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We show a global existence result of weak solutions for a class of generalized Surface 
Quasi-Geostrophic equation in the inviscid case. We also prove the global regularity 
of such solutions for the equation with slightly supercritical dissipation, which turns 
out to correspond to a logarithmically supercritical diffusion due to the singular 
nature of the velocity. Our last result is the eventual regularity in the supercritical 
cases for such weak solutions. The main idea in the proof of the existence part is 
based on suitable commutator estimates along with a careful cutting into low/high 
frequencies and inner/outer spatial scales to pass to the limit; while the proof of 
both the global regularity result and the eventual regularity for the supercritical 
diffusion are essentially based on the use of the so-called modulus of continuity 
method.
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r é s u m é

Nous démontrons un résultat d’existence globale de solutions faibles pour l’équation 
Surface-Quasi géostrophique généralisée dans le cas non-visqueux. Nous démontrons 
aussi que ces solutions faibles existent globalement et sont régulières si la dissipation 
est légèrement sur-critique, ce qui de manière équivalente correspondrait au cas 
logarithmiquement sur-critique du fait que la vitesse soit singulière. Enfin, nous 
prouvons que ces solutions deviennent régulières à partir d’un certain temps 
dans le cas d’une dissipation sur-critique. L’idée principale de la preuve du 
résultat d’existence de solutions faibles dans le cas non-visqueux repose sur 
l’utilisation d’estimations de commutateurs bien choisis ainsi que d’un découpage en 
hautes/basses fréquences ou en espace proche/loin de zéro pour permettre le passage 
à la limite ; tandis-que la preuve de l’existence de solutions globales régulières ainsi 
que la preuve du résultat de l’existence d’un temps de régularisation dans le cas 
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d’une diffusion sur-critique sont toutes deux basées sur l’utilisation de la technique 
du module de continuité.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this article, we study the following generalized Surface Quasi-Geostrophic equation

(gSQG)β :

⎧⎪⎪⎨⎪⎪⎩
∂tθ + u · ∇θ + νΛβθ = 0, (t, x) ∈ R

+ × R
2,

u = ∇⊥Λβ−2m(Λ)θ,
θ(0, x) = θ0(x), x ∈ R

2,

(1.1)

where ν ≥ 0 and β ∈ (0, 1]. Recall that Λβ is the usual fractional Laplacian operator defined as

Λβθ ≡ (−Δ)β/2θ = Cβ P.V.

∫
R2

θ(x) − θ(x− y)
|y|2+β

dy,

where Cβ > 0 is a positive constant. The operator m(Λ) that appears in the velocity is defined using the 
Fourier transform via the following identity

m(Λ)f(x) = 1
(2π)2

∫
R2

eix·ζm(|ζ|)f̂(ζ)dζ,

where m satisfies the following conditions:

(A1) m(ζ) = m(|ζ|) is a radial nondecreasing function such that m ∈ C∞(R2 \{0}) and m > 0 for all ζ �= 0.
(A2) m is in the Mikhlin–Hörmander class (see e.g. [40]), that is, there exists a constant b0 > 0 so that

|ζ|k|∂k
ζm(ζ)| ≤ b0 m(|ζ|), ∀k ∈ {1, 2, 3, 4, 5}, ∀ζ �= 0. (1.2)

(A3) There exists a constant α ∈ (0, 1) and a constant b1 ≥ 1 such that

|ζ|m′(|ζ|) ≤ αm(|ζ|), ∀ |ζ| ≥ b1. (1.3)

(A4) There exists a constant λ ∈ [0, 1) and a constant b2 ≥ 1 such that

b−1
2 ≤ m(ζ)

|ζ|λ ≤ b2, for all ζ ∈ R
2 \ {(0, 0)} such that |ζ| ≤ 1. (1.4)

Moreover, instead of (A3), we also consider the following more restrictive assumption

(A5) There exists a constant α ∈ (0, 1) such that

|ζ|m′(|ζ|) ≤ αm(|ζ|), for all ζ ∈ R
2 \ {(0, 0)}. (1.5)

If ν ≥ 0 and m(Λ) = Λ1−β (which obviously satisfies (A1)–(A5) with α = λ = 1 − β), then the (gSQG)β
equation reduces to the so-called Surface Quasi-Geostrophic equation. This equation reads as follows
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(SQG)β :

⎧⎪⎪⎨⎪⎪⎩
∂tθ(x, t) + u · ∇θ + νΛβθ = 0,

u = R⊥θ = (−∂x2Λ−1θ, ∂x1Λ−1θ),

θ(0, x) = θ0(x).

(1.6)

The (SQG)β equation is an important model in geophysical sciences that serves for instance in meteorology 
and atmospheric sciences as well as to understand turbulence flows (see e.g. [34]). Besides, it turns out to 
be an important mathematical equation because of its similarity with the 3D Euler equations and the 3D 
Navier–Stokes equations (see [8]). In the dissipative case ν > 0, due to the scaling of the equation, one may 
consider 3 cases that are β ∈ (0, 1), β = 1 and β ∈ (1, 2) which are respectively called, supercritical, critical 
and subcritical.

The operator m(Λ) in the equation (gSQG)β defined in (1.1) plays an important role. It would allow 
us to consider a larger class of SQG equation with singular velocity. Indeed, by choosing an adequate m
we can allow the velocity to be γ-order singular (i.e. the symbol is of order γ ∈ (0, 1)) or γ-order regular 
(i.e. being of order −γ ∈ (−1, 0)) or logarithmically γ-order singular/regular (i.e. being of order γ/−γ up 
to a logarithmic factor). This would make the study of the Cauchy problem (1.1) much more delicate than 
the usual (SQG)β equation (1.6). Equation (gSQG)β with general m(Λ) and in the case ν > 0 and β = 1
was initiated by Dabkowski, Kiselev and Vicol [19] where the authors have studied a double logarithmically 
(0-order) singular velocity. This is equivalent to say that the equation has slight supercriticality in the 
velocity. In this paper, we shall basically follow this approach by considering a general family of multiplier 
operator m(Λ) that gives rise to a logarithmically γ-order singular/regular velocity, and we shall focus on 
the construction of global weak L1 ∩L2 solutions in the inviscid case and then study their global regularity 
or eventual regularity in the viscous case, essentially critical and supercritical.

Let us first recall some well known results about the classical (SQG)β equation. After the first math-
ematical study initiated by Constantin, Majda and Tabak in [8], there is a huge mathematical literature 
dealing with the (SQG)β equation (one may see the long reference list in [9,5]). In the inviscid case ν = 0, 
L2-weak solutions were shown to exist globally in Resnick’s thesis [35], then Marchand [32] was able to 
extend Resnick’s result to a more general class of weak solutions, namely, he proved the existence of global 
weak Lp-solutions with p > 4/3. While the uniqueness of Leray–Hopf solutions (i.e. L2-weak solutions) is 
still a challenging open problem, Buckmaster, Shkoller and Vicol [3] have been able to make an important 
step toward this problem by showing the nonuniqueness for a class of solutions having negative Sobolev reg-
ularity. In the dissipative case, that is ν > 0 and 0 < β ≤ 2, the equation has been studied by many authors. 
While in the subcritical case (1 < β ≤ 2), the global wellposedness is by now very well understood (see for 
instance, Resnick [35], Constantin–Wu [12], Dong–Li [20]), the global regularity in the critical case (β = 1) 
turned out to be more delicate to prove and has been successfully obtained slightly more than a decade 
ago by Kiselev–Nazarov–Volberg [29] and Caffarelli–Vasseur [4]; both proofs used different techniques and 
have appeared almost at the same time. The method used by Kiselev, Nazarov and Volberg is based on a 
preservation of a well chosen modulus of continuity while the Caffarelli and Vasseur proof is based on the 
De Giorgi iteration method. Two other proofs of the global regularity have been obtained independently 
by Kiselev–Nazarov [28] using a duality approach and by Constantin–Vicol [11] using what they called the 
nonlinear maximum principle.

In contrast with the subcritical and the critical case, the global regularity issue in the supercritical 
remains an outstanding open problem. However, some authors have been able to make a slight step toward 
this challenging problem. The first results in the supercritical regime were local existence for regular enough 
data and global existence for small initial data (see e.g. Chae–Lee [6], Dong–Li [21], Hmidi–Keraani [25], 
Ju [26], Chen–Miao–Zhang [7], and Wu [42]). Then, some authors have been able to show that, despite of 
the fact that the drift term is stronger than the dissipation (at least for small scales), there are still many 
regularity criteria which ensure that some class of solutions might become regular after a short period of 
time providing that some quantity is controlled. For instance, Constantin and Wu [14] were able to prove 
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that if the velocity is C1−β then the solution becomes Hölder continuous for all t > 0 (this result has been 
proved to be sharp by Silvestre, Vicol and Zlatoš [39]). In a different paper, Constantin and Wu [13] proved 
that if the Leray–Hopf solution is in the subcritical space Cδ, δ > 1 − β on a time interval [t1, t2] then the 
solution becomes smooth on (t1, t2]. This last result has been extended by Silvestre [37] (and also [38]) to 
any vector fields that are not necessarily divergence free. Dong and Pavlović [22] have been able to prove 
the same result as [13] in a critical Besov space.

Another kind of results, called eventual regularity, which means that the weak solution becomes smooth 
after some time, have been established in the supercritical regime. More precisely, it was proved by Silvestre 
[36] that, for β very close to 1, there exists a time so that the solution has some Hölder continuity after 
this time which together with [13] implies higher regularity and then smoothness. The eventual regularity
result of [36] has been improved by Dabkowski in [17] where he has been able to prove the same result for 
the whole supercritical case β ∈ (0, 1) by applying the duality method originated in [28]. Later, Kiselev 
[27] reproved this result in the supercritical case by using the modulus of continuity method by showing 
the preservation of a well-chosen family of time-dependent moduli of continuity. Such an eventual regularity
result is also obtained by Coti Zelati and Vicol [16]. Besides, they were able to show that the time of eventual 
regularity (which is explicit) goes to 0 as the dissipation approaches the critical case. The authors in [16]
also proved that for all θ0 ∈ H2, the (SQG)β equation has a global classical solution when the dissipation 
index β sufficiently close to 1 (depending on the norm of θ0).

If ν ≥ 0, β ∈ (0, 1] and m(Λ) = Id (the identity operator), then the (gSQG)β equation corresponds to 
the modified dissipative (mSQG)β equation introduced by Constantin, Iyer and Wu in [10]. This modified 
equation interpolates between an equation that arises in the study of the evolution of a 2D damped inviscid
fluid equation (β = 0) and the classical SQG equation (β = 1); The equation reads as follows

(mSQG)β :

⎧⎪⎪⎨⎪⎪⎩
∂tθ + u · ∇θ + νΛβθ = 0, (t, x) ∈ R

+ × R
2,

u = ∇⊥Λβ−2θ,

θ(0, x) = θ0(x), x ∈ R
2.

(1.7)

When β ∈ (0, 1] and ν > 0 this equation scales as the critical SQG equation and global existence of global 
smooth solutions starting from L2 data is proved (in the same spirit as [4]).

For ν = 0 and for m(Λ) = Λα with α ∈ (1 − β, 1), β ∈ (0, 1] (noting that m satisfies (A1)–(A5) with 
α = λ), then the (gSQG)β defined in (1.1) reduces to the inviscid generalized SQG equation introduced by 
Chae, Constantin, Córdoba, Gancedo and Wu in [5], which reads as follows⎧⎪⎪⎨⎪⎪⎩

∂tθ + u · ∇θ = 0, (t, x) ∈ R
+ × R

2,

u = ∇⊥Λα+β−2θ,

θ(0, x) = θ0(x), x ∈ R
2.

(1.8)

This equation has a singular velocity of order α+β−1 ∈ (0, 1), which makes the study much more delicate. 
Despite this fact, the authors of [5] have been able to prove a local well-posedness result for initial data in 
H4 as well as a global existence theorem of weak solutions for θ0 ∈ L2(T2) with mean zero. This latter result 
is an improvement of Resnick’s result [35]. To overcome the lack of regularity to close the estimates, the 
authors have used a new commutator estimate in terms of the stream function ψ = Λβ−2θ which turned out 
to be crucial. We also want to mention that, if one intends to construct Morrey–Campanato type solutions 
for instance, then, having a singular velocity may help since it would give more decay to the convolution 
kernel of the singular integral u (see e.g. [30]). So far, in the inviscid case or the supercritical dissipative 
case (i.e. ν > 0 and with dissipation νΛδθ, 0 < δ < β on the left-hand side of (1.8)), the problem of the 
global regularity versus finite time blow-up remains widely open.
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The active scalar equation with a general Fourier multiplier in the velocities has been first studied by 
Chae, Constantin and Wu [9]. They considered u = ∇⊥Λ−2m(Λ)θ which corresponds to equation (1.1)
in the case β = 0. This equation may be viewed as a generalized inviscid Euler vorticity equation. The 
authors of [9] proved the global well-posedness of strong solution for the so-called LogLog-Euler equation 
(see also [24]). In the same spirit as [9], [41], Dabkowski, Kiselev and Vicol [19] have studied the (gSQG)β
equation (1.1) in the case β = 1, ν > 0. They considered the case of a singular velocity having a double 
logarithmically growth. They proved th e existence of a global unique strong solution by using the modulus 
of continuity method. The second name author and Zheng [43] have been able to improve this global result 
for the (gSQG)β equation in the case β ∈ (0, 1] and ν > 0 by showing that a logarithmically growth for the 
singular velocity is enough for the well-posedness. We note that both proofs are for strong solutions with 
smooth initial data and are based on the construction of suitable stationary modulus of continuity.

Our aim in this paper is to slightly go beyond the available existence results of weak solutions both 
in the inviscid case as well as in the supercritical case. By studying equation (gSQG)β with m satisfying 
(A1)–(A5), we will be able to improve several well-known theorems.

2. Main results and comments

The first result is the global existence of weak solutions for the inviscid (gSQG)β equation (1.1).

Theorem 2.1. Let ν = 0, β ∈ (0, 1] and θ0 ∈ L1 ∩ L2(R2). Assume that m satisfies the assumptions 
(A1)–(A4) with α ∈ (0, 1), λ ∈ [0, 1). Then, the (gSQG)β equation (1.1) has a global weak solution which 
verifies θ ∈ L∞([0, ∞); L1 ∩ L2(R2)).

Then, we consider the (gSQG)β equation (1.1) with dissipation (without loss of generality, we may 
assume ν = 1). We obtain a global regularity result of weak solutions in the logarithmically supercritical 
case as well as the eventual regularity of global weak solutions.

Theorem 2.2. Let ν = 1, β ∈ (0, 1] and θ0 ∈ L1 ∩ L2(R2).

(1) Assume that m satisfies (A1)–(A4) with α ∈ (0, 1), λ ∈ [0, 1), then, if there exists μ ∈ [0, 1] and b3 ≥ 1
so that

b−1
3 ≤ m(r) ≤ b3(log r)μ, ∀r ≥ b3. (2.1)

Then, for all time t∗ > 0, the global weak solution θ constructed in Theorem 2.1 satisfies θ ∈
C∞([t∗, ∞) × R

2).
(2) Assume that m satisfies (A1)(A2)(A4)(A5) with α ∈ (0, 1), λ ∈ [0, 1). Then for any t′ > 0, there 

exists T∗ > 0 which depends only on t′, ‖θ0‖L2(R2), α, β so that the global weak solution θ constructed 
in Theorem 2.1 satisfies that θ ∈ C∞([t′ + T∗, ∞) × R

2). In particular, if β ∈ (0, 1), and for each fixed 
θ0 ∈ L2(R2) and t′ > 0, we have

lim
α→0

T∗(t′, α, β, θ0) = 0. (2.2)

The novelty of the results obtained in this paper are highlighted in the following.
The first result of this article, that is Theorem 2.1, is a global existence theorem of weak solutions for 

equation (gSQG)β driven by a family of (logarithmically) γ-order singular/regular velocities, for example,

u = ∇⊥Λα+β−2θ, or u = ∇⊥Λα′+β−2 ln(1 + Λ)θ with β ∈ (0, 1], 0 < α′ < α < 1. (2.3)

Recalling that Constantin, Chae, Córdoba, Gancedo and Wu in [5] obtained the existence of L2 weak 
solutions for equation (1.8) in the inviscid case and for u = ∇⊥Λβ−2θ with β ∈ (1, 2), we here extend this 
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result to a more general class of (logarithmically) singular/regular velocities including the logarithmically 
supercritical cases.

The second result of this paper, which is the first point of Theorem 2.2, is a global regularity result 
of weak solutions for the (gSQG)β equation with β ∈ (0, 1] and under the mild growth condition (2.1), 
which corresponds to a logarithmically supercritical case. This theorem generalizes the classical regularity 
result of Caffarelli–Vasseur [4] and Kiselev–Nazarov [28] to an even more singular velocity than the Riesz 
transform. This result is also comparable to the one obtained in [19] and [43] where global well-posedness for 
(gSQG)β for the (double) logarithmically supercritical case is obtained for smooth solutions. However, both 
results [19], [43] were dealing with strong solutions, and we here lower significatively the initial condition 
by considering just Leray–Hopf type weak solutions.

The third and last result of this paper states that weak solutions established in Theorem 2.1 in the 
supercritical cases eventually become regular. Besides, the time of eventual regularity is explicitly obtained. 
Consequently, we are able to get that, for β ∈ (0, 1), such a time goes to 0 as the supercritical index α goes 
to the critical index 0. The last point is in the same spirit as the result of Coti Zelati and Vicol [16], which 
shows the continuity of the solution map associated to the (gSQG)β equation as α → 0.

Remark 1. If ν > 0, β ∈ (0, 1) and m(Λ) = Λ1−β , then, as we said before, the (gSQG)β equation (1.1)
becomes the supercritical (SQG)β equation (1.6). Following the idea of the proof of (2.2), one may prove 
that, given an initial data θ0 ∈ L∞(R2), the eventual regularity time T∗ converges to 0 as β → 1, which 
allows us to recover a result of Coti Zelati and Vicol in [16]. Indeed, in this case we have α = 1 − β and β
is close to 1. Then, by choosing σ = 1

2 , and C1 > 0 (the constant that appears in Remark 3), and following 
the same steps as the proof of (5.77) (one would actually use ‖θε‖L∞([0,∞)×R2) ≤ ‖θ0‖L∞ instead of (5.27)), 
one may find the following convergence result

T∗(β) = 1
C0β

(
4C0m(1)

β3 (1 − β)‖θ0‖L∞

) β
1−β

→ 0, as β → 1.

Remark 2. In both the proofs of the global regularity result stated in Theorem 2.2 result as well as the 
eventual regularity, the main task is to show that the moduli of continuity verify the criterion (5.35) (or 
(5.84)) for all 0 < ξ ≤ A0 where A0 = ξ0(0) is the starting point of ξ0. The main difference is that A0
in the eventual regularity issue is not small in general, while A0 in the global regularity problem can be 
chosen arbitrarily small, so that we need a slightly restrictive assumption, namely (A5) instead of (A3), in 
the eventual regularity result. We think that after a more complicated and careful analysis one might still 
prove the same eventual regularity result with the assumption (A3), but that will not be our aim here.

For the proof of Theorem 2.1, the idea is to first consider a regularized equation with an additional viscous 
term and then construct a global solution by compactness arguments. The main problem is to show the 
convergence of the nonlinear transport terms in the sense of distribution. By considering the stream function 
ψε = Λβ−2m(Λ)θε and using the structure of the singular velocity, we can rewrite the nonlinear term (when 
tested against a cut-off) as a controlled commutator, see (4.10). We need to localise the considered quantities 
into low and high frequencies as (4.9), and since we work on the whole space R2, we also introduce several 
cut-off functions to split the terms in (4.9) with respect to the space variable. In particular, we rewrite the 
term involving high–high interactions as (4.18) which crucially contains a commutator. Then, we prove some 
useful commutator estimates. These estimates allow us to manage to prove the locally strong convergence 
of the high-frequency part of the (regularized) stream function H0ψ

ε and some functions involving S0θ
ε

or H0ψ
ε in the locally L2-topology, so that we can pass to the limit in each of those terms in the above 

decomposition. In order to take advantage of our choice of multiplier and to handle the singular velocity, 
where commutators and splitting will be two of the main ingredients.
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As for the proof of Theorem 2.2, it is based on the so-called modulus of continuity method as it is stated 
in Kiselev’s paper [27] (originated from [29], see also [18]). We first show a Hölder regularity criterion 
(Lemma 5.2) in terms of the modulus of continuity ω(ξ) given by (5.5), which is well suited to the study of 
the (gSQG)β equation. Besides, this modulus of continuity is an unbounded function contrarily to the one 
introduced in [27] (where, it is chosen to be constant for ξ large enough, namely for all ξ > δ, ω(ξ) = ω(δ)). 
Then, we introduce a new family of time-dependent moduli of continuity ω(ξ, ξ0(t)) defined by (5.28)–(5.29)
and (5.32), which is obtained as a suitable modification of the stationary modulus of continuity (5.5). Since 
we are dealing with weak solutions we need to use a time dependent modulus of continuity. Then, using 
some tedious (however elementary) computations, we can prove that the (uniformly in ε) bounded solution 
θε would (uniformly in ε) preserve such moduli of continuity ω(ξ, ξ0(t)) for all time t so that ξ0(t) > 0. This 
implies that at some finite time the solution θε obeys the modulus of continuity ω(ξ, 0+) = ω(ξ) given by 
(5.5). Combined with the regularity criteria of Lemmas 5.1 and 5.2, we get the desired eventual regularity 
result. In this process, the time of eventual regularity has an explicit expression. This allows us to show the 
formula (2.2) and conclude the global regularity result in the logarithmically supercritical case.

The outline of this paper is as follows. In the next section we give some preliminary results and some useful 
lemmas that we shall use throughout the paper. The fourth section is devoted to the proof of Theorem 2.1. 
In the fifth section, we prove Theorem 2.2. The last section, which is an appendix, deals with the proof of 
a result used in the section 4.

3. Auxiliary lemmas and modulus of continuity

In this section, we recall some well-known definitions and results and we prove several auxiliary lemmas. 
In particular, we collect some useful dealing with the modulus of continuity in Subsection 3.2.

3.1. Preliminary and auxiliary lemmas

The following lemma will be frequently used throughout the article.

Lemma 3.1. Assume that m(r) (r > 0) is a smooth non-decreasing positive function satisfying (1.3) for some 
α ∈ (0, 1) and b1 > 0. Then for every ρ ≥ α,

the function r → rρm(r−1) for all 0 < r ≤ b−1
1 is non-decreasing, (3.1)

and

the function |ζ| → |ζ|−ρm(|ζ|) for all |ζ| ≥ b1 is non-increasing. (3.2)

In particular, if (1.5) is satisfied, then we have the following claim

the properties (3.1) and (3.2) hold for all r > 0 and |ζ| > 0, respectively. (3.3)

Proof of Lemma 3.1. From (1.3), we directly have that for all 0 < r < b−1
1 ,

(rρm(r−1))′ = ρrρ−1m(r−1) − rρ−2m′(r−1) ≥ (ρ− α)rρ−1m(r−1) ≥ 0,

which leads to (3.1). The fact (3.2) and (3.3) can be similarly proved. �
Now we recall the definition of the dyadic blocks (see e.g. [1] or [31]). Let χ̃ ∈ D(R2) be a non negative 

function such that χ̃(x) = 1 if |x| ≤ 1/2 and 0 if |x| ≥ 1. Let us define another function ϕ̃ ∈ D(R2) by 
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ϕ̃(x) = χ̃(x/2) − χ̃(x) which is therefore supported on a corona. Then, we define the Fourier multiplier Sj

and Δj (j ∈ Z) by

Ŝjf(ζ) = χ̃(2−jζ)f̂(ζ) and Δ̂jf(ζ) = ϕ̃(2−jζ)f̂(ζ).

From these operators we deduce the Littlewood–Paley decomposition of a distribution f ∈ S ′, that is, for 
all N ∈ Z, we have

f = SNf +
∑
j≥N

Δjf in S ′(R2).

We then define the low frequency and high frequency cutting operators as

Sjf = F−1 (χ̃(2−jζ)
)

=
∑

k≤j−1

Δkf (3.4)

as well as the high frequency cutting operator as

Hjf = (Id − Sj)f =
∑
k≥j

Δkf. (3.5)

From this operator we define, for s ∈ R and (p, q) ∈ [1, ∞]2 the inhomogeneous Besov spaces as the set of 
f ∈ S ′(R2) so that the following quantity is finite

‖f‖Bs
p,q(R2) ≡ ‖S0f‖Lp +

∥∥{2js‖Δjf‖Lp}j∈N

∥∥
	q
.

In particular, we have the equivalence of L2-based Sobolev space Hs(R2) = Bs
2,2(R2).

The following lemma deals with the action of the Fourier multiplier m(Λ) into the dyadic blocs.

Lemma 3.2. Let m be a function satisfying (A1)(A2) (A3). Then, there exists a constant C > 0 depending 
only on b0, m(b1) such that for every p ∈ [1, ∞] and j ∈ N, we have

‖m(Λ)Δjf‖Lp(R2) ≤ C2jα‖Δjf‖Lp(R2). (3.6)

Proof of Lemma 3.2. Note that from (3.2) and the nondecreasing property of m, we have for all |ζ| ≥ 1/2,

m(ζ) ≤ max{m(b1), b−α
1 m(b1)|ζ|α} ≤ 2αm(b1)|ζ|α,

thus thanks to the assumption (A2), for all ζ ∈ R
2 \B1/2 we find

|∂km(ζ)| ≤ b0|ζ|−km(ζ) ≤ 2b0m(b1)|ζ|α−k, ∀k ∈ {1, 2, 3, 4},

so that we may apply [1, Lemma 2.2, p. 53] to immediately obtain (3.6). �
The purpose of the following lemma is to estimate the convolution kernels of some operators involving 

m(Λ).

Lemma 3.3. Let β ∈ (0, 1] and m(ζ) = m(|ζ|) be a non-decreasing function satisfying the assumptions 
(A1)–(A4).
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(1) Let Kβ,j(x) be the kernel of the operator ∂jΛβ−2m(Λ) (j = 1, 2). Then for all x ∈ R
2 \ {0},

Kβ,j(x) = xj

|x|Hβ(x), with |Hβ(x)| ≤ C ′
0|x|−1−βm(|x|−1), (3.7)

and

|∇Kβ,j(x)| ≤ C ′
0|x|−2−βm(|x|−1), (3.8)

where the constant C ′
0 > 0 depends on b1, b2 but depends neither on α nor β.

(2) Let K̃β,j(x) be the kernel of the operator Λ2−β∂j

m(Λ) (j = 1, 2). Then for every x ∈ R
2 \ {0},

K̃β,j(x) = xj

|x|H̃β(x), with |H̃β(x)| ≤ C0 + C

|x|5−βm(|x|−1) , (3.9)

and

|∇K̃β,j(x)| ≤ C ′
0 + C

|x|6−βm(|x|−1) , (3.10)

where C > 0 is a constant depending on α and β.

Proof of Lemma 3.3. (1) For the proof of (3.7)–(3.8), one can refer to that of [19, Lemma 4.1], or, as well, 
it may be seen in the proof of (3.9) (see below). The constant C ′

0 does not depend on α nor β, which will 
be easy to see since these constants will be explicit in the proof.

(2) Let φ be a smooth radial function which is supported on [−1, 1]2 and which satisfies φ(x) = 1 on 
[−1/2, 1/2]2. Let us set φR(x) = φ( x

R ) for R > 0, and L̃β(x) be the kernel of the convolution operator Λ2−β

m(Λ) , 
then for some R > 0 to be chosen later, we write

L̃β(x) = C0

∫
R2

eix·ζ
|ζ|2−β

m(|ζ|)dζ = C0

∫
R2

ei|x|ζ1
|ζ|2−β

m(|ζ|)dζ

= C0

∫
R2

ei|x|ζ1φR(ζ) |ζ|
2−β

m(ζ) dζ + C0

∫
R2

ei|x|ζ1(1 − φR(ζ)) |ζ|
2−β

m(ζ) dζ

= C0

∫
R2

ei|x|ζ1φR(ζ) |ζ|
2−β

m(ζ) dζ + C0|x|−5
∫
R2

ei|x|ζ1 ∂5
ζ1

(
(1 − φR(ζ)) |ζ|

2−β

m(ζ)

)
dζ

where C0 > 0 is a fixed constant. Thus, we see that K̃β,i(x) = ∂jL̃β(x) = xj

|x|H̃β(x) with

H̃β(x) =C0

∫
R2

ei|x|ζ1 iζ1φR(ζ) |ζ|
2−β

m(ζ) dζ + C0|x|−5
∫
R2

ei|x|ζ1 iζ1∂
5
ζ1

(
(1 − φR(ζ)) |ζ|

2−β

m(ζ)

)
dζ

+ C0|x|−6
∫
R2

ei|x|ζ1 ∂5
ζ1

(
(1 − φR(ζ)) |ζ|

2−β

m(ζ)

)
dζ

≡ I1,β + I2,β + I3,β .

To estimate I1,β , we use the assumption (A4) and Lemma 3.1 to find that if R > b1, then
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|I1,β | ≤ C0

∫
BR

|ζ|3−β

m(ζ)
dζ ≤ C0

∫
|ζ|≤1

|ζ|3−β

m(ζ)
dη + C0

∫
1≤|ζ|≤b1

|ζ|3−β

m(ζ)
dη + C0

∫
b1≤|ζ|≤R

|ζ|3−β

m(ζ)
dζ

≤ C0b2

∫
|ζ|≤1

|ζ|3−β−λdη + C0b2

∫
1≤|ζ|≤b1

|ζ|3−βdη + C0

R−αm(R)

∫
b1≤|ζ|≤R

|ζ|3−β−αdζ

≤ C0b2(b31 + b51) + C0R
5−β

m(R) ,

while if R ≤ b1,

|I1,β | ≤ C0

∫
|ζ|≤b1

|ζ|3−β

m(ζ) dζ ≤ C0b2(b31 + b51).

For I2,β , we apply (1.2) along with Lemma 3.1 to obtain

|I2,β | ≤ C|x|−5

⎛⎜⎝ ∫
|ζ|≥R/2

1
|ζ|β+2m(ζ)dζ +

5∑
j=1

R−j

∫
R/2≤|ζ|≤R

1
|ζ|β+2−jm(ζ)dζ

⎞⎟⎠

≤ C|x|−5

⎛⎜⎝ 1
m(R)

∫
|ζ|≥R/2

1
|ζ|β+2 dζ + 1

Rβm(R)

⎞⎟⎠ ≤ C
|x|−5

Rβm(R) .

For the last term, following what we did previously, we get

|I3,β | ≤ C
|x|−5

Rβ+1m(R) .

Hence, by choosing R = |x|−1 one get the desired estimate (3.9). The bound (3.10) can be obtained in the 
same fashion and we omit the details. �

The next lemma will be very useful to control some commutator and differential operators acting on 
product, which are crucial estimates used in the proof of Theorem 2.1.

Lemma 3.4. Let m be a function satisfying (A1)–(A4). Let s > max{α, λ} be a real number.

(1) For all j = 1, 2 and all ε > 0, we have

∥∥∥∥[ Λs∂j
m(Λ) , f

]
g

∥∥∥∥
L2(R2)

≤ C

(
‖f‖H2+ε(R2)

∥∥∥∥ Λs

m(Λ)g
∥∥∥∥
L2(R2)

+ ‖f‖Hs+2+ε(R2)‖g‖L2(R2)

)
, (3.11)

where C > 0 is a constant depending only on s, α, ε and b0, b1, b2.
(2) Let us denote by Ms(Λ) the multiplier operator with the symbol Ms(|ζ|) which is given by

Ms(|ζ|) ≡
{

m(ζ)
|ζ|s , if |ζ| ≥ 1,
m(1), if |ζ| ≤ 1.

(3.12)

Then, for every j = 1, 2 and every ε > 0, we get
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∥∥∥∥Ms(Λ)
([

Λs∂j
m(Λ) , f

]
g

)∥∥∥∥
L2(R2)

≤ C‖f‖Hs+2+ε(R2)‖g‖L2(R2), (3.13)

with C > 0 a constant depending only on s, α, ε and b0, b1, b2.
(3) We have the following product estimates that for every ε > 0,

∥∥∥∥ Λs

m(Λ)(fg)
∥∥∥∥
L2(R2)

≤ C

(∥∥∥∥ Λs

m(Λ)f
∥∥∥∥
L2(R2)

‖g‖H1+ε(R2) + ‖f‖L2(R2)‖g‖Hs+1+ε(R2)

)
, (3.14)

and ∥∥∥∥ 1
Ms(Λ)(fg)

∥∥∥∥
L2(R2)

≤ C

(∥∥∥∥ Λs

m(Λ)f
∥∥∥∥
L2(R2)

‖g‖H1+ε(R2) + ‖f‖L2(R2)‖g‖Hs+1+ε(R2)

)
, (3.15)

with C > 0 some constant depending only on s, ε and b1, b2.

Proof of Lemma 3.4. (1) We shall first prove (3.11). By using the Fourier transform, we have

F
([

Λs

m(Λ)∂j , f
]
g

)
(ζ) =

∫
R2

(
|ζ|s
m(ζ)ζj −

|η|s
m(η)ηj

)
f̂(ζ − η)ĝ(η)dη. (3.16)

By a direct computation, we find that∣∣∣∣ |ζ|s
m(ζ)ζj −

|η|s
m(η)ηj

∣∣∣∣ ≤ (s + 1 + b0) max
{
b2b

s
1,

|ζ|s
m(ζ) ,

|η|s
m(η)

}
|ζ − η|. (3.17)

Indeed, by setting F (ζ) = |ζ|sζj
m(ζ) , one observes that, by using the assumption (A2),

|∂ζkF (ζ)| ≤ (s + 1) |ζ|s
m(ζ) + |ζ|s+1m′(|ζ|)

m(ζ)2 ≤ (s + 1 + b0)
|ζ|s
m(ζ) , for k = 1, 2,

we see that

|F (ζ) − F (η)| =

∣∣∣∣∣∣
1∫

0

∂

∂τ
F (τζ + (1 − τ)η)dτ

∣∣∣∣∣∣
≤

1∫
0

|(ζ − η) · ∇F (τζ + (1 − τ)η)|dτ

≤ (s + 1 + b0)|ζ − η|
1∫

0

|τζ + (1 − τ)η|s
m(τζ + (1 − τ)η)dτ. (3.18)

If |τζ + (1 − τ)η| ≤ b1, by considering the cases |τζ + (1 − τ)τ | ≤ 1 and 1 ≤ |τζ + (1 − τ)η| ≤ b1 separately, 
we have

|τζ + (1 − τ)η|s
m(τζ + (1 − τ)η) ≤ max{b2, b2bs1} = b2b

s
1;

if |τζ + (1 − τ)η| ≥ b1 and |ζ| ≥ |η|, we get |τζ + (1 − τ)η| ≤ |ζ|, thus (3.2) implies that
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|τζ + (1 − τ)η|s
m(τζ + (1 − τ)η) = |τζ + (1 − τ)η|s−α

|τζ + (1 − τ)η|−αm(τζ + (1 − τ)η) ≤ |τζ + (1 − τ)η|s−α

|ζ|−αm(ζ) ≤ |ζ|s
m(ζ) ;

while if |τζ + (1 − τ)η| ≥ b1 and |η| ≥ |ζ| it is not difficult to obtain the same inequality (with η instead 
of ζ); then we conclude that

|τζ + (1 − τ)η|s
m(τζ + (1 − τ)η) ≤ max

{
b2b

s
1,

|ζ|s
m(ζ) ,

|η|s
m(η)

}
. (3.19)

Hence, by using (3.19) to control (3.18) one obtains the desired estimate (3.17).
Then, we observe that if |ζ| ≥ b1,

|ζ|s
m(ζ) = |ζ|s−α

|ζ|−αm(ζ) ≤ (|ζ − η| + |η|)s
m(|ζ − η| + |η|) ≤ Cs(|ζ − η|s + |η|s)

m(|ζ − η| + |η|) ≤ Cs

(
|ζ − η|s
m(ζ − η) + |η|s

m(η)

)
, (3.20)

while if |ζ| ≤ b1,

|ζ|s
m(ζ) ≤ b2b

s
1, (3.21)

therefore, by using (3.16) and (3.17), we infer that∣∣∣∣F ([
Λs∂j
m(Λ) , f

]
g

)
(ζ)

∣∣∣∣ ≤ C ′
s

∫
R2

(
|ζ − η|s+1

m(ζ − η) + |ζ − η| |η|
s

m(η) + |ζ − η|
)
|f̂(ζ − η)| |ĝ(η)|dη. (3.22)

Using Plancherel’s theorem and Young’s inequality for convolution, we obtain∥∥∥∥[ Λs∂j
m(Λ) , f

]
g

∥∥∥∥
L2(R2)

≤C ′
s

∥∥∥∥ |ζ|s+1

m(ζ) |f̂(ζ)|
∥∥∥∥
L1(R2)

‖g‖L2 + C ′
s

∥∥|ζ||f̂(ζ)|
∥∥
L1(R2)

∥∥∥∥ Λs

m(Λ)g
∥∥∥∥
L2(R2)

+ C ′
s

∥∥|ζ||f̂(ζ)|
∥∥
L1(R2)‖g‖L2(R2).

(3.23)

Now, by using the assumption (A4) along with the nondecreasing property of m and then the Hölder 
inequality, it follows that for all ε > 0,∥∥∥∥ |ζ|s+1

m(ζ) |f̂(ζ)|
∥∥∥∥
L1(R2)

=
∫

|ζ|≤1

|ζ|s+1

m(ζ) |f̂(ζ)|dζ +
∫

|ζ|≥1

|ζ|s+1

m(ζ) |f̂(ζ)|dζ

≤ b2

∫
|ζ|≤1

|ζ|s+1−λ|f̂(ζ)|dζ + b2

∫
|ζ|≥1

|ζ|s+1|f̂(ζ)|dζ

≤ C0b2‖f‖L2(R2) + b2

( ∫
|ζ|≥1

|ζ|−2−2εdζ
)1/2

‖f‖Hs+2+ε(R2)

≤ Cεb2‖f‖Hs+2+ε(R2),

(3.24)

as well,

‖|ζ||f̂(ζ)|‖L1(R2) ≤ Cε‖f‖H2+ε(R2). (3.25)

Hence, the estimates (3.23)–(3.25) allow us to obtain the inequality (3.11).
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(2) By taking the Fourier transform, we see that

F
(
Ms(Λ)

([
Λs

m(Λ)∂j , f
]
g

))
(ζ) = Ms(|ζ|)

∫
R2

(
|ζ|s
m(ζ)ζj −

|η|s
m(η)ηj

)
f̂(ζ − η)ĝ(η)dη.

Using (3.12), (3.17) and the following inequality |η|s
m(η) ≤ Cs

(
b2b

s
1 + |ζ|s

m(ζ) + |ζ−η|s
m(ζ−η)

)
, we find

Ms(|ζ|)
∣∣∣∣ |ζ|s
m(ζ)ζj −

|η|s
m(η)ηj

∣∣∣∣ ≤ CMs(|ζ|)
(

1 + |ζ|s
m(ζ) + |ζ − η|s

m(ζ − η)

)
|ζ − η|

≤ C

(
1 + |ζ − η|s

m(ζ − η)

)
|ζ − η|,

where in the last estimate we used the inequalities Ms(|ζ|) ≤ m(1) ≤ b2 and Ms(|ζ|) |ζ|s
m(ζ) ≤ b22. Hence, 

as we did for (3.23), by collecting the above estimates with (3.24) and (3.25) one gets the desired estimate 
(3.13).

(3) We only prove (3.14), and the proof of (3.15) will follow using essentially the same argument. By 
using, once again, the Fourier transform and (3.20)–(3.21), we get

∣∣∣∣F (
Λs

m(Λ)(fg)
)

(ζ)
∣∣∣∣ =

∣∣∣∣∣∣ |ζ|s
m(ζ)

∫
R2

f̂(ζ − η)ĝ(η)dη

∣∣∣∣∣∣
≤Cs

⎛⎝∫
R2

|ζ − η|s
m(ζ − η) |f̂(ζ − η)||ĝ(η)|dη +

∫
R2

|f̂(ζ − η)| |η|
s

m(η) |ĝ(η)|dη +
∫
R2

|f̂(ζ − η)||ĝ(η)|dη

⎞⎠ .

The Plancherel theorem and Young’s inequality give, for all ε > 0, the following control∥∥∥∥ Λs

m(Λ)(fg)
∥∥∥∥
L2(R2)

≤ Cs

(∥∥∥∥ Λs

m(Λ)f
∥∥∥∥
L2(R2)

‖ĝ‖L1(R2) + ‖f‖L2

∥∥∥∥ |ζ|s
m(ζ) |ĝ|

∥∥∥∥
L1(R2)

+ ‖f‖L2‖ĝ‖L1(R2)

)

≤ Cs,ε

(∥∥∥∥ Λs

m(Λ)f
∥∥∥∥
L2(R2)

‖g‖H1+ε(R2) + ‖f‖L2(R2) ‖g‖Hs+1+ε(R2)

)
,

where in the second line we have used (3.24)–(3.25) applied to g instead of f . �
3.2. Modulus of continuity

In this subsection we give the definition of a modulus of continuity, and then collect some useful results 
related to the modulus of continuity.

Definition 3.1. A function ω : (0, ∞) → (0, ∞) is called a modulus of continuity if ω is continuous on (0, ∞), 
nondecreasing, concave, and piecewise C2 with one-sided derivatives defined at every point in (0, ∞). We say 
a function f : Rd → R

l obeys the modulus of continuity ω if |f(x) −f(y)| < ω(|x −y|) for every x �= y ∈ R
d.

First we recall the general criterion of the nonlocal maximum principle for the drift-diffusion equation 
(for the proof see e.g. [27, Th 2.2] and [33, Prop 3.1]).

Proposition 3.1. Let θ(x, t) ∈ C([0, ∞); Hs(Rd)), s > d
2 +1 be a smooth solution of the following whole-space 

drift-diffusion equation
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∂tθ + u · ∇θ + νΛβθ − εΔθ = 0, θ(0, x) = θ0(x), x ∈ R
d, (3.26)

with ν ≥ 0, ε ≥ 0. Assume that
(1) for every t ≥ 0, ω(ξ, t) is a modulus of continuity and satisfies that its inverse function ω−1((2 +

ε0)‖θ(·, t)‖L∞
x
, t) < ∞ (with some ε0 > 0);

(2) for every fixed point ξ, ω(ξ, t) is piecewise C1 in the time variable with one-sided derivatives defined 
at each point, and that for all ξ near infinity, ω(ξ, t) is continuous in t uniformly in ξ;

(3) ω(0+, t) and ∂ξω(0+, t) are continuous in t with values in R ∪{±∞}, and satisfy that for every t ≥ 0, 
either ω(0+, t) > 0 or ∂ξω(0+, t) = ∞ or ∂ξξω(0+, t) = −∞.

Let the initial data θ0(x) obey ω(ξ, 0), then for some T > 0, θ(x, T ) obeys the modulus of continuity 
ω(ξ, T ) provided that for all t ∈]0, T ] and ξ ∈

{
ξ > 0 : ω(ξ, t) ≤ 2‖θ(·, t)‖L∞

x

}
, ω(ξ, t) satisfies

∂tω(ξ, t) > Ω(ξ, t) ∂ξω(ξ, t) + νD(ξ, t) + 2ε∂ξξω(ξ, t), (3.27)

where Ω(ξ, t) and D(ξ, t) (we suppress the dependence on x, e in Ω(ξ, t), D(ξ, t)) are respectively defined as 
follows, for all x ∈ R

d and all unit vector e ∈ S
d−1 in (3.30), we set

Ω(ξ, t) = |(u(x + ξe, t) − u(x, t)) · e|, and (3.28)

D(ξ, t) = −
(
Λβθ(x, t) − Λβθ(x + ξe, t)

)
, (3.29)

under the scenario that

θ(x, t) − θ(x + ξe, t) = ω(ξ, t), and

|θ(y, t) − θ(z, t)| ≤ ω(|y − z|, t), ∀y, z ∈ R
d.

(3.30)

In (3.27), at the points where ∂tω(ξ, t) (or ∂ξω(ξ, t)) does not exist, the smaller (or larger) value of the 
one-sided derivative should be taken.

The following classical result is an estimate of the dissipative part in terms of the modulus of continuity 
under the scenario (3.30) (e.g. [27]).

Lemma 3.5. We have the following estimate on D(ξ, t) defined by (3.29) under the scenario (3.30) that for 
any ξ > 0,

D(ξ, t) ≤C1

ξ
2∫

0

ω(ξ + 2η, t) + ω(ξ − 2η, t) − 2ω(ξ, t)
η1+β

dη

+ C1

∞∫
ξ
2

ω(2η + ξ, t) − ω(2η − ξ, t) − 2ω(ξ, t)
η1+β

dη,

(3.31)

where C1 > 0 is a constant depending only on β.

Remark 3. Let Pβ,d
h (x) be the d-dimensional kernel of the semigroup operator e−hΛβ , then we have Pβ,d

h (x) =
h− d

β Ph,d(h− 1
β x) and Ph,d(x) = F−1(e−|ζ|β )(x) satisfies that (see [2, Th 3.1])

cβ,d
d+β

≤ Pβ,d(x) ≤ Cβ,d

d+β
, (3.32)
1 + |x| 1 + |x|
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with cβ,d and Cβ,d are positive constants depending only on β, d. Note that the constant C1 in (3.31) and 
the constant cβ,1 are the same. Besides, according to the proof of Th 3.1 in [2], if β satisfies 0 < c0 ≤ β ≤ 1
with some explicit constant c0 ∈ (0, 1), then C1 will not depend on β.

Next we consider the estimation of (3.28) under the scenario (3.30).

Lemma 3.6. Let u = ∇⊥Λβ−2m(Λ)θ, we have the following estimates on Ω(ξ, t) under scenario (3.30).

(1) If m is a nondecreasing function satisfying the assumptions (A1)(A2)(A4)(A5), then for all ξ > 0,

Ω(ξ, t) ≤ −C2ξm(ξ−1)D(ξ, t) + C2ξ

∞∫
ξ

ω(η, t)m(η−1)
η1+β

dη + C2ξ
1−βm(ξ−1)ω(ξ, t), (3.33)

with C2 = C0
β with C0 a fixed constant.

(2) If m is a nondecreasing function satisfying the assumptions (A1)–(A4) and if we only consider ξ ≤ 1
2b1 , 

then

Ω(ξ, t) ≤ −C2ξm(ξ−1)D(ξ, t) + C2ξ

∞∫
ξ

ω(η, t)m(η−1)
η1+β

dη + C2ξ
1−βm(ξ−1)ω(ξ, t). (3.34)

(3) We also have

Ω(ξ, t) ≤ C

ξ∫
0

ω(η, t)m(η−1)
ηβ

dη + Cξ

∞∫
ξ

ω(η, t)m(η−1)
η1+β

dη, (3.35)

with C > 0 depending only on β.

Proof of Lemma 3.6. We first prove (3.33). For simplicity, we suppress the time variable in ω(ξ, t), Ω(ξ, t)
and D(ξ, t). Using Lemma 3.3, we find

|u(x) − u(y)| =

∣∣∣∣∣∣P.V.
∫
R2

y⊥

|y|Hβ(y)f(x− y)dy − P.V.

∫
R2

y⊥

|y|Hβ(y)f(x + ξe− y)dy

∣∣∣∣∣∣
≤ |I1(ξ)| + |I2(ξ)|,

where y⊥ = (−y2, y1), Hβ is a radial-valued scalar function satisfying (3.7), and

I1(ξ) ≡ P.V.

∫
|y|≤2ξ

y⊥

|y|Hβ(y)θ(x− y)dy − P.V.

∫
|y|≤2ξ

y⊥

|y|Hβ(y)θ(x + ξe− y)dy, (3.36)

and

I2(ξ) ≡
∫

|y|≥2ξ

y⊥

|y|Hβ(y)θ(x− y)dy −
∫

|y|≥2ξ

y⊥

|y|Hβ(y)θ(x + ξe− y)dy

=
∫ (x− y)⊥

|x− y| Hβ(x− y)θ(y)dy −
∫ (x + ξe− y)⊥

|x + ξe− y| Hβ(x + ξe− y)θ(y)dy.

|x−y|≥2ξ |x+ξe−y|≥2ξ
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The term I2(ξ) is controlled as usually (see e.g. [19]), and it is bounded by

C0ξ

∞∫
ξ

ω(η)m(η−1)
η1+β

dη + C0ξ
1−βm(ξ−1)ω(ξ), (3.37)

where C0 is a fixed constant that does not depend on α, β. To estimate I1(ξ), we observe that, thanks to 

the zero-average property of y
⊥

|y|Hβ(y) and the scenario (3.30), we have

I1(ξ) =
∫

|y|≤2ξ

y⊥

|y|Hβ(y)(θ(x− y) − θ(x))dy −
∫

|y|≤2ξ

y⊥

|y|Hβ(y)(θ(x + ξe− y) − θ(x + ξe))dy

=
∫

|y|≤2ξ

y⊥

|y|Hβ(y)
(
θ(x− y) − θ(x + ξe− y) − ω(ξ)

)
dy,

where the integrals have to be understood in the principle value sense if needed. Recalling that D(ξ) defined 
by (3.29) can be rewritten as ([23, Thm 1] or [15, Prop 2.1])

D(ξ) = Cβ

⎛⎝P.V.

∫
R2

θ(x− y) − θ(x)
|y|2+β

dy − P.V.

∫
R2

θ(x + ξe− y) − θ(x + ξe)
|y|2+β

dy

⎞⎠
= Cβ

∫
R2

1
|y|2+β

(
θ(x− y) − θ(x + ξe− y) − ω(ξ)

)
dy,

(3.38)

with Cβ = β Γ(1+β/2)
2π1+βΓ(1−β/2) (≥

β
C0

), we obtain that for some constant B > 0 to be chosen later,

I1(ξ) + Bξm(ξ−1)D(ξ) ≤
∫

|y|≤2ξ

(
y⊥

|y|Hβ(y) − CβBξm(ξ−1) 1
|y|2+β

)(
ω(ξ) + θ(x + ξe− y) − θ(x− y)

)
dy

≤
∫

|y|≤2ξ

(
C ′

0
m(|y|−1)
|y|1+β

− CβB
ξm(ξ−1)
|y|2+β

)(
ω(ξ) + θ(x + ξe− y) − θ(x− y)

)
dy

≤
∫

|y|≤2ξ

(2C ′
0 − CβB) ξm(ξ−1)

|y|2+β

(
ω(ξ) + θ(x + ξe + y) − θ(x + y)

)
dy,

where in the third line we used that

|y|m(|y|−1) ≤ (2ξ)m((2ξ)−1) ≤ 2ξm(ξ−1) for all 0 < |y| ≤ 2ξ. (3.39)

Thus by choosing B = 4C′
0

Cβ
, we get

|I1(ξ)| ≤ −Bξm(ξ−1)D(ξ), (3.40)

which combined with (3.37) leads to the desired inequality (3.33).
In order to prove (3.34), we first observe that since only the case ξ ≤ 1

2b1 is considered, by using (3.1) we 
see that we still have (3.39) and (3.40), thus collecting (3.40) and (3.37) yields (3.34).

The proof of (3.35) is classical, see e.g. [19], and we omit the details. �
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4. Proof of Theorem 2.1: Global existence of weak solution for the inviscid equation (1.1)

We consider the following approximated system (by adding a vanishing viscosity term) of the (gSQG)β
equation (1.1) in the inviscid case (that is ν = 0):

∂tθ
ε + uε · ∇θε − εΔθε = 0, uε = ∇⊥Λβ−2m(Λ)(θε), θε0 = φε ∗ θ0, (4.1)

where φε(x) = ε−dφ(ε−1x), and φ ∈ C∞
c (R2) is a radial test function satisfying 

∫
R2 φ = 1.

For the initial data, we observe that since θ0 ∈ L1 ∩ L2(R2), by Young’s inequality we have

‖θε0‖L1∩L2(R2) ≤ ‖θ0‖L1∩L2(R2) and ‖θε0‖Hs �ε,s ‖θ0‖L2 , for every s > 0.

We have the following global well-posedness result for the approximated system (4.1).

Proposition 4.1. Let ε > 0, β ∈ (0, 1], and m satisfying (A1)–(A4). Then, the Cauchy problem for the ap-
proximated drift-diffusion equation (4.1) admits a unique solution θε(x, t) such that θε ∈ C([0, ∞); Hs(R2)) ∩
C∞((0, ∞) × R

2) where s > 2.

Since the local existence part has already been done in [43] (see Prop 3.1), we just need to prove the 
global existence part, and this is done in the Appendix section.

Using the usual Lp-estimate for transport-diffusion equation (see e.g. [15]), we have

‖θε(t)‖L1∩L2(R2) ≤ ‖θ0‖L1∩L2(R2) for all t ≥ 0, (4.2)

that is, θε ∈ L∞(R+; L1 ∩L2(R2)) uniformly in ε. Since L∞(R+; L2(R2)) is the dual space of the separable 
Banach space L1(R+; L2(R2)), we can extract a subsequence {θεk}k≥0 from these solutions {θε}ε>0 so 
that θεk converges ∗-weakly to some function θ in L∞(R+; L2(R2)) (as k → ∞ and εk → 0) and also 
in D′(R+ × R

2). Actually, the weak convergence of θεk is not enough to conclude, since we only have 
∂tθ + lim

k→∞
(∇ · (uεkθεk)) = 0 in D′(R+ × R

2).
Therefore, it remains to show that the nonlinear term ∇ · (uεkθεk) converges to ∇ · (uθ) in D′(R+ ×R

2)
where u = ∇⊥Λβ−2m(Λ)θ. Let ϕ ∈ D(R+×R

2) be a test function, and there exist two nonnegative numbers 
R, T such that the support of ϕ is contained in (0, T ) ×BR(0). We will prove that as k → ∞,

∞∫
0

∫
R2

(θεkuεk) · ∇ϕ(x, t)dxdt →
∞∫
0

∫
R2

(θu) · ∇ϕ(x, t)dxdt. (4.3)

Let us set ψε ≡ Λβ−2m(Λ)θε which is the associated stream function, then, with this notation we infer 
that

uε = ∇⊥ψε, and θε = Λ2−β

m(Λ)ψ
ε. (4.4)

Recalling that H0 = Id − S0 (S0 is defined as (3.5)), and since θε is a uniformly bounded sequence in the 
space L∞(0, T ; L1 ∩ L2(R2)), we find that

H0ψ
ε ∈ L∞(0, T ;H2−α−β(R2)) uniformly in ε. (4.5)

As a matter of fact, by using the property of the support of the Fourier transform of H0ψ
ε and (3.2), we 

obtain
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‖H0ψ
ε(t)‖H2−α−β(R2) ≤ C0‖|ζ|2−α−βψ̂ε(ζ, t)‖L2(Bc

1/2)

≤ C0‖|ζ|−αm(ζ)θ̂ε(ζ, t)‖L2(Bc
1/2)

≤ C0‖|ζ|−αm(ζ)θ̂ε(ζ, t)‖L2({1/2≤|ζ|≤b1}) + C0‖|ζ|−αm(ζ)θ̂ε(ζ, t)‖L2(Bc
b1

)

≤ C0m(b1)‖θε(t)‖L2(R2) + C0b
−α
1 m(b1)‖θε(t)‖L2(R2)

≤ C0m(b1)‖θ0‖L2(R2). (4.6)

We then claim that,

∂tθ
ε ∈ L∞(0, T ;H−5(R2)) uniformly in ε. (4.7)

Indeed, by integrating by parts we infer that for any φ ∈ D(R2), we have

∣∣∣∣∣∣
∫
R2

∂tθ
ε(x, t)φ(x)dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
R2

uε · ∇θε(x, t)φ(x)dx

∣∣∣∣∣∣+ ε

∣∣∣∣∣∣
∫
R2

Δθε(x, t)φ(x)dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
R2

(
θεuε(x, t)

)
· ∇φ(x)dx

∣∣∣∣∣∣+ ε

∣∣∣∣∣∣
∫
R2

θε(x, t) Δφ(x)dx

∣∣∣∣∣∣ (4.8)

≤

∣∣∣∣∣∣
∫
R2

(
θεuε(x, t)

)
· ∇φ(x)dx

∣∣∣∣∣∣+ ‖θ0‖L2(R2)‖Δφ‖L2(R2).

Using (4.4) and by integrating by parts, we find the following decomposition

∫
R2

θεuε · ∇φ dx

=
∫
R2

θε (S0u
ε · ∇)φ dx +

∫
R2

S0θ
ε (H0u

ε · ∇)φ dx +
∫
R2

H0θ
ε (H0u

ε · ∇)φ dx

=
∫
R2

θε (S0u
ε · ∇)φ dx−

∫
R2

H0ψ
ε (∇⊥S0θ

ε · ∇)φ dx +
∫
R2

H0θ
ε (H0u

ε · ∇)φ dx. (4.9)

It follows from (4.2) and the continuous embedding L1 ∩ L2(R2) ↪→ L
2

2−λ−β (R2) ↪→ Ḣλ+β−1(R2) valid for 
λ ∈ [0, 1 − β], β ∈ (0, 1] that

∣∣∣∣∣∣
∫
R2

θε (S0u
ε · ∇)φ dx

∣∣∣∣∣∣ (t) ≤ ‖θε(t)‖L2‖∇⊥Λβ−2m(Λ)S0θ
ε(t)‖L2‖∇φ‖L∞(R2)

≤ C0‖θ0‖L2‖Λλ+β−1S0θ
ε(t)‖L2‖φ‖H3(R2)

≤
{
C0‖θ0‖2

L1∩L2(R2)‖φ‖H3(R2), for λ ∈ [0, 1 − β], β ∈ (0, 1],
C0‖θ0‖2

L2(R2)‖φ‖H3(R2), for λ ∈ [1 − β, 1), β ∈ (0, 1].

For the second term, using Hölder’s inequality, Plancherel’s theorem and (4.6), we find
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∣∣∣∣∣∣
∫
R2

H0ψ
ε(∇⊥S0θ

ε · ∇)φ dx

∣∣∣∣∣∣ (t) ≤ ‖H0ψ
ε(t)‖L2‖∇⊥S0θ

ε(t)‖L2‖∇φ‖L∞(R2)

≤ C0‖H0θ
ε(t)‖L2‖θε(t)‖L2‖φ‖H3(R2)

≤ C0‖θ0‖2
L2(R2)‖φ‖H3(R2).

In order to estimate the third term in (4.9), we need the following lemma which gives a new expression of 
the convection term in terms of the stream function via a controlled commutator.

Lemma 4.1. For every φ ∈ D(R2), we have the following equality∫
R2

θεuε · ∇φ dx = 1
2

∫
R2

ψε

([
Λ2−β∇⊥·
m(Λ) ,∇φ

]
ψε

)
dx. (4.10)

Proof of Lemma 4.1. On one hand, by using to (4.4), we see that∫
R2

θεuε · ∇φ dx =
∫
R2

(
θε∇⊥ψε

)
· ∇φ dx

= −
∫
R2

ψε ∇⊥θε · ∇φ dx

= −
∫
R2

ψε

(
Λ2−β∇⊥

m(Λ) ψε

)
· ∇φ dx. (4.11)

On the other hand, we have∫
R2

θεuε · ∇φ dx =
∫
R2

(
Λ2−β

m(Λ)ψ
ε

)
∇⊥ψε · ∇φ dx

=
∫
R2

ψε

(
Λ2−β

m(Λ)
(
∇⊥ψε · ∇φ

))
dx =

∫
R2

ψε

(
Λ2−β∇⊥·
m(Λ)

(
ψε∇φ

))
dx.

(4.12)

To conclude, it suffices to sum the two previous equalities to find the desired commutator (4.10). �
Then, thanks to Lemma 4.1, (3.11), (4.6) and the fact Λ2−β

m(Λ)ψ
ε = θε, we get∣∣∣∣∣∣

∫
R2

H0θ
ε H0u

ε · ∇φ dx

∣∣∣∣∣∣ (t) =1
2

∣∣∣∣∣∣
∫
R2

H0ψ
ε

([
Λ2−β∇⊥·
m(Λ) ,∇φ

]
H0ψ

ε

)
dx

∣∣∣∣∣∣ (t)
≤C‖H0ψ

ε(t)‖L2 (‖H0ψ
ε(t)‖L2 + ‖θε(t)‖L2) ‖φ‖H5(R2)

≤C‖θ0‖2
L2(R2)‖φ‖H5(R2).

Collecting (4.8) and the above estimates allows us to conclude that for all t ∈ [0, T ], we have∣∣∣∣∣∣
∫
R2

∂tθ
ε(x, t)φ(x)dx

∣∣∣∣∣∣ ≤ C‖φ‖H5(R2), (4.13)

which gives (4.7).
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Then, using (4.7), one may further show that

∂tH0ψ
ε ∈ L∞(0, T ;H−5(R2)) uniformly in ε. (4.14)

Indeed, for all φ ∈ H5(R2), using (4.7) and the fact that m(ζ) ≤ Cb1 |ζ|α for all |ζ| ≥ 1/2, we find

∣∣∣∣∣∣
∫
R2

∂tH0ψ
ε(x, t)φ(x)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R2

∂tθ
ε(x, t) Λβ−2m(Λ)H0φ(x)dx

∣∣∣∣∣∣
≤ ‖∂tθε(t)‖H−5(R2)‖Λβ−2m(Λ)H0∇φ‖H4(R2)

≤ C‖Λβ+α−1H0φ‖H4(R2) ≤ C‖φ‖H5(R2),

therefore, we find (4.14).
According to (4.5), (4.14), the Ascoli’s theorem and the weak convergence of θε, we infer that H0ψ

εk up 
to a subsequence (still denoted H0ψ

εk) satisfies, as k → ∞, that

H0ψ
εk → H0ψ = Λβ−2m(Λ)H0θ, in L∞(0, T ;L2

loc(R2)), (4.15)

with H0ψ ∈ L∞(0, T ; H2−α−β(R2)).
Next, we shall prove (4.3). For the right-hand side of (4.3), we use the decomposition (4.9). Since we 

work on the whole space R2, and the strong convergence result (4.15) only holds on a compact domain, we 
need to make a suitable splitting with respect to the space variable. Recalling that the support of the test 
function ϕ lies in (0, T ) ×BR, we shall define 3 other test functions namely η, ρ and χ as follows. We first 
introduce η ∈ D(R2) such that η ≡ 1 on BR and supp η ⊂ B2R; and then ρ ∈ D(R2) such that ρ ≡ 1 on 
B2R and supp ρ ⊂ B4R, and finally χ ∈ D(R2) which is such that χ ≡ 1 on B8R. Using these notations, we 
have

T∫
0

∫
R2

θεk (S0u
εk · ∇)ϕ dxdt =

T∫
0

∫
R2

θεk η
(
∇⊥Λβ−2m(Λ)

(
(S0θ

εk)(1 − χ)
))

· ∇ϕ dxdt

+
T∫

0

∫
R2

χθεk
(
∇⊥Λβ−2m(Λ)

(
(S0θ

εk)χ
))

· ∇ϕ dxdt

≡I1(θεk) + I2(θεk), (4.16)

and

T∫
0

∫
R2

H0ψ
εk (∇⊥S0θ

εk · ∇)ϕ dxdt =
T∫

0

∫
R2

(H0ψ
εk) η

(
∇⊥S0

(
θεk(1 − χ)

))
· ∇ϕ dxdt

+
T∫

0

∫
R2

η(H0ψ
εk)

(
∇⊥S0(θεkχ)

)
· ∇ϕ dxdt

≡I3(θεk , ψεk) + I4(θεk , ψεk). (4.17)

We may rewrite the last term of the right-hand side of (4.9). Indeed, we have the following lemma.
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Lemma 4.2. We have the following equality

T∫
0

∫
R2

H0θ
εk H0u

εk · ∇ϕ dxdt = 1
2

T∫
0

∫
R2

(H0ψ
εk)ρ

([
Λ2−β∇⊥·
m(Λ) ,∇ϕ

] (
(H0ψ

εk)χ
))

dxdt

−
T∫

0

∫
R2

(H0ψ
εk)ρ

(
Λ2−β∇⊥

m(Λ) (H0ψ
εk)(1 − χ)

)
· ∇ϕ dxdt

−
T∫

0

∫
R2

(H0ψ
εk)η

(
Λ2−β∇⊥

m(Λ) (H0ψ
εk)(1 − ρ)

)
· ∇ϕ dxdt

≡I5(ψεk) + I6(ψεk) + I7(ψεk). (4.18)

Proof of Lemma 4.2. From (4.11), we see that

T∫
0

∫
R2

H0θ
εk H0u

εk · ∇ϕ dxdt = −
T∫

0

∫
R2

(H0ψ
εk)ρ

(
Λ2−β∇⊥

m(Λ) H0ψ
εk

)
· ∇ϕ dxdt

= −
T∫

0

∫
R2

(H0ψ
εk)ρ

(
Λ2−β∇⊥

m(Λ) (H0ψ
εk)χ

)
· ∇ϕdxdt

−
T∫

0

∫
R2

(H0ψ
εk)ρ

(
Λ2−β∇⊥

m(Λ) (H0ψ
εk)(1 − χ)

)
· ∇ϕdxdt.

On the other hand, from (4.12), we also get

T∫
0

∫
R2

H0θ
εk H0u

εk · ∇ϕ dxdt =
T∫

0

∫
R2

H0ψ
εk

(
Λ2−β∇⊥·
m(Λ)

(
H0ψ

εk∇ϕ
))

dxdt

=
T∫

0

∫
R2

(H0ψ
εk)ρ

(
Λ2−β∇⊥·
m(Λ)

(
(H0ψ

εk)χ∇ϕ
))

dxdt

−
T∫

0

∫
R2

(
Λ2−β∇⊥

m(Λ) (H0ψ
εk)(1 − ρ)

)
·
(
(H0ψ

εk)∇ϕ
)
dxdt.

Summing the above two equalities yields the desired formula (4.18). �
Thus the left-hand side of (4.3) can be decomposed as

T∫
0

∫
R2

(θεkuεk) · ∇ϕdxdt =
∑
i=1,2

Ii(θεk) +
∑
i=3,4

Ii(θεk , ψεk) +
∑

i=5,6,7
Ii(ψεk). (4.19)

Similarly the right-hand side of (4.3) has the following decomposition
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T∫
0

∫
R2

θu · ∇ϕdxdt =
∑
i=1,2

Ii(θ) +
∑
i=3,4

Ii(θ, ψ) +
∑

i=5,6,7
Ii(ψ). (4.20)

We first prove that I1(θεk) → I1(θ). We observe that

I1(θεk) − I1(θ) =
∞∫
0

∫
R2

θεkη
(
∇⊥Λβ−2m(Λ)

(
(1 − χ)(S0θ

εk − S0θ)
))

· ∇ϕ(x, t) dxdt

+
∞∫
0

∫
R2

(θεk − θ)η
(
∇⊥Λβ−2m(Λ)

(
(1 − χ)S0θ

))
· ∇ϕ(x, t) dxdt

≡ Iεk1,1 + Iεk1,2.

(4.21)

Let us set hεk
j ≡ η

(
∂jΛβ−2m(Λ)

(
(1 − χ)S0θ

εk
))

for j = 1, 2, then we claim that as k → ∞, we have the 
following convergence (up to subsequence that is still denoted hεk

j )

hεk
j strongly converges to hj ≡ η

(
∂jΛβ−2m(Λ)

(
(1 − χ)S0θ

))
in L∞(0, T ;L2(BR)). (4.22)

Indeed, one first notices that Kβ,j (j = 1, 2) (which appeared in Lemma 3.3) is the kernel function of 
∂jΛβ−2m(Λ), then, thanks to (3.7)–(3.8) along with the support property, one finds that for all x ∈ B2R,

∣∣∂jΛβ−2m(Λ)
(
(1 − χ)S0θ

εk
)
(x)

∣∣ =

∣∣∣∣∣∣
∫
R2

Kβ,j(x− y)
(
(1 − χ)S0θ

εk
)
(y) dy

∣∣∣∣∣∣
≤ C

∫
|y|≥8R

m(|x− y|−1)
|x− y|1+β

|S0θ
εk(y)|dy

≤ Cm(R−1)
∫

|y|≥8R

1
|y|1+β

|S0θ
εk(y)|dy

≤ C
m(R−1)

Rβ
‖S0θ

εk‖L2(R2) ≤ C‖θ0‖L2(R2),

and

∣∣∇∂jΛβ−2m(Λ)
(
(1 − χ)S0θ

εk
)
(x)

∣∣ =

∣∣∣∣∣∣
∫
R2

∇Kβ,j(x− y)
(
(1 − χ)S0θ

εk
)
(y) dy

∣∣∣∣∣∣
≤ C

∫
|y|≥8R

m(|x− y|−1)
|x− y|2+β

|S0θ
εk(y)|dy ≤ C‖θ0‖L2(R2),

thus, we obtain that

‖hεk
j ‖L∞(0,T ;H1(R2)) ≤ C0‖∂jΛβ−2m(Λ)

(
(1 − χ)S0θ

εk
)
‖L∞(0,T ;L2(B2R))

+ C0‖∇∂jΛβ−2m(Λ)
(
(1 − χ)S0θ

εk
)
‖L∞(0,T ;L2(B2R))

≤ C‖θ0‖L2(R2).

(4.23)

Then, in order to show the convergence of hεk
j , we need to prove some uniform bound on ∂th

εk
j . Let φ ∈ D(R2)

be a test function, thus
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∣∣∣∣∣∣
∫
R2

∂th
εk
j (x, t)φ(x)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R2

η
(
∂jΛβ−2m(Λ)

(
(1 − χ)S0∂tθ

εk
))

(x, t)φ(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R2

∂tθ
εk(x, t)S0

(
(1 − χ)∂jΛβ−2m(Λ)(ηφ)(x)

)
dx

∣∣∣∣∣∣ (4.24)

≤ ‖∂tθεk‖L∞(0,T ;H−5(R2))‖S0
(
(1 − χ)∂jΛβ−2m(Λ)(ηφ)

)
‖H5(R2)

≤ C‖φ‖L2(R2),

where in the last line we have used the following estimate (using (3.7)–(3.8))

‖S0
(
(1 − χ)∂jΛβ−2m(Λ)(ηφ)

)
‖H5(R2) ≤C

∥∥∥∥∥∥
∫

B2R

|Kβ,j(x− y)| |ηφ|(y)dy

∥∥∥∥∥∥
L2

x(Bc
8R)

≤C

∥∥∥∥m(|x|−1)
|x|1+β

∥∥∥∥
L2

x(Bc
8R)

∫
B2R

|ηφ|dy ≤ C‖φ‖L2(R2).

Hence, using (4.23) and (4.24), we observe that the strong convergence (4.22) follows from Ascoli’s theorem 
together with the weak convergence of θεk . Now for Iεk1,1 in (4.21), using Hölder’s inequality and (4.22), we 
get

lim
k→∞

|Iεk1,1| ≤ C lim
k→∞

‖θεk‖L2([0,T ],L2)‖hεk
j − hj‖L2([0,T ],L2(BR))

≤ CT‖θ0‖L2(R2) lim
k→∞

‖hεk
j − hj‖L∞([0,T ],L2(BR)) = 0.

(4.25)

As for Iεk1,2, by (4.23), we know that∥∥η (∇⊥Λβ−2m(Λ)
(
(1 − χ)S0θ

))∥∥
L2(0,T ;L2(R2)) ≤ C,

hence, the weak convergence of θεk in L2([0, T ] × R
2) implies that limk→∞ |Iεk1,2| = 0. By (4.21) and these 

two convergence results, we obtain

lim
k→∞

I1(θεk) = I1(θ). (4.26)

We then focus on the convergence of I2(θεk) defined in (4.16). We have

|I2(θεk) − I2(θ)| ≤

∣∣∣∣∣∣
T∫

0

∫
R2

χθεk
(
∇⊥Λβ−2m(Λ)

(
χS0(θεk − θ)

))
· ∇ϕ(x, t) dxdt

∣∣∣∣∣∣
+

∣∣∣∣∣∣
T∫

0

∫
R2

χ(θεk − θ)
(
∇⊥Λβ−2m(Λ)

(
χ(S0θ)

))
· ∇ϕ(x, t) dxdt

∣∣∣∣∣∣ .
(4.27)

Following what we did in (4.22), we claim that, as k → ∞, we have the following convergence (up to a 
subsequence)

∇⊥Λβ−2m(Λ)
(
χ(S0θ

εk)
)
→ ∇⊥Λβ−2m(Λ)

(
χ(S0θ)

)
in L∞([0, T ];L2(BR)). (4.28)
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Observe that, via (4.28) and following the same arguments as what we previously did for Iεk1,1, I
εk
1,2, we find 

that the right-hand-side of (4.27) converges to 0 as k → ∞, this leads to

lim
k→∞

I2(θεk) = I2(θ). (4.29)

To estimate (4.28), we use Plancherel’s theorem together with the assumption (A3) and (3.2), we finally get 
by using Bernstein’s inequality along with (4.2)∥∥∇⊥Λβ−2m(Λ)(χ(S0θ

εk))
∥∥
L∞([0,T ];H1(R2))

≤C0‖Λβ−1m(Λ)S0(χ(S0θ
εk))‖L∞([0,T ];L2(R2)) + C0‖Λβ−1m(Λ)H0(χS0θ

εk)‖L∞(0,T :H1(R2))

≤C0‖Λλ+β−1S0(χ(S0θ
εk))‖L∞(0,T ;L2(R2)) + C0‖H0(χS0θ

εk)‖L∞(0,T :H3(R2))

≤

⎧⎨⎩C0‖χ(S0θ
εk)‖L∞(0,T ;L2) + C0‖χ‖H3‖S0θ

εk‖L∞(0,T ;H3), for λ ∈ [1 − β, 1), β ∈ (0, 1],
C0‖χ(S0θ

εk)‖
L∞(0,T ;L

2
2−λ−β )

+ C0‖χ‖H3‖S0θ
εk‖L∞(0,T ;H3), for λ ∈ [0, 1 − β], β ∈ (0, 1],

≤‖χ‖H3(R2)‖θεk‖L∞(0,T ;L2(R2)) ≤ C‖θ0‖L2(R2). (4.30)

Then, since ∂tθεk ∈ L∞(0, T ; H−5(R2)) uniformly in εk, and for all φ ∈ D(R2),∣∣∣∣∣∣
∫
R2

∇⊥Λβ−2m(Λ)
(
χ(S0∂tθ

εk)
)
φ dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R2

∂tθ
εkS0

(
χ
(
∇⊥Λβ−2m(Λ)φ

))
dx

∣∣∣∣∣∣ ,
thus, we may estimate the right hand side of the previous inequality as follows,∣∣∣∣∣∣

∫
R2

∂tθ
εkS0

(
χ
(
∇⊥Λβ−2m(Λ)φ

))
dx

∣∣∣∣∣∣
≤‖∂tθεk‖L∞(0,T ;H−5(R2))‖S0

(
χ
(
∇⊥Λβ−2m(Λ)φ

))
‖H5(R2)

≤C‖S0(χ(∇⊥Λβ−2m(Λ)S0φ))‖L2(R2) + C‖S0(χ(∇⊥Λβ−2m(Λ)H0φ))‖L2(R2)

≤

⎧⎨⎩C‖Λλ+β−1S0φ‖L2(R2) + C‖Λα+β−1H0φ‖L2(R2), for λ ∈ [1 − β, 1), β ∈ (0, 1],
C‖Λλ+β−1S0φ‖

L
2

λ+β (R2)
+ C‖Λα+β−1H0φ‖L2(R2), for λ ∈ [0, 1 − β], β ∈ (0, 1],

≤C‖S0φ‖L2(R2) + C‖φ‖H1(R2) ≤ C‖φ‖H1(R2). (4.31)

Hence, these two estimates (4.30)–(4.31) and the use of Ascoli’s theorem along with the weak convergence 
of θεk allow us to conclude the proof of the claim (4.28).

Now we turn to the estimation of I3(θεk , ψεk) and I4(θεk , ψεk) in (4.17). Noticing that for j = 1, 2, we 
have

∂jS0f(x) =
(
∂jF−1(χ̃)

)
∗ f(x), with F−1(χ̃) ∈ S(R2),

therefore by using (4.5), (4.15) and following the same steps as we did for the passage to the limit of I1(θεk)
in (4.26), one finds that I3(θεk , ψεk) → I3(θ, ψ) as k → ∞, that is,∫∫

(H0ψ
εk) η∇⊥S0

(
θεk(1 − χ)

)
· ∇ϕ dxdt →

∫∫
(H0ψ) η∇⊥S0

(
θ(1 − χ)

)
· ∇ϕ dxdt. (4.32)
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Moreover, following the same ideas as the control of I2(θεk) (see (4.27)), one analogously finds that 
I4(θεk , ψεk) → I4(θ, ψ) as k → ∞, that is,

T∫
0

∫
R2

η(H0ψ
εk)

(
∇⊥S0(θεkχ)

)
· ∇ϕ dxdt →

T∫
0

∫
R2

η(H0ψ)
(
∇⊥S0(θχ)

)
· ∇ϕ dxdt. (4.33)

Next we consider the convergence of Ii(ψεk), i = 5, 6, 7 in (4.18). We may write the difference as

∑
i=5,6,7

(
Ii(ψεk) − Ii(ψ)

)
=1

2

T∫
0

∫
R2

(H0ψ
εk −H0ψ)ρ

[
Λ2−β∇⊥·
m(Λ) ,∇ϕ

] (
(H0ψ

εk)χ
)
dxdt

+ 1
2

T∫
0

∫
R2

(H0ψ)ρ
[
Λ2−β∇⊥·
m(Λ) ,∇ϕ

] (
(H0ψ

εk −H0ψ)χ
)
dxdt

−
T∫

0

∫
R2

(H0ψ
εk −H0ψ)ρ

(
Λ2−β∇⊥

m(Λ)
(
(H0ψ

εk)(1 − χ)
))

· ∇ϕ dxdt

−
T∫

0

∫
R2

(H0ψ)ρ
(

Λ2−β∇⊥

m(Λ)
(
(H0ψ

εk −H0ψ)(1 − χ)
))

· ∇ϕ dxdt

−
T∫

0

∫
R2

(H0ψ
εk −H0ψ)η

(
Λ2−β∇⊥

m(Λ)
(
(H0ψ

εk)(1 − ρ)
))

· ∇ϕ dxdt

−
T∫

0

∫
R2

(H0ψ)η
(

Λ2−β∇⊥

m(Λ)
(
(H0ψ

εk −H0ψ)(1 − ρ)
))

· ∇ϕ dxdt

≡Jεk
1 + Jεk

2 + Jεk
3 + Jεk

4 + Jεk
5 + Jεk

6 . (4.34)

For the term Jεk
1 , by (3.11), (3.14), (4.6) and θεk = Λ2−β

m(Λ)ψ
εk , we have

|Jεk
1 | ≤ 1

2‖(H0ψ
εk −H0ψ)ρ‖L2([0,T ],L2(R2))

∥∥∥∥[Λ2−β∇⊥·
m(Λ) ,∇ϕ

] (
(H0ψ

εk)χ
)∥∥∥∥

L2([0,T ],L2(R2))

≤ C‖(H0ψ
εk −H0ψ)ρ‖L2([0,T ],L2)

(
‖(H0ψ

εk)χ‖L2([0,T ],L2) +
∥∥∥Λ2−β

m(Λ)
(
(H0ψ

εk)χ
)∥∥∥

L2([0,T ],L2)

)
≤ C‖(H0ψ

εk −H0ψ)ρ‖L2(0,T ;L2)

(
‖H0ψ

εk‖L2([0,T ],L2) + ‖H0θ
εk‖L2([0,T ],L2)

)
(1 + ‖χ‖H3)

≤ CT‖(H0ψ
εk −H0ψ)ρ‖L∞([0,T ],L2),

thus the local convergence (4.15) implies that

lim
k→∞

|Jεk
1 | ≤ CT lim

k→∞
‖(H0ψ

εk −H0ψ)ρ‖L∞([0,T ],L2) = 0. (4.35)

For the term Jεk
2 , recalling that M2−β(Λ) is the multiplier operator given by (3.12), and by using (3.13)

and (3.15), we obtain
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|Jεk
2 | = 1

2

∣∣∣∣∣∣
T∫

0

∫
R2

1
M2−β(Λ)

(
(H0ψ)ρ

) (
M2−β(Λ)

[
Λ2−β∇⊥·
m(Λ) ,∇ϕ

] (
(H0ψ

εk −H0ψ)χ
))

dxdt

∣∣∣∣∣∣
≤ 1

2

∥∥∥∥ 1
M2−β(Λ)

(
(H0ψ)ρ

)∥∥∥∥
L2([0,T ],L2)

∥∥∥∥M2−β(Λ)
[
Λ2−β∇⊥·
m(Λ) ,∇ϕ

] (
(H0ψ

εk −H0ψ)χ
)∥∥∥∥

L2(0,T ;L2)

≤ C
(
‖H0ψ‖L2([0,T ],L2) + ‖H0θ‖L2([0,T ],L2)

)
‖ρ‖H3‖ϕ‖L∞([0,T ],H5)‖(H0ψ

εk −H0ψ)χ‖L2([0,T ],L2)

≤ CT‖(H0ψ
εk −H0ψ)χ‖L∞([0,T ],L2(R2)),

then (4.15) implies that

lim
k→∞

|Jεk
2 | ≤ CT lim

k→∞
‖(H0ψ

εk −H0ψ)χ‖L∞([0,T ],L2(R2)) = 0. (4.36)

For the term Jεk
3 , we use (3.9) and (4.6) to infer that for all x ∈ BR,

∣∣∣∣Λ2−β∂j
m(Λ)

(
(H0ψ

εk)(1 − χ)
)
(x)

∣∣∣∣ =

∣∣∣∣∣∣
∫
R2

K̃β,j(x− y)H0ψ
εk(y)

(
1 − χ(y)

)
dy

∣∣∣∣∣∣
≤ C

∫
|y|≥8R

1
|x− y|5−βm(|x− y|−1) |H0ψ

εk(y)|dy

≤ C

∫
|y|≥8R

1
|y|5−βm(|y|−1) |H0ψ

εk(y)|dy

≤ C

⎛⎜⎝ ∫
|y|≥8R

1(
|y|5−βm(|y|−1)

)2 dy

⎞⎟⎠
1/2

‖H0ψ
εk‖L2(R2)

≤ C‖θ0‖L2(R2), (4.37)

thus, thanks to Hölder’s inequality and (4.15) we get

lim
k→∞

|Jεk
3 | ≤ lim

k→∞
‖(H0ψ

εk −H0ψ)ρ‖L2([0,T ],L2)

∥∥∥∥Λ2−β∇⊥

m(Λ)
(
(H0ψ

εk)(1 − χ)
)
· ∇ϕ

∥∥∥∥
L2([0,T ],L2)

≤ C lim
k→∞

‖(H0ψ
εk −H0ψ)ρ‖L2([0,T ],L2(R2)) = 0.

(4.38)

Then, we consider the term Jεk
4 , and we first prove that the sequence gεkj ≡ ρ 

(
Λ2−β∂j

m(Λ)
(
(H0ψ

εk)(1 − χ)
))

for j = 1, 2, is locally convergent. To obtain this convergence, we follow the same argument as in (4.37) and 
by using (3.9)–(3.10), we get

‖gεkj ‖L∞([0,T ];H1(R2)) ≤C

∥∥∥∥Λ2−β∂j
m(Λ)

(
(H0ψ

εk)(1 − χ)
)∥∥∥∥

L∞([0,T ],L2(B4R))

+ C

∥∥∥∥∇Λ2−β∂j
m(Λ)

(
(H0ψ

εk)(1 − χ)
)∥∥∥∥

L∞([0,T ],L2(B4R))

≤C.

Besides, for any test function φ ∈ D(R2), we see that, thanks to (3.9), we may write that for any l =
0, 1, · · · , 5,
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∥∥∥∥Λ2−β∂j
m(Λ) ∇l

(
ρφ
)∥∥∥∥

L2(Bc
8R)

=

∥∥∥∥∥∥
∫
R2

K̃β,j(x− y)∇l(φρ)dy

∥∥∥∥∥∥
L2(Bc

8R)

≤C

∥∥∥∥∥∥
∫

B4R

1
|x− y|5−βm(|x− y|−1) |∇

l(φρ)(y)|dy

∥∥∥∥∥∥
L2(Bc

8R)

≤C

∥∥∥∥ 1
|x|5−βm(|x|−1)

∥∥∥∥
L2(Bc

8R)

∣∣∣∣∣∣
∫

B4R

|∇l(φρ)(y)|dy

∣∣∣∣∣∣
≤C‖φ‖H5(R2),

and by using (4.14), we infer that

∣∣∣∣∣∣
∫
R2

∂tg
εk
j (x, t)φ(x)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R2

ρ

(
Λ2−β∂j
m(Λ)

(
∂tψ

εk(1 − χ)
))

φ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
R2

∂tψ
εk(1 − χ)

(
Λ2−β∂j
m(Λ)

(
ρφ
))

dx

∣∣∣∣∣∣
≤ ‖∂tψεk(t)‖H−5(R2)

∥∥∥∥(1 − χ)
(

Λ2−β∇⊥

m(Λ)

)
(ρφ)

∥∥∥∥
H5(R2)

≤ C‖φ‖H5(R2),

which ensures that, for j = 1, 2,

∂tg
εk
j ∈ L∞([0, T ], H−5(R2)), uniformly in εk.

Hence, using to Ascoli’s theorem and the weak convergence of H0ψ
εk to H0ψ (which is a consequence of the 

weak convergence of θεk), we obtain that the sequence gεkj (up to a subsequence, still denoted gεkj ) satisfies

gεkj → gj = ρ
(Λ2−β∂j

m(Λ)
(
(H0ψ)(1 − χ)

))
, in L∞([0, T ], L2(BR)),

and it implies that

lim
k→∞

|Jεk
4 | ≤ C‖H0ψ‖L2([0,T ],L2(R2)) lim

k→0
sup
j=1,2

∥∥gεkj − gj
∥∥
L2([0,T ],L2(BR)) = 0. (4.39)

The estimates of both Jεk
5 and Jεk

6 are the same as Jεk
3 and Jεk

4 , and we have

lim
k→∞

(|Jεk
5 | + |Jεk

6 |) = 0. (4.40)

Hence (4.26), (4.27), (4.32), (4.33), (4.35)–(4.40) and the decompositions (4.19)–(4.20), (4.34) allow us 
to get the desired convergence (4.3).

Therefore, we have proved (4.3) for all α ∈ (0, 1), β ∈ (0, 1], λ ∈ [0, 1), and this ends the proof of 
Theorem 2.1. �
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5. Proof of Theorem 2.2

Let ε > 0, and θε be a smooth solution to the following regularized equation

(gSQG)β,ε :

⎧⎪⎪⎨⎪⎪⎩
∂tθ

ε + uε · ∇θε + νΛβθε − εΔθ = 0, (t, x) ∈ R
+ × R

2,

uε = ∇⊥Λβ−2m(Λ)θε,
θε(0, x) = θε0(x) ∗ φε, x ∈ R

2,

(5.1)

with θ0 ∈ L1 ∩ L2(R2), φε(x) = ε−2φ(ε−1x) and φ a mollifier. Obviously, the global well-posedness of a 
solution θε of equation (5.1) which is such that θε ∈ C([0, ∞); Hs(R2)) ∩ C∞([0, ∞) × R

2) with s > 2
follows in a straightforward manner from Proposition 4.1. Indeed, the additional dissipation term Λβθε has 
a regularizing effect. Since θ0 ∈ L1 ∩L2(R2), we also have, uniformly in ε, the following Lp-estimate, for all 
T ≥ 0

‖θε‖L∞([0,T ];L1∩L2(R2)) ≤ ‖θ0‖L1∩L2(R2), (5.2)

and the following energy estimate, uniformly in ε,

‖θε(T )‖2
L2(R2) +

T∫
0

‖θε(τ)‖2
Ḣβ/2(R2)dτ ≤ ‖θ0‖2

L2(R2), ∀ T ≥ 0. (5.3)

Thanks to Theorem 2.1, we know that there exists a global weak solution θ to the (gSQG)β equation (1.1). 
Indeed, we have seen that we have enough compactness to pass to the limit as ε goes to 0, hence, a fortiori
we can pass to the limit in (5.1), and both the L1 ∩ L2 maximum principle (5.2) and the energy inequality 
(5.3) obviously hold by replacing θε by its weak limit θ.

In the sequel we divide the proof of Theorem 2.2 into 4 subsections. Note that we first prove the point 
(2) of Theorem 2.2, that is, the eventual regularity result, this will be done in the subsections 5.2–5.3; and 
then the proof of point (1) of Theorem 2.2 in the subsection 5.4. Before starting the proofs, we also give 
some regularity criteria for the weak solution to be smooth.

5.1. Regularity criteria

We first have the following regularity criteria for the global weak solution of the equation (1.1).

Lemma 5.1. Let ν = 1, β ∈ (0, 1], θ ∈ L∞([0, ∞); L1 ∩ L2) ∩ L2([0, ∞); Ḣβ/2) be the global weak solution 
to the (gSQG)β equation (1.1) with m satisfying (A1)–(A4). Suppose that, for all times T1, T2 such that 
0 ≤ T1 < T2 < ∞, we have

‖θ‖L∞([T1,T2];Ċσ(R2)) < ∞, for some σ > α, (5.4)

then we have

θ ∈ C∞(R2 × (T1, T2]).

If m(Λ) = Λ1−β (β ∈ (0, 1]), the equation (1.1) becomes the classical (SQG)β equation (1.6) with either 
critical or supercritical dissipation, and Lemma 5.1 is nothing but the well-known regularity criteria that 
can be found for instance in [4,13,37]. If m(Λ) = Λα (α ∈ (0, 1)) and α + β > 1, then (1.1) becomes the 
generalized (SQG) equation which has been studied in [33], and Lemma 5.1 is a direct consequence of [33]



228 O. Lazar, L. Xue / J. Math. Pures Appl. 130 (2019) 200–250
(see Prop 5.1). For the (gSQG)β equation (1.1) we are interested in, due to the key estimate (3.6), we may 
for instance apply the Bony’s paradifferential method as it was done in [13] and [33] to conclude Lemma 5.1, 
and we omit the details here.

In order to prove the eventual regularity, we have to show that the regularized solution θε of equation 
(5.1) verifies the regularity criteria (5.4) uniformly in ε after a finite time. To this end, we shall present 
an Hölder regularity criterion in terms of a suitable modulus of continuity, which reduces the problem to 
showing that the solution θε uniformly in ε obeys this modulus of continuity at some time t0 > 0. More 
precisely, we have the following lemma.

Lemma 5.2. Let ν = 1, β ∈ (0, 1], and assume that m satisfies (A1)(A2) (A4)(A5) with α ∈ (0, 1), λ ∈ [0, 1). 
For all σ ∈ (α, min{α + β, 1}), we define the following modulus of continuity

ω(ξ) =
{
κ 1
m(δ−1)δ

−σξσ, for 0 < ξ ≤ δ,

κ 1
m(δ−1) + γ

∫ ξ

δ
1

η m(η−1)dη, for ξ > δ,
(5.5)

with 0 < γ < κ < 1 and δ > 0. Then, under some smallness condition on γ and κ, namely that

0 < κ < min
{
C1(1 − σ)(α + β − σ)

16C2
,

1
2C2σ

}
,

0 < γ < min
{

1
2C2

, σκ,
(1 − Cα)α

2 κ,
C1βCα(1 − Cα)

12C2

}
,

(5.6)

with Cα = 2α−1
α , and C1, C2 the constants appearing in Lemmas 3.5 and 3.6, the following assertion holds 

true:

if there exits T0 ∈ [0,∞) such that θε(T0) uniformly in ε obeys ω(ξ), (5.7)

then, the solution θε(t) preserves this modulus of continuity ω(ξ) for all time t ∈ [T0, ∞), consequently, 
θε ∈ L∞([T0, ∞); Ċσ(R2)) uniformly in ε.

Remark 4. If additionally we have

sup
t∈[T0,∞)

‖θε(t)‖L∞(R2) <
1
2ω

(
1

2b1

)
(5.8)

where b1 is the constant appearing in the condition (A3), then by replacing ω(ξ) in (5.5) with the following 
modulus of continuity

ω(ξ) =

⎧⎪⎪⎨⎪⎪⎩
κ 1
m(δ−1)δ

−σξσ, for 0 < ξ ≤ δ,

κ 1
m(δ−1) + γ

∫ ξ

δ
1

η m(η−1)dη, for δ < ξ ≤ 1
2b1 ,

ω( 1
2b1 ), for ξ ≥ 1

2b1 ,

(5.9)

the same conclusion as Lemma 5.2 also holds for the function m under the assumptions (A1)–(A4). Indeed, 
one can similarly check that ω(ξ) defined by (5.9) is a modulus of continuity satisfying the condition (3) 
of Proposition 3.1; then due to (5.8), we only need to check the inequality (5.12) for all 0 < ξ ≤ 1

2b1 , 
furthermore since we have (3.34) and ω′(η) = 0 for all η > 1

2b1 , we observe that the justification is the same 
as that of Lemma 5.3. Moreover, (5.24) can also be obtained in a similar manner, thus the preservation of 
the modulus of continuity ω(ξ) implies the desired σ-Hölder regularity, namely
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sup
t∈[T0,∞)

‖θε(t)‖Ċσ(R2) ≤
κ

m(δ−1)δ
−σ. (5.10)

Proof of Lemma 5.2. We first check that ω(ξ) defined in (5.5) is indeed a modulus of continuity. Let us show 
that ω is an increasing and concave function for all ξ > 0. To do so, we observe that for every ξ ∈ (0, δ), 
one has

ω′(ξ) = κσ

m(δ−1)δ
−σξσ−1 > 0, and ω′′(ξ) = −κσ(1 − σ)

m(δ−1) δ−σξσ−2 < 0,

and for all ξ > δ,

ω′(ξ) = γ

ξm(ξ−1) > 0, and ω′′(ξ) = − γ

ξ2m(ξ−1)

(
1 − ξ−1m′(ξ−1)

m(ξ−1)

)
≤ − γ(1 − α)

ξ2m(ξ−1) < 0, (5.11)

and for ξ = δ, then

ω′(δ−) = κσ

δm(δ−1) , and ω′(δ+) = γ

δm(δ−1) ,

thus if γ < σκ, we infer that ω(ξ) is increasing and concave for all ξ > 0.
Besides, it is easy to see that ω(0+) = 0 and that ω′(0+) = lim

ξ→0+
κσ

1
m(δ−1)δ

−σξσ−1 = +∞, hence, ω

satisfies the condition (3) in Proposition 3.1.
Then, according to Proposition 3.1, it suffices to prove that for all t > T0 and all ξ ∈ {ξ > 0 : ω(ξ) ≤

2‖θε(t)‖L∞},

Ω(ξ, t)ω′(ξ) + D(ξ, t) < 0, (5.12)

where Ω(ξ, t), D(ξ, t) are respectively defined by (3.28) and (3.29) under the scenario (3.30) with ω(·) in 
place of ω(·, t). Using Lemma 3.5 and Lemma 3.6, we obtain

D(ξ, t) ≤ C1

ξ
2∫

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)
η1+β

dη + C1

∞∫
ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)
η1+β

dη,

and

Ω(ξ, t) ≤ −C2ξm(ξ−1)D(ξ, t) + C2ξ

∞∫
ξ

ω(η)m(η−1)
η1+β

dη + C2ξ
1−βm(ξ−1)ω(ξ). (5.13)

In order to show (5.12), we shall divide the study into two cases.

Case 1: 0 < ξ ≤ δ.

We first focus on the contribution coming from the velocity, and we see that,

Q(ξ) ≡
∞∫
ξ

ω(η)m(η−1)
η1+β

dη = −
∞∫
ξ

ω(η)m(η−1)∂η
{
η−β

β

}
dη

then we integrate by parts, and by using the following inequalities
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(ω(η)m(η−1))′ = ω′(η)m(η−1) − 1
η2ω(η)m′(η−1) ≤ ω′(η)m(η−1), (5.14)

and

lim
η→∞

ω(η)m(η−1)
ηβ

= lim
η→∞

κm(δ−1)m(η−1)
ηβ

+ lim
η→∞

γm(η−1)
ηβ

η∫
δ

1
τm(τ−1)dτ

≤ lim
η→∞

κm(δ−1)m(1)
ηβ

+ lim
η→∞

γ

ηβ

η∫
δ

1
τ

dτ = 0, (5.15)

we infer that

Q(ξ) ≤ ω(ξ)m(ξ−1)
βξβ

+ 1
β

∞∫
ξ

ω′(η)m(η−1)
ηβ

dη.

Then, since ω′(η) = κσ 1
m(δ−1)δ

−σησ−1 for η ≤ δ and ω′(η) = γ 1
η m(η−1) for η > δ, we find that

Q(ξ) ≤ ω(ξ)m(ξ−1)
βξβ

+ κσ

βδσm(δ−1)

δ∫
ξ

m(η−1)
η1+β−σ

dη + γ

∞∫
δ

1
βη1+β

dη,

≤ ω(ξ)m(ξ−1)
βξβ

+ κσδα−σ

β

δ∫
ξ

1
η1+β+α−σ

dη + γ

β2δβ

≤ ω(ξ)m(ξ−1)
βξβ

+ κσδα−σ

β

1
α + β − σ

ξ−(α+β−σ) + γ

β2δβ

≤ ω(ξ)m(ξ−1)
βξβ

+ 2σκ
β(α + β − σ)

1
ξβ

,

where in the last line we used γ < σκ. By using the nondecreasing property of r → rσm(r−1) (σ > α), we 
get

ξ1−βm(ξ−1)ω(ξ)ω′(ξ) = σκ2 ξ
σm(ξ−1)ξσ−β

(δσm(δ−1))2 ≤ σκ2 ξσ−β

δσm(δ−1) ,

and

ξm(ξ−1)ω′(ξ) = κσ
ξσm(ξ−1)
δσm(δ−1) ≤ κσ.

Then, (5.13) and the above estimates allow us to conclude that, for all κ ≤ 1
2C2σ

, we have

Ω(ξ, t)ω′(ξ) ≤ −C2σκD(ξ, t) + C2σκ
1

δσm(δ−1)ξ
σ−β

(
2κ
β

+ 2σκ
β(α + β − σ)

)
≤ −1

2D(ξ, t) + 4C2σκ
2

β(α + β − σ)
1

δσm(δ−1)ξ
σ−β .
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Then, we consider the contribution from the diffusion term. By using that

ω′′(ξ) = −κσ(1 − σ) 1
δσm(δ−1)ξ

σ−2,

we obtain

D(ξ, t) ≤ C1

ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)
η1+β

dη

≤ C1

ξ/2∫
0

ω′′(ξ)2η2

η1+β
dη

≤ −2C1κσ(1 − σ) ξσ−2

δσm(δ−1)

ξ/2∫
0

η1−βdη

≤ −2C1σ(1 − σ)κ ξσ−β

δσm(δ−1)(2 − β)22−β

≤ −C1σ(1 − σ)κ
2

1
δσm(δ−1)ξ

σ−β .

Hence, we finally get

Ω(ξ, t)ω′(ξ) + D(ξ, t) ≤ σκ
1

δσm(δ−1)ξ
σ−β

(
4C2κ

β(α + β − σ) − C1(1 − σ)
4

)
< 0,

and the last inequality is ensured by choosing κ < min
{

C1β(1−σ)(α+β−σ)
16C2

, 1
2C2σ

}
.

Case 2: ξ > δ.

Once again, we first focus on the contribution coming from the velocity (5.13). We integrate by parts, 
and following what we did in Case 1, we find

∞∫
ξ

ω(η)m(η−1)
η1+β

dη ≤ ω(ξ)m(ξ−1)
βξβ

+ 1
β

∞∫
ξ

ω′(η)m(η−1)
ηβ

dη

≤ ω(ξ)m(ξ−1)
βξβ

+ γ

β

∞∫
ξ

1
η1+β

dη ≤ ω(ξ)m(ξ−1)
βξβ

+ γ

β2ξβ
.

(5.16)

From (5.13) and (5.16), we see that

ω′(ξ)Ω(ξ, t) ≤ −C2ξω
′(ξ)m(ξ−1)D(ξ, t) + C2ω

′(ξ)ξ1−βω(ξ)m(ξ−1)
(

1
β

+ γ

ω(ξ)m(ξ−1)β2 + 1
)
,

but we know that ω′(ξ) = γ
ξm(ξ−1) , thus ω′(ξ)ξm(ξ−1) = γ, and the last inequality becomes

ω′(ξ)Ω(ξ, t) ≤ −C2γD(ξ, t) + C2γξ
−βω(ξ)

(
1
β

+ γ

ω(ξ)m(ξ−1)β2 + 1
)
.

Then, we may assume that γ ≤ 1 so that
2C2
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ω′(ξ)Ω(ξ, t) ≤ −1
2D(ξ, t) + C2γξ

−βω(ξ)
(

1
β

+ γ

ω(ξ)m(ξ−1)β2 + 1
)
. (5.17)

On the other hand, we have

ω(2ξ) = ω(ξ) +
2ξ∫
ξ

γ

ηm(η−1)dη = ω(ξ) +
2ξ∫
ξ

1
η1−α

γ

ηαm(η−1)dη,

since ξ → ξ−αm(ξ−1) is an non-decreasing function (see (3.3)), we get

ω(2ξ) ≤ ω(ξ) + 1
ξαm(ξ−1)

2ξ∫
ξ

γ

η1−α
dη = ω(ξ) + 2α − 1

α

γ

m(ξ−1) . (5.18)

In the following, we need 2α−1
α

γ
m(ξ−1) < ω(ξ), and to do so, we shall use the following lemma.

Lemma 5.3. For all C > 1, let γ be sufficiently small, namely

γ <

(
C − 1
C

)α

κ, (5.19)

then we have

γ

m(ξ−1) ≤ Cω(ξ), ∀ξ > δ. (5.20)

Proof of Lemma 5.3. Indeed, for ξ ∈ (δ, C
C−1δ), we infer, by (3.3), that m(δ−1) ≤ ( C

C−1 )αm(ξ−1), and by 

assuming (5.19), we get ω(ξ) ≥ ω(δ) = κ
m(δ−1) ≥ (C−1)ακ

C
α
m(ξ−1) ≥ γ

m(ξ−1) ; while for ξ ∈ [ C
C−1δ, ∞), we find that

ω(ξ) ≥ γ

ξ∫
δ

1
ηm(η−1)dη ≥ γ

ξαm(ξ−1)

ξ∫
δ

1
η1−α

dη

≥ γ

ξαm(ξ−1)

ξ∫
(1−1/C)ξ

1
η1−α

dη ≥ C
−1 γ

m(ξ−1) ,

which gives the claim (5.20) and ends the proof of Lemma 5.3. �
Then, we come back to (5.18), and thanks to the previous lemma we obtain

ω(2ξ) ≤ ω(ξ) + 2α − 1
α

Cω(ξ) = (1 + CαC)ω(ξ),

where we set Cα = 2α−1
α ∈ (0, 1). Thus, by choosing C = 1+Cα

2Cα
> 1, we find

ω(2ξ) ≤ (3/2 + Cα/2)ω(ξ). (5.21)

Since ω(2η + ξ) − ω(2η − ξ) ≤ ω(2ξ), we infer that
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D(ξ, t) ≤ −C1

∞∫
ξ/2

(1/2 − Cα/2)ω(ξ)
η1+β

dη ≤ −C1(1 − Cα)
2β

ω(ξ)
ξβ

.

We shall, once again, use Lemma 5.3 to get a nice estimate of the contribution coming from the nonlinear 
part. Using (5.20), one finds

Ω(ξ, t)ω′(ξ) ≤ −1
2D(ξ, t) + C2γ

ω(ξ)
ξβ

(
1
β

+ C

β2 + 1
)
, (5.22)

then, using that C = 1+Cα

2Cα
≤ 1

Cα
, we obtain

Ω(ξ, t)ω′(ξ) + D(ξ, t) ≤ ω(ξ)
ξβ

(
C2γ

3
β2Cα

− C1(1 − Cα)
4β

)
< 0,

where the last inequality holds by assuming γ < C1βCα(1−Cα)
12C2

.
Therefore, for σ ∈ (α, min{α+ β, 1}) and δ > 0, the solution θε(t) of the evolution equation (5.1) on the 

time interval [T0, ∞) preserves the modulus of continuity ω(ξ) as long as 0 < γ < κ < 1 are fixed constants 
satisfying

0 < κ < min
{
C1(1 − σ)(α + β − σ)

16C2
,

1
2C2σ

}
,

0 < γ < min
{

1
2C2

,
(1 − Cα)α

2 κ,
C1βCα(1 − Cα)

12C2

}
,

(5.23)

where Cα = 2α−1
α ∈ (0, 1) for α ∈ (0, 1).

To end the proof of Lemma 5.2, we need to show the uniform Ċσ-regularity of θε, and to this purpose, 
it suffices to prove the following claim

the mapping ξ → ω(ξ)
ξσ

for every ξ > 0 is nonincreasing. (5.24)

Indeed, if ξ ∈ (0, δ], then (5.24) follows easily from the definition of ω; while if ξ ∈ (δ, ∞), then we have 
(ω(ξ)

ξσ )′ = ξω′(ξ)−σω(ξ)
ξσ+1 , and thanks to (5.11) and the condition σ > α, we infer that

(ξω′(ξ) − σω(ξ))′ = ω′(ξ) + ξω′′(ξ) − σω′(ξ) ≤ (1 − σ − (1 − α))γ
ξm(ξ−1) < 0.

Besides, if γ < σκ, then we have

δω′(δ+) − σω(δ) = γ

m(δ−1) − σκ

m(δ−1) < 0, (5.25)

thus we find that d
dξ (ω(ξ)

ξσ ) < 0, which implies that (5.24) holds for all ξ ∈ (δ, ∞). Note that we used a new 
condition on γ which is γ < σκ, therefore, the conditions on the constants κ and γ of the preserved modulus 
of continuity (5.23) becomes (5.6) as stated in Lemma 5.2.

Then, since the modulus of continuity ω(ξ) associated to θε(t), which is defined by (5.6), is preserved in 
the time interval [T0, ∞), we obtain by using (5.24) that

sup ‖θε(t)‖Ċσ = sup sup
2

|θε(x, t) − θε(y, t)|
|x− y|σ ≤ sup

2

ω(|x− y|)
|x− y|σ ≤ κ

1
m(δ−1)δ

−σ, (5.26)

t∈[T0,∞) t∈[T0,∞) x�=y∈R x�=y∈R
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which corresponds to the σ-Hölder regularity of θε(t) uniformly in ε. This allows us to conclude 
Lemma 5.2. �
5.2. Eventual regularity of the weak solutions of the (gSQG)β equation (1.1).

As far as the regularized equation (5.1) is concerned, we have already seen that, uniformly with respect 
to ε, both the Lp-estimate (5.2) and the energy estimate (5.3) are verified. Then, using (5.3) along with the 
divergence-free property of uε, one can show the following L∞ estimate, that is, for all t′ > 0,

‖θε‖L∞([t′,+∞)×R2) ≤
Cβ

t′ 1/β
‖θ0‖L2(R2), (5.27)

where Cβ > 0 is a constant independent of ε. The argument used to prove (5.27) is the De Giorgi iteration 
method, which does, luckily, not depend on the nature of the velocity uε since only the uniform energy 
estimate and the divergence-free property of uε are used. Hence, the proof of (5.27) is quite similar to those 
in [4], [14] for instance, and we therefore omit the details.

Now according to Lemma 5.1 and Lemma 5.2, in order to prove the eventual regularity of the global weak 
solution θ, it suffices to show that the smooth solution θε of the approximate equation (5.1) is, uniformly 
in ε, σ-Hölderian for some time t′ + T∗. To this end, we shall prove that the solution of the approximate 
equation (5.1) obeys (uniformly in ε) the following moduli of continuity ω(ξ, ξ0):

for all ξ0 > δ,

ω(ξ, ξ0) =

⎧⎪⎪⎨⎪⎪⎩
(1−σ)κ
m(δ−1) + γ

∫ ξ0
δ

1
ηm(η−1)dη − γ

ξ0m(ξ−1
0 ) (ξ0 − δ) + σκ

δm(δ−1)ξ, if 0 < ξ ≤ δ,

κ
m(δ−1) + γ

∫ ξ0
δ

1
ηm(η−1)dη − γ

m(ξ−1
0 ) + γ

ξ0m(ξ−1
0 )ξ, if δ < ξ ≤ ξ0,

κ
m(δ−1) + γ

∫ ξ

δ
1

ηm(η−1)dη, if ξ > ξ0,

(5.28)

and for all ξ0 ≤ δ,

ω(ξ, ξ0) =

⎧⎪⎪⎨⎪⎪⎩
(1−σ)κ
m(δ−1)δ

−σξσ0 + σκ
m(δ−1)δ

−σξσ−1
0 ξ, if 0 < ξ ≤ ξ0,

κ
m(δ−1)δ

−σξσ, if ξ0 < ξ ≤ δ,

κ
m(δ−1) + γ

∫ ξ

δ
1

ηm(η−1)dη, if ξ > δ,

(5.29)

where σ ∈ (α, min{α + β, 1}), κ, γ, δ > 0 are constants that will be chosen later and ξ0 = ξ0(t) is a 
time-dependent function given by (5.32). Motivated by [27], the basic idea to construct such moduli ω(ξ, ξ0)
consists in taking a tangent line at the point ξ = ξ0 to ω(ξ) (given by (5.5)) and replacing ω(ξ) with this 
tangent line in the interval 0 < ξ ≤ ξ0. However, since the one-sided derivatives of ω(ξ) at the point ξ = δ

do not coincide, we make a crucial modification in the case ξ0 > δ, that is, the tangent line mentioned above 
in the interval δ ≤ ξ ≤ ξ0 is once again taken, but for 0 < ξ ≤ δ it is replaced by a straight line crossing 
ω(δ+, ξ0) with the larger slope ω′(δ−) = σκ

δm(δ−1) .
It is not difficult to check that ω(ξ, ξ0) is an increasing concave function in ξ, for every ξ > 0 and ξ0 > 0. 

Furthermore, we may easily see that, for all ξ0 > 0, we have ω(0+, ξ0) > 0, and thus the condition (3) in 
Proposition 3.1 holds. For ξ0 = A0 > δ where A0 is a constant that will be chosen later, one observes that

ω(0+, A0) = (1 − σ)κ 1
m(δ−1) + γ

A0∫
δ

1
ηm(η−1)dη − γ

A0m(A−1
0 )

(A0 − δ)

≥ (1 − σ)κ 1
−1 + γ

α −1
Aα

0 − δα − γ
−1
m(δ ) A0m(A0 ) α m(A0 )
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≥
(
(1 − σ)κ− γ

) 1
m(δ−1)

+ (1 − α)γ
α

Aα
0 − δα

Aα
0m(A−1

0 )
, (5.30)

and by assuming that γ < (1 − σ)κ and using (5.27), one gets that the solution θε(t′) obeys the modulus of 
continuity ω(ξ, A0) provided that

(1 − α)γ
α

Aα
0 − δα

Aα
0m(A−1

0 )
≥ 2Cβ

t′ 1/β
‖θ0‖L2(R2). (5.31)

The following key lemma shows that the breakdown of such moduli of continuity after t′ cannot happen.

Lemma 5.4. Suppose that θε(t′) obeys the modulus of continuity ω(ξ, A0) given by (5.28). For ρ > 0, let 
ξ0 = ξ0(t) be a time-dependent function defined by

d

dt
ξ0 = −ρ ξ1−β

0 , ξ0(0) = A0. (5.32)

Then, for some sufficiently small positive constants δ, κ, γ and ρ (verifying (5.31) and (5.74) below), the 
solution θε(x, t + t′) to the regularized generalized (gSQG)β,ε equation (5.1), uniformly in ε, preserves the 
modulus of continuity ω(ξ, ξ0(t)) for every ξ0(t) > 0.

Using this lemma, we shall show the desired eventual Hölder regularity of global weak solution to (1.1). 
Indeed, using (5.32), we have that ξ0(t) = (Aβ

0 − ρβt)
1
β , thus at the time t1 defined by

t1 = Aβ
0/(βρ) (5.33)

we have ξ0(t1) = 0 and consequently θε(x, t1 + t′) obeys the modulus of continuity ω(ξ, 0+) = ω(ξ), with 
ω(ξ) being the modulus of continuity defined by (5.5). Hence, the property (5.7) is satisfied at the time 
T0 = t1 + t′ and thus, Lemma 5.2 implies that the modulus of continuity ω(ξ) given by (5.5) is (uniformly 
in ε) preserved by the evolution of θε(t) in the time interval t ≥ t1 + t′ (note that κ, γ here satisfies (5.6)). 
Therefore, from (5.26) we get

sup
t∈[t1+t′,+∞)

‖θε(t)‖Ċσ(R2) ≤ κ
1

m(δ−1)δ
−σ, (5.34)

where δ > 0 is a fixed constant satisfying (5.31), which combined with Lemma 5.1 concludes the eventual 
regularity result.

Now it remains to prove Lemma 5.4.

Proof of Lemma 5.4. According to Proposition 3.1 and since we have (via (5.31))

ω(A0, ξ0) > ω(0+, A0) > 2‖θε‖L∞([t′,+∞)×R2),

we observe that it suffices to prove that for all t > 0 so that ξ0(t) > 0 and 0 < ξ ≤ A0,

−∂ξ0ω(ξ, ξ0)ξ′0(t) + Ω(ξ, t)∂ξω(ξ, ξ0) + D(ξ, t) + ε∂ξξω(ξ, ξ0) < 0, (5.35)

where ω(ξ, ξ0) is given by (5.28)–(5.29), and
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D(ξ, t) ≤C1

ξ
2∫

0

ω(ξ + 2η, ξ0) + ω(ξ − 2η, ξ0) − 2ω(ξ, ξ0)
η1+β

dη

+ C1

∞∫
ξ
2

ω(2η + ξ, ξ0) − ω(2η − ξ, ξ0) − 2ω(ξ, ξ0)
η1+β

dη,

(5.36)

and,

Ω(ξ, t) ≤ −C2ξm(ξ−1)D(ξ, t) + C2ξ

∞∫
ξ

ω(η, ξ0)m(η−1)
η1+β

dη + C2ξ
1−βm(ξ−1)ω(ξ, ξ0). (5.37)

Note that in (5.35), if ∂ξ0ω(ξ, ξ0) or ∂ξω(ξ, ξ0) does not exist, the larger value of the one-sided derivative 
will be taken.

Depending on the values of ξ0 and ξ, we shall divide the study into 5 cases to prove (5.35).

Case 1: ξ0 > δ, 0 < ξ ≤ δ.

In that case, (5.28) implies that

ω(ξ, ξ0) = (1 − σ)κ 1
m(δ−1) + γ

ξ0∫
δ

1
ηm(η−1)dη − γ

1
ξ0m(ξ−1

0 )
(ξ0 − δ) + σκ

δm(δ−1)ξ,

hence,

∂ξ0ω(ξ, ξ0) ≤ γ
1

ξ0m(ξ−1
0 )

, and ∂ξω(ξ, ξ0) = σκ
1

δm(δ−1) , (5.38)

and

ω(ξ, ξ0) ≥ ω(0+, ξ0) = (1 − σ)κ 1
m(δ−1) + γ

ξ0∫
δ

1
ηm(η−1)dη − γ

1
ξ0m(ξ−1

0 )
(ξ0 − δ)

≥ (1 − σ)κ 1
m(δ−1) + γ

1
ξα0 m(ξ−1

0 )

ξ0∫
δ

1
η1−α

dη − γ
1

ξ0m(ξ−1
0 )

(ξ0 − δ)

= (1 − σ) κ

m(δ−1) + γ

α

1
ξα0 m(ξ−1

0 )
(ξα0 − δα) − γ

1
ξ0m(ξ−1

0 )
(ξ0 − δ) ,

≡ Mξ0,δ. (5.39)

We also have

ω(ξ, ξ0) − ω(0+, ξ0) ≤ ω(δ, ξ0) − ω(0+, ξ0) = σκ
1

m(δ−1) . (5.40)

Therefore, by (5.32) and (5.38) we obtain

−∂ξ0ω(ξ, ξ0)ξ′0(t) ≤ ργ
1

m(ξ−1
0 )ξβ0

. (5.41)

Using (5.28), (5.14)–(5.15) and (3.3), by integrating by parts, one gets that, for all γ ≤ σκ,
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∞∫
ξ

ω(η, ξ0)m(η−1)
η1+β

dη ≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+
∞∫
ξ

∂ηω(η, ξ0)m(η−1)
βηβ

dη

=ω(ξ, ξ0)m(ξ−1)
βξβ

+ σκ

βδm(δ−1)

δ∫
ξ

m(η−1)
ηβ

dη + γ

βξ0m(ξ−1
0 )

ξ0∫
δ

m(η−1)
ηβ

dη + γ

β

∞∫
ξ0

1
η1+β

dη

≤ω(ξ, ξ0)m(ξ−1)
βξβ

+ σκ

βδ1−α

δ∫
ξ

1
ηα+β

dη + γ

βξ1−α
0

ξ0∫
δ

1
ηα+β

dη + γ

β2ξβ0
(5.42)

=ω(ξ, ξ0)m(ξ−1)
βξβ

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σκ

βδ1−α
δ1−α−β−ξ1−α−β

1−α−β + γ

βξ1−α
0

ξ1−α−β
0 −δ1−α−β

1−α−β + γ

β2ξβ0
, if α + β < 1,

σκ
βδ1−α log δ

ξ + γ

βξ1−α
0

log ξ0
δ + γ

β2ξβ0
, if α + β = 1,

σκ
βδ1−α

ξ1−α−β−δ1−α−β

α+β−1 + γ

βξ1−α
0

δ1−α−β−ξ1−α−β
0

α+β−1 + γ

β2ξβ0
, if α + β > 1,

≤ω(ξ, ξ0)m(ξ−1)
βξβ

+

⎧⎪⎪⎨⎪⎪⎩
3σκ
β

δ−β

1−α−β , if α + β < 1,
σκ

βδ1−α log δ
ξ + γ

βξ1−α
0

log ξ0
δ + γ

β2ξβ0
, if α + β = 1,

σκ
βδ1−α

ξ1−α−β

α+β−1 + γ

β2ξβ0
, if α + β > 1.

Then, applying (5.37), (5.38), (5.40) and (5.42), we obtain, by choosing γ, κ such that γ ≤ σκ and κ < 1
2C2σ

, 
the following inequality

Ω(ξ, t)∂ξω(ξ, ξ0) ≤− C2σκD(ξ, t) + 2C2σκ
ω(ξ, ξ0)ξ1−βm(ξ−1)

βδm(δ−1) +

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3C2σ

2κ2

β(1−α−β)
ξδ−β

δm(δ−1) , if α + β < 1,
C2

(
σκ

βδ1−α ξ log δ
ξ + γ

βξ1−α
0

ξ log ξ0
δ + γξ

β2ξβ0

)
σκ

δm(δ−1) , if α + β = 1,

C2

(
σκ

βδ1−α
ξ2−α−β

α+β−1 + γξ

β2ξβ0

)
σκ

δm(δ−1) , if α + β > 1,

≤− 1
2D(ξ, t) + 2C2σκ

β

ω(0+, ξ0)
ξβ

+ 2C2σ
2κ2

βm(δ−1)
ξ1−β−α

δ1−α
+

+

⎧⎪⎪⎨⎪⎪⎩
3

1−α−β
C2σ

2κ2

βm(δ−1)δ
−β , if α + β < 1,(

2C0
β + C′

αγ
σκ

)
C2σ

2κ2

βm(δ−1)δ
−(1−α), if α + β = 1,(

1
α+β−1

ξ2−α

δ2−α + γ
βσκ

ξ1+β

δξβ0

)
C2σ

2κ2

βm(δ−1)ξ
−β , if α + β > 1,

≤− 1
2D(ξ, t) + 2C2σκ

β

ω(0+, ξ0)
ξβ

+ C2σ
2κ2Bα,β

βm(δ−1)
1
ξβ

, (5.43)

where in the case α + β = 1 we also used that ξδ
(
log δ

ξ

)
≤ C0 and δ

1−α

ξ1−α
0

log ξ0
δ ≤ C ′

α, and

Bα,β ≡

⎧⎪⎪⎨⎪⎪⎩
5

1−α−β , if α + β < 1,
4C0
β + C ′

α, if α + β = 1,
4

α+β−1 , if α + β > 1.
(5.44)

For the contribution from the diffusion term, using the concavity of the function ω(η, ξ0) −ω(0+, ξ0), we 
obtain that
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D(ξ, t) ≤ −2C1ω(0+, ξ0)
∞∫
ξ
2

1
η1+β

dη ≤ −2C1

β

ω(0+, ξ0)
ξβ

, (5.45)

and thanks to (5.39), we get

D(ξ, t) ≤ −2C1

β

Mξ0,δ

ξβ
. (5.46)

If ξ0 ≥ Nδ with N ∈ N which is chosen such that 1
α (ξα0 − δα) ≥ 1−(1/N)α

α ξα0 ≥ 2
1+αξ

α
0 which means that 

1 − (1/N)α ≥ 2α
1+α , that is, N ≥

(
1+α
1−α

) 1
α , thus we may choose

N ≡
[(

1 + α

1 − α

) 1
α

]
+ 1. (5.47)

Thus for such an N , we have in the case ξ0 ≥ Nδ that

Mξ0,δ ≥ (1 − σ) κ

m(δ−1) +
(

2
1 + α

− 1
)
γ

1
m(ξ−1

0 )
≥ (1 − σ) κ

m(δ−1) + 1 − α

1 + α

γ

m(ξ−1
0 )

. (5.48)

Hence, inequality (5.46) becomes

D(ξ, t) ≤ −2C1(1 − σ)κ
β

1
m(δ−1)ξβ − C1(1 − α)γ

β

1
m(ξ−1

0 )ξβ
. (5.49)

Therefore, for ξ0 ≥ Nδ, we choose κ such that κ ≤ C1
4C2σ

so that inequality (5.45) gives

2C2σκ

β

ω(0+, ξ0)
ξβ

≤ C1

2β
ω(0+, ξ0)

ξβ
≤ −1

4D(ξ, t), (5.50)

and by collecting (5.41), (5.43) and (5.49), we deduce that

L.H.S. of (5.35) ≤
(
C2σκBα,β

β
− C1(1 − σ)

2β

)
κ

m(δ−1)ξβ +
(
ρ− C1(1 − α)

4β

)
γ

m(ξ−1
0 )ξβ

< 0,

where the last inequality is verified as long as ρ, κ, γ satisfy

ρ <
C1(1 − α)

4β , κ < min
{

C1

4C2σ
,
C1(1 − σ)
2C2σ2Bα,β

}
, γ < σκ. (5.51)

Conversely, if ξ0 ≤ Nδ with N satisfying (5.47), using the following fact that

1
m(ξ−1

0 )
≤ 1

m ((Nδ)−1) ≤ Nα

m(δ−1) ≤ 4
1 − α

1
m(δ−1) , (5.52)

and using (5.50) once again, we obtain that the positive contribution is, thanks to (5.41) and (5.43), given 
by

−∂ξ0ω(ξ, ξ0)ξ′0(t) + Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −3
D(ξ, t) + κ

−1 β

(
4ρ γ + C2σ

2κBα,β

)
.
4 m(δ )ξ 1 − α κ β
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For the negative contribution coming from the dissipation term, via (5.39), (5.46) and (5.52), we easily get 
that for every γ ≤ (1−σ)(1−α)

8 κ,

D(ξ, t) ≤ −2C1

β

1
ξβ

(
(1 − σ)κ 1

m(δ−1) − γ
1

m(ξ−1
0 )

)
≤ −2C1

β

(
(1 − σ)κ− 4γ

1 − α

)
1

m(δ−1)ξβ ≤ −C1 (1 − σ)κ
β

1
m(δ−1)ξβ . (5.53)

Hence for ξ0 ≤ Nδ, we finally have that

L.H.S. of (5.35) ≤ κ

m(δ−1)ξβ

(
ρ(1 − σ)

2 + C2σ
2κBα,β

β
− C1(1 − σ)

4β

)
< 0,

where the last inequality is verified if

ρ <
C1

4β , κ < min
{

C1(1 − σ)
8C2σ2Bα,β

,
1

4C2σ

}
, γ < min

{
(1 − σ)(1 − α)

8 κ, σκ

}
. (5.54)

Case 2: ξ0 > δ, δ < ξ ≤ ξ0.

In that case, we have

ω(ξ, ξ0) = κ
1

m(δ−1) + γ

ξ0∫
δ

1
ηm(η−1)dη − γ

1
m(ξ−1

0 )
+ γ

1
ξ0m(ξ−1

0 )
ξ,

hence, we infer that,

∂ξω(ξ, ξ0) = γ
1

ξ0m(ξ−1
0 )

, and ∂ξ0ω(ξ, ξ0) ≤
γ

ξ0m(ξ−1
0 )

+ αγξ

ξ2
0m(ξ−1

0 )
≤ 2γ

ξ0m(ξ−1
0 )

, (5.55)

and (recalling Mξ0,δ defined in (5.39))

ω(ξ, ξ0) ≥ ω(δ, ξ0) ≥ κ
1

m(δ−1) + γ

ξ0∫
δ

1
ηm(η−1)dη − γ

1
ξ0m(ξ−1

0 )
(ξ0 − δ)

≥ κ

m(δ−1) + γ

α

1
ξα0 m(ξ−1

0 )
(ξα0 − δα) − γ

1
ξ0m(ξ−1

0 )
(ξ0 − δ)

= Mξ0,δ + σκ

m(δ−1) ,

(5.56)

and we also have that

ω(ξ, ξ0) − ω(0+, ξ0) ≤ ω(ξ0, ξ0) − ω(0+, ξ0) ≤
γ

m(ξ−1
0 )

+ σκ

m(δ−1) ≤ 2κ
m(ξ−1

0 )
. (5.57)

Therefore, thanks to (5.32) and (5.55), we get

−∂ξ0ω(ξ, ξ0)ξ′0(t) ≤
2ργ

ξ0m(ξ−1
0 )

ξ1−β
0 ≤ 2ργ

ξβm(ξ−1
0 )

. (5.58)

We moreover obtain that
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∞∫
ξ

ω(η, ξ0)m(η−1)
η1+β

dη ≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+
∞∫
ξ

∂ηω(η, ξ0)m(η−1)
βηβ

dη

= ω(ξ, ξ0)m(ξ−1)
βξβ

+ γ

βξ0m(ξ−1
0 )

ξ0∫
ξ

m(η−1)
ηβ

dη +
∞∫

ξ0

γ

βη1+β
dη

≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+ γ

βξ1−α
0

ξ0∫
ξ

1
ηα+β

dη + γ

β2ξβ0

≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ

β(1−α−β)ξβ0
+ γ

β2ξβ0
, if α + β < 1

γ

βξβ0
log ξ0

ξ + γ

β2ξβ0
, if α + β = 1

γ
β(β+α−1)ξβ + γ

β2ξβ0
, if α + β > 1.

(5.59)

Thus, by combining (5.37) with (5.59), and using ∂ξω(ξ, ξ0) = γ 1
ξ0m(ξ−1

0 ) and ξm(ξ−1) ≤ ξ0m(ξ−1
0 ), we 

obtain the following control

Ω(ξ, t)∂ξω(ξ, ξ0) ≤− C2γD(ξ, t) + 2C2γω(ξ, ξ0)
βξβ

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C2γ

2

β(1−α−β)ξβ0 m(ξ−1
0 )

+ C2γ
2

β2ξβ0 m(ξ−1
0 )

, if α + β < 1
C2γ

2

βξβ0 m(ξ−1
0 )

ξ
ξ0

log ξ0
ξ + C2γ

2

β2ξβ0 m(ξ−1
0 )

, if α + β = 1
C2γ

2

β(α+β−1)ξβm(ξ−1
0 ) + C2γ

2

β2ξβ0 m(ξ−1
0 )

, if α + β > 1,

then, using (5.57) and the fact that ξ
ξ0

log ξ0
ξ ≤ C0 we observe that if we set

Bα,β =

⎧⎪⎪⎨⎪⎪⎩
3

1−α−β + 3
β , if α + β < 1,

C0 + 5
β , if α + β = 1,

6
α+β−1 , if α + β > 1,

(5.60)

then we get that if γ is chosen such that γ < 1
4C2

, we find

Ω(ξ, t)∂ξω(ξ, ξ0)

≤− 1
4D(ξ, t) + 2C2γω(0+, ξ0)

βξβ
+ 4C2κγ

βξβm(ξ−1
0 )

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
1−α−β + 1

β

)
C2γ

2

βξβ0 m(ξ−1
0 )

, if α + β < 1(
C0 + 1

β

)
C2γ

2

βξβ0 m(ξ−1
0 )

, if α + β = 1(
1

α+β−1 + 1
β

)
C2γ

2

βξβm(ξ−1
0 ) , if α + β > 1

≤− 1
4D(ξ, t) + 2C2γω(0+, ξ0)

βξβ
+ C2Bα,βκγ

β

1
ξβm(ξ−1

0 )
. (5.61)

For the contribution from the diffusion term, we still have (5.45) and (5.46). Now, as we did in Case 1 
above, we split the study into ξ0 ≥ Nδ and ξ0 ≤ Nδ where N has been defined in (5.47). If ξ0 ≥ Nδ, then, 
by using (5.49) and by choosing γ such that γ < C1

4C2
, we find that

L.H.S. of (5.35) ≤ γ

βξβm(ξ−1
0 )

(
2ρβ + C2Bα,βκ− C1(1 − α)

2

)
< 0,

where the last inequality holds true as long as



O. Lazar, L. Xue / J. Math. Pures Appl. 130 (2019) 200–250 241
ρ <
C1(1 − α)

8β , κ <
C1(1 − α)
4C2Bα,β

, γ < min
{

1
4C2

,
C1

4C2
, σκ

}
. (5.62)

Otherwise, if ξ0 ≤ Nδ, and we have, using (5.52) and choosing γ such that γ < C1
4C2

, that the positive 
contribution treated by (5.58) and (5.61) can further be bounded as

−∂ξ0ω(ξ, ξ0)ξ′0(t) + Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −1
2D(ξ, t) + 4γ

(1 − α)β
1

ξβm(δ−1)
(
2βρ + C2Bα,β κ

)
.

For the negative contribution from the diffusion term, by arguing as (5.53) we obtain that for γ choosen 
such that γ ≤ (1−σ)(1−α)

8 κ, one has

D(ξ, t) ≤ −2C1

β

(
(1 − σ)κ− 4γ

1 − α

)
1

m(δ−1)ξβ ≤ −2C1
4 γ

(1 − α)β
1

ξβm(δ−1) .

Hence for ξ0 ≤ Nδ with N given by (5.47), we deduce

L.H.S. of (5.35) ≤ 4 γ
(1 − α)β

1
ξβm(δ−1)

(
2ρβ + C2Bα,β κ− C1

)
< 0,

where the last inequality holds true if

ρ <
C1

4β , κ <
C1

2C2Bα,β

, γ ≤ min
{

(1 − σ)(1 − α)
8 κ,

1
4C2

,
C1

4C2

}
. (5.63)

Case 3: ξ0 > δ, ξ0 < ξ ≤ A0.

In this case,

ω(ξ, ξ0) = κ
1

m(δ−1) + γ

ξ∫
δ

1
ηm(η−1)dη.

We see that ∂ξ0ω(ξ, ξ0) = 0, ∂ξω(ξ, ξ0) = γ 1
ξm(ξ−1) , and following the same arguments as we did to obtain 

(5.16), we find, using (5.20) and ω(ξ, ξ0) = ω(ξ) (with ω(ξ) defined in (5.5)) that

∞∫
ξ

ω(η, ξ0)m(η−1)
η1+β

dη ≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+ γ

β2ξβ
≤ 2Cω(ξ, ξ0)m(ξ−1)

β2ξβ
,

where C = 1+Cα

2Cα
and Cα = 2α−1

α ∈ (0, 1). Thus, thanks to (5.37), if one chooses γ so that γ < 1
2C2

, then, 
one gets

Ω(ξ, t)∂ξω(ξ, ξ0) ≤ −1
2D(ξ, t) + 3C2Cγ

β2
ω(ξ, ξ0)

ξβ
.

As far as the contribution from the diffusion term is concerned, since

ω(2η + ξ, ξ0) − ω(2η − ξ, ξ0) ≤ ω(2ξ, ξ0) < 2ω(ξ, ξ0),

then, by following the same idea as (5.21), we obtain
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D(x, t) ≤ −C1
(1 − Cα)ω(ξ, ξ0)

2

∞∫
ξ
2

1
η1+β

dη ≤ −C1(1 − Cα)
2β

ω(ξ, ξ0)
ξβ

.

Hence,

Ω(ξ, t)∂ξω(ξ, ξ0) + D(ξ, t) ≤ ω(ξ, ξ0)
βξβ

(
C2γ

3C
β

− C1(1 − Cα)
4

)
< 0,

provided that the constants κ, γ are chosen so that

0 < κ < 1, 0 < γ < min
{

1
2C2

,
(1 − Cα)α

2 κ,
C1βCα(1 − Cα)

12C2

}
. (5.64)

Case 4: 0 < ξ0 ≤ δ, 0 < ξ ≤ ξ0.

In this case,

ω(ξ, ξ0) = (1 − σ)κ 1
m(δ−1)δ

−σξσ0 + σκ
1

m(δ−1)δ
−σξσ−1

0 ξ,

and thus

∂ξ0ω(ξ, ξ0) = σ(1 − σ)κ 1
m(δ−1)δ

−σξσ−1
0

(
1 − ξ

ξ0

)
, and ∂ξω(ξ, ξ0) = σκ

1
m(δ−1)δ

−σξσ−1
0 ,

and

ω(ξ, ξ0) ≥ ω(0+, ξ0) ≥ (1 − σ)κ 1
m(δ−1)δ

−σξσ0 , and ω(ξ, ξ0) ≤ ω(δ, ξ0) ≤ κ
1

m(δ−1)δ
−σξσ0 . (5.65)

We have

−∂ξ0ω(ξ, ξ0)ξ̇0(t) ≤ ρσ(1 − σ)κ 1
m(δ−1)δ

−σξσ−β
0 (1 − ξ

ξ0
) ≤ C2ρσω(ξ, ξ0)

ξβ
. (5.66)

A straightforward use of (3.3) gives both

ξm(ξ−1) ≤ ξ0m(ξ−1
0 ) and m(ξ−1

0 ) ≤
(

δ

ξ0

)α

m(δ−1),

and hence, one finds

ξm(ξ−1)∂ξω(ξ, ξ0) ≤ σκ
ξσ0m(ξ−1

0 )
δσm(δ−1) ≤ σκ

ξσ−α
0
δσ−α

≤ σκ, (5.67)

which also leads to

−C2ξm(ξ−1)D(ξ, t)∂ξω(ξ, ξ0) ≤ −C2σκD(ξ, t). (5.68)

By integrating by parts, and using (5.14)–(5.15), (3.3) along with formula (5.29), we see that,
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∞∫
ξ

ω(η, ξ0)m(η−1)
η1+β

dη ≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+
∞∫
ξ

∂ηω(η, ξ0)m(η−1)
βηβ

dη

≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+ σκξσ−1
0

βδσm(δ−1)

ξ0∫
ξ

m(η−1)
ηβ

dη + σκ

βδσm(δ−1)

δ∫
ξ0

m(η−1)
η1+β−σ

dη + γ

β

∞∫
δ

1
η1+β

dη

≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+ σκξσ−1
0

βδσ−α

ξ0∫
ξ

1
ηα+β

dη + σκ

βδσ−α

δ∫
ξ0

1
η1+β+α−σ

dη + γ

β2 δ
−β

≤ ω(ξ, ξ0)m(ξ−1)
βξβ

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σκ

β(1−α−β)ξβ0
+ σκ

β(α+β−σ)ξβ0
+ γ

β2δβ
, if α + β < 1,

σκ

βξβ0
log ξ0

ξ + σκ

β(1−σ)ξβ0
+ γ

β2δβ
, if α + β = 1,

σκ
β(α+β−1)ξβ + σκ

β(α+β−σ)ξβ0
+ γ

β2δβ
, if α + β > 1.

By using (5.37) together with the fact that ξ0∂ξω(ξ, ξ0) ≤ σ
1−σω(ξ, ξ0), the previous inequality allows to 

conclude that, by choosing κ and γ such that κ ≤ 1
2C2σ

and γ ≤ σκ, one has the following inequality

Ω(ξ, t)∂ξω(ξ, ξ0) ≤− C2σκD(ξ, t) + 2C2σκ

β

ω(ξ, ξ0)
ξβ

+

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C2σκ
βξβ

(
1

1−α−β + 1
α+β−σ + 1

β

)
ξ0∂ξω(ξ, ξ0), if α + β < 1,

C2σκ
βξβ

(
C0 + 1

α+β−σ + 1
β

)
ξ0∂ξω(ξ, ξ0), if α + β = 1,

C2σκ
βξβ

(
1

α+β−1 + 1
α+β−σ + 1

β

)
ξ0∂ξω(ξ, ξ0), if α + β > 1,

≤− 1
2D(ξ, t) + 3C2σκKα,β,σ

β(1 − σ)
ω(ξ, ξ0)

ξβ
,

(5.69)

where we have used ξ
ξ0

log ξ0
ξ ≤ C0 and have set

Kα,β,σ ≡

⎧⎪⎪⎨⎪⎪⎩
1

1−α−β + 2
α+β−σ , if α + β < 1,

C0 + 2
1−σ , if α + β = 1,

3
α+β−1 , if α + β > 1.

(5.70)

For the contribution from the diffusion term, by following the same idea as the proof of (5.45) and using 
(5.65), we get

D(ξ, t) ≤ −2C1ω(0+, ξ0)
∞∫
ξ
2

1
η1+β

dη ≤ −2C1(1 − σ)ω(ξ, ξ0)
βξβ

. (5.71)

Then, thanks to (5.66), (5.69), (5.71) along with (5.35), one finds that

L.H.S. of (5.35) ≤ ω(ξ, ξ0)
βξβ

(
βσρ + 3C2σκKα,β,σ

1 − σ
− C1(1 − σ)

)
< 0, (5.72)

where the last inequality is ensured by setting

ρ <
C1(1 − σ)

, κ < min
{

C1(1 − σ)2
,

1
}
, γ ≤ σκ. (5.73)
2βσ 6C2σKα,β,σ 2C2σ
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Case 5: 0 < ξ0 ≤ δ, ξ > ξ0.

In this case, we may follow what we did in Case 1 and Case 2 in the proof of Lemma 5.2, and we omit 
the details. However, it is worth saying that the conditions on κ, γ, in that case, are given by (5.6).

Finally, we have proved that (5.35) is verified for all ξ > 0 and t > 0 for the moduli of continuity ω(ξ, ξ0)
defined by (5.28)–(5.29) and ξ0 = ξ0(t) given by (5.32). Recall that ρ, κ, γ are constants satisfying all the 
conditions coming from each cases, namely (5.6), (5.51), (5.54), (5.62), (5.63), (5.64), (5.73). This ends the 
proof of Lemma 5.4. �
Remark 5. By suppressing the dependence on C0, b0, b2 (which are fixed constants), and recalling that 
C2 = C0

β (the constant appearing in Lemma 3.6), we find that the conditions on ρ, κ and γ can be written 
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ≤ 1
C min

{
C1(1−α)

β , C1(1−σ)
βσ

}
,

κ ≤ C1β(1−σ)2
C min {1 − α− β, α + β − σ} , if α + β < 1,

κ ≤ C1β(1−σ)
C min

{
1
C′

α
, (1 − σ)2

}
, if α + β = 1,

κ ≤ C1
C β(1 − σ)2(α + β − 1), if α + β > 1,

γ ≤ 1
C min

{
σκ, (1 − Cα)ακ, (1 − σ)(1 − α)κ,C1(1 − Cα)β2} ,

(5.74)

where C > 0 is fixed constant that depends neither on α, σ, β, nor C1 (the constant appearing in 
Lemma 3.5) and the other constants are defined by Cα ≡ 2α−1

α ≥ infα∈(0,1)
2α−1

α = c0 > 0, and 

C ′
α ≡ sup

x∈[1,+∞)

1
x1−α

log x < ∞.

5.3. Proof of (2.2): remark on the time of the eventual regularity

The aim of this subsection is to show that for any fixed initial data θ0 ∈ L2, t′ > 0 and β ∈ (0, 1), the 
time of eventual regularity t1 = Aβ

0/(βρ) tends to 0 as α → 0.
Without loss of generality we may assume A0 < 1. Recalling that (5.31) is verified if

(1 − α)γ
αm(1) (Aα

0 − δα) ≥ 2Cβ

t′ 1/β
‖θ0‖L2 ,

therefore we may choose

A0 =
(

4Cβm(1)
(1 − α)γt′ 1/β

α‖θ0‖L2

) 1
α

, δ =
(

Cβm(1)
(1 − α)γt′ 1/β

α‖θ0‖L2

) 1
α

. (5.75)

Since at the end we are going to consider the limit as α → 0, we may assume that

α < min
{1 − β

2 ,
β

2 ,
1
4

}
for all β ∈ (0, 1),

and since σ ∈ (α, min{α + β, 1}), we may set σ = min{1
3 , 

2β
3 }, thus since Cα = 2α−1

α ≈ (ln 2)2 and 
C ′

α = supx∈[1,+∞)
1

x1−α log x ≈ 1 for α close to 0, we see that (5.74) reduces to

0 < ρ ≤ C1

Cβ
, 0 < κ <

C1

C
min

{
β(1 − β), β2} , 0 < γ <

C1

C
min

{
β(1 − β), β2} , (5.76)

with C > 0 and C1 > 0 some constant depending only on β. Hence, by choosing ρ, κ, γ satisfying the above 
conditions, and via (5.75), we obtain that for all β ∈ (0, 1) for all fixed time t′ > 0 and data θ0 ∈ L2(R2),
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t1 = 1
βρ

(
4Cβm(1)

(1 − α)γt′ 1/β
α‖θ0‖L2

) β
α

= C(β)
(
C(β, t′)α‖θ0‖L2

) β
α → 0, as α → 0. (5.77)

This ends the proof of the remark (2.2) on the time of eventual regularity. �
5.4. Global regularity of weak solution for (gSQG)β equation (1.1) at the logarithmically supercritical case

The aim of this subsection is to prove the first point of Theorem 2.2, that is the global regularity of the 
weak solution for a logarithmically slightly supercritical case. Unlike the second point of Theorem 2.2, we 
now assume that the multiplier m verifies (A1)–(A4).

We use the same method as the proof of the eventual regularity as above. However, in this case, the 
moduli of continuity ω(ξ, ξ0) are constructed from ω(ξ) defined by (5.9) instead of (5.5). Hence, the moduli 
of continuity ω(ξ, ξ0) used here are slightly different from those given by (5.28)–(5.29). It is defined as 
follows,

ω(ξ, ξ0) =

⎧⎪⎪⎨⎪⎪⎩
ω(ξ, ξ0) given by (5.28), if 0 < ξ ≤ 1

2b1 , ξ0 > δ,

ω(ξ, ξ0) given by (5.29), if 0 < ξ ≤ 1
2b1 , ξ0 ≤ δ,

ω( 1
2b1 , ξ0), if ξ ≥ 1

2b1 ,

(5.78)

where ξ0 = ξ0(t) is defined by (5.32) which has an explicit expression namely ξ0(t) = (Aβ
0 − ρβt)

1
β . Clearly, 

ω(ξ, ξ0) given by (5.78) are moduli of continuity satisfying the condition (3) of Proposition 3.1.
Without loss of generality, we may assume that ξ0(0) = A0 is small enough, more precisely we shall 

assume that A0 ≤ min{ 1
2b1 , 

1
b3
} where b1 ≥ 1 is the constant appearing in (A3) and b3 ≥ 1 the constant 

verifying (2.1), that is 1/b3 ≤ m(r) ≤ b3(log r)μ for all r ≥ b3. Then, using (2.1) we have

ω(0+, A0) = (1 − σ)κ 1
m(δ−1) + γ

A0∫
δ

1
ηm(η−1)dη − γ

1
A0m(A−1

0 )
(A0 − δ)

>
γ

b3

A0∫
δ

1
η(log η−1)μ dη − γ

m(1)

≥ γ

b3

1
δ∫

1
A0

1
η(log η)μ dη − γ

m(1) (5.79)

≥

⎧⎪⎨⎪⎩
γ

b3(1−μ)

((
log 1

δ

)1−μ −
(
log 1

A0

)1−μ
)
− γ

m(1) , if μ ∈ [0, 1),
γ
b3

(
log log 1

δ − log log 1
A0

)
− γ

m(1) , if μ = 1.

Then, by using (5.27), we know that, for all t∗ > 0,

‖θε‖L∞([ t∗2 ,∞)×R2) ≤ Cβ

( t∗
2

)−1/β
‖θ0‖L2(R2), (5.80)

thus in order for the inequality ω(0+, A0) > 2‖θε( t∗2 )‖L∞ to be verified, we can let

ω(0+, A0) > 2Cβ

( t∗)−1/β
‖θ0‖L2(R2). (5.81)
2
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Hence, if μ ∈ [0, 1), we need

log 1
δ
≥
[(

log 1
A0

)1−μ

+ b3(1 − μ)
γ

(
2Cβ

( t∗
2

)−1/β
‖θ0‖L2 + γ

m(1)

)] 1
1−μ

,

and using the inequality (a + b)
1

1−μ ≤ Cμ(a
1

1−μ + b
1

1−μ ) for a, b > 0, one observes that it suffices to choose 
δ so that

δ = A
Cμ

0 exp
(
− Cμ

(
3Cβb3(1 − μ)

γ

(
t∗
2

)−1/β

‖θ0‖L2 + b3(1 − μ)
m(1)

)1/(1−μ))
, (5.82)

whereas if μ = 1, it suffices to set δ as

log log 1
δ

= log log 1
A0

+ b3
γ

(
3Cβ

( t∗
2

)−1/β
‖θ0‖L2 + γ

m(1)

)
,

that is,

δ = A
exp

( 3Cβb3
γ ( t∗

2 )−1/β‖θ0‖L2+ b3
m(1)

)
0 . (5.83)

Next, we will prove that such moduli of continuity ω(ξ, ξ0(t)) are preserved by the regular solution 
θε(x, t + t∗

2 ). By choosing δ as (5.82)–(5.83) and using what we did before, we get that θε(x, t∗2 ) obeys the 
modulus of continuity ω(ξ, A0). Then according to Proposition 3.1, and by using (5.80)–(5.81) and the fact 
ω(A0, ξ0) ≥ ω(0+, A0) for all ξ0 ≥ 0, we see that it suffices to verify that

−∂ξ0ω(ξ, ξ0)ξ′0(t) + Ω(ξ, t)∂ξω(ξ, ξ0) + D(ξ, t) + ε∂ξξω(ξ, ξ0) < 0, (5.84)

for all t so that ξ0(t) > 0 and all 0 < ξ ≤ A0. Since we also have (3.34) for the estimation of Ω(ξ, t) and 
since ∂ηω(η, ξ0) ≡ 0 for all η > 1

2b1 , we see that the proof of (5.84) is the same as that of (5.35) in the 

subsection 5.2. The conditions on ρ, κ, γ can also be chosen as (5.74), and by setting σ = min{α+ β
2 , 

α+1
2 }, 

we may choose the coefficients ρ, κ, γ as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = C1
2C min

{
1−α
β , 1−σ

βσ

}
,

κ = C1β(1−σ)2
2C min {1 − α− β, α + β − σ} , if α + β < 1,

κ = C1β(1−σ)
2C min

{
1
C′

α
, (1 − σ)2

}
, if α + β = 1,

κ = C1
2C β(1 − σ)2(α + β − 1), if α + β > 1,

γ = 1
2C min {σκ, (1 − Cα)ακ, (1 − σ)(1 − α)κ,C1(1 − Cα)β} ,

(5.85)

where Cα = 2α−1
α , C ′

α = supx∈[1,+∞)( 1
x1−α log x), C > 0 is some absolute constant and C1 = C1(β) is the 

constant appearing in Lemma 3.5.
Then after some finite time t1 = Aβ

0
βρ so that ξ0(t1) = 0, from the continuous property of θε(x, t) and 

ω(ξ, ξ0(t)), we find that θε(x, t∗2 + t1) obeys the modulus of continuity ω(ξ, 0+) = ω(ξ) given by (5.9). 
Thanks to (5.80) and (5.81), the condition (5.8) is immediately satisfied, then Lemma 5.2 and Remark 4
imply that the approximate solution θε (uniformly in ε) obeys the modulus of continuity ω(ξ) given by (5.9)
on the time interval [ t∗ + t1, ∞), and thanks to (5.10) we get
2
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sup
t∈[t1+t∗/2,∞)

‖θε(t)‖Ċσ(R2) ≤ κ
1

m(δ−1)δ
−σ ≤ κ

m(1)δ
−σ (5.86)

where δ is given by (5.82)–(5.83), ρ, κ, γ are fixed constants that appear in (5.85) and 0 < A0 ≤ min{ 1
2b1 , 

1
b3
}.

Then, in order to let t1 ≤ t∗
4 , we also need that A0 satisfies A

β
0

βρ ≤ t∗
4 , i.e. A0 ≤ (βρt∗/4)1/β , thus for each 

α ∈ (0, 1) and β ∈ (0, 1], we can set A0 to be

A0 = min
{(βρt∗

4

)1/β
,

1
2b1

,
1
b3

}
, (5.87)

so that the uniform-in-ε Hölder estimate (5.86) holds true with such an A0 in the formula of δ defined 
by (5.82)–(5.83). By using Lemma 5.1, we can further show that θε ∈ C∞([t∗, ∞) × R

2) uniformly in ε, 
which by passing ε → 0 implies that the global weak solution θ of the (gSQG)β equation (1.1) satisfies 
θ ∈ C∞([t∗, ∞) × R

2). This ends the proof of Theorem 2.2. �
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Appendix A

Proof of the global part of Proposition 4.1. Assume that T ∗ is the maximal time of existence for the solu-
tion θε to the equation (5.1) in C([0, T ∗), Hs(R2)) ∩ C∞([0, T ∗) × R

2) with s > 2. Then, according to the 
classical regularity criteria (see [43]), it suffices to prove that the norm ‖∇θε‖L∞([0,T∗),L∞(R2)) is bounded.

In the sequel, we shall find some stationary modulus of continuity

ωλ(ξ) ≡ λ2−α−βω(λξ), λ ∈ (0,∞) (A.1)

where

ω(ξ) =
{
ξ − ξ

3
2 , if 0 < ξ ≤ δ,

δ − δ
3
2 , if ξ > δ,

(A.2)

with some 0 < δ < 1 chosen later, so that it is preserved by the evolution of equation (5.1). Clearly, ωλ is a 
modulus of continuity, moreover, it satisfies ωλ(0+) = 0, ω′

λ(0+) = λ and ω′′
λ(0+) = −∞.

We first notice that by choosing λ as

λ ≡ max
{( 4‖θε0‖L∞

δ/2 − (δ/2)3/2
) 1

2−α−β

,
δ‖∇θε0‖L∞

2‖θε0‖L∞
, 1
}
, (A.3)

we have that θε0 obeys this ωλ for λ sufficiently large. Indeed, to prove this claim, it suffices to observe 
that min{2‖θε0‖L∞ , ‖∇θε0‖L∞ξ} < ωλ(ξ). Therefore, by setting a1 = 2‖θε

0‖L∞
‖∇θε

0‖L∞ , and by using the concavity 
of ωλ(ξ), we see that it suffices to show that

ωλ(a1) = λ2−α−βω(λa1) > 2‖θε0‖L∞ . (A.4)

Therefore, in order to prove (A.4), we only need to let λ large enough so that
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ωλ(a1) > ωλ

( δ

2λ

)
= λ2−α−βω

(δ
2

)
> 2‖θε0‖L∞ , (A.5)

that is, λa1 > δ
2 and ω

(
δ
2
)
>

2‖θε
0‖L∞

λ2−α−β , hence, we can choose λ as (A.3) and this proves the claim.
Then according to Proposition 3.1, it remains to check that for all t ∈ (0, T ∗) and 0 < ξ ∈ {ωλ(ξ) ≤

2‖θε(t)‖L∞} ⊂ {ωλ(ξ) ≤ 2‖θε0‖L∞}, we have

Ωλ(ξ)ω′
λ(ξ) + ε ω′′

λ(ξ) < 0, (A.6)

where Ωλ(ξ) is given by (3.35), namely

Ωλ(ξ) ≤ C

ξ∫
0

ωλ(η)m(η−1)
ηβ

dη + Cξ

∞∫
ξ

ωλ(η)m(η−1)
η1+β

dη.

By making a change of variables and using the fact m(η−1) ≤ λαm((λη)−1), for all η > 0, one finds that

Ωλ(ξ) ≤ Cλ

λξ∫
0

ω(η)m(η−1)
ηβ

dη + Cλ2ξ

∞∫
λξ

ω(η)m(η−1)
η1+β

dη ≡ λΩ(λξ).

Note that, using (A.3) and (A.5), we have ωλ( δ
2λ ) > 2‖θε0‖L∞ , thus it suffices to prove that

λ4−α−β
(
Ωω′ + εω′′)(λξ) < 0, for all ξ ∈

(
0, δ

2λ

)
.

Hence, our aim is to show that, the modulus of continuity ω defined by (A.2) verifies

Ω(ξ)ω′(ξ) + ε ω′′(ξ) < 0, for all ξ ∈ (0, δ/2), (A.7)

with Ω(ξ) ≡ C
( ∫ ξ

0
ω(η)m(η−1)

ηβ dη + ξ
∫∞
ξ

ω(η)m(η−1)
η1+β dη

)
and C > 0 a constant depending only on β.

Since ηαm(η−1) ≤ δαm(δ−1) ≤ m(1), ∀η ∈ (0, δ), we have 
∫ ξ

0
ω(η)m(η−1)

ηβ dη ≤ m(1)
2−α−β ξ

2−α−β , and

δ∫
ξ

ω(η)m(η−1)
η1+β

dη ≤ m(1)
δ∫

ξ

1
ηα+β

dη ≤

⎧⎪⎪⎨⎪⎪⎩
m(1)

1−α−β δ
1−α−β , if α + β < 1,

m(1) log δ
ξ , if α + β = 1,

m(1)
α+β−1ξ

1−α−β , if α + β > 1.

Moreover,

∞∫
δ

ω(η)m(η−1)
η1+β

dη ≤ ω(δ)m(δ−1)
∞∫
δ

1
η1+β

dη ≤ m(1)
β

δ1−α−β .

Obviously, ω′(ξ) ≤ ω′(0) = 1, so we get

Ω(ξ)ω′(ξ) ≤ Cα,βδ
2−α−β ,

where Cα,β = C m(1)
1−α−β if α + β < 1, Cα,β = Cm(1) if α + β = 1, Cα,β = C m(1)

α+β−1 if α + β > 1.
Since ω′′(ξ) = −3

4ξ
− 1

2 < 0, then by choosing δ > 0 small enough, we find

Ω(ξ)ω′(ξ) + ε ω′′(ξ) ≤ Cα,βδ
2−α−β − ε

3
4ξ

− 1
2 ≤ δ−

1
2

(
Cα,βδ

5/2−α−β − 3
4ε
)
< 0, for all ξ ∈ (0, δ/2).
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Hence, the solution θε to equation (5.1) obeys such a modulus of continuity ωλ with λ given by (A.3) for 
all t ∈ [0, T ∗), which implies that sup

t∈[0,T∗)
‖∇θε(t, ·)‖L∞ ≤ λ, hence, Proposition 4.1 is proved. �
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