|Asp|2pdx
T T

- [ 56) At oAt
T

—/|\/C”Id—|—£Asp|2pdx—/\/C”Id+£Asp~ (VC1d + L, p]A°p) dz
T T
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v [0 pdo— [ (4°36) - (47 2p) ) do
T T

- [a56) - (A% %) e

=0+ + 13+ Iy + Is,
(3.4)

where the operator /C'Id + L is defined via formula (Z28)). For I, denote pmin,+ as

TFIn[in | p(x, s). It satisfies pmin,¢ > Mye~¢3P0t from Lemma[2.1l Using the Plancherel’s
x[0,t

theorem and estimate (Z28]), we find

L < _pmin,t/ IVC" + Lp A pl*dx < —C"lpmin,t/ IATEp[Pde. (3.5)
T T

By virtue of the upper-bound ([Z27), the commutator estimate (Ad]) (with e =
QTTO‘ > 0) and the Young’s inequality, the second term can be estimated as follows:

|| < ||VCTd + LA p|| 2| [VC'Id + L, p]A®p]| 12

< C(lpllvg + llelliz) ol Nl 250

Pmin,t
- 8C’
The estimation of I3 is taking advantage of Lemma

13| < C'llp@)ll L= llpll. < C"Millpll. (3.7)

ol jrevs + C+ prain ) (1+ ||ﬂ|\202+Ta)lel2~ . (3.6)

Similarly, using the Holder’s inequality and the commutator estimate (A5]), we get

[Lal + 5| < NGl gro-g 1ol o g ol oo + CNGH o 1ol g Nl 2

pmin,t _
S =0 oI evg + CO A prin) (L4 1012 250 ) (ol Fre + 1GIT-5)-
(3.8)
Next, the term I1 can be estimated from the integration by parts:
1 . 1
1= | [0 0ruda| < Ghowullim ol
T
In view of estimates (213), (2I6) and relation d,u = Lp + G, we see that
IG@)lzoe < IF@) ]| [[p@)l|zoe < [[Follz<My < C (3.9)
and
[0zu(t)llLoe < [I1LpH)][e + 1GH) |z < CA+ lp(t)llBs, ,)- (3.10)

This implies
1] < L+ o)l Bz Dol . (3.11)
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Taking advantage of the commutator estimate (AT below, the term ITT can be
estimated as

(LI < lpll go

[Asa$7 U, p] HL2

< Cllpll gz (I10aull o1l o + 10wl oe llull - )- (3.12)
We need to bound the term ||ul| fr.(p) from Z27),

lu@l gs(ry < N02u) | gra=r ()
< C(lo® greva-r + 1ol o2 + NGOl go-1)

< Cle®llas + llp®ll zorg) + CIGO 5o 5 (3.13)

where C' > 0 depends on «, ag, ¢1, c2. Thus inserting estimates (.I0), (B13) into
(3I2) and using Young’s inequality lead to

[111| < Cllosullz=llplFs + Cllpll g 10zpll = (Iollz= + lloll v g + 1G] 4o-5)

pmlnt
— 80/ || H2 9'*'0‘ + C(]‘ + pmln t)(]' + HaﬂIPH%OO + ||pHB§ol)
< (ol + G135 )- (3.14)

Taking the scalar product of p-equation with p itself, we infer that

53l = [ 0twp) iz = 5 [ 0,ude < Glorulim ol 315)
Since

Vo e (0,1), lpllor < Collplisg, , < Colllplle + 102pllLe)

oo, —
< O+ [0zpllL=), (3.16)
we gather the above estimates on I, I, I1] and (315) to deduce that

1 d pmint
5 o + 2t )2 o

< O+ ok )+ 19aplBe + Ipllse, ) (ol +1GI%. 5).  (3.17)

with C > 0 depending on «, ag, ¢1, c2 and initial data (po, ug)-
Now we consider the estimation of G. From the G-equation in system (23), we
get

NGO

Q—-|Q

N~

—/T(AS*%G) (A 50,(uG))dx
_ _/T(AS_%G) (u(AT%0,G))da

—/T(AS‘%G) (A% 50, uG)dx

= IV +V, (3.18)
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where in the second line we use the notation [L, f]g for the commutator

(L. flg=L(fg9) — fL(9)-
The term IV can be treated similarly as II through integration by parts:

1 s—5 2 1 2
= /T|A LGP - deuda| < L 0rull o~ Iy (3.19)

Applying estimates ([39), (3.10), [328) and commutator estimate (A2)), we deduce
that

V] < ClIGH s (100l Gl -5 + |G lle sl - 5)
< Cllosull o= IGIP, g +ClIGH o5 1G] v + 1ol o + 1G] o 5)

2

pmin,t

< P2 g+ OO+ i )+ Il ) (IGI g +lol%). (320)

Through a similar process as in the proof of ([BIH), we also get

2 Sl = /a (uG)-Gdr = 5 /|G|2 Duudz < L0ull Gl

(3.21)
Then collecting (BIT) and the above estimates on G yields
1d Pmin,
5&Y(t> + 4C/t ete < C(l + pmm t)(l =+ ||8$p|‘%°° + ||pHBgo1)Y(t)7

(3.22)

where Y (t) is defined in (3.2). Applying Sobolev embeddings H*(T) < B, ,(T)
W1oo(T) for every s > 3 as well as H*(T) < W2°(T) for every s > 2, and the
following estimate

lo@®llBs , < Callp®)|Le +1102p(0)[lL=) < C(L+[[02p(H)[lL=), Yo € (1,2),
(3.23)
we have
d pmmt 2 —1 2
— g < ; . .

It implies that there exists a time Ty > 0 depending only on «, coefficients in L,
min po and Y (0) = [|po||3. + [|Goll%._ g so that Y'(t) is uniformly bounded on time
interval [0, Tp]. Hence,

a

p € C([0, To); H*(T)) N L*([0, To); H*t2), G e C([0,To; H*~3(T)).  (3.25)
Moreover, the following L2-estimate of u (from formulas ([2.8]), (Z.8) and estimates

@22), @23))
[u®llz2ery < [@llz2ery + [[1Lo@lz2(r) + [Lo(?)]
< Collp ()| o= (my + 1LAT20,0(t) | L2(r) + C
< C+ Cll0(t)|| srmaxto.a-13(ry) £ C + Cllp(t) || grmaxto.a-13(r) (3.26)
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ensures that u € C([0, Tp]; H*T1~%(T)), with
”u“%m([O,To];HHFQ) < COHU'H%“’([O,TO];LQ) + CO||3mU||2Loo([07TO];HS_a)

< CO A [Ip 7o, m0psre) + NG oo (0,70 )s110—0y) < 00+ (3:27)

Next, we prove the blowup criteria (3I). Let T* > 0 be the maximal existence
time of the smooth solution (p,u) constructed as above, the local well-posedness
result guarantees the natural blowup criteria: if T* < oo, then necessarily

sup ([lp(8) =y + IGO o= (7)) = 00 (3.28)
te[0,T*)

On the other hand, taking advantage of the Gronwall’s inequality, estimate ([B.22])
together with inequalities (8.16), (3:23]) implies that for every 0 < T' < T,

T
Y (0) exp {C(l + p;]iln’T)/ (1+ ||8wp|%oo)dt} , for a €(0,1),
sup Y (t) < ’
te[0,T7]

T
Y(0) exp {C(l + P;iln,:r)/ (1+ ||3§ﬂ|%oo)dt} , forare(1,2),
0

which ensures the blowup criteria (1] for the cases o € (0,1) U (1, 2). For the case
a =1, we use the Beale-Kato-Majda’s refinement (see Eq. (15) of Ref. [2])

le@)llpr , < Collp(t)[[Lee + Cll0zp(t)|| Lo log(e + [p(t)] =) + C

< C+ C|0up(t)]| = log(e + [lp(t) [ F)- (3.29)
We insert ([3:29) into estimate [322]) and obtain
d .
TV 0 < CO A prin )1+ 10:pl7) log(e + Y ()Y (1). (3.30)
Then,
sup Y(£) < (e + V(0))>P {C0+pmbn ) [T (14102011300 )t} (3.31)
te[0,T]
This leads to the blowup criteria (3 at a« = 1 case. O

4. Global Well-Posedness

In this section, we show our main global well-posedness result, Theorem [Tl

According to the blowup criterion (1)) in Theorem B.I] we intend to show the
boundedness of [|0zp||L(Tx[0,7])) and [|02p]| L (Tx[0,17), for cases a € (0,1] and
a € (1,2) respectively, for any given finite time T > 0.

Let us fix a time T for the rest of the section. To control 9,.p (and 92p), we adopt
the novel method on modulus of continuity, which is originated in Refs. [19 and [20
(see also Ref. I8 for further development). The general strategy is to prove that
the evolution of the considered equation preserves a stationary (or time-dependent,)
modulus of continuity, which furthermore implies the desired Lipschitz regularity.
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4.1. The modulus of continuity

A function w : (0,00) — (0,00) is called a modulus of continuity (MOC) if w is
continuous on (0, 00), non-decreasing, concave, and piecewise C? with one-sided
derivatives defined at every point in (0, co). We say a function f obeys the modulus
of continuity w if

1f(@) = fWl <w(lz—yl) Ve#yeT.

We start with the following function

5(5—35“%), for 0 < € <1,
wi(§) = (4.1)

30
T+’ylog§, for £ > 1,

where § and 7y are small parameters to be chosen later. It is easy to check that w
is a MOC. In particular, concavity can be guaranteed if we pick 7 < %.

In order to make sure the initial data py obey a MOC w, we shall construct w by
the scaling w(§) = w1(£/A), where A is a small parameter called the scaling factor.

Lemma 4.1. Let wy be defined in (&) with 6 and ~ given. Then, for any function
f € WH(R), there exists a small scaling factor X > 0 such that f obeys the MOC

w(&) = wi(§/A).

Proof. Owing to [f(z) — f(y)| < 2[[fllz= and |f(z) = f(y)] < 1f'llLe<|z — yl, it
only needs to show that min{2||f|| L=, || f'||z=|r — y|} < w(|z — y|). Then from the

concavity property on w, and by denoting a1 := ﬁ!f Ni: , it suffices to show that

2| fllze < wlar) = wi(ar/A).

Pick a small A < a;. We see that wi(aj/A\) > 7ylog(ai/A). Thus by further choosing
A small enough, that is,

A< age2 e = 2F Nl o=y (4.2)
11 =
we conclude that such an MOC w(€) is obeyed by the function f. O

We summarize our choice of the MOC

SATIE — icwl—%g“%, for 0 < € <\,
w(§) = (4.3)
3—64—'ylog§ for £ > A
4 A ’
with three small parameters J,+v and A to be determined later. Both § and ~ are
independent of the scaling parameter A.
We would like to emphasize the behavior of w near the origin:

w(0+) =0, (0+)=\""1<o0, w(0+)=—0cc. (4.4)
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Since || f'||p < w’'(0+) for any f that obeys w, [@4) implies Lipschitz continuity
f, with

£ lzee < 6AT" < 0.

Moreover, the last part of (£4]) will be used in Lemmas 2] and

4.2. Uniform Lipschitz regularity of p(t) on [0,T]
It suffices to show p(t) obeys the MOC w in (@3)) for all ¢ € [0,T7], as
sup [|9zp(-, )|l Lo (ry < w'(0+) = A (4.5)
t€[0,T]

From (£2]), we can ensure that py obeys w by picking a sufficiently small A

)\ < 2[[pol| Lo =27 Mrolizee (4.6)

= bl
We need to prove the preservation of the MOC w in time. Let us argue by contra-
diction. Assume that t; € (0, 7] is the first time that the modulus of continuity w(&)
is violated by p(x,t). We state the following lemma describing the only possible
breakthrough scenario. The proof is identical to that of Ref. 20, provided that w

satisfies ().

Lemma 4.2. Assume that p(z,t) is a smooth function on T x [0,T] and po(x)
obeys the MOC w(§) given by [@3). Suppose that t1 € (0,T] is the first time that
such an w(&) is lost by p, then

p(Z, 1) — p(,t1)] Sw(|Z— 7)), VZgeT (4.7)
and there exist two distinct points x # y € T satisfying
p(x,t1) — p(y,t1) = w(§), with§ = |z —yl. (4.8)

Moreover, since the range of p lies in [0, M;] by Lemmal[Z2] the equality [@L8]) and
the positivity of p imply w(§) < M. Therefore, breakthrough could only happen
in the region

0<é<Ei=w 1(My) =Ae? (M=39), (4.9)
We can pick a small enough A
A< %%-MW’I (4.10)
to guarantee that the breakthrough can only happen in the short range, with
—_To
=< —,
— 4

where r¢ is defined in (ICI4).
Next, we intend to prove that for the points x # y € T satisfying equality (€8]
with £ = |z — y| in the range [@3)), it holds

O (p(a,t) = p(y, 1) li=t, <O (4.11)
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If so, the breakthrough scenario will not happen, and it will yield a contradiction
and in turn guarantee the preservation of the MOC. For simplicity, we drop the
t1-dependence in the sequel.

To verify (£IT), we use the equation of p given by (1) and get

Oep(x) — Orp(y) = —0e(up)(x) + 0z(up)(y)
= —(udup(x) —udup(y)) — (p(x) — p(y)) dsu(x)
—p(y) (Ozulz) — duu(y))
= T+ 11+ IIL (4.12)

We first consider III, due to that it is the term containing negative contribution
which is crucial in achieving (@TIT]). From the relation 0,u = Lp + G = Lp+ Fp
(recalling F' = % satisfies Eq. (Z12)), we further get

I = —p(y)(Lo(z) = Lo(y)) = p(y) (p(x) — p(y)) F(z) = p(y)* (F(z) — F(y))

=: IIT; + III, + III,. (4.13)

In order to estimate I11;, we state the following lemma, and postponed the proof

in Sec. Bl

Lemma 4.3. Assume p obeys the MOC w(§), and x,y satisfy the breakthrough
scenario described in Lemma 2 Define D(x,y) := Lp(x) — Lp(y). Then D(x,y)
can be estimated as

D(z,y) > D1(z,y) — 2cow(§), (4.14)
where
Di(z,y) = pwv. /| O pa k) ey (415)

and it satisfies that for any £ = |x—y| € (0, %] (with ag > 0 the constant appearing
in (A1),

1 [ 2u() — w(é +21) —w(E — 21)
Dy (z,y) > a/o pira dn
+i ao 2w(§) —W(2n+§) +w(27l—f)dn' (416)

c1 % 771+oz

Moreover, if we use the MOC defined in ([&3), we have that for any & = |x — y| €

(0, %],

L SATIFEE ) for0< £ <,
3201

2% — 1
2y

Dy(z,y) > (4.17)

WO, Jora<E< T
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Remark 4.1. The D; term represents the dissipation phenomenon due to strong
alignment in the short range. The extra term appears in the right-hand side of
([Z14) takes care of the misalignment effect. We will verify that it can be controlled
by the dissipation.

Denote by pmin,r the minimum of p(x,t) on domain T x [0,7]. Owing to
Lemma 2.1] we have

i t) = Pmin > M _csﬁOT. 4.18
(w,t)lenqrnxl[o,T]p(x’ ) = Puinz 2 Moe (4.18)

Then,
IIIl S _pmin,TDl (a:7 y) + 262M1W(€)7 (419)

with Dj(z,y) satisfying estimate [@I7) and M; the upper bound of ||p(t1)|| L=
appearing in Lemma
For III5, recalling that F' = % has the L>-estimate (213), we immediately get

Iy < M| Fol[zew (). (4.20)

Also, 0, F and H := 8”pF satisfy the following equations:
OO F) + 0 (u (0, F)) =0, and OH+ud,H=0. (4.21)
We directly deduce that

0:Fp
Po

. (4.22)

sup || H(t)||zeo(my < [[HollL(r) =
] Lo (T)

tel0,T
Thus by virtue of (ZI6) and ([22), we have
[F(z) = F(y)| < [10:F||L<€ < [|[H| L lpllL=§ < [ Hollp=MiE.  (4.23)
Hence, the term III5 can be estimated as
Il < ||Hol| L~ M. (4.24)

Gathering estimates ([@19), (£20) and ([£24) leads to
I < —prmin,r D1 (2, y) + My (202 + | Fol| o= )w(€) + [| Holl L MPE. (4.25)

Now, we turn to the estimate on II. We state the following lemma on the one-
sided bounds of Lp(z) and Lp(y). The idea follows from Sec. 4.2.2 of Ref. [11], with
an additional treatment on the misalignment. The proof is placed in Sec. Bl We
only need to use the lower bound on Lp(z) here, but will use both bounds later.

Lemma 4.4. Assume p obeys the MOC w(§), and x,y satisfy the breakthrough
scenario described in Lemmald2l Then, we have the following one-sided bounds for
every & € (0, 3]

" w(€+mn) —w(§)

—Lp(x), Lpy) < 401/ Tdn + 2¢3M;. (4.26)
3
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Moreover, if we use the MOC defined in [&3)), we have that

4c1Co0N"2E75, for 0 < & <A,

—Lp(z), Lp(y) < 2c3M + 12¢4

- b (427)
€T fora<E<
67

where Cy, is a positive constant that only depends on o (see (B9) for the explicit
expression).

Thus by virtue of the relation d,u = Lp + Fp, scenario (48], and using
Lemma [£4] and estimates (2.13)), (2I0]), we obtain

I = w(€)(~ Lo(x) — Fla)p(a))

4c1Co 82N~ 172¢172 ) for 0 < € <\,
< w()Mi(2¢5 + [ Foll=) + 4 12¢;

o’

Yw(€)E, for A< €< 3.
(4.28)

Next, we consider the contribution from the drift term I. The following lemma
shows an estimate on the MOC on velocity u. The proof is postponed in Sec. Bl

Lemma 4.5. Assume p obeys the MOC w(§). Then, u obeys the following MOC

52¢; [ w o+
0(0) = 22 " Wy s [ S+ b+ Rl (429

for any § € (0,22]. Namely, for any 2,5 € T, with § = |2 —g| < 72,
[u(Z) — u(y)| < Q(8). (4.30)

Moreover, let z,y satisfy the breakthrough scenario described in Lemmald2l If we
use the MOC defined in (A3)), with

—0, (4.31)
then, we have an enhanced estimate
lu(x) — u(y)| < 46 D1(z,y)€ + Mi(8cs + || Foll )¢

18c1C A" ZE%, for 0 < € < A,

+ 2661

4.32
Tw(@f“% for A< ¢ < %0- (452

Remark 4.2. Estimate ([{29) was first introduced in Ref. 20 on critical quasi-
geostrophic equation. It was extended to the Euler-alignment system with o € (0,1)
in Ref. T1l Here, we further generalize the estimate to o € (0,2), and consider
misalignment as well. The misalignment effect contributes to the last term in (Z29]).

When a > 1, the first term in (£29) cannot be controlled by the dissipation. A
modified MOC was introduced in Ref. 20 for the case o = 1. Here, we propose an
enhanced estimate (£32)) on |u(x) —u(y)|, using D1 (z,y) to replace the problematic
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first term in (£29). The novel idea allows us to extend the result to the full range
of « € (0,2), without changing the MOC w(¢).

By virtue of the relation

o ple o+ hu(@) — ple)
u(@)daple) = lim .

and using scenario (L)), we can obtain (see e.g. Ref. [20])

1| = u(2)0zp(x) — u(y)dup(y)| < Ju(z) — uly)lw'(§), (4.33)

which combined with Lemma 5 and formula ([@3)) yields

1] < 4e Dy (@, y)w' ()& + Mi(8cs + || Foll L= )w' ()€

18c1Cod2 A1 72¢17% ) for 0 < € < A,
+19 2 (4.34)
2 e, for A << ™.

«

Hence, gathering ([£.12) and estimates (£25]), ([E28), (£34)), and in light of (£9),

we find that for every 0 < £ < =,

(9tp( ) 8tp( ) (pmm T 4c%w'(§)§)D1(x7y)

2201C,0° A" 172¢7% ) for 0 <€ <A
+ 6401

?’yw(f)ff"‘, for A <E<
+2Mi (c2 + ¢34 || Fol| e )w(€) + My (8es + || Follpoe )w' ()€
+ || Ho|| L M3E. (4.35)

Our goal now is to show the right-hand side of estimate ([€35]) is negative, by
appropriately choosing the constants §,v and A in MOC w(§) defined by ([@3]). We
divide the proof into two cases.

Case 1: 0 < € < \. In this case w(&) < AL, and W/ ()€ < A~LE as well. We first
set 4c3w’(€)€ < 4c26 < ipmin’T, that is,

1
0 < —=Pmin.T- 4.
= IGC%p , T ( 36)

So the first term in (£33]) is bounded by

3pmm T

1 ———D1(x,y), where Dy(z,y) > P ¥

32 1
The second term in (£33]) has the same scaling as D;. It could be made smaller

than I pmin,7D1 by choosing § small

22 < min, 4.
ch é 128 P T- ( 37)
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The third term is subcritical in scaling, and hence can be controlled by %pmin,TDl
by choosing the scaling factor A small. Indeed,

(S)\ilf < 6)\71+%£17% — )\a((s)\flf%é-lf%).
Therefore, we choose A as follows

A< and M, (2c2 + 10cs + 3||Fol| e + M2| Hol| =) A* < %pmmj.
1

(4.38)
With the choices of § and A, we conclude
3pmin T Pmin, T Pmin, T Pmin, T
- < - : : - - — ’ . .
Iep(z) — Oepy) < R R M 1 <0 (439

Case 2: A < £ < E. In this case w'(£)§ = . We bound the first term in (£35]) with

3pmin T 2¢ -1 _
_ ) > [e%
4 Dl(x7y)7 where Dl(xvy) ft 20[61 w(f)f )

by simply setting v small enough so that 4c3w’ ()¢ = 4c3y < ipmin,T~ Note that
we have already assumed v < %. So, the inequality is satisfied from the assumption
(E.30).
The second term in ([@3H) is scaling critical, and can be easily made smaller
than ipmin,TDl by choosing v small
6461 2% — 1
——7 < —— Pmin,T- 4.40
a2 Y 8&01 Pmin, T ( )
The third term in ([@35]) is subcritical in scaling, and can be controlled by
choosing the scaling factor A small. To see this, observe w’(£)§ = v < %5 =w(N) <

w(§), and €7@ > 7> > A=~ M (from (@J)). Hence, we only need
A< ’ye*”_th and

2% —1

8acy

My (2¢5 + 10¢3 + 3|| Fol| p + M| Hol|p)e® Mir* <

pmin,T' (441)

We end up with (£39) as well, finishing the whole proof.

We summarize our choice of the stationary MOC w(§). Define w by (£3). Pick
the parameters in the following order: (i) § € (0,1) satisfying ([@36) and ([@37);
(il) v € (0, 3) satisfying (@31 and @Z0); (iii) A satisfying (@0), (@I0), @38) and
.

Remark 4.3. Observe from (£I8)) that pmin,z can decay exponentially in T'. Then,
our choices of parameters § and ~ also decay exponentially in T'. Then, from (ZI0])
and ([ZT]), the bound on A is double exponentially in 7. Thus, in view of (X)),
[[0zp(+, T)|| L can grow double exponentially in T. Note that without the mis-
alignment effect, it is known that ||0.p(-, T)||L~ is bounded uniformly in all time.
Our result indicates that the misalignment could destabilize the solution as time
becomes large.
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4.3. Uniform Lipschitz regularity of 0,p(t) on [0,T)]

When 1 < a < 2, the boundedness of [|02p|| (T [0,7]) is required to ensure global

regularity. It suffices to show 9,p(t) obeys the MOC w in (3] for all t € [0,T].

Note that the parameters used in the MOC for 0,p(t) can be different from the

MOC for p(t). For instance, to ensure that pj obeys w, we need to pick A such that
3 < 2oollz= oyt (4.42)

= l6lees

We shall continue using the notation w(§) to denote the MOC. But in this part,

w(§) is obeyed by 0,p(t) rather than p(t).

Let us denote p'(z,t) = Oyp(x,t). The construction of the MOC for p'(¢) is
partly similar to the argument for p(t), with additional subtleties that need to be
taken care of. The proof of the preservation of MOC in time will directly imply the
desired bound on 92p:

sup [|92p(-, 1) o () < W'(04) = 6A7 (4.43)
t€[0,T)

First, we state the only possible breakthrough scenario for the MOC on p/(t).
The statement is similar to Lemma

Lemma 4.6. Assume that p(x,t) is a smooth function on T x [0,T] and pg(x)
obeys the MOC w(§) given by [@3). Suppose that t1 € (0,T] is the first time that
such an w(€) is lost by p', then we have

0@, t) — # (G t)| < w(lE - 3l), VageT (1.44)
and there exist two points x # y € T satisfying
p/(x7t1) _p/(yvtl) :w(€)7 with§= |a:—y| (445)

Denote by Mas 1 the bound of p/(¢) on [0, T] appearing in estimate ([T, so that
we write it as

sup ||p'(t)|| oo (ry < Mo 7. (4.46)
t€[0,T]

Since p’ lies in [— Moz 1, M2 7], the equality ([A45]) implies w(&) < 2Ms 7. Therefore,
breakthrough could only happen in the region

0<&<E=w ' (2Myg) = Ae? (BMar=30), (4.47)
We can pick a small enough A

A< D, (4.45)

to guarantee that the breakthrough only happens in the short range, with Z; < 2.
Next, we intend to prove that for the points x # y € T satisfying ([@45]) with
¢ = |z — y| in the range (£47), it holds

O (w,t) = p'(y, 1)) l1=1, <O. (4.49)
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From system (23]), we get the dynamics of p/(z,t) as
O’ +udpp + 20 Opu + pdiu =0, (4.50)
with
Opu=Lp+G, and 92u= Ly + 0,G. (4.51)
Then, we have
O’ (x) = 0ep'(y) = —(u(x) 0up () — uly) 0:p'(y)) — 2(p'(2) — p'(y)) Buu()
— 20 (y) (Owu(x) — Dpuly)) — (p(x) Diu(x) — p(y) Diuly))
— T+ 71T +TIT +IV. (4.52)

Again, we suppress the t1-dependence from now on for simplicity.

We start with the estimation on the term ZV, through a similar treatment as
on the terms II 4 IIT in the MOC estimates for p(t). A main difference is that
p(z) — p(y) does not necessarily has a sign, in opposition to the case on MOC of
p(t), where the quantity is positive due to ([@8]). Instead, we will perform different
decompositions depending on the sign of p(z) — p(y) as follows:

—(p(x) — p(y)) B2u(x) — p(y) (B2u(x) — O2u(y)) if p(x) — p(y) >0
—(p(z) — p(y)) B2uly) — p(x) (2u(x) — B2uly)) if p(x) — p(y) <O
— TV, +IVs.

7y =

The term ZV; can be estimated similarly as II. We have

IV < |p(x) = p(y)] - (max{—Lp'(x), Lo (y)} + [|0G()l| <)
In particular, using (£46l), |p(z) — p(y)| can be estimated by

Ip(x) — p(y)| < M2 7€ (4.53)
Apply Lemma L4 on p’ (instead of p) and get
mcllax%g*%, for 0 < € < ),
max{~Ly(x), £p'(y)} < desMop+{ @7 .
12¢1vE~“, for A <€ < 50.
(4.54)

Here, we make use of the estimate w(§) < 2My ¢ (from (£4T)).
To estimate ||0,G(-,t)|| L=, we use the relation

0.G = 0, (pF) = p'F + p*H. (4.55)
Applying @13), 2I6), E22) and @IT), we get
102Gl Lo (rx0,77) < Mar||Follz + M7 || Hol| Lo (4.56)
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Putting together (£53]), (£54)) and (£56), we end up with an estimate on ZV;:
IVi < M3 p(4es + || Foll L)€ + Mo, M7 || Hol| =&

12 (23 o
_CllMQ,T SATEEIS ) for0 <€ <A,
Ll (4.57)
oMy rw(@Y for A< <

which has a similar structure as the estimate on IT in ([@28). Note that in the last
part, we use the fact v < g < w(A) < w(€) for every € > .
Next, we estimate the term ZVs, similarly as III. In particular,

Ozu(x) — dzuly) = (Lo (z) — L' (y)) + (0.G () — 0:G(y))-
For the first term (corresponding to I1I;), applying Lemma 3] on p’, we obtain
Lo/ () — Lo (y) = Di(@,y) — 2c0(§),
where D (z,y) is defined in (I3 with p replaced by p’, satisfying

1 o (3
32—&*1*551*5, for 0 < & < A\,
C
Dy (x,y) > ' (4.58)

1 —a ag
4—610.)(5)5 , for A <& < 2.
For the second term, use the relation (£55) and get
0:G(x) — .G (y) = (¢'(2)F(x) — p'(y)F(y)) + (p*(x) H(x) — p*(y)H (y))-
(4.59)

The two parts can be estimated similarly as the terms I1Is and III5 as follows. For

the first part, apply (ZI3), (@23) and (£40)
0" (@) F(x) = p' () F ()| = |(p'(x) — p' ) F(y) + p'(2)(F(z) — F(y))l
< N Follzoew(§) + Mo, r My || Ho| o< €.

For the second part, observe that 0, H and %TH satisfy

0(OuH) + 0, (u (9, H)) = 0, and 8, <82H> +ud, <32H> —0,  (4.60)

which directly implies that

O, H Oz H

10z H|| oo (rx0,17) < llpll Loe (mx[0,77) ‘ < M, 0 .
P llLee(Tx[0,17) PO |lpee
(4.61)
Therefore,
|p°(z)H (z) — p*(y)H (y)| = |(p*(z) — p*(y))H(y) + p°(x)(H (z) — H(y))|
0, H,
< 2My My || Hol| L€ + M} o e
LOO
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We summarize the estimate on 7V, as

IVs < —pwin,r D1 (z,y) + Mi(2¢2 + || Fo|| Lo )w(§)

0:Hy
Po

+ M7 <3|H0||L°°M2,T + Mt

Lm) ¢. (4.62)

Now, we consider the contribution from terms ZZ and ZZZ given by (E52).
These two terms do not appear in the estimates on the MOC of p(t). Yet, they
play a crucial role in the estimate on the MOC of p/(t). The following key lemma
describes the bounds on d,u(z) and dyu(z) — dyu(y), which can be used to estimate
T7 and TI77T, respectively. The proof is placed in Sec.

Lemma 4.7. Let o € (1,2). Assume p' obeys the MOC defined in ([A3)). Then, for
any T € T, we have

401

|amu(53)| < m

AT £ DM+ |Follo=Mi. (4.63)

Moreover, if x,y satisfy the breakthrough scenario described in Lemma 8 with
52 |.’E—y| € (07%]7

5401

SATZENS ) for0< €< A
a—1

|Osu(z) = Du(y)| < 4ci D) (w, )€ +

2Wc1w(€)E",  for A< €< %0

+ ((16¢5 + || Fol| poe ) Mo, + M| Ho|| L ) €. (4.64)
Apply scenario ([@45]) and estimate (£46]) to Lemma L7 and get

861

= (=t

5)\_(a_1) + CBMQ,T + 2|F0||LooM1) w(f) (465)

and

108 . e
_Ci Mo A 5€178 for0< &< A

|TZZ| < 8¢ Mo D’ (z,y)¢ +

52¢1 My rw(§)EH 7, for A < € < %0

+2Ms 7 ((16¢3 + || Fo|| oo ) Mar + M7 || Ho || L )€. (4.66)

Finally, for the drift term Z, thanks to the estimate [63]), we argue similarly
as ([{33)) and directly calculate

IZ] < [|0zul| L€’ (&)

4 o /
= (%ﬁ (=) 4 DM+ |F0||L°°M1>w (). (4.67)
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Hence, gathering the splitting (£52]) and estimates ([L57), (£62), (£65), (£.60),
#DT), we find that for every 0 < £ < Z4,
atp/(x) - 8tpl(y) S _(pmin,T - 8C%M2,T£)D/1 (.’E7 y)

401 (o C3
— —— sxle=b 4 gy Foll e M
+<(a—1)2(2—o¢) + 5 2.1 + || Fol|pee M

x (w(€) +w'(6)€)
+ Mi(2¢2 + || Fo| oo )w(€) + Co
12001

— 1M27T6)\_%§1_%, for 0 < € <\,
+3@ (4.68)
64c, Mo rw(€)E1",  for A< € < %0
where Cp = CN'O(pO7 ug,T') is given by
Oy Ho

é() = MQ’T(?)GC?,MQ’T + 3||F0||LooM2,T + 6M12HHQHL00) + Mfl

LOO

In order to show the right-hand side of (£68)) is negative, we first set 8C%M27T§ <
ipmin,r Since £ < Z; = eV @Mz r—50) (see (E4T)), the bound can be guaranteed
by choosing A sufficiently small

Pmin,T  _o~~1p1.
A< PminT -2y M 4.69
= 323 Mo (4.69)

It remains to show that the rest of the terms in the second and third lines
of ([@5Y) are bounded by %pmin,r D} (,y), or sufficiently, from (ZE8), bounded by

/)6!2—!1,7"6)\71*%517%7 f01“0<f§)\7
C
- (4.70)

p;‘i“’Tw(g)g*a, for A\ < € < Z,.
C1

Then, we conclude with d;p'(z) — d¢p'(y) < 0 by [#39), that finishes the proof.
The bounds can be achieved by choosing A sufficiently small, given ¢ and ~. To
see this, we consider two cases.

Case 1: 0 < & < X In this case w(€) < dATLE, and W/(€)€ < 6A71E as well.
Comparing the parameters in (£68) and (@70):

SATTD (w(€) + ' (€)€) < 202ATE < 26°A7FEITE < (200) oA EEE,
(W(&) +w/(£)€) <26ATTE <20AHELTE < (20) - 6N LR,
ESATEITS <A o IR 3 for A<,
SATEETE < XA TITEE T

we have max{20X, 2A%, A%, A} < 2. Therefore, setting A small enough will indeed
make the terms under control.
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Case 2: A < £ < E;. In this case we have w'(§)€ = g < 30 = w(\) < w(€). Also, we
recall £ < Z; < C, A with the constant C., = ¢27 Mar (from ([@47)). Comparing

the parameters in (£68)) and ([@70):

) 262 262

1T (@6 +W'(9)8) < 1ow(§) < o (CoA) w7 < (20°CTN) - w(©)e™,

(w(&) +0'(6)€) < 2w(€) < 2(C5A)"w(E)E™™ < (2C5X%) - w(€)E7,

1+« 4
35

W(€)EY < () -w(6)e?,

we have max{25203)\, 20927, 2C%+O‘)\°‘, CyA} < 26@*0‘)\. Therefore, setting A
small enough will make the terms under the desired control.

€< (CyN) w(€)E™* < (20572NY) - w(E™®,  for A <4,

Remark 4.4. As T becomes large, the A could grow very fast. Indeed, from
Remark 23] we know My 1 can grow double exponentially in 7. With smallness
assumption (e.g. ([E48) and ([@6J)) on )\, we see A~! could grow triple exponen-
tially in time. Thus, the bound on ||02u(,t)| 1= in @Z3) is also triple exponential
in time. Such possible fast growth does not happen without the presence of the
misalignment.

5. Estimates Concerning the Modulus of Continuity

In the section, we give the detailed proof of Lemmas [Z3HAD 7] respectively in
order. All estimates are scaling critical. The idea of the proofs follows from Ref. [T1l
The main contribution is the inclusion of the misalignment, and the generalization
of the influence function ¢.

Proof of Lemma [4.3l First, we decompose D(z,y) into two parts

D(z,y) —pV/¢ —plz+2)+ ply + 2))dz
= Di(z,y) + /| ) (6O ol +2) oty )

> Dy(2,y) — 20() / 16()ldz > Da(a,y) — 2e00(6).

[z]>ao0

Here, D; is defined in ([@IH]), which characterizes the dissipation phenomenon in
the short range. The second term represents the long-range misalignment, and can
be bounded by condition (IIT]). This yields the estimate ({14]).

The dissipation D1 (z,y) has lower bound similar as in Lemma 4.5 of Ref. 1T
where ¢(r) = r1T. To work with general influence functions, we adapt the argu-
ment in Lemma 2.3 of Ref. 8], with a small variation to treat with influence functions
that are compactly supported. Due to translation invariance and symmetry, we
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can let z = 5 and y = —% without loss of generality. In the following calculation,
integrals make sense in principle values.

Dy(z,y) = ( / oy / ) 6(2)(w() — pla + 2) + ply + ))d

_£
2

- [ 2¢(n+§) (@ () + p(n) — p(—n))dy

+/an+§ ¢ (n — g) (w(&) = p(n) + p(=mn))dn

o
€

* /:_j ¢ (77 B 5) (w(&) = p(n) + p(—n))dn.

Due to the monotonicity assumption (ILI0) on ¢, it is easy to check

¢<77—§) —¢<n+§) >0, Vne [O,ao—g].

Moreover, the breakthrough scenario (L.7) implies |p(n) — p(—n)| < w(2n). We can
obtain a lower bound on Ds:

Dy (2,y) = /ang {(ﬁ (77— g) +¢ <n+ g)] w(§)dn

—/an_g o(n=5)-o(n+5)|cCna

+/:0+% ¢ (n - g) (w(&) —w(2n))dn

- /0 o) (2(€) — w(2 +€) — w(€ — 20))dy

+

/ " () (2(6) + w(@n — €) — w(@n + ©)dy.

2
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Due to the concavity of w(€), both terms 2w(§) — w(2n + &) — w(€ — 2n) and
2w(&)+w(2n—¢&) —w(2n+&) are positive. Thus assumption (L8) implies the wanted

inequality (Z16).

Next, we prove estimate ([@IT), which is from direct calculation.

Case 1: 0 < & < X\. We only keep the first term. By concavity of w(§),

1 .1
W&+ 2n) +w(é —2n) —2w(é) = 47]2/ / sw” (€ + 2s7n) drds
0 J-1

1 0
< 4172/0 /71 sw’ (&) drds < 20" (€)n?. (5.1)

Then, we have

3

g
1 [z =2 2 o a 2
Dy (z,y) —/ W ()’ dn > ul +a)5A*1*§€Tl/ n'~%dny
0 861 0

Y

1 ntte
a2+ ) P o A-1-5¢1-%
2 2 > — 2
T 22722 — )8y oA ¢ ~ 16(2 — a)q ' (52)

Case 2: A < & < 9. We only keep the second term. Due to the concavity of w, we
have for every n > %,

w2+ €) = (20— €) < w(26) = w(€) + Ylog2 < (@),

where the last inequality holds since v < g and so

3 1 1
5 == < =
vlog2 < 26 = Zw(d) < Fw(E).
Thus, we find
Di(ey) > 5@ [ ez
1z, y) = 2C1w g 771+a n
1 A ] 21w
> = —(2 Y > — . .
e [(2) (26) ] > 21t (5.9
Combining (52) with (53) leads to (£I7), as desired. O

Proof of Lemma [£4l The proof is similar to Lemma 4.5 of Ref. [I1], with suit-
able modifications that address the misalignment effect. We will only prove the
lower bound on Lp(z). The upper bound on Lp(y) can be obtained using the same
argument.

Without loss of generality, we assume that £ = x—y > 0. By using the periodicity
property of p and the scenario (£S)), we see that

pla) = pv. [ e =2)(pla) = p(:))dz = pv. [ 6@ =) (ofe) = pl)a:
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= p.v./ ¢°(n) (p(x) — p(y) + p(y) — p(x —n))dn
T

. / 65 (1) (w(€) + ply) — ply + € — m))dn.
T
(5.4)

We have the following decomposition

—¢ e g2l
Lp(x) = (/ +1@-V-/_E+/E +/2§> (6% () (w(&) + ply) — p(y + & —n))dn)

1
-2
= A1,¢ + A27¢ + A37¢ + A4,¢. (5.5)

The terms Az 4 and Az 4 are non-negative, which can be seen from scenario (L)),
estimate (LI4) (with 2 < r¢) and properties of w (concavity and monotonicity):

¢
Ay = p~V~/0 ¢%(n) (2w(8) + 2p(y) — p(y + & —n) — ply + £ +n))dn

¢
> pov. /0 65 (1) (20(€) — w(E — ) — (€ +m)dy > 0 (5.6)
and
2t
Ag gy = : ¢%(n) (w(€) + p(y) — ply + & —n))dn
2
> A ¢%(n) (w(€) —w(n—&))dn > 0. (5.7)

Next, we obtain the upper bounds of —A; 4 and —Ay 4.

Ay = () (p(y + € —n) — ply) — w(€))dn

-/ &5 () (p(y + € +n) — ply) — w(©))dy

< /;0 6% ()| (w(& + 1) — w(&))dn + /§ |65 (1)|(2M7)dn

To

771+O‘ dT]+63M1,

o [ HEED el
3

where we make use of scenario (£7), and also w(§) < M; due to (). —A4 4 can
be estimated in the same way, with the same upper bound as —A; ¢:

Ay = /2; () (p(y + € —n) — ply) —w(€))dn

< 2¢; /TO wdn + e3My.
2

¢ nlJra
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Therefore, we conclude with ([£.20)

—Lp(z) < 4ey /ETO de 4 2¢3M;.

Next, we prove the estimate ([@27]).

Case 1: 0 < & < A. The concavity of w indicates w(§ + 1) — w(§) < w(n), and so

[ —v,,
3

771+oz
o A1 ro 354+ ylog 2
A R
e ne ¢ nN° A N
1 _
oA™Y, for0<a<l,
11—«
3 1 A
<=4+ —=)or\° ~llog = =
<4oz+2012> + Q4 0A logg, for a =1,
1
—6)\*157("‘*1), forl <a <2,
a—1

< SMa(E,N),  with M (€, N)

1
— ¢ fi 1
a2(1—a)/\ , or 0 <a<l,
A b
= A_l (10gg =+ Z), for a = 1,
1 51 1
- = for 1 2
(a—1+4>)\§a1’ orl<a<?2,

where in the third inequality, we have used v < g and then

" ylog % - /TO/A log ¢ S
dn = v\~ ¢ d¢ < S < — )@
A nl—i—a n v 1 Cl—i—a C — 012 — 20(2

The term M (&, \) is scaling critical. In order to compare it with the dissipation,
we state the following inequality, where we only make use of the fact % € (0,1)

Mol ) T~ 5673, with
for0 < a<1,

Co= 2, fora =1, (5.9)

—l—% forl <a<?2.
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Case 2: A < ¢ < 7. We use the explicit formula on w and get

[l @y, / log(& +) — log(€)
3

771+oz nlJra

< e /O"log1+Cd<S7(1+a)§_a.

C‘lJra

Collecting the above estimates yields the desired estimate ([@.27). O

Proof of Lemma We denote z,7 € T to be arbitrary points with distance
E=1—yc (0,3

Recalling that u has the expression formula ([Z8]) and Iy(¢) is uniformly bounded
(see estimate ([222])), we have

lu(@) —uw(®)] < [¥(Z) = @) + |Le(F) = Lo(y)| := Ur + Vs, (5.10)

where ¥ and ¢ are mean-free periodic functions satisfying G = 0,9 and 6 = p—pg =
Opp. By virtue of the mean value theorem and estimates (Z13)), (210), it is easy
to see that

Ui < |G(t1) L€ < [F ()| zoe lp(tr) | L€ < M| FollL<§. (5.11)

Before estimating Us, we first show the following expression formula of Ly (one
can see Eq. (4.47) of Ref. [I1] at the case £ = A® with « € (0,1), and it also holds
for the whole range a € (0,2)):

Lop(T) = lim . 2)(p(&) = (& + 2))dz
~ lim ¢ () (@) — ol + 2)dz

= —lim ¢°(2)0(z + z)dz = —p.v. /T 05 (2)0(F + 2)dz,  (5.12)
with
35(2) = sgn(z) ‘ T $S(rdr, ¥z e T\{0}, (5.13)

where the second equality follows frclm integration by parts together with the facts
—0.9%(2) = ¢9(z) for every z # 0, ¢°(+1) =0, and for any a € (0,2)

lim 16°()(20(%) — (& + €) — (@ — ©))|

1
2
< 102l =ty [ 0% lar

1

o 201 2
<u im € =0.
<wonme ([ o [ oar) =
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Here, we use 02¢p = ,.p, which is bounded by w’(0+) at time ¢1, which is finite due

to (&4).

From (5.12) and the oddness of kernel ¢%(z), we can rewrite

Lop(z) = —p.v./Tgs(z)p(i" +2)dz = p.v./Tgs(z) (p(2) — p(& + 2))dz. (5.14)

Now, we begin to estimate Us. The idea follows from Appendix of Ref. 20, with
modifications to adapt the periodic influence function ¢° with misalignment.
Denote z, = 2. Decompose Lo(Z) — Lo(7) as follows

Lo(x) = Lo(y) = (p-V- / o 6% (2)(p(&) - p(i + 2))dz

- / 0% (2) (p(ws) = pl7 + Z))dz>
2¢<2|
= U21 + U22.

For Uy, we apply ([£44) and get

2¢ . 8c 2¢ w 2¢
|Ua1| < 4/ |6 (n)|w(n)dn < —1/ @dm 203/ w(n)dn
0 @ Jo n 0

IN

32c; [*
< i/ ) 4 4 aeshe, (5.15)
@ Jo 7

where in the second inequality, we estimate ¢ using (5.13) and conditions (I4)

and (LIH):

1
~ "0 2¢ 2 2c1 1 1
s </ Ld / dr<2 - 3 < 1
[¢°(2)] < L 7T r+ . cadr < — |z|0‘+2’ VO<|z| <1 (5.16)

and in the last inequality, we change variable and use w(2n) < 2w(n) due to the
concavity of w:

2¢ £ 2 13

[ e [FEC < [0, 5.17)
o Z° o N o N°

For Uss, we need to make use of the cancelation. Decompose the term as follows

Uss — / (35(z — ) — 3°(2 — 9) (p(a2) — pl2))dz
$6<|z—2.1<

1
2
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—2¢ 3¢
+/ 35(2) (p(xa) — pE+2))dz — [ 35(2)(p(aa) — plG + 2))dz

—3£ 2§
=: Uagq + Uagp + Usae.

In the first part, change variable and use the Newton-Leibniz formula

Uzoa = /£< . ((BS ( g) ¢° (z + g)) (p(zs) — plas + 2))dz

2

/ /5<| <1 s (Z‘ : +T€) (p(w+) = plws + 2))dzdr.

From conditions (II4)) and (IIH), it yields

1
izl ¥ (oSt
0 Jie<lzl<) 2
1
2
§€// ?W—Mdsz
0 J3e<lzish - §reisro |2 — § + €[+

1
—l—@,f// w(|z])dzdr
0 J3e<|zI<L o= §rel>ro

< 4615/ (|1+|(3¢ dz + 63M1§
se<|z|<ro+e |2

ro+§
< Sleﬁ ;)1(?2( dn + es M€, (5.18)
where in the last line we have used (|z| — ) (It+e) < ( |z[)~ () < 2]z~ (1) for

every |z| > 25 For the second part, change variable

|Uzzs| = ‘/% " <n+ ) (p(x) = plas —n))dn’

< /: ¢° <n+ g) w(n)dn < w (gé) /; |6 (n)dn

2
and then it can be treated by using (5.I6]) and concavity of w:

Ul < 30(6) (o + 2 ) € < D@+ Hane. (619)

The third part Uss. can be estimated by the same bound as Usgp.

Collecting the estimates (5.11]), (515), (5.I8) and (G.19), we obtain a bound on
Q(8):

§ ro+§
@) ~upl < 22 12 Wan 4 e +sag [ 50

o fe% nlJra

+ My (|| Foll = + 8¢3)¢,
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which combined with estimate fg ©l) gy > % f(f nal_ldn = 7w()E " con
cludes the proof of ({30).

Next, we provide an explicit estimate of (&) when w(§) is chosen as ([@3). For
0 < a < 1, one can follow a similar procedure as Lemma 4.4 of Ref. [11. However, it
does not work for o > 1. In particular, the first term in (@30) cannot be controlled
by the dissipation term in the case & > A.

To overcome the difficulty, we introduce an enhanced estimate on Us, when
(Z,9) = (x,y) which satisfies the breakthrough scenario ([LS)). For Us;, we make
use of the cancelation and bound the term by the dissipation D;(z,y) as follows

|Ua1| =

/ L T OO ottty + )

< /|z|<2£ (ﬁ + %) (W(&) = plz +2) + ply + 2))dz

|2|*

< Acfe ¢(2)(w(€) = p(x + 2) + p(y + 2))dz + / %3 - (2My)dz

|z|<2¢ |z[<2¢
< A Dy (w,y)€ + desMi &,

where in the first inequality, we use (BI6) and the fact that w(&) — p(x 4+ 2) + p(y +
z) > 0, in the second inequality, we use (I.8) and then

12

2] 7 [zt

<2c189(2), V2| <2¢

and in the third inequality, we use the definition of D;(z,y) (£I5). The estimation
of Uy and Uss is the same as above. Then, we end up with a better estimate on

u(@) — u(y):

ro+§
lu(z) — u(y)| < 4C%D1(x,y)§—i—8clf/5 :]‘)1(170)‘ dn + a1 1001 w(E)E—e

+ M1 (8cz + || Foll=)E.

Compared with (£30), the problematic term is replaced by a new term involving
D1 (z,y), which is controllable by the dissipation.

Finally, let us calculate explicit bounds on the terms & f rote “’1&’2 dn and
w(€)¢1= when we choose the MOC in ([@3).

Case 1: 0 < & < \. As a direct consequence of (B.8) and (B.9), we have
ro+§ . o "
5/ ) 4y < oot
e

From formula 3) and the fact C > 1, it follows

1 1 o lalia
—w(€)E < —OATLEE Y < Taor FelE,
(0% (0%
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Case 2: A < €< %0. Direct calculation leads to
ro+§ w( ro+§ 3§ log 2 5
n) 30 T vlog 30 1o | Y el-a £
dn = T IOy < 2 ua log > +1
€/£ o 47 5/5 i n < 4045 + 025 alog + +

1
= " w(©) + 2

-« 2 -«

where in the last inequality, we apply {@3I) and 1 < 36 = w(\) < w(§).
Collecting all the estimates above, we conclude with (£32)), as desired. O

Proof of Lemma [4.7 We first consider estimate (Z63). From relation 0,u =
Lp+ G and the estimate |G|/~ < ||[Fo||LeM1 (see 39)), it suffices to bound Lp.
Let € T. Through a similar argument as obtaining (512]), we can verify

= —p.v. / 05 (2)p (& + 2)dz (5.20)
where ¢° is defined in (5I3) satisfying estimate (5.10). We compute

|Lp(Z)] / & ()(p' (@ +n) — p'(& —n))dy

e [ B — - n))dn‘

1
o 201 C3 /503
2 —+ —|d — - (2Ms 1)d
[ et |2+ 2 an s [T 3ty

20 Aoat 2o 35 4 ylog 1
< “ / a71d77+/ *dn
« o N A n

28 _gy-te-ny a3 —ox~(ey

IN

c3
— M.
+ 5 M2

< 2
~ al2-a) ala—1)
2a01 A — C3
2 (=) 4 B
+ ala — 1)27 Ty
401

P — e G V=3 Y
(@122 -a) e

which leads to the desired estimate ([@G3]).
Next, we consider estimate [@LG4). Let 2,y € T be the points that satisfy the
breakthrough scenario ([{45]). Then,
dpu(z) — Opuly) = (Lp(x) — Lp(y)) + (G(z) — G(y)) =:1I; + II,.  (5.21)

For the term IIy, since Lp(x) can be written as (520)), we can directly apply the
result in Lemma 45 and obtain

|Lp(z) — Lp(y)]

ro+é 10
< 42D (2, y) + 8cr / ) g, €6 + 16es My,

1+oz
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by repeating the enhanced estimate on Us, directly replacing (p, Ly, D1, M1) with
(¢, Lp, D', 2M> 1) respectively.
For Iy, thanks to estimate ([£50) and the mean value theorem, we immediately
find
o] < [10:G(t1) ]| L€ < (|1 Follze Mo,z + MF|| Hol| L= )€
Hence, based on the above analysis, and using explicit estimates of £ [, ETOJFE 7‘7"1(173 dn
and w(€)E1~% as in Lemma 5] we can conclude estimate (Z.64). O

Appendix A. Commutator Estimates

We first present two Kato—Ponce type commutator estimates.

Lemma A.1. Let x € R? or T?, and s > 0. Then, there ezists a constant C =
C(s,d) > 0 so that

1AV, foglllee < C(IV Fllzellgllze + 1F1 g1V gllze) (A1)

and

I1A*V, flgllze < C(IVafllL<lgllzzs + 11l e llgllzes)- (A.2)

Proof. We here only consider z € R?, and the case of T? can be similarly extended.
We first recall the following Kato—Ponce type commutator estimate proved in Corol-
lary 1.4 of Ref. 22t for s > —1 suppose A° is a differential operator such that its
symbol ;4\5(0 is a homogeneous function of degree s + 1 and :4\5(0 € C>=(Se1y,
then for 1 < p < oo and for any s1,s2 > 0 with s; + s = s, we have

1 1
A(fg)= 3 S ag— 3 Somg A f| < CIA Flwoll Al

<51 ol <s2 .

(A.3)

where C' = 0(3»31»527]9»‘1)» Y= (717”%7(1) € Nd7 0" = a;l = 8;} aa’vij |7| =

Z?:l 75, ¥' = 7!+ -7q!, and the operators A*7Y, A® are defined via the Fourier
transform as

ATF(Q) =i (A5(Q) £(Q), and  ASF(C) = [¢I° F(©)-
In order to prove (A)), we let A® = A®0,, (j =1,...,d),s1 =1,s0=35,p=2,
and it follows that
H[Asaaij7f7 g]HL2 = ||Asaaij(fg) - f (Asawyg) -9 (Asa$jf)||L2
S N A g+ D 1079 A% fI

lvl=1 1<]o|<s

+[|AfllBmol[A®g]| 2
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< IVl Al e + [Vl A7
+ Z HaggH 2(9 = || A% Uf” 2(; 1),

2<|o|<s

where in the last line we also used the Calderén—Zygmund theorem. Note that
A% is a multiplier operator with symbol A%?({) a homogeneous function of order
s+ 1—|o|, the Calderén—Zygmund theory also implies that for every 2 < |o| < s,

141 semn S IAFT s SIATTIIVS) ey

thus by using the following interpolation inequalities (e.g. see pp. 28 and Lemma
2.10 of Ref. 22)) that for every 2 < |o| < s,

s—|o|

lol—1
bl

At

1974 4_111 , and

\ \*
[\ '”'Vfl\

STl

we infer that
S 0%l s 145 sy
2<|o|<s Llei=t Le-lel

lol-1
< (IVgllz 1A* fll =) = 3 (IVFllL=lA®glzz) =

S IV A= A°gllz2 + Vgl <A fll 22

Hence gathering the above estimates leads to (A), as desired.
Estimate (A.2) is more or less classical, and it can also be proved by the same
argument as above, thus we omit the details. O

The following commutator estimate involving with Lévy operator £ plays an
important role in our local well-posedness result.

Lemma A.2. Let x € R or T. Let L be the Lévy operator given by (LI2)) with
kernel function ¢(x) = ¢(—x) € CHR\{0}) satisfying assumptions (A1), (A2) with

€ (0,2), and let the operator /C'Id + L be given via Fourier transform as (228)).
Then we have

IlvCId+ L, glfllz < Cllflz2llgllog+c,  with e>0, (A.4)
with C > 0 a constant depending on L, s, €.

Remark A.1. Note that estimate (A.4)) is a suitable generalization of the following
commutator estimate (see p. 32 of Ref. [IT))

1A%, g1 flle < Cllflle2llgllpger  with € > 0. (A.5)
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We first recall some basic knowledge of paradifferential calculus. One can choose
two non-negative radial functions x, ¢ € C°(R) be supported respectively in the
ball {¢ € R: |¢| < 3} and the annulus {¢ € R : 3 < [¢| < 3} such that (see Ref. [I)

O+ e@*) =1, V¢eR
keN

For every f € S'(R), we define the non-homogeneous Littlewood-Paley operators
as follows:

ALf:=x(D)f; Apf=9@*D)f, Spf:= >  Af, VkeN

—1<i<k—1

(A.6)
Now for s € R, (p,r) € [1,+00]?, the inhomogeneous Besov space is defined as
By, == {f € S'R);|fllz;, = 2| Akfllrbrz-1ller < o0} (A7)
In particular, H* = B3 , for every s > 0. Besides, Bony’s decomposition yields
fg=Trg+Tyf +R(f,9),
with

Trg:=Y Sk1fArg, R(f,9)= > AcfArg, Api=Apy+Dp+ Agpy.
keN k>—1

Proof of Lemma We here prove estimate (A4) for 2 € R, and the periodic
case can be easily adapted. By using Bony’s decomposition, we have the following
splitting

VCTd+ L(fg) = VOId+ LTig+ VCId+ LT, f + VC'Id + LR(f, )

= J1+Jo+ Js3,
(VC'Td+ L f)g = Tmfg—FTg(\/C/Id—Fﬁf)+R(\/C/Id+£f,g)
= J4—|—J5—|—J6. (AS)

Through standard paraproduct calculus and Lemma 2.3 the terms Ji, J3, Js, Jg
can be treated as follows:

171132 = > [1AVCTd+ LTyg]3

g>—1

S Y (CHC2)[|AG(Sk-1f Arg)l7
|k—q|<4,keN

S (C+C25)|1Ska flTlAkgl e S IF172091120 2
keN o2

< 112Nl 5.,
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13172 = > 1AVCId + LR(f, 9)l|7

g>—1

S Y (C+ 029 Ay (Arf Arg) |22

q>—1k>q—2

e Yo Y 207P2k AgllFe S If1Z2ll9l12 5 .

¢>—1k>q—2

1allZe = D AT jormarzpoli= S DY, (C+C2")|[Skor fll72 | Arglli~
g>—1 |k—q|<4,kEN

A

24\

< 1F12-012 .

1672 = > I1AR(VCTA+ L £, g)ll7

q=>—1
S D (CH )| ARS]FlArgl 7
q>—1k>q—2
SIfIZ2 Y (k+2)2" ) Argllie S If11720912 5+
E>—1

Next we are devoted to the estimation of Jy — J5. For every ¢ > —1, observe
that

NgJo — AgJs
= ANVCTAd+ LT, f — AT, (VCTd + L f)
= Y AWVCId+ L (Sk-19Akf) — Sk-19(VCId + LAk f))

|k—q| <4,keN
= Y Iy, (A.9)
|k—q|<4,keN

We first consider the case that ¢ > —1 is large enough. Following the idea of Ref. [I7,
and recalling that A({) defined by (2Z25]) is the symbol of operator £, we use the
Fourier transform to write Iy 4(x) as follows:

Ty o () = / / (VO T AL+ 1) — VO F AQ))p2e(C + 1)

< Xar—2(1)@ar (O) F(C)G(n)e CTMd¢dn

_ / / kg (C, ) 92 (O F(O) xor—2 (MIN|G(n) €€+ dcdn,  (A.10)

where (¢r, Xr, &r, Xr)(*) == (¢, X, @, X)(5) for r >0,

mg(C,n) = Y FACH ]?7" VEHAQ o+ M Fn (O (A1)
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and @, X € C°(R) such that 0 < @, ¥ <1 and
~ 3 8 ~ 2
=1 - < < — - < <
¢ on {4ICI3}7 suppr{3|C|3}7

- 4 N 3
X=1 on {IC|<§}7 SuppxC{|C|<§}.

We also have
io(e) = [ [ ra(w.2) Ao~ 9) Sioahgle - 2)dyds
with
hia(y:2) = Co / Mg ()€ P+ dcan. (A.12)

Note that the assumption that ¢ is sufficiently large is mainly used to ensure
the spectrum ¢ 4+ n and ¢ in my, 4(¢,n) satisfies |¢ + 7|, |¢| > max{ay ', 1}, thus we
may assume that ¢ > go with go := 7 + [log, max{ag ', 1}]. Concerning hy, 4 in this
case we have the following key property (whose proof is postponed later).

Lemma A.3. Let g € N be large enough so that g > qo, and k € N be satisfying
|k —q| < 4. Then hy 4(y, z) given by (AI2) satisfies

/ / g (3, 2)] dydz < 283D, (A.13)
RQ

with C' > 0 a constant independent of k, q.
With Lemma [A3] at our disposal, we derive that

Z HAqJ2 - Aq<]5||2L2 < Z Z ||Hk>qH%2

q4>q0 q=>qo |k—q|<4,keN

<D > MglBage lAkS1Ze Sk 1 A9l T~

q=>qo |k—q|<4,keN

<> Y 2PETIASF1Sk-1Ag] T~

q>qo |k—q|<4,keN

<C (Z ||Akf||2L2> g2 s < ClFIZ:llgl 5

keN
(A.14)

Next we consider the remaining case ¢ < o = 7 + [log, max{ag ', 1}]. By using
@27) and Plancherel’s theorem, we directly obtain

YoolA-AJslE <0 Y Y (1A + L (Sk-1gAnf) 17

—1<g<qo —1<¢<qo |k—q|<4,keN

+ |Sk—19(AxVCId + L f)|32)
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<Cc Y Y Az llSk-1gl 7

—1<q<qo |k—q|<4,keN

< ClflZellgl7 -

(A.15)
Hence estimates (A14]) and (AT5) leads to
12 = Jsll72 < Y 18 T2 = AgdsllZa + D 18Tz — AgJs[3a
92490 —1<g<qo
< ClfI1Z=NglI% g .- (A.16)
Gathering (A6) and the above estimates on J; (i = 1, 3,4, 6) with decomposition
(A8) yields the desired estimate (A.4]). O

It remains to prove Lemma [A3]

Proof of Lemmal[A 3l We first study the differentiability property of my, 4. Notice
that

1
(6o = [ (SVOTFACE ) ) drsenneas (¢ +)Tan-+ ()70,
(A.17)

with sgn(n) the usual sign function. Thanks to estimate (Z33) and the support
property, the multiplier my, (¢, n) given by (A7) satisfies

1
Imi(C,m)| < C / ¢ + 70| E1d7 920 (C + 1) gt () Bar (€)
< C2¥G D %502 () 2e (€), (A.18)

Veamea(6on| S [ | 2o/ AT T | aroa € + )0

Lok / ¢+ 7|21 dr (Fae-s ()
0

+IX@E2))) (B0 () + 17 (2750)])
< 0205725 (Xu2 () + IX' (2% D)) (B2 (Q) + 18" (275¢))
(A.19)

and for [ = 2,3,

l
(k—2)
Do) >
J=

l
VL miq(¢C )| < €25 17Dk Z
7=0
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where V¢, = (0¢,0y) is the vector-valued differential operator, and C' > 0 is a
constant independent of &, g.
From estimate ([(AI])), it directly follows that

(w2 < €26 [[ Sarampan(Qacan < 026 (a)

Based on estimate (A20), we can also derive the crucial piecewise decay estimate
of hy4(y, ). Noting that

—i(yde 4 20,)e VT = (y? 4 22)et e

we find that for every (y, z) # (0,0),

. . 3
. 1y 1z i(Cytnz
Pialy 2) = Co / R2 Miea(G7) <<_ Y2 + 22 %%~ y? + 22 8") e )> e

: 3
1z i ;
- //R2 ((y 2% Ty a”) Mg (G Tl)) e'(Cvtm2) q¢dn,

which leads to that for all (y, z) # (0 0)

ity ) € g [ 198G fdcan

O oy, (A.22)
TP+t

Now we prove the desired estimate (A13) relied on estimates (A.21]) and (AZ22)).
Let 7 > 0 be a number chosen later, and by using the change of variables, we have

[ et 2laga:

< hiq(y, 2 dydz+// hi.qo(y, 2)|dydz
//\/T| oy, 2) —e

g// C2k(%+1)dydz+// %2“%*2)@@
Vi raE<r Ve (Y2 +22)3

< C2ME T2 4 02FE 2

Hence estimate (AI13) follows by choosing r = 27*. O
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