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TEMPERATURE PATCHES FOR THE 2D BOUSSINESQ SYSTEM

OMAR LAZAR, LIUTANG XUE, AND JIAKUN YANG

ABSTRACT. We prove global regularity and study the infinite Prandtl number limit of temperature
patches for the 2D non-diffusive Boussinesq system with dissipation in the full subcritical regime.
The temperature satisfies a transport equation and the temperature initial data are given in the form
of non-constant patches. Our first main result is a persistence of regularity of the patches globally
in time. More precisely, we prove that if the boundary of the initial temperature patch lies in C**7
with £ > 1 and v € (0,1) then this initial regularity is preserved for all time. Importantly, our proof
is robust enough to show uniform dependence on the Prandtl number in some cases. This result
solves a question in Khor and Xu [39] concerning the global control of the curvature of the patch
boundary. Besides, by studying the limit when the Prandtl number goes to infinity, we find that the
patch solutions to the 2D Boussinesq-Navier-Stokes system in the torus converge to the unique patch
solutions of the (fractional) Stokes-transport equation and that the C**+7 regularity of the patch
boundary is globally preserved. This allows us to extend the C*7 persistence result of Grayer II [29]
from the range k € {0,1,2} to the full range k > 1.
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1. INTRODUCTION

In this paper, we study the Cauchy problem of the two-dimensional non-diffusive Boussinesq-
Navier-Stokes system:

00 +u-Vo =0, (t,z) € Ry x D,
% (6tu +u- Vu) + vA%%u = —Vp + fes,
(Ba) (1)
V-u=0,
(uv 9)‘15:0 = (u07 90)7
where D is either R? or torus T?, ey := (0,1)7 is the second canonical vector of R?, v > 0 is
the kinematic viscosity, Pr > 0 is the non-dimensional Prandtl number, the dissipation operator
A?* ;= (=A)® (a € (0,1]) is the classical (fractional) Laplacian operator defined via the Fourier
transform through the formula A2 f(-) = | - |20‘f() The vector field u = (u1(z,t), ug(x, 1)) is the

velocity of the fluid, and the scalars p = p(x,t) and § = 6(z,t) denote the pressure and temperature
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of the fluid, respectively. This system (B,) with @ = 1 is used to model the natural convection
phenomena in the ocean and atmospheric dynamics [16, 55]. It is also an important mathematical
model used to study the Rayleigh-Bénard convective motion as noticed for example in the work
by Constantin and Doering [15]. The system (B,) with v > 0, a € (0,1) can be viewed as an
intermediate model connecting the inviscid case (i.e. ¥ = 0) and the full Laplacian case that is v > 0,
a = 1. We refer to [23, 51] for some physical background on the fractional Navier-Stokes equations
which corresponds to the case 8 = 0.

From the mathematical point of view, the Boussinesq system (1) contains the incompressible
Navier-Stokes and Euler equations as special cases |12, 17]. Furthermore, in the inviscid case, i.e.
v = 0, the Boussinesq system shares many similarities with the 3D axi-symmetric Euler equations
with swirl. In light of the maximum principle of # and the maximal regularity estimates of fractional
parabolic equations, we can distinguish 3 cases in the the viscous case (i.e. v > 0). Namely, the
cases o > %, o = % and 0 < a < % which are classically called subcritical, critical and supercritical
respectively. It is worth recalling that, so far, the global well-posedness of smooth solutions for the 2D
Boussinesq system (1) remains a challenging open problem in the inviscid case or in the supercritical
case. Some important recent advances in the study of the 2D inviscid Boussinesq system (1) have
been obtained in [21, 11, 12] where finite time blow-up results in various domains are proved. We
refer also to |5, 22] for the global stability results.

For the 2D Boussinesq-Navier-Stokes system (B,) with a = 1 and Pr = 1, Chae 6] and Hou, Li [30]
independently proved the global existence and uniqueness result associated with the smooth initial
data (ug, 0p) € H® x H® with s > 2, which gives an answer to the problem number 3 in Moffatt [53] by
ruling out the possible development of singularity in the gradient for this system. The same type of
results have been obtained by Abidi and Hmidi || who proved the global well-posedness result for less
regular initial data 6y € Bg’l, up € L2nN B;ol,y Then, Hmidi and Keraani [31]| proved global existence
of weak solutions to the Boussinesq-Navier-Stokes system (Bj) with initial data 8y € L?, ugp € H?,
s € ]0,2). The uniqueness of weak solutions obtained in [31] has been solved by Danchin and Pai¢u
[19] using new regularizing effect together with paradifferential calculus. Let us also mention the
work of Hu, Kukavica and Ziane [37] who proved global persistence of regularity in Sobolev spaces.

For the 2D Boussinesq-Navier-Stokes system (B,) with fractional dissipation and Pr = 1, Hmidi,
Keraani and Rousset [32] considered the critical viscous case a = 5 and proved that (B 1 ) is globally

well-posed for any data 6y € L? N Bgo,l and ug € H' N Wl’p, p > 2.

Recently, there has also been significant attention on the Boussinesq temperature patch problem
for the non-diffusive Boussinesq system (B,,), which is a free boundary problem of the system (B,)
associated with an initial data which is given as the characteristic function of an initial domain
Dy C D which is assumed to be simply connected and bounded. Since 6 satisfies a transport
equation and since the velocity u is assumed to be regular enough, it implies (at least formally) that
the temperature patch structure is preserved. In other words, any initial data 1p, gives rise to a
solution 6(x,t) = 1p) where D(t) = X; (Do) and X;(-) is the particle trajectory generated by the
velocity u which verifies

W) —w(xiw)1), Xl = v )

This point of view allows us to study many regularity questions, in particular, one may wonder
whether the initial regularity of the patch boundary is globally preserved along the evolution. More
precisely, one may study and try to answer the following question:

suppose 0Dy € C*7 ke Z1 v € (0,1), whether dD(t) € C**7 for all time?

Here the notation dD(t) € C**7 means that there is a parametrization of the patch boundary
dD(t) = {z(a,t) € D,a € S' = [0,1]} with z(-,t) € C*7.

Such regularity problem were initiated in the 1980s, in particular with the study of the vorticity
patch problem for the 2D Euler equations. This problem was solved by Chemin [9] (using paradif-
ferential calculus together with striated regularity estimates) and Bertozzi and Constantin [3] (using
a more geometric approach based on cancellation of singular kernel). They were able to prove that
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if an initial patch of the 2D Euler equations has its boundary in C**7 then this regularity remains
forever.

As for the temperature patch problem for the Boussinesq system (B,) with & = 1 and Pr = 1,
Danchin and Zhang [20] proved that the C'*7 regularity of the patch boundary is globally preserved
in the 2D case as well as in the 3D case under an additional smallness condition by using the striated
estimates. Using another approach, Gancedo and Garcia-Juarez [24] gave a proof of the persistence
of the C'7 regularity in the 2D case. Moreover, they proved that the W2 and C?*7 regularity
of the boundary of the temperature patch is globally preserved. Their approach are based on new
cancellations in time-dependent Calderon-Zygmund operators. In particular, the result of [24] implies
that the curvature of the patch boundary is uniformly-in-time bounded. Furthermore, Chae, Miao
and Xue [7] established the global C**7 (for all k € Z7T)-regularity persistence of the patch boundary.
The same type of results were obtained in the 3D case in [25, 10].

For the 2D Boussinesq-Navier-Stokes system (B,) with 3 < o < 1, Pr = 1, Khor and Xu [39] were
able to prove that, given an initial temperature patch data 6 = 1p, whose boundary of in C?* then
this regularity is preserved for all time. Besides, the authors in [39] raised two interesting questions,
namely,

(a) Is it possible to control the curvature for a € (1/2,1), as it is possible in the case a =17
(b) Can the critical equation o = 1/2 support unique temperature patch solutions, and what reqularity
of their boundary would be preserved?

As we shall see later, we give an affirmative answer to the question (a) in Theorem 1.1, and we make
some comments on the question (b) in Remark 1.2.

When the Prandtl number Pr tends to infinity, as observed by Grayer II [29], the material derivative
of u in the momentum equation in the system (1) vanishes (at least formally) and the system (1)
becomes the two-dimensional (fractional) Stokes-transport system (by assuming v = 1):

80 +u- VO =0, (t,x) € Ry x D,
A%y = —Vp + fe,,
(ST4) B} (3)
V.-u=0,
0l,— = o,

where a € (0,1]. The Stokes-transport system, which is the system (ST,) with @ = 1, can also be
recovered by taking a limit of sedimentation of inertialess rigid particles in a viscous fluid satisfying
Stokes system [34], where 6 stands for the probability density function of the particles and (u,p) are
the velocity and pressure of the fluid. The global existence and uniqueness issue for the 3D Stokes-
transport system associated with regular or rough initial data has been intensely studied in various
settings |34, 35, 41, 50, 38]. For the 2D Stokes-transport system (ST), Grayer II [29] proved tha the
Cauchy problem associated with data in L' N L™ is globally well-posed. As well, he proved the global
persistence of C*¥™7 (k € {0,1,2}) boundary regularity of the associated patch solutions. Dalibard,
Guillod and Leblond [18] studied the long-time behavior for the 2D Stokes-transport system in a
channel D = T x (0, 1) (see also [51]). One can refer to |2, 26, 27| for some further regularity results
for an interface of density in the Stokes-transport system.

The fractional Stokes-transport system (ST,) with a € (0,1) can be seen as an intermediate model
between the inviscid incompressible porous media (IPM) equation (i.e. the a = 0 case, see e.g. [, 17])
and the Stokes-transport system. In a very recent work, Cobb [14] proved various well-posedness
results in critical function spaces for the fractional Stokes-transport system in any dimension d > 2.
In particular, the author showed a global well-posedness result in the case {d = 2, o € (%, 1)}

2
associated with data g € LP N L?-1 (1 < p < 1) and in the case {d = 2, a = 3} associated with
90 E BS71 ﬂ Bgo,l'
In this paper we study the patch problem for the 2D Boussinesq-Navier-Stokes system (B,) in the
full subcritical regime, namely % < a < 1. One of the main task is to get a control which is inde-

pendent on the Prandtl number Pr € [1,00) in order to let the Prandtl number goes to infinity. This
will allow us to recover the patch solutions for the system (ST,) by passing to the limit. The initial
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temperature 6y is the patch of nonconstant values, which is classically called the temperature front
initial data. This setting describes the evolution of the temperature front governed by the fluid flow,
and it is an important physical scenario in geophysics |28, 16]. Let us now introduce our analytical
setting regarding the initial condition.

Let k > 2 be an integer,

] Z {Cw—?a(m, for 7€ (0,20 —1),a € (4,1],
1
5,1
27

bo(@) = bo(@) 1y (@), bo(@) € C*17(Dy), 7 > 0, for y=2a—-1,a € (5,1), W

where Dy C D is a bounded simply connected domain with boundary

0,20 — 1], if a€(3,1),

D k+y 5
000 € 7, 76{(0,1), if =1 (5)

We consider the level-set characterization of the domain Dg: there exists a function ¢y € C*+7 (D)
such that

0Dy ={x €D :¢o(xr) =0}, Dy={zeD:po(x) >0}, Vpo#0ondDy. (6)
Then, the boundary 0Dy can be parameterized as
20: St 0Dy with Oaz0(e) = V3o (20()) :== Wo (20(e)) (7)

with V4 = (=,,01)”. In what follows we also set the viscosity v = 1 for simplicity.

Our first main result is to show that the C**7 regularity of the boundary of the patch is globally
preserved for the 2D subcritical Boussinesq system (B,,), where k € ZT. In particular, we may clearly
show the dependence on the Prandtl number Pr € [1, 00), and also positively answer the question (a)
raised by [39] in the case o € (1/2,1). As a matter of fact, dD(t) € L (C*¥7), k > 2 implies that
the curvature of 9D(t) is uniformly bounded.

Theorem 1.1. Let e = & € (0,1], a € (3,1], and k > 2 be an integer. Let D be either R? or
T2. Suppose that 0y(x) = Oy(x) 1p,(x) satisfies the above conditions (4)-(5). Assume that the initial
velocity ug satisfies
o ug € H' nWhr(D),
o (Ow,uo, - ,8’;1,_01110) € WHP(D) for some p > TZ—V
o V.uy=0.
Then, there exists a unique global solution (u,0) to the 2D Boussinesq-Navier-Stokes system (1)
which satisfies
0(z,t) = 0o(X; " (2))1p (2), (8)
with
oD(t) € L= ([0,T],C*7), (9)
where D(t) = Xy(Dy), Xy is the particle-trajectory solving the equation (2) and X; ' is its inverse.
In particular, for the cases that

either {ae (%,1)}, or {azl, D:TQ}, (10)
the result (9) holds uniformly with respect to €.

Note that the notation dy,ug := Wy - Vug = div (Wpup) means the directional derivative of ug
along the divergence-free vector field Wy := V1.

Remark 1.1. [t is important to mention that in the case k = 1 in Theorem 1.1, we still have the
same conclusion regarding the regularity of the patch. Indeed, if the initial data ug(w) and 6p(x) =
0o(x)1p,(x) are such that

{uo e HY, 8y € L®(Dy), Dy € CH7, ~ € (0,1), for a =1,

ug € HNWIP p € (2,00), 0y € L>®(Dy), 0Dy € C1H7, v € (0,200 — 1], for a € (%, 1),
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then according to Propositions 3.2 and 3.3 below, we have Vu € L*([0,T],C"(D)) where v is such
that (5) with the corresponding estimates. Therefore, by combining with the following estimate (see
e.g. |7, Lemma 2.10])

t
HVXtilHC'Y < 6(2+7) f(f [Vul|lpoodr (1 +/ ]VU(T)]deT>, (11)
0

we find that OD(t) € L*°(0,T; C1*7(D)). Importantly, the above estimate is uniform with respect to
e for the cases (10). Note that the special structure of the temperature patches is not used in the proof
of the global preservation of the CY T boundary reqularity of the patch. This is completely different
from the proof of the C**7 (k > 2) case treated in Theorem 1.1 where it makes a systematic use of
the structure of the temperature patch.

Remark 1.2. In the critical case o = %, it remains a very interesting question to show the global

well-posedness and the persistence of regularity of the patch boundary for both the Boussinesq-Navier-
Stokes system (By ) or the fractional Stokes-transport system (ST 9). From the system (ST /5), we
find that the relation of u and 0 can be written as

u = VA0 + (A710) eq,

which enjoys the same scaling with the Biot-Savart law of the 2D Euler equations: u = VYA=26. It
is well-known that the vorticity patch problem for the 2D FEuler equations was solved by |9, 3| as we
already mentioned in the introduction. One may therefore wonder if these techniques can be adapted
to get new regularity results in the patch problem for the critical system (ST 5). However, there is a
clear difference in the constitutive relation linking 8 and u. Indeed, noticing that

Vu=V2HA0+ (VAT '0) e, with 0 =1p, (12)

we see that the operators in front of 0 in (12) are singular integral operators with odd kernels, which is
different from the case of even kernels in the vorticity patch problem. The even kernels have additional
cancellation effect and this property plays an essential role in proving the key Lipschitz estimate of
velocity u as in the works |9, 3|. For further developments regarding the fine properties of the singular
integral with even kernels one may see [18, 19].

Our second main result deals with the infinity Prandtl number limit of the patch solutions for the
2D Boussinesq-Navier-Stokes system (B,) in the torus T2. We rigorously justify the convergence to
the patch solutions of the 2D (fractional) Stokes-transport system (ST, ). In particular, we provide
an indirect proof that the C**7 (k € ZT) boundary regularity of the patch solutions to the system
(ST,,) is preserved globally in time. Specially, our theorem extends the result of Grayer II [29] to the
regime k > 3.

Theorem 1.2. Let o € (%,1], e € (0,1], D = T?, k > 1 be an integer. Suppose that Op(x) =
0o(x)1p, () satisfying [2 00 dx = 0 is the temperature patch initial data that fulfills the assumptions
in Theorem 1.1 and Remark 1.1. Assume that u§ € H* NWLHP(T?), (dw,us, - - - 78’;‘,_01116) € Wip(T?)
for some p > ﬁ, V-uf =0, and they converge to ug and (Ow,uo, - - - ,8{}%11@) in the corresponding
norms. Let (u®,0%) be the unique global regular solution to the 2D Boussinesq-Navier-Stokes system
(Ba) constructed in Theorem 1.1.

Then, as € — 0, up to an extraction of a subsequence, (u¢,6%) converges to the global unique weak

solution (u, @) which is solution of the (fractional) Stokes-transport system (STy,), and (u, ) satisfies
that

0(x,t) = 0o(X; ' (2))1pw(x), with dD(¢t) € L=([0,T),C*), (13)
where D(t) = X¢(Dy), Xy is the particle-trajectory generated by the velocity u and Xt_1 is its inverse.

To prove the persistence of the temperature patch boundary in C1'*7 and C?17, it suffices to prove
that ¢ belongs to L>(0,T;C'*7(D)) and L>(0,T;C?*7(D)), respectively. Note that the domain
D(t) = X4(Dyp) can be determined by the level-set function o(z,t) = (X, *(2)) which solves

Op+u-Vo=0, ¢0,2)=¢o(x). (14)
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Then, motivated by the works [32, 33| which has been recently applied in |7, 39|, one introduces an
auxiliary quantity I', which plays an important role in the analysis. First, recall that the equation
for the vorticity w := d1us — druq is expressed as
e(Ow +u - Vw) + A*w = 0,0. (15)
We rewrite it as (58t +eu-V+ AZO‘) w — A?*© = 0, where 0,0 = A%*O, which may be rewritten as
O = Ri_2a0 := 0;A~2%0. Hence, applying the operator Ri_a, to the temperature equation yields
€0© +ecu-VO = —¢[Ri_2q,u- V]0.

Thus, if we set I' := w — © = w — R1_2,0, then we obtain the following equation for I

e(OT +u- VD) + A**T =€ [Ry_2q,u - V] 0. (16)

Note that the vorticity equation (15) enjoys the same structure as the equation (16), however the
forcing term € [Ri1_2q,u - V] in (16) is more regular than the original term 0;0. In particular, it
allows to prove the uniform estimates with respect to €. Taking advantage of the Biot-Savart law and
the relation w = I' + R1_9,0, we have

u=VIAT2w = VAT + V4 A2 2, (17)
We first note that the L¥®(L?(D)) norm of the velocity u has an upper bound given by (50) that
is growing in % (with € = %) and this seems to be an obstruction to get uniform estimates with

respect to €. However, by using the good unknown I', we can get nice a priori estimates of Vu and
I' which are uniform with respect to ¢ in some cases (10) (see Propositions 3.2 and 3.3). It is worth
mentioning that the commutator estimates in Lemma 2.6 play a crucial role to get nice estimates and
in particular it allows us to deal with the forcing term in (16). Since the commutator estimate (37)
requires a control on ||ul|z2 (unlike (36) and (38) where one only needs to control a higher order semi-
norm of u in the cases (10)), this makes the case {o = 1, D = R?} a bit particular. In this special
case, we only prove the estimates of I' and Vu with upper bounds depending on % Importantly, one
may notice that Propositions 3.2 and 3.3 are enough to get the global well-posedness of temperature
patch solutions for the system (B,) together with the global persistence of the regularity C**7 of the
patch boundary dD(t), see Remarks 3.1, 3.2 below or Remark 1.1.

In order to prove that ¢ € L>([0,T], 0?77 (D)), we introduce the tangential derivative W = V¢
which solves the equation (80), and we focus on the C7 norm of the quantity VWW. It remains to
control the L'([0,T],C7) norm of the term dy Vu, where 9y = W - V. Since we have (17), we shall
prove the estimates of Jy 1" and Oy 6 separately. Regarding the control of Oy ', we need to apply
the smoothing estimate (44) in the equation (86) of dy T in order to give a good dependence of the

1

coefficient € = p;. This is crucial especially after having noticed that there is a singular forcing term

%[AQO‘, W - V]I' in (86). By taking advantage of the commutator estimates in (28) and Lemma 2.6,
we can control the LIT(B;Y;J) norm of Oy I’ with some specific v/ > ~. This control is done in terms
of the integral of ||W]||y1,c multiplying some norms of I', which, in combination with the striated
estimate (25) gives a good estimate of the L1.(C7) norm of 9y VVA~2I. Concerning the control of
Ow?t, we use a key property in Lemma 2.4 that holds for the patch initial data, and by using again
the striated estimate (25), we can get an upper bound of the LL(C7) norm of 9y VV+9;A=27220.
Hence, collecting these estimates and (17), we get that |[W (¢)||c1+~ is bounded by the time integral of
[VW||cv times some norms of (I', 0, Vu). Then, the wanted global estimate follows from Gronwall’s
inequality, and this allows to finish the proof of Theorem 1.1 when k£ = 2. Along the proof, we need
to consider separately the cases a € (%, 1) and a = 1 as they require different approach.

In the proof of the propagation of higher order regularity, namely the C**7V-regularity of the
patch boundary, following the technics of [3], it suffices to show the striated estimate 8{3[,_ w e
L>([0,T],C7(D)). We use the induction method to prove it. Assume that we already control
the quantities W, Vu, and I' in the appropriate B;:?W—norms (see Definition 2.1) as in (103) with
¢ e {1,...,k— 2}, then our aim is to establish the corresponding estimates for the step £+ 1. The
procedure is analogous to the proof of the C?*7-persistence result. The higher-order striated estimates
in Lemma 2.2 play an important role in the proof. In order to get a control of W in L3® (C%f 1’E), using
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the equation of 8€VV2W and the striated estimate (23), we see that the main task is to get a control

the of V2u in L, (C{/YV_ 1’“1). Since we have (17), we deal with I" and 6 separately. Indeed, by applying
the smoothing estimate (44) of the transport-diffusion equation and the induction assumption, we

obtain a good estimate of T (see (117)) in the space L1, (B%’Hl) for a specific 4/ > ~. This can be used
to bound the LlT(C;’V_MH) norm of V2ZV+A2I". As for the control of 6, by using the patch structure

of 6 and the striated estimates (33)-(34), one can bound the L1, (CWWA’ZH) norm of V2V+9;A~272%¢
asin (109). Gathering all these estimates and using Gronwall’s inequality, we find the desired uniform
estimates (104) in the ¢ + 1 level, so that the induction scheme can be continued to give the final
objective. This leads to the statement of Theorem 1.1 with general k£ > 3.

As far as the proof of Theorem 1.2 is concerned, it is mainly based on the use of the uniform
estimates with respect to € obtained in Theorem 1.1 and classical compactness arguments. Although
the L? energy estimate (50) of u is not enough to provide a uniform bound in e, we can consider
the zero mode and non-zero mode separately to show the uniform boundedness of u° in ¢ in the
L>(0,T; H*(T?)) topology. By using the Aubin-Lions lemma, we deduce the strong convergence
of 6° as in (121), so that by sending ¢ = &= — 0 we can prove (u®,6) converges to (u,6) and
solves the Stokes-transport system (ST,) in the sense of distribution. For a more general and precise
statement one may see Proposition 5.1. As well, by studying the strong convergence of the particle-
trajectory X, ’il, level-set function ¢° and striated quantity OyeW¢ in the appropriate topology, we
can conclude that the limit function # preserves the patch structure and the C*¥*7-regularity of the
patch boundary 0D(t), as claimed.

The structure of the paper is as follows. In Section 2, we introduce some useful tools: The
Subsection 2.1 is the introduction of some background on striated type Besov spaces B;Zf,’w together
with several estimates in striated spaces. In the subsection 2.2, we collect some useful intermediary
lemmas. Section 3 is devoted to the proof of the persistence of the C?*7 regularity. In the section 4,
we give the proof of the persistence of the regularity in C**7 for any k > 3. In Section 5, we give
the proof of Theorem 1.2 which deals with the passage to the limit to infinity of the Prandtl number.
Finally, the last section 6 is the proof of the striated estimates (24) and (25) in Lemma 2.2.

Notations. The following notations will be used throughout this paper.

e N:=1{0,1,2,3,--- }, Z" :={1,2,3,--- } and R} := (0, +00).

e (lassically, S (Rd) is the Schwartz class of rapidly decreasing C°° functions and by &’ (Rd) the
space of tempered distributions which is the dual space of S (Rd).

e We also use several times the notation ||(f1,..., fa)llx == Ifillx + -+ | fallx-

e For two operators X and ), the notation [X,)] := XY — YA denotes the commutator operator.

2. SOME DEFINITIONS AND LEMMAS

2.1. Striated type Besov spaces and related estimates. We first define the classical Littlewood-
Paley decomposition and the definition of the Besov spaces (see [10, 12]). The idea is that one can
choose two nonnegative radial functions x, ¢ € C2° (Rd) that are supported respectively in the ball
{¢eR?:|¢| < £} and in the annulus {¢ € R?: 2 < |¢] < 8} such that

X+ ¢ (279) =1 forall ¢ €RY
720
For all tempered distribution f, the dyadic block operators A; and S; are defined by
Sif=x@7D)f= Y Af=hjxf VjeN, (18)
—1<I<j—1
where hj(-) := 299n(27.), h:= F~Lp € S(RY), hj() := 2790(27.), h:= F~1x € S(RY).
For all f,ge &’ (Rd), we have the following Bony’s decomposition:
fa=Trg+Tyf + R(f,9),
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with

Trg:=> Sq1fDgg, R(f.9):= Y AgfAgg, Agi=Ap 1+ A+ Mg
qeN g>—1

In what follows, for a vector field W : R4 — R?, we also use the notation Ty .v to denote the operator
quN Sq—IW ’ VAq-

Now we introduce the Besov space B, , (Rd) and its striated version.

Definition 2.1. Let s € R, (p,r) € [1,00]2. Denote by By, = B;T(Rd) the space of tempered
distributions f € S'(R?) such that

£ 1185, = [[{2% 1A f 12} 5y

For all ¢/ € N, N € Z* and a set of reqular vector fields W = {Witi<i<n with W; R? — RY, denote
by B;:f’w = B;’ﬁW(Rd) the space of tempered distributions f € B;’,,(Rd) such that

l
P —Z\aévfuB;,T:Z > 103, -+ 09 fllsg, <

A=0 N €N+ +FAn=\

o < 0.

we also denote by Bs’ = B;’ﬁW(Rd) the set of tempered distributions f € B;’T(Rd) such that

I£1e —Zu ) fllss,

=Z S @) T s, < .

A=0 A; €N A+ 4+ A=A

In particular, when p = 0o, we always use the following notations

s, 55,0 sl 35,0
CW '_BOOOOW’ CW '_BOOOOW’ BW _BOOIW’ BW _BOOIW (19)
Besides, if W contains only one regular vector field W, i.e. W = {W}, we also denote
¢
Brrw = {F € By ®) [ IFll e = D100 fl;, < oo}, (20)
A=0
¢
35,0
Brraw = {f € By ) [IFllgee = D Tww) s, < oo, (21)
A=0

and similar notations (19) are used with W in place of W.

We shall use the Chemin-Lerner mixed space-time Besov space which is denoted L° ([0, T], B;T)

and is the set of tempered distribution g such that [|g| 7, (B,) = H (2q5||Aqg||Lp (Lp)> < 00
T p,T T

g>—111er

In the above, the notations 9y, = W -V and Tyy.v respectively denote the vector-valued operators
Wi Vhien and {Tw,vhgicns and 8y = {00 0%« A+ -+ Ay = A\ € N} and

(Tyy)> = { (To)™ - (T w)™ A+ Ay = A\ € N} for all A € N.

Remark 2.1. The above definition of Besov space B;vr(]Rd) and striated Besov space B;’ﬁW(Rd) can

be extended to their counterparts B, ~(T9) and B;f,w(’]l‘d) for distributions defined on T?. Indeed, one

can view a function f on T¢ as a J—pemodzc function of RY in all coordinate, i.c. f(x+m) = f(x)
for all x € R? and m € Z2, thus recalling (18), we have for all z € T¢, j € N,

Ajf(ﬂv)=/]Rdh< y)dy = Z /d+m —y)dy=/Tdhj(y)f(x—y)dy,
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and

S;if(x) = /Rd hy(y) f(z —y)dy = /w h;(y) f(z —y)dy = hy * f(z),
with

= > hily+m)= Y 22 (y+m)), hly) =Y hily+m).

meZd meZd meZd
From Poisson’s summation formula, we see that h; and Hj have only discrete spectrum with
hi(y) = Y @@77m)e”™™ Y, and hi(y) = Y x(277m)e*mm.
mEZd meZd
Some basic properties of the space B ryy are presented as follows.

Lemma 2.1. Let 5,5 € R,(,{ € N,r,7 € [1,00], p € [1, oo] and W = {Wi}, ;< be composed of
reqular vector fields Wi : R* — R%. The function space B W satisfies that

B, CBL L fors=5 B, cBY fore=1,
B;:?W D Bséw forr >T,
and
— 41 .
1 lgeeer = 1100 fll gy, + 1S Ngme o Iflgeess = N0w S llgne + 1S ll;.,- (22)

The following striated estimates dealing with the spaces B Y will play a crucial role in the proof
of the main results. The proof of this lemma is provided in Sectlon 6.

Lemma 2.2. Letk €N, p € (0,1), N € Z*, and W = {W;}, .,y be a set of regular divergence-free
vector fields Wi : R* — R? satisfying that

k—1
||W”C11/\<}|»p,k71 = Z H@Q\,WH(JHP < 0.
A=0

Let m(D) = A?my(D), 0 > —1, and mo(D) be a zero-order pseudo-differential operator with mo(§) €
Cc> (Rd\{O}). Assume that u is a smooth divergence-free vector field of R, and ¢ : R* — R is a
smooth function. Then the following statements hold true.

(i) For all e € (0,1) and (p,7) € [1,00]?, we have

- Vellg-er < Cmm{ZHUIIBwHVchBek u,ZIIUHB e IVl gorr- u} (23)

pn=0
(ii) Foralls e (—1,1), -1 <o+s<1and (p,r) € [1,00}2, we have

(D), w- VIl g < O (IVullggs + lullze) 1] grvors. (24)
(iii) For all s € (=1,1), =1 <o +s <1 and (p,r) € [1,0]?, we have
Hm(DWHB;im < CH¢HB;;7VJ;+1 + OV g (HQSHB;,*;TV”S + 1{71<a§0}”A—1m(D)¢”LP>7 (25)

where 1;_j .5<qy is the characteristic function of the set {—1 < o < 0}.
In the above, C' > 0 depends on d, k,€,0,s and [[W||,14px-1 (when k =0 this norm vanishes).
w

In particular, for the special cases K = 0 and & = 1, the dependence on the lower order term
[W||o1+p.6-1 in the constant C'in Lemma 2.2 can be explicitly calculated. The corresponding striated
w

estimates are stated as follows and they will play an important role in the proof as well.
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Lemma 2.3. Assume that u is a smooth divergence-free vector field of R (d > 2) and W =
{Witicien (N € 7% ) is a set of smooth divergence-free vector fields. Let ¢ : RT — R be a smooth

function. Let m(D) = A°my(D), o > —1, and mo(D) be a zero-order pseudo-differential operator
with mo(§) € C*° (RN\{0}). Then the following statements hold true.

(i) For all e € (0,1) and (p,r) € [1,00]%, there exists a constant C = C(d,€) > 0 such that

- Vol e < Cmin {Jlul eIVl oo Nl o | V0 e | (26)
and
10w (- V)| s + [ Tovv (- V)| e < C'min {Ar, Ay, As}., (27)
with
Ay =l e 10wV Sl o+ (Iowull e + IWIps Nl e ) V650,
Ay i=lullgy, 10wVl e + (Ilwallgo , + Wl lullsg., ) VOl s
Ag =llullpe, (10wl goe + Wils, 196l e ) + (10wl e + Wl Tl ) 196150,
(ii) For all s € (—1,1), =1 < 0+ s < 1 and (p,r) € [1,00)%, there ewists a constant C =
C(d,s,o) >0 so that
[ (D). u- V16|53, < Cllullwr |8l g (25)

p,r T
(iii) For all s € (-1,1), =1 < 0 +s < 1 and (p,r) € [1,00)?, there exists a constant C' =
C(d,s,o) > 0 so that
Owm(DY5s. < Clowdl gz + CIW I = 6 - (29)

Proof of Lemma 2.3. Estimates (26) and (27) are exactly the same as those in |7, Lemma 2.5, thus
we only need to prove (ii) and (iii).
For the estimation of (28), using Bony’s decomposition, we have
m(D)u- V16 =" (D), 851w V] Mg+ S (D), Agu- V] S5 16
jeN jeN
+ Y [m(D), Aju-V]Ajé
Jj=—1
=11+ I, + Is.

Noting that there exist {/; € O (Rd) supported in an annulus away from the origin and h =
FHmap) = FH(|¢]7moy) € S (RY) such that

[m(D), Sj—1u- V] Aj6 = [m(D)p(277D), S 1u-V]A;é (30)

P00 [ R@1y) (Sj1u @ —3) = Sj-u(a)) - VA6 (@ =) dy

we find that
2 ATl $2% Y 1Ay (D), Sju- V] sl
<20 Y POV VA6
j€N7|j7q|§4

S gl Vullz< ol gste

with {cq}q>_1 satisfying ||c4l|,, = 1. For Is, taking advantages of the following fact that (using
Lemma 2.5),

IVm(D)A;¢llr < CZFAG||Le,  Vp € [1,00], 0 > =1, j > —1, (31)
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we have, by setting A := 29° [|A, L[,
A = c22 Y || Ay [m(D), Aju- V]S 19|,

j€N7|Q*j|S4

< o2 3 (|[agm(D)I D) (Agu- TSi10) || + | Ag(Aju- Vm(D)S;16)] )
JeN,|g—j|<4

< o2 Y Al (27 IS8l + V(D) 160
jEN,Iq—j|§4

< C )] 2“8—1>||VAju||Loo<2j” S A+ Y 2j’<1+”>||Ajf¢||Lp>

JEN,|g—j|<4 -1<5'<5-1 -1<5'<5-1
< C|Vullp~ Y 3 (2<j'—j)(1—s—a)+2(j'—j><1—s>)

JEN,|j—q|<4 —1<5'<j—1
< Oyl Vull 18] gt

where {cq} -, is such that [cq[|,» = 1. The term I3 can be decomposed as the following
Igzz m(D) div ( Aqub Zle (Ajum( )Ejd))
i>-1 i>—1
=131+ I32.

For I3 and I3, in view of (31) and the discrete Young’s inequality, we infer that for all s € (—1,1),
-1<s+o0<1,

20| Ayl < €20 Y [[Am(D)div (Ajubdjg)]|,,
j>max{q—3,—1}
<C Z 9(g—j)(1+s+0)9j [Nz 2j(S+U)HZj¢HLP
j>max{q—3,—1}
< Ceqllullpy, 18l g1e < Cgllullwrliél gsse-

and, set B := 2% ||AyI32|;,

Boeoor( X A @umDB)y Y (A8 ImD)A0)],)
jzmax{q—3,2} J2q—3,j<2
< C(2q<1+5> S 1Aulle 27 A0 + Lacgs S \|Aju\|mu£j¢uw)
j>max{q—3,2} —1<5<2
< ¢ Y 29I Al e Ao L, + La<qasyllulli<llg] b,
j>max{q—3,2}
<

O (eq + Lr1zqesy) lullwroe 6] 51

where {cg}, - is such that [|¢s[|,, = 1. Collecting all the above controls gives the estimate (28).
Next we prove (29). Noting that Oy (m(D)¢) = —[m(D), W - V]¢ + m(D)dw¢, and using (28),

we have

10w (m(D)¢) |55, < I[m(D), W - V]glls;, + [m(D)owels;,

p,r T

< CIWllwr= 9l i + Clowdl e + CIA_1m(D)wol o
By applying Bony’s decomposition and (31), we obtain that

1A im(D)owdlr < Y [A-im(D)div(Sj—W Ajd)|[e + D | A_im(D)div (AW Sj-19)]|1s

0<;j<4 0<;j<4

+ Z |A_im(D)div(A;W A, i) o
j>—1
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<CIWlz= 3 1810l +C S 1AW 1<l Bj6] 2o

—1<5<4 jz—1
—j(s+o+1)
< Wl Nl (14 3 2 )
j>—1
< CWlwreliél s (32)
Thus combining the above two estimates leads to (29), as desired. u

The lemma below deals with the striated estimate of patch-type initial data.

Lemma 2.4. Let D be either R? or T2, Let a € (%,1], k>2and 0 < v < 2a—1. Assume
that Do C D is a bounded simply connected domain with boundary 0Dy characterized by the level-set
function @y € C*T7(D) for some y € (0,2a—1] if a € (3,1) and for some v € (0,1) if « = 1. Denote
by Wy = V4.

(1) Ifa € (3,1], 0 <y < 2a — 1 and Op(x) = Oo(x)1p,(x) with 6y € C*=22F7(Dy), then we have

Oy 0o (x) € V2D, (33)
(2) If e € (3,1), v =22 — 1 and Oy(z) = Oy(x)1p,(x) with Oy € C*~1H7(Dy), 7 > 0, then we have
Oy bo(z) € L™(D). (34)

Proof of Lemma 2.4. We give the proof for D = R? first. The proof of (33) in the case 0 < v < 2a—1
is the same with |7, Lemma 2.6]. Thus we only need to sketch the proof of (34).

First note that Rychkov’s extension theorem [50] guarantees that there exists a function by €
CF=1H7(R?) with the following restriction condition 6p|p, = 6. Then, it suffices to prove that
8{}71(901[)0) € L>®(R?). Since the vector field Wy is tangential to the patch boundary 0Dy, the

0

operator 6{}70 ! commutes with the characteristic function 1 D, and thus we only need to prove 8{};0 150 €
L>®(R?). In fact,

1057, Bollu < 195 Bolles < CIWolles 90l *Bollc
< CIWollers (19945 Bolles + IV207Follc= )
< CIWollg-ass (I980lles + I9%Bolls + -+ + IV* 6ol )
< C||Woll gz 16oll o1+

Hence (34) is proved and we finish the proof of Lemma 2.4 for D = R2.

As for the case D = T?, we define 6, in R? as 6, = 6y in a whole period, and vanishes in others.
Then we treat 6, in the whole space case, it yields that 8’;1,_01Q0 € C7722t1(R?) and 8’5[,_01% € L*°(R?),
respectively, which implies the desired results that are (33) and (34) where D = T2. O

2.2. Auxiliary lemmas. We refer to [33, Proposition 3.1] for the following lemma.

Lemma 2.5. Let m(D) = A"mg(D), o > 0, and mo(D) be a zero-order pseudo-differential operator
with mo(€) € C*° (RN\{0}), then we have that for all p € [1,00],q > —1,5 >0,
Im(D)Sjullz» < C277Sjull e,

35
Im(D)Aqull e < €29 Aull 1o (33)

We have the following estimates of commutators involving the operator Ri_g.

Lemma 2.6. Let D be either R? or torus T, d > 2. Let (p,7) € [2,00] x [1,00], R1_p = A8,
B € (1,2]. Assume that u = (u1,--- ,uq) is a smooth divergence-free vector field on D and ¢ is a
smooth scalar function on D.
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(i) If D =R? and B € (1,2), we have that for all s € (3 —2,1),

IR w16l < CoplVullzr (I9ll s + 612z ) (36)
and for all s € (0,1),
IRosu- Volng, < CalI Tl ol pecs + ull20]12) (37)
(i) If D = T?, we have that (36) also holds and for all s € (0,1),
IRosu- Viollmg, < ColVuller (Ilpecs +10l22). (39)

Proof of Lemma 2.6. (i) We only sketch the proof of (36). The proof of (37) is analogous with that
of (38) given below, thus we omit the details. By using Bony’s decomposition, we may write

[Ri—p,u-V]p = Z[Rl—ﬂv Sq—1u - V]Aq + Z[Rl—ﬁa Agu - V]S4-16 + Z [Ri-p, Aqu - V]Eqﬁb
qeN qeN q>—1
= Ig +1lg + IIIg.
The control of 15 and Il is analogous to the proof of I and III in Proposition 4.2 of [58], so that for
all s > 8 — 2,

Wslls;,. + M5 55, < ClIVullze (1]l gg+1-5 + ISl z2)-

p,r T

For 113, the control of the corresponding term II in Proposition 4.2 of [55] contains some error, instead
we estimate it as follows

Al < 027 ST (IRip(Bgus VS10)ller + |1Aqu- TRy -5S,-16]|10 )

g€N,|g—j[<4
< 02 Y Al (20D, abllim + (VR 58,10l )
q€N,|g—j[<4
< 0% AT (20D S el
lq—jl<4 —lsg'sq-l
bOY A0l )
—1<q¢'<g—-1

< C|Vullr»r Z Z g(q’fq)(lfS)Qq’(erlfﬁ)HAq,¢||LOO

lg—j]<4 —1<q'<q-1
where in the fourth line we have used (35). Discrete Young’s inequality yields that for all s < 1,
Ml < ClVullLe ¢l gari-s-

p,r

Gathering the above estimates lead to (36) if D = RY.

(ii) We only give the proof of (38) and the estimate (36) as the proof can be adapted in a similar
manner in the torus. Since [R_1,u-V]p = [R_1, (u —0(0)) - V]¢, we can assume @(0) = [7, udz =0
without loss of generality. Then, using Bony’s decomposition

Ro,u-V]g=> [R1,Sg1u-V]IAgp+ Y [Ro1,Aqu- V]S 16+ [Ro1,Aqu- VA
qeN qeN q>—1
=11 + s + I3,

where we have used the notations introduced in Remark 2.1. For I, noting that there exists a bump
function ¢ € C°(RY) supported on an annulus of R? away from the origin such that

I = Z[R—I{E(Qiqp)? Sq-1u - V]Ag9,

qeN
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and using the fact that
RD D)) = [ miofe =y = [ B fe—ndn b= X kit m)
meZd

with hi(y) := 20 DR*(29y) and h* = F~1(i&1|¢| %)) € S(RY), we infer that
B = [ B)(S,m1u@ =) = 5,-10(@)) - VA = )y

/ ( D hi(y +m)(Sg-rulz —y —m) — Sq_lu(as))> VA p(x —y)dy

mezZd
/ / ( Z hy(y +m)(—y —m) - VS, 1u(3:—7'y—7'm)> VAp(x —y)drdy.
Td
meZd
Thus, by using the Minkowski inequality we find that for all j > —1,

2| AL e < C2¢ YT |[[RA$(279D), Sgmru - VIAS| e
q€N,|q—j|<4

core 5 [ (X Wit mlly ) VS, -vulr 98,01

lg—j|<4 meZd

<ClIVule 30 20 Alin [ 20 Cy)llyidy

lg—j|<4

<CO|Vulle Y 2907V Ag| e,

lg—j|<4
which ensures that

1llB;, < ClIVullzell¢ll gs-1-

For I, noting that
I, = Z (R_1J(2_4D)(Aqu . VSq_1¢) —Agu- VR—ISq—1¢),
qeN

we obtain

28l < €2 YT (g (Agu - VSu-10) [ + [ Bqull ol VR 15416 1)

q€N,|q—j|<4
<cor Y ||AquHLp<2q||vsq_1¢|ym+Hv7z_1A_1¢||Loo+ 3 ||Aq,¢||Loo>
q€eN,|g—j|<4 0<q'<q—1
<OVl Y (2“8 DALl 3 20 Dra /<z>||Loo)
lg—j|<4 0<q'<q—1

which leads to that for all s < 1,
1120155, < ClIVullLe (6]l ps=1 + Il 2)-

For I3, using the fact that u is divergence-free, we split it as the following

Ii=)Y RV (Aulge) = > A VR aA$+ D[RV, AgulAge

>3 >3 ~1<g<2
=131+ I32 + I33.
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For the first term I3 1, since the operator R_1V is bounded on LP(T%) for p E [2 00) and R_1VA;
(7 € N) is bounded on LP(T9) for p € [2, 0], we infer that for j = —1 (where =L =2 for p = 0),

27 A1zl <C Y ||Aqqu¢\| 2 <C) 1Agullzrl|Ag@l 2 < CHVUIILPIIquIL?,

p+2
q=>3 q=>3

and for all j € N and s > 0,
2| A3l < C2° DT AR AV (AgulAgg)| o
923,253
< C32 20705218l 12D B 10w < Cos [Tl ] g,
q>3

where {c;}jen is such that ||cj||;- = 1. The estimation of I3 is similar as that of I3, and we have

1321155, < ClVullze (16l -t + 16]l22)-

For I3 3, we use Poincaré’s inequality,

1
Iulzoceny = ) = gy f, )], ) < CIVMIzacrs,
we find
sl <C >0 3 (IARAY - (AguBgd)ler + 185 (Agu- TR-18,6)]|1r )
~1<5<6 —1<q<2
<C Y (1audgsl 2, + 180 VR1Bgs )
—1<¢<2
<C Y l8gulrelBgdllze < ClVulzeld] -
~1<q<2
Therefore, collecting the above estimates yields the wanted estimate (38) in case of the torus. u

We refer to Lemma 6.10 of [32] for the following useful result.

Lemma 2.7. Let D be either R% or torus T, d > 2. Let v be a smooth divergence-free vector field
of D and f be a smooth scalar function. Then, for all p € [1,00] and ¢ > —1,

IAg, v - VIfllr < ClIVollzell fl sy, .

We recall the following regularity estimates of the transport equation (one can see [10] for a detailed
proof).

Lemma 2.8. Let D be either R? or torus T, d > 2. Let (p,r) € [1,00]% and —1 < s < 1. Assume
that u is a smooth divergence-free vector field of D, and ¢ is a smooth function solving the transport
equation

Op+u-Vo=f, 8lio(@)=d(), =k’
then there exists a constant C' = C(d, s) so that for all t > 0,

161255, < € (160l + 112305, / IVul=lorleg, o). (@9

and

C 5 |Vl pood
1015,y < CeC BN (ol + 1 Flzy s 1) (40)
We have the following regularity estimates of the transport-diffusion equation.

Lemma 2.9. Let D be either R? or torus T?, d > 2. Let v > 0, (p,p,7) € [1,00]3, =1 < 5 < 1,
0 < a<1. Assume that u is a smooth divergence-free vector field of D, and ¢ is a smooth functwn
solving the transport-diffusion equation

oo +u-Vo+vA*p = f, bl () = ¢o(z), = €D. (41)
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Then, there ezists a constant C = C(d, s, «) independent of v so that for all t > 0,

s C J5 IVu(r) | poo dr . o
e (P ] (42)
and ) X
5 £ C [T Vu(r)||poodT .
V16l vy S O+ )0 BITOL: (Neollzs, + 1y, ) (43)
and , .
q(s+=2) C Vu(r)| oo dT
(2 z HAngHLf(Lp))qu , < CeC vl (quoHB;,T+\\f\|Lg(B;,T))- (44)

Proof of Lemma 2.9. The smoothing estimate (42) comes from |52, Theorem 1.2| (while for the cases
a € (0,3] and r = 1 it is done in [30, Theorem 1.2]).

We here only sketch the proof of (43) and (44). For all ¢ € N, applying the frequency-localization
operator A, to the equation (41) gives

ODNgd + Sq_1u- VAP + vA** Ny = Ay f + Ry,
with
Ry = (Sy-1u—u) - VA$ — [Agu- V]o.
Using [10, Lemma 2.100], we get
2P| Ryl e < 2%[[(Sq-1u — ) - VAPl e + 27([[Ag, u - V6| o

<029 Yy || AgullL<29| Al Lo + C cql|Vuul o< |0 55,
k>q—1

< Ceq|Vullp=|¢llBs,

where {cq}qen satisfies ||cq|l- < 1. Following the same strategy as the proof of [52, Eq. (3.10)] and
using the above estimate on R,, we find that there exists a small time 7" > 0 satisfying

T/
/ ||V’LL||LoodT < Co <1,
0
so that for all t < T7,
1 s+22 s s !
e 2 A 6l g oy < C<2q I8gdollin + 208 lrgeun + | Cq(T)HVU(T)HLDOHQS(T)HB;,TdT)'

Thus using the embedding Lj (B5,) < z%(B;T), we have

s+22 :
(@ N8eblzan), ], < c(rwouB;,T g+ | HWHLOOWHB;,TdT)-

On the other hand, applying the operator A_; to the equation (41) gives
HA_1p+u-VA_ 10+ VA A_1¢p=A_1f —[A_1,u-V]o.

eN

Taking advantage of the LP-estimate of the transport-diffusion equation (see e.g. [30, Proposition
6.2]), we infer that

t
[A_1o(®)]lr < [Argollzr + 1AL flI Ly (Lr) +/0 A1, u- V]o(7)||LrdT

t
< [|[A-1gollry + 1A-1fllLy (L) +C/O IVu(r)l| o= ll6(7) || B3, AT,

where in the last line we have used |10, Lemma 2.100] to deal with the commutator term. Hence,
combining the above estimates on high and low frequencies allow us to find that for all t < T,

1 1 t
ool e < O+ (Il + 1l + [ 1900l 7).
t p,7r

)
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By taking p = oo, we find that for all £ < T’ small enough,

1605 5.y < CIdoll5, + £l s5.): (45)
which also implies
1 1
VPl et < O+ 00 (I8, + 1t ) (46)
and
L1 (9a(s+22)
ve | (2 NAgbllngin) |, < OIdolng, + 17 pcs,)- (47)

Furthermore, for any 7' > 0, we make a partition {T;}}, of the time interval [0,7] so that

f;;“’l |[Vu(7)||peedr a2 €2. Then following the same ideas as the proof of (45), (46) and (47), we infer
that

107 g < € (N6 m, + I larme s ) (48)

b
1 1
O e S OOV (19 sy, + 1m0
and

1
ve

420
<2Q( + P )||Aq¢||LP([Ti,Ti+1]§Lp))q

L <C(I6T) sy, + 1l m 53, )

eNlle

By iterating (48) M-times and using the fact M ~ Cio fOT IVu||peedT, we deduce that

M-—1
161z s, < O X 16T g, + Uy,
1=0

< oM (loollsg, + 12y a5, ) + CllF s g,
T
< CeC Io ”VUHLOOd’T<H¢O||B;’T + HfHLClF(Bg,r))’

which also yields

1
vellell
L%(Bp,r

M-1
1
L < CO+T) > 10T, + Il qoms;.))
1 T
< C(1+ vl V=9 (g gy | flly (5. )
and

1
Ve

o 20
(220l 1))

Therefore, we complete the proof of (43), (44). O

T
< Ce o IVl (6ol g+ £y ., )

qgeNIILr

The following compactness lemma plays an important role in the process of vanishing Prandtl
number limit.

Lemma 2.10 (Aubin-Lions lemma [15]). Assume that Xo C X C X are Banach spaces, and X is
compactly embedded in X and X is continuously embedded in X1. For all 1 < p,q < oo, let

Vi={ue Lh(Xy) : due LL(X1)}.
Then we have

(1) if p < oo, then V is compactly embedded in L4 (X);
(ii) if p=o00 and ¢ > 1, then V is compactly embedded in C([0,T]; X).
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3. PERSISTENCE OF THE 02+W BOUNDARY REGULARITY
This section is devoted to the proof of the persistence of the C**7 regularity of the temperature
patch boundary dD(t) for some 0 < v < 2a — 1 if & € (3,1) and for some v € (0,1) if o = 1. In
particular, we shall explicitly show the dependence of the a priori estimates on the coeflicient € = %.
The L? energy estimate for the system (B,) is more or less classical (e.g. see Proposition 4.1 of
[39] without the dependence on the Prandtl number), and we have the following result.

Proposition 3.1. Let e = 5= € (0,1], a € (0,1]. Let D be either R* or T?. Suppose that (u,0)
is a smooth solution of 2D Boussinesq-Navier-Stokes system (By) with initial data ug € L*(D) and
0o € L2 N LP(D), p € [1,00]. Then there exists an absolute number Co > 0 such that for all t > 0,

16 200y = 160l 20): (49)
o t
)20 + 1A%y ) < Collnlzs + oolz) (£ +1). (50)

Proof of Proposition 3.1. The conservation of the LP norm of 6 in (49) follows from the transport
equation. By taking the dot product of the equation for w in (1) with w itself, and using an integration
by parts, we get

5 IO + 1A% <| [ duata)da] < 100l ), (51)

It follows that & ||u(t)||2 < 1160/ 2 and

t
lu®llz2) < lluollz2) + ZlIf0ll z2()-

Inserting the above inequality into (51) and integrating with respect to the time variable lead to

1 1 t
I3 + LIA w25 qa < SlhuollZs + 6olze (Juollze + ol z2).

-2
which readily implies the desired bound (50). O

The following result concerns the a priori estimates for v and I' = w — Ri_200 = w — 01 A2
solving the system (B,) with ug € H', 8y € L' N L>. Note that Theorems 1.2, 5.2 and Proposition
5.4 of |39] have provided similar estimate as (52), but in order to clarify the dependence on the
parameter €, we here sketch the proof by using a slightly different argument.

Proposition 3.2. Let ¢ = % € (0,1], a € (%, 1]. Let D be either R? or T2. Suppose that (u, ) is a
smooth solution of 2D Boussinesq-Navier-Stokes equations (By) with

o uoEHl(D),
L V-UQZO,
e 0y € L' N L>(D).

Then, there exists a constant C > 0 depending only on « and the norms of (ug,0y) but independent
of € such that for all T > 0, such that the following statements hold true.

(1) If o € (3,1), we have
(72Dl + Iz )+ 100z gy + IVl nomsy + [Vl gy < CCT. (52
(2) If D =R? a =1, we have that for all v € (0,1),
190l 2y + V0l 1y ey + (Vg oy < CO+TH(144/T). (53)
(3) If D =T?, a = 1, we have that for all v € (0,1),
(Ve T)llzgez2) + Tl pray,) + HFHE%(BS,OO) + [IVull Lz em < CecT. (54)
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Remark 3.1. Under the assumptions of Proposition 3.2, we can show the global existence and unique-
ness of solution (0,u) to the 2D Boussinesq-Navier-Stokes system (Bo) with e = p- € (0,1] and
a € (%, 1], which satisfies that for all T > 0,

0 € L®([0,T],L' N L>(D)), we L>([0,7], H' (D)) N L'([0,T], B}, ;(D)). (55)

In particular, if 0y is the temperature front initial data 0y 1p, with 8y € L>(Dg) and Do C D a
bounded simply connected domain satisfying dDy € C1T7, v € (0,2a — 1), then we have that (8)-(9)
hold with k =1 and the same scope of .

Indeed, the existence part follows from a standard approzimation process and the a priori estimates
established in Propositions 3.1 and 3.2 (note that the fact that u is controlled in L%(Béql) in (55)
can be easily obtained). As far as the proof of the uniqueness is concerned, we refer to |24] for
the case o = 1 and to [39] for the case a € (3,1). Regarding the temperature patches, since u is a
divergence-free vector field which belongs to L' ([0, T], W1>°(D)) then using Cauchy-Lipschitz theorem,
there exists a unique solution X;(-) : D — D to (2) which is a bi-Lipschitzian measure-preserving
homeomorphism, thus the transport equation of 6 ensures (8) holds, and in combination with (11)
and (52), (54), we have VXiE! € L59(C7), v € (0,2a — 1), which implies dD(t) € L (CH7).

Proof of Proposition 3.2. Let us prove the first statement that is the point (1). The proof of (1)
works in either the whole space or the torus. By computing the L? scalar product of the equation in
I' (16) with I', and using the commutator estimate (36) and the relation w =I" + R1_2,0, we get

5 SITIEs + ZIAT@) s < NIRs 20, - VI 2T
< Cllwlz (110l g2z + 1161]22) 1T 2
< C(INz2 + [R1-2a0l £2) 10]] L2 oo 1T | 2
< CITF2 (1 + 160l L2nz) + 100l 1100

where in the last line we have used the fact that

R1-2a0()][ 2 < CllO@)] 2 < ClibollLrrree- (56)
Gronwall’s inequality leads to
P ey + <IATIZ gy < CITolZs + ol s T) OO Nzor)T (57)
< 0eT,
In the above, 'y := wg — R1_240) satisfies that
ITollz2 < llwollzz + [R1-2000ll 22 < lluoll g2 + 160ll, 1 < oc.
Furthermore, by using (56) again, we find
IVullpee(r2y < llwllpge(zzy < [ITllpger2) + R1-2a8llLeo (22) < CeT. (58)

Now we consider the estimation of HFHUT(B%I) and ||T'[|7: For all ¢ € N, applying the
s T

(B3%)
frequency localization operator A, to the equation (16) yields

1
HA +u- VA, + EAQC“AqF = —[Ag,u- VT + Ag([Ri2a,u - V]0) = f,. (59)

Taking the scalar product of the above equation with A I', we get

1d
2dt
with some cg > 0 absolute number. Integrating in the time variable leads to

co
— AL )7 + ;22“q|!AqF(t)H%2 <[ AL 22l foll L2+

t
__f092a _ ¢ 2a
1AL @)z < e 22 ATyl 2 + /0 e LD ()] adr,
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and
180T llzpaz) < —272A ollze + —27 fyllry 2. (60)
L (L2) = o q o allL; (L?)
Let N € N be a constant chosen later. Taking advantage of (57), (58) and Lemmas 2.6, 2.7, we have
Ty, = Z 29| Agl I L1 22y + Z 29| AL L1 (2
—1<g<N q>N

< CQNHFHL;(H)

+C 37 21072 (|0 | 2 + [8g,w- VIl 2) + [18g([Ra-20,w - V10) 14 12))
q=N

< C2Y|Vl| 1y 12
+ 2V <||F0||L2 IVl (Tl o, o+ ||9||L1T<Béofiéw2>))
- CeCTQN_|_CQN(PQO‘)eCTHFHL%(B%1)’ o

where in the last line we have used the continuous embedding B%J(D) — B, (D) together with
the fact that

1615 1 2esy < 1618 rznney < 60l are
By choosing N € N so that C2N1-20)CT %, we infer that
CcT
HFHLlT(B%’l) <Cev’.
Repeating the above process, we find that

Pz gy = 2 2718 uy )
g=—1

< ClAaTzy 2

+C sup ([1AgTollz2 + 8, VIl 1) + 180 Ry 20w V1Ol y 22))
q

< Oz + ClTollrz + ClVull g 12 (HFHLlT(Bgom) + HGHLlT(Bi;go‘ﬁLQ))
< CeT. (62)
Next, we want to prove that Vu € le(CQQ_l). By using the identity

Vu =VVIA~T20 = VVIATD + VY9 A 2729, (63)
we have

HVUHZ%(CMA) < HA—lquLlT(LOO) + (S;eljl\l) 2q(2a_1)HAqVUHL1T(Loo)

q(2a—1) q(1—2a)
< ClVullyy iz + Csup? (12T N2y (1o + 2102 AgblI s 1)) o

< CHVUHLlT(L?) + C”F”ZlT(ngo) + ngg HAQHHLlT(LOO)
* q

< Ce°T,

Since we have the following embedding C?*~! < BJ | < L, then ||Vu||L1TLoo < Ce“T. Hence
gathering the above estimates completes the proof of (52).

Let us prove the statement (2). From the vorticity equation (15) with o = 1 and the classical L?
estimate, it is not difficult to see that
ed

1 1
WO + 19wl < | [ 00(a.tda] < 10N + 5ITw(0]B-.
2dt R2 2 2
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By integrating in the time variable we obtain
2 1
(@22 + IV (@32 < llwoll2s + < ol

which also gives

1
IVl @ + 2 1V7ul e < 2(lkwollz2 + 6ol 22) (1+/T).

Next we want to prove the estimate of ||w|| Li(BY, ,)- Using the identity
r=w—-R_10=w-— 81(—A)719,
together with Lemmas 2.6 and 2.7, we infer that for all ¢ € N,
1Ag - VI 22 < [ Ag, - VI(Id = AT g2 + [|Ag(u - VAT g2 + [l VAGA 1T

< CIVull2[|d = A1)l po,  + Cllullr2[[VA 1 T|| Lo
< ClVullpz(lwllsy, . + 10llze) + Cllull 2 (Iwllz2 + 101]22),

and

(Rr - V0l < O (15l 9] sz + 28] 22) < Cluls 6] s

Hence, by noticing that the inequality (60) with o = 1 still holds, and applying the above estimates
and Proposition 3.1, we find that for some N € N (to be chosen later), we have

||W”L1T(Bgo,1) < Z ”AqWHLlT(Loo) + Z HAqR—ﬁHLlT(Loo) + Z HAQFHLlT(LOC)

—1<qg<N >N >N
<C Z 29| Agwl L1 (12) +C Z 279 Agfl L1, (oo
—0o<g<N >N
+ 0= Y~ 27 (1 AgTollze + 1A, VIl r) + IR, w- V10l 1y 12))
q=N

< 0T (14 4/T) + Ce2 (I (wo, b0l 2 + [ Vullzgeay ol oy o, )
+ CEQ_N(HVUHL%O(L?)HeHLlT(L%Loo) + HUHL%O(L2)(HWHL1T(L2) + HQHLlT(BmLOO)))
<0T(1+ ) + OVEr N (1 + V) [wllgy o, )+ Ce2 N (14T (144/T).

Choosing N € N such that max{C+/z(1 + vT),1}27" ~ I allows us to write that

lellzgon ) + V0l ) < CO+T2)(144/T),

[e'e]

where C' > 0 depends only on the norms of ug and 6y, importantly, C' > 0 is independent of €. Note
that from the identity I' = w — R_160, we may write that

Tl zese, ) < lwllzy s, )+ IR-18l LB, )
< HW”LlT(Bgoyl) T CIlA R0y (24) + CZ [AgR-16] L1 (1)

qeN

< Jeollzpen, ) + WLy sy < €O+ T2 (144/T).
Similarly as above, we get that for all v € (0, 1),
llis € 1Al e+ 327 ARG 1y () + 3 27 AL s
qeN qeN

ClAiwlpy 2y + szq(%l)HAquL;(Loo) + szq(VH)HAqFHLlT(L‘Z)
qeN qeN

(65)

IN
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< cr(1+4/T)
+ 0= 3 207D (1, Lyl + 12w DI g g2y + [[Rors - V10l 1))
geN
< U+ (144/T) + OVEQ+ VD)l
< ca +T3)(1+ \@)

Collecting the above estimates leads to (53) and ends the proof of the statement (2).

It remains to prove the statement (3). Consider (16) in the case o = 1. By taking the scalar
product of the evolution equation in I" with T" itself, and using the commutator estimate (38), we get

1d 1
S PO+ ZIVTOR: < [R-1,u- V8@ 22 0@ 12

R—1,u- VIO 3 T2

Cllwllzz (101l -3+ 10ll2)IT @)1l 2
C(ITl 22 + IR-101l22) 100l 2rzee T ()] 2
CT @2 + 1))l 22

CIT@®z2 +C,

IN

IN

ININ A

where in the last line we have used that

IR0 252y < CIAT OO sy < CIOW g gy < CUONL g

Gronwall’s inequality and the fact that [|[To||z2 < |lwollr2 + [|R=160]/z2 < C allow us to state that,
for all ¢t > 0, the following control holds
1 t
L@+ 2 [ IVE@IRadr < (Lol + Co) < Ce
0

It is easy to see that, using the identity w = I' + R_16, we may write that
IVu®)llzz < o)l < D@2 + [R-10(8)] 2 < Ce.

Then, following the same lines as the proof of (61), we find that for some @ € N (that will be fixed
later),

Tl ze(my,) = Z 29 Agl Ly 22y + Z 29 Al 1 (2
—1<¢g<Q >Q
< 2D g ey + C X0 27 (ITolle + [Ag. - Il g0y + N1Ror, - V1Ol g 1)
>Q

< 029 4 272 (Lol + 19 ulen (I g ) + 191y 51200

< CeCT2¢ 4 02—Q60T||r||L1T(B%’1).
By choosing Q € N so that Ce“T27? ~ %, we find that

e e yery

Following the same idea as the proof of (62) and (64), we infer that

cT
1Tz 53 ) + IVUllze sy, ) = O

Gathering the above estimates and the embedding B, . (T?) < C7(T?) (0 < v < 1) lead to (54) and
therefore the proof of the last statement (3), thus this completes the proof of Proposition 3.2. O
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The following result is concerned with the a priori estimates for (u,I") solving the system (Bg)
with ug € H' N WY and 6y € L' N L.

Proposition 3.3. Let ¢ = % € (0,1], a € (%, 1]. Let D be either R? or T2. Suppose that (u,0) is
the smooth solution for the 2D Boussinesq-Navier-Stokes system (B,,) satisfying

o uyc H! ﬂWl’p(D), 2 < p< oo,

o V. Uy = 0,

e 0y € L' N L>(D).
Then, for all T > 0, there exists a constant C' > 0 depending on « and the norms of (ug,6p) but
independent of € such that the following statements hold.

(1) If o € (3,1), then we have

10V, D)l zge iz + TN zs gza_y + Ty 2oty + 1Vl g (oa1y < CeT, (66)
T( 0,1 ) T

In particular, if additionally 2a 7 < p < 00, we also have

HFHLlT(BéO,l) < e (67)
(2) If D =R? a =1, then for all v € (0,1) we have
1V, Dllgge o) + VUl . ) < CO+TH(1+ ), (68)
4 T
IPzygen y + ITllopon ) < €+ TH(1+4/T). (69)

(3) If D =T?, a =1, we have
H(VU7F)HL§'5°(L”) + “F“ElT(ngoo) + HFHLlT(B;OJ) + HVUHLlT(BgO’OO) < et (70)

Remark 3.2. Under the assumptions of Proposition 3.5, and if we additionally consider the temper-
ature patch initial data 0y(x) = 0p(z)1p,(x) as in Theorem 1.1 with

0Dy € C?*, 6y € L>=(Dy), if a€(3,1),
0Dy € W2 € CH(Do), 0<pu<1, if a=1,

we can prove that
OD(t) € LF(C?), if a€(3,1),
dD(t) € LE(W*>),  if a=1.
In fact, if a € (%,1), the claim follows from the fact that VXtil € L¥(C?~Y) which is a direct

consequence of (66) and (11); while if o = 1, the claim follows from the fact that X,fE1 € L (W)
which is a consequence of the following estimate

Cexp{0(1+T4)(1+ g)}, for a=1,D = R2,

(71)
Cexp{CeT}, for a=1,D = T?

IVull Ly (oo (py) <

as for the proof of (71), we infer from (63) that
HV2UHL1T(L00) < HVQVLA*QFHUT(LOO) + HV2VL81A*49HL1T(LOO)
< CIpym, ) + |’V2VL81A_49HL1T(LOO);

by following the geometric lemma in [3] or |7, Sec. 3.2|, we conclude that HV2VJ‘81A*49HL1T(LOO) and
IVul| L1 (wiey is controlled by (71).

Proof of Proposition 5.5. Let us first prove (1). In this case a € (3, 1), we prove (66)-(67) in a unified
approach without distinguishing D to be R? or T?.
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By multiplying both sides of the I'-equation (16) with |['|P=2T'(x, ) and integrating over the spatial
variable, we use the integration by parts to get

1d 1 N _ _
E&IIF(@IIZ) + g/DAQ T T[T (2, t)de < [|[R1-2a,u - V)0 o IT ()]} (72)

The positivity lemma in [16] ensures that the term coming from dissipation A%2°T is nonnegative, thus
by applying Lemma 2.6 and the Caderén-Zygmund theorem, we find

CIDllee < 1 [Ra 2000 VIO
< Cllw® e (10 120 + 10(t)][ 2)
< C(IT®Le + R1-2a0(O) [l ) 10(t) ] 2L
< C(IT®Le + 100l rnzee) 160ll L2nzee
where in the last line we have used the following estimate

IR1-2a0(t)[[2» < CIIAT220(2) |20 < CIl6(2) 2 < ClbollLinzee- (73)

HL(?afl)p+2
Gronwall’s inequality and the fact that [|[To|lzr < |lwollzr + [|R1—2060]|r < C imply that ||T'(¢)]|zr <
e®t, thus, using the identity w = I' + Ri_240, one finds

1T, V)l ge vy < CIT, w)llzze(zry < CIT| Lz (Lr) + IR1-2a0| L2 10y < CeT

By taking the scalar product, for all ¢ € N, of the equation (59) with |A,T'[P~* A,I'(z,t) and then
using the following estimate (see [13])

/D (A2 *AGD) |AT P2 AL do > e 22| A DR, Vg €N,

for some ¢ > 0 independent of ¢, we obtain

1d C 920 .
Sz 18I, + 2224 AL ON < 1AL O 1ol

which gives
t
_ 492 —C(t—1 2a
1AL < e = [ AgToll +/O e =T £y (7)) o (74)
Taking the L'([0,T]) norm, and using (52), Lemmas 2.6 and 2.7, we get that for all ¢ € N,
T T
2|8,y < CIAToll + € [ 1By V1T dr € [ 185 (Ri-zavu T10)] 0

< CToll o+ ClIVulluspery (IPpion, ) + 1003 st 200s)) < O
Hence, we have

HFHZIT(BI%%O) = CHAleHLlT(LP) + sug 22aqHAqFHL1T(LP) < CeT.
; qc

20— 2 20— 2
Together with the continuous embedding B2% — Bozoo” — ng‘il (p > 2) and Bo:,oop — Bl ,
(p > 5-27), the above inequality yields HFHL%(Bzg;l) < CeCT and (67).
As for the estimate of Vu in the space of L},(C?*1) = Li-(B3])), it suffices to follow the same
lines as the proof of (64) and we see that

Vaullrijr2a-1y < CIlA_1Vull 71 700y + C sup2q<2a_1) A, Vul| e
IVulzy oot < ClA-1Vallgy ey + € sup 8gVulle=| -
< ClIVullpyzz2y + ClITN Ly g2esny + CllOll Ly (s, ) < CeT.

Hence collecting the above estimates gives (66)-(67) and therefore (1) is proved.
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To prove the second statement, that is (2), we consider the case D = R? and o = 1. We remark
that (72) now becomes

1d
P TLQLF +2 / T (@, )PP 2|V (@, 1) Pdx < |[Ro1,u - VIO o IT®)1 75

thus we use the embedding B;;E(Rz) < LP(R?) and (37) to find
S0 < IR, 900 (76)
< CllR-1,u- VIO g2/
< CHVU(t)HLzHe(t)HB;%p + Cllu(®)l| 2 |0@)] 2
Integrating in time and applying Proposition 3.1 give that
||F||L§9(Lp) < | Tollzr + C’(HVUHL,}F(LQ) + HUHLlT(LQ))HHHL%O(LQQLOO)
< |lwollze + R-160[le + C(VT(IVull 12 (12) + Tllull g (22)) 60l L2 Lo
<ca+1)(1+2),

where in the above we also have used that ||R_16p||zr < C||00|| 2o . Thus,
L2

IVl o) < Cllwllzgun < C (ITIzge) + IR0llipwn ) < CA+T) (14 L),

Then, we prove the estimate of HFHL1 ) We see that (74) with o = 1 still holds, and we
integrate on the time interval [0, 7] to get that for all ¢ € N,

1A Lr ey < EQ_QqHAqFOHLF + 22_2q||fq||L%(LP)7

for some ¢ > 0 independent of ¢ and f; given by (59). Thus by taking advantage of (50), (65),
Lemmas 2.6, 2.7 and the following estimate

AT Loy < [A—wllLse ey + [A-1R-10]| L5o (20)
< Clolliz ax) + CIR ANz < €(1+4/2),
we have
HFHle(Bg’oo) <ALy ey + ilelll\l) 22q||AqF||L§,(Lza)
< Ol ATy ey + Csup (oo + £ll18gs - VTl o) + Nl Ag((Rers - VIO 1))
< C||A—1F||L1T(LP) + C||Tolze
+ c(snwu@s@p)(||rr|L%<Bgo,w> S v e||u|rLoT0Lz||e|L;Lz>

SCT<1+\/§)+C(1+T4)<1+\/§) SC(1+T4)<1+\/§). (77)

As a result of the embedding le(B‘g,oo) < Lp(BL, 1), we obtain the same upper bound as
||F||L1TB1 .- Together with (75) with o = 1, we find

IVull s,y < CIVully ey + CITpss ) + ClOly e, ) < CO+TH(1+ L), (78)

Hence, gathering the above inequalities completes the proof of (68)-(69).
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It remains to prove (3). We treat the case D = T? and « = 1. By using (76), (73) (with o = 1)
and the commutator estimate (38), we get
d
1T @Ollze < [[R-1,u - VIO(E)| e
< OllfR—1,u- VIO 172
< Cllw® e (10O g1z + 161 2)
<C(IT@ler + IR-10) | 2)10(t)]] L2
< C(IP@Iee + 100l Lrnze<) 100l L2nzoe -
Grénwall’s inequality ensures that
Il sseur) < (ITollzo + CT)eCT < Ce°T.
Following the same idea as the proof of (77)-(78) and using (54), we infer that
IDlzy oy + Ty con ) + IVl s,y < CE°T.
By collecting the above estimates we deduce (70). O

Our main result in this section is as follows.

Proposition 3.4. Let e = % € (0,1], a € (%, 1]. Let D be either R? or T2. Suppose that

uoeHlﬂW“’( )
Ow,ug € WHP(D), for some p > 2a T
V"U,O :07

bo(x) = bo(x)1p, (),

~ C2+7720‘(D70), for v € (0,2a — 1), (% 1],
90(90)6{01+7( Dy), 7 > 0, for v =2a —1, ae(% 1),

where Do C D is a bounded simply connected domain with boundary 0Dy € C*t7 for some v €
(0,20 — 1] if v € (%, 1) and for some v € (0,1) if « = 1. Then there exists a unique global solution
(u, ) to the 2D Boussinesq-Navier-Stokes system (Bg,) which satisfies

0(x,t) = 0o(X; " (2))1p) (2),

with
dD(t) € L= (0,T;C**(D)), (79)

where D(t) = Xy(Do), X is the particle-trajectory generated by the velocity u and Xt_1 18 its inverse.
In particular, if either {a € (%, 1)}, or {D =T?, o= 1}, the result (79) holds uniformly with respect
to €.

Proof of Proposition 3.4. In view of Remark 3.1, it suffices to show the a priori estimate on L (C**7(D))
of ¢, which is the level-set, function of D(#) defined by (14). Let us denote by W := V¢ the tangential
vector field, it satisfies

W +u-VW =W -Vu = dwu, Wlieo = Wo, (80)
and
OVW +u-V(VW) = dwVu+ VW - Vu—Vu-VW, VW|o = VWWp. (81)
Thanks to (39) and the product estimate || f gl[cv < C||fllcv|lgllcv, we obtain that

t t
VW (t)]lc SO||VW0HC“/+C/ 10w Vu(T) o dT+C/ IVu(r)ller [VW ()|l evdr. (82)
0 0
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The maximum principle of the equation (80) also gives
t
W (@)l < [[Wollzoe +/0 V(7)o [W (7) || Lo d (83)

The main goal is to bound the dy Vu in L} (C7). Using the identity (63), we find that
LA—2 La A—2—2a
||8WVu||L%(m) < Hc‘?WVV A FHL%(C’“I) + H@WVV A QHL%(CW)‘ (84)

Below we split the proof into three parts according to the domain D and the value of a.

(1) First, we deal with the case a € (%, 1), and we prove the uniform estimates with respect to e
regardless of the domain. Gronwall’s inequality and (83), (52) give that

W (®)llzee < [[Wo|oeelo IVuDllmedr < exel@n), (85)

In order to control the term of I" in (84), we prove an estimate of Oy I' = W - VI'. From (16) and
the fact that [Ow, 0 +u - V] = 0, we see that 9y T solves the following equation:

1 1
9y (OwT) +u -V (OwT) + EAM (OwT) = g[AM, W - VIT + 0w ([R1-2a,u - V]0). (86)

According to the smoothing estimate (44) in Lemma 2.9, there exists a constant C' > 0 independent
of € so that for all 2a — 1 < v/ < min{1, 40 — 2 — %} (recall that % < 2a — 1), therefore

1OWLll 1 (g ) < H(QqVIHAq(‘?WF)HL}(Lw)) GNH@ + [A-1 (Ow D)l L2 (o0
H(BL4) “

0,1

C (Y| Vu(r)| poodr 1/ 2a
<CeehlIVeml (IIawoFollB;32a+€/o | (A% W D)0 dr
t
[ 10w ([Rica 910 dr) + A 0V D3
. t
< IO (ol + [ [ 9]
0,1 0 0,1

t t
+e [ 0w (Rizasu 916 dT> € [ W@ [T et
0 oo, 0
Taking advantage of the identities
To=wy+ Ri—2a00 = wo + 81A72a90, and 8W08ju0 = 8]' (8WOU()) — 8]‘W0 - Vug,
and using the product estimate (26), we get
||3W0Fo||Bz;£2a < ”8WOVUOHB&;—120¢ + ||6WOR1720100HB20/7—1204
S owguoll g —sesr + CIVWol oc [[Vuoll gy 20 + C[Woll oo [VR1-2a00]l 5/ —20
00,1 00,1 0,1
S Cllowsuollyre + Cllvollwe.es luollywrr + Clleollyre 100l L2ape < o0,

where in the last line we have used the embedding that for all 0 < ' < 4o — 2 — %,

/ / !
— +3— 1—
!p c BO’ B Y +712 4()!7 IIrl’p ny 713 4o B Y -‘r’l 2047
and the fOHOWing estimate

IVR1-2a00] gv—20 < Cll60]| yrr12-10 < Cl60]|Lr-
oo,1 00,1

Using (26) (with —1 < 7' —2a < 1—2a < 0), Lemma 2.6 and (66), (83), together with the embedding

L s BIAP 1P e find that for all 0 </ < da—2 - 2,
IV ([Ri—sa,u- 760) ) < CllRi20u- V)6

H 1( gy —2« v +1-2a+2
1} (B2, | ”)

p,1

< IVl o) (1, rvs-sneyy +10lin)
t oo, 1



28 OMAR LAZAR, LIUTANG XUE, AND JIAKUN YANG

< CIIVull gy (I60llis + 6ol 12 ) < Ce ™, (87)
and

10w ([R1-20,u - V]0) < ClWlLge o) IV [R1-20,u - V] 0]

o (503) L (55%)
< Ceexp(Ct)‘
According to (28) in Lemma 2.3, we deduce that for all 2a — 1 <+ < 1,
A2 W 9] s < W ace Dy

Hence, gathering the estimates (66), (83) and the above estimates, we find that

Tl < O Wllwdf<1 - Wl Ty dr \|W\|Ltoo<mHVu||Lg(Lp))

+ ClIW | zgo ooy 1T 1 (100
< CeP(C) (1 + [ t ||W<T>||W1,oo\|F<T>||B;o,1df>-

Next, we want to get an estimate of Oy (VVLA*QF). We have
low (VYA | yeny < ClAOW (VVEATT)| g ooy + ClIVOW (VYA [y e
Cl|A—1div (W VVEATD) ||y o) + C|[ VW - V(VVEATT)
+ C||ow (V*V+AT2T)

IA

HL%(C’Y*l)

HLtl(Cw—l)'
The right-hand-side terms of the above inequality can be estimated as follows, thanks to (52) and
(83),

A1 0w (VVEAT2T) < OIW ez IVV AT |11 12y

‘ ‘ L} (L)
< Ceexp(Ct) 7

and taking advantage of (26) and Lemma 2.5,

t
VWV (VYA |y sy € C /O VW (7))l 2= | V2V AT (7) | grrdr

IN

t
c /O IVW (7l (A V2VEAT2T () e + [T (7)cr ) dr

IN

t
c /O VW () [T () mdr,

then, since we have (29) (with s =v—1, 0 = 1),

¢
0w (V2T A20) |y 1y < OO oy + C/O W () e ID(E) e dr
Collecting the above estimates yields
t
|0 (TT4A70) gy < C1OWTlg 7, +€ [ IW e Pl + Cew1€0

. (88)
< e (14 [ W e 00, ).
0 o

For the estimation of the 6 term in (84), by using (26), (29) (with 0 =2 —2a, s =y -1 €
(—1,2a — 2]) and (56), (83), we obtain

| (VY-8 A~2-20) < Cljasaiv (wIvtaatg)|

HL%(C”) LE(L>®)

+||vow (vetaa-z-2)|

Li(Ccr=h)
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< ClWllLge ooy IR1-20011 13 (12
t
+C/ VW (1) || Lo | V2V AT27299)| oy -1 dr
0

+C |ow (v2Ttaa—2 )|

Li(c
t
C 0wl z3icei-sey + C [ Wl [l

4 e (), (89)

IN

where in the last line we also used the estimate

HVQVialA‘Q‘Qae | S CIIALAT20]| 2 + C10] 120 < Cl6]| 200

-
Since Oy 0 solves the transport equation
9 (Owb) +u-V(0w0) =0, Owble=o = Ow,bo, (90)
we apply Lemma 2.8 and (52) to show that for all v € (0,2« — 1),
t
1%% v+1-2a > w > Wo V0 y+1-2a > 3
10w O(E) || r1—20 < CeC o IVuMd |50 6.1 < CeexP(CY) (91)
and for v = 2a — 1,
t
lowo )y, . < Cedo VeIl gy ol 5o

<
< el IVuOllzeedr || g go|| oo (92)
< Cveexp(Ct)7

where Oy, 0p € C7T172% for v € (0,2a — 1) and Ay, 0y € L™ for v = 2a — 1 in view of Lemma 2.4.

Therefore, by collecting the estimates (82), (84) and (88)-(92), we find
W Bllcrsr + 10wy 5y )+ 10wVl oo

0,1
t
<@ (14 [ W Ellors (N sy, + 100z + [Fuer) ar )

Using Gronwall’s inequality combined with (66)-(67) (together with the embedding C?*~! «— C7,
v € (0,2a — 1]) guarantee that

HWHL;—?(ClJF’Y) + HaWFHLIT(Bz;I) + HaWVUHLlT(CW) < Ce®*P eXp(CT)’

where C' > 0 is independent of . This implies W € L* ([O,T], ci (D)) uniformly in € for all
0<vy<2a—1and a e (%, 1), this ends the proof in the case a € (%, 1).

(2) We deal with the case of @ = 1 and D = R?. Note that (83) and (53) imply
W ()1 < [Wol|pooelo I8 eedr < eCB0 where E.(t) := (1 +T4>(1 + \/f) (93)
We want to get a control of gy ' = W - VI'. Since 0w T solves the following equation,
0, (OwT) + -V (O T) — éA (O T) = —é A, 0w]T + dw ([R1,u- V0)
= —éAW VI — ng : VT + 0w ([R-1,u- V]6).

Using the smoothing estimate (44) together with the product estimate (26), we find that for all
~ e (Lmin{v +1,2— %}),
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1

t
< CeeCfy IVullzedr <yyaw0roum,2 + / (HAW VT s + [ VW 2 V2T s )dT
0,1 g Jo 0,1 0,1

10w (R T10) () )+ C 1A 100 Ty
V|| poodT 1t
< Ce eCJo [VullLood <||6W0F0||Bz;12 + 6/0 (HAWHBZ;TEHVFHLOO + HVWHLOOHVZFHBZO/TB)dT
+ 10w ([R-1,u- V] 0>HL%(BM_12)) | Acadiv(W )|y o)

. t
< C o IVullpeedr </0 HW”B;’;JHFHBleT +e|ow ([R-1,u- V] 19)HLt1 <BZ;,_12> +e |’8W0F0‘|BZ;32)
+ ClW Lge ooy 1Tl L1 20y

Using again that Ty = wy + R_160p = wo + 01A26y and the embedding WP C Bg;ll where v/ is
suchthat0<’y’—1<1—%,weget

[OwoLoll grr—2 < 0w, Vuoll gr—2 + [[Ow, R—100]l 52
0,1 0,1 00,1
< Cllowyuoll grr—1 + CIIVWo| oo [Vuol| grr—2 + C[[Wol[ oo [[VR-180]| 52
co,1 0,1 0,1
< Cllowyuollyyre + C lleollyz.ee [uollyie + C lleollyre 100l p2nz0 < 00

Then, using the estimates (26), (37), (68), (93) together with the embedding L>* —» BZ;;QH/IJ for
alll <+ <2— %, we deduce that

ellow ([R-1,u-VI]O)|, g2y < CelWllpee(rooy [[Rov,u- VIO, (e
Lt (Boo,l ) Lt (Boo,l )
< CeelPO|[R_1,u- V10 /
< s VIO, ey
< CePO (IVull gm0, sy + Il yen 101l ao)
L (Bey 7)
< CeCEf(t).

Gathering the above estimates and (68), (93) yields

t
CE-(t)
0Ty 5y < OB (1 [ IOy Ty ).
Thanks to the striated estimate (29) (with o = 0), we also infer that
t
0w (VA7) < ClOWT Ty oy + € [ W) el ID0endr

t (94)
< 0B (14 [ W@y 00y dr).
Then, by following the same lines as proof of (89) and using (93), we get
[ow (VVEAT0) || 11 o)
< C|A10w (VI4UAT0) | 1y o) + C[ VO (TT-0A76) |1y s

t
< CIW | Lo (zo) 101 £ 12y +C/O HVWHLOO\}VQVlalA—“eHBg;;odT

+ Cllow (FV-0070) |y

t
< CeCE0 4 /O W ()l < 100 27 + C WOl 3 ) (95)
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From the equation (90), we apply Lemma 2.4 and (53) to get that

10w (D) gy < e 171 oy, 1 < CeOBO. (96

Therefore, taking advantages of (82), (84), (93)-(96) and the embedding C?7*! C B;’;1 for all 1 <
v <min{y+1,2 — %}, we find

W (@) l[crer + low Tl + 10w Vull Ly

L} (BL,)
t

< CeCP() (1+/ ||W(T)Hm+1(1+ I g +HVu(T)Hm>dT>.
0 00,

Together with the continuous embedding E%(Bfwo) — L%(B;;l), Gronwall’s inequality and the esti-
mates (53), (69) guarantee that

CeC'EE (T)

IN

[WlLee (1) + HaWFHLlT(B;ﬁ,l) + 10w Vull L1 o

< exp { PO (T4 ||, e )+ [Vl o) |
< CGQXP(CEE(T)) (97)

where C' > 0 is independent of ¢. This implies W € L*([0, 7], C*™7(R?)) for all 0 < v < 1 and
e € (0,1].

(3) When o = 1 and D = T2, the proof is quite similar to the case @ = 1 and D = R2. The only
difference lies on the use of Lemma 2.6 and Propositions 3.2, 3.3, thus by repeating the process in

the above by doing small modifications if necessary, we conclude that (97) holds with E.(T') replaced
by exp(CT). Hence, we obtain that W € L*(0,T; C**7(T?)) uniformly in e for all 0 < v < 1.

To sum-up, in terms of the notations (19)-(21), and using Propositions 3.2, 3.3, we have that for
o€ (3,1) and for all 0 < v < 20— 1 <’y'<min{1,4a72—%},

W lage oy * IV ulg ey 1Py sy = W llzgecnn + 107 0 V)l )
+ ||(T, aWF)IIL%, (52.) (%)
< Qe (@),
whereas for a =1 and for all 0 <y <1 <+ <min{y+1,2 — %}’
Ceoxpexp(CT)  for D = T2,
Wiz g0y + IV Uiy ey + 1Ty (1) = {OeexmcEs(T», for D-E2, )

where C' > 0 is independent of ¢ and E.(t) is defined in (93). This completes the proof of Proposition
3.4. [l

4. PERSISTENCE OF THE C*T7 BOUNDARY REGULARITY WITH k >3

In this section, under the assumptions of Theorem 1.1, we want to prove that the regularity C**t7
of the boundary of initial patch temperature is preserved globally in time. More precisely, we want
to prove that dD(t) € C* for all k > 3 and for some 0 < v < 2a — 1 if @ € (1,1) and for some
v € (0,1) if « = 1. In particular, the persistence of C**7-boundary regularity is uniform with respect
to ¢ for the case that either {a € (3,1)} or {D =T? a =1}.

Recall that the regularity of the boundary of the patch temperature 9D(t) is closely related with
the striated regularity of the (tangential) vector field W = V1o with VX = (=02,0;)7. Indeed,
according to [3] (see also [13]), we have that that for k > 3,

dD(t) € L>([0,T],C*") <= (05 'W)(-,t) € L™ ([0,T],C7(D)); (100)

and, in particular, to prove the uniform persistence of the C*¥*7 regularity of the patch boundary it
suffices to prove (100) uniformly in e.
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For this purpose, we shall prove that for all k¥ > 3, % <a<1,0<~vy<2x—1and v such that
200 — 1 <7’<min{1,4a—2—%,7—|—2a—1},

Wl oo (egrrn2) F IVl (egimry F TNy (g 00) < Hiea (T); (101)
whereas forall k >3, a=1,0<~vy<1,and 1 <+ <min{7+1,2— %},

Hy_1(T), for D = T?,

wW o\ + ||V - +||IT oy < 102
|| ”L%o(cw—l,k 2) H U’HLlT(C%}k 1) H HL%(BQV”“ 1) > {Hkl(Eg(T)), for D :R27 ( )

where Hy_1(T") depends on T but is independent of ¢ and Hy_1(E-(T")) depends on E.(T). If (101)
and (102) are proved then a direct consequence of these controls is that
k—1 k—2 k—2
HaW WHL%"(C“/) - HW'V8W WHL;?(CW) < CHWHL%‘J(C”)H‘?W WHL%O(CW-H)
< CHWHL%O(CW)HWHL%O(CWL’@*Q) < 00,

which corresponds to the desired result (100). Hence it suffices to prove that (101) and (102) hold.
In order to show the estimates (101) and (102), we apply the induction method.

First we deal with the estimate (101) where D is either R? or T2. Assume that for some ¢ €
{1,...,k — 2}, we have

W ety + 190y + I gy < BT, (103
we want to prove that it also holds for ¢ replaced by ¢ + 1, that is,
HWHL%O<C;{V+1,€> + HVUHL%«:&}IHI) + HFHL%F<B";‘;,Z+1) < He (7). (104)

The inductive statement is true for £ = 1, as a matter of fact, one notices that (98) is nothing but
(103) with £ =1, and also Lemma 2.2 and Lemmas 6.1, 6.2 can be applied with k& = /.

We first derive the estimation of the L% (C’“’_l)—norm of 3€VV2W. In view of (81) and the fact
that [Ow, 0 +u - V] =0, we have

0y (05 V2W) +u - V(9f, VPW) =05 V2u + 20§, (VW - V2u) + 0}y, (VW - Vu)

105
— 0y (V2u- VW) — 20, (Vu- V*W). (105)
Owing to Lemma 2.8, we find that for all v € (0,2« — 1],
t
[0 7 @) < ORI ([ofe P Walle s+ [ 08 TPul) e
t
¢ 2 ¢ 2
+/O | (ot (v2w - wu) 0fy (u- w2 )| ar
t
¢ 2 ¢ 2
+/0 | (ot (vw - v20) 00y (P2 vm) | dT). (106)

Since 9Dy € C*7(D) implying o € C*+7 (D), and by repeatedly using (26), one can get
/—
198, V*Woll -1 Siwoloe 19050, VA Woll e
SiWollye VO VEWollen-1 + | V2052V Wol o1
Siwolly i1 1V Wollgrt + -+ + [V Wol g

Slieollyece 1P0llcerz+y Sigollyrsiee l#0llcrs -



TEMPERATURE PATCHES FOR 2D NON-DIFFUSIVE BOUSSINESQ SYSTEM 33

In view of Lemma 2.2 and the striated estimates (132), (140), (142), the last two integrals on the
right-hand side of (106) can be treated as follows:

/ot | (86 (VW - V) a0y (T2 W) || ar

cr—t

t
< 0/ [(VW - V2u, Vi - YW)| e dr
0

t t
< c/ 1YW ot |92 o1 dr < c/ W ()| a1V ()| el
0 w w 0 w w

and

dr
cr—1

t
/ | (86 (V2w - Vu) 0y (Vu- v2W)))|
0
t
< C/O [(V*W - Vu, V- VW) |2 re 7

t t
< C'/ HV2WHC~,71,Z [Vul| go.edr < C'/ W () grrrel[Vu(T)]] o ed.
0 w w 0 w w

Now the main task is to control the second term on the right-hand side of (106), and it follows from
equality (17) that
(+12 (12wl A —2 (12l A—2-2
0wV uHLtl(Cvfl) < [loy vEVEA FHL%(CW%) + (oW VIV oA aGHL%(Cv—l)

107
SV vy + VTN vy

Taking advantage of (25) with s =~ — 1 and 0 = 2 — 2a, we get

t
HVQVL&A_Q_QQOHL% (CJV’I’ZH) < OHHHLtl (Cav—za+1,£+1) + C/O ||W(T)||3é‘f||9(7')||CJV72<1+MC17"

Since &},0 for all j € {1,---, ¢+ 1} satisfies
Oy (90,0) + u - V(9,0) =0,

we use (40) and Lemma 2.4 to infer that for all v € (0,2« — 1),

CliVull 1 j
By (229) ”8{,[/090“07_(%—1) S Ceexp(Ct)’

105y 01l oo (cr—2a—11) < Ce
and for v = 2a — 1,

ClIVully

1050l e pe__y < Ce TV =) 00 ol

c||v
< LIVl

(LOO)”atjj'[/OeOHL‘X’ < Ceexp(Ct)'
Summing the above inequalities over j € {1,---,¢ 4+ 1} leads to that for all v € (0,2a — 1],

101 o (gaamreeny < Ce™PlEh), (108)
Then, using (108) gives

t
HVZVL(%A’Z*ZQGHB(67_1,g+1) < CeP(C) | Ceexn(CY) / W ()| sredr. (109)
t\*w 0

It

For the first term of the right-hand side of (107), we use (25) (with s =~y —1, 0 = 1) to deduce that

t
[T A0y g ey < CUDy ey +c/0 IW (7)1 IT(7) | g el (110)

In the following we consider the smoothing estimate of 8%;{ IT. From (16) and the fact

[0, 0 +u- V] =0,
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we see that

OLTT) + - V(ORT) + LA (o) = LA T 4 0 ([Ryse - 9)0)

(111)
= Fpyq,
where ,
[A%, 95D = [A%, 8w ]9l T + ow ([A%*, 0] T Z ([A%,8w]07T).  (112)
=0
According to (44) in Lemma 2.9, we infer that for all 2o — 1 < 7/ < 1,
o6 ) < |18 D lgim), L+ 1A @ D gm,
t
< Ceef o HVU(T)”LOOdT<Ha€[}i>01FOHBZ;’—12a + ||Fe+1HLt1 (B2 52) )
A @D 23 ooy
il G ey [P
+ 2O (Raame 916y ) )
t
40 [ IW @)= 105 L () =l (13)
0
Taking advantage of the relation I'g = wg — R1_24,0p and the equality
[V, ouf = [V, 0wl o f+ow(IV, 0wl oy f) + -+ 0y (IV, 0w] f)
l
> o (VW Ve f), (114)
=0

we apply Lemmas 2.2, 2.4 and the striated estimates (132), (140), (142) to deduce that

06Tl e < 1967Vl e+ [0 R1-200]

< CHVMHUOHBW ~20 + C'Z HVWO 35[7()]'UOHB%_2&,1 + CHWO . VRPMQOHB%_M
_] =0 0 0
¢
< CH@E—HUOHW“’ + Cz HVWOHBO] Hva UOHBW' 20,5 T ¢ ”WOHBOZ HVRI QaHOHBV’ 20,4
7=0

4
< Coft voll o+ C 1ol ol + C Woll gy (14 1Wolgoos ) I lgo-se

/+1
< o1+ 1Wollgy ) <Z [ Z 64,0l o > <c (115)

where in the last three lines we have used the continuous embedding that

9 I

Lp V' +3-4a v +1-2a o0 v +2-4a v—(20—1) y+2-4a
WP — BOQ1 — Boo,1 , L — BOO’1 BOO’Oo — Boo’1

valid for all
O<'y§2a—1<’y/<min{1,7+2a—1,4a—2—%}.

For the commutator term [AQa,ﬁf}jl]F given by (112), it follows from (24) (with s = ' — 2a,
o = 2a), (132) and (140) that

l
A2 BTy ey < D 98 02 F10T) e
j=0 ’
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l
<O A%, W VIO 2

j:0

<CZ / I9W ()l + W )z ) 105D ()] k7

< C/ W) e IT (7)o e, (116)
0 w w

where C' > 0 depends on HWHLOO(C'y+1,2—1) which is bounded by Hy(T"). For the second term of Fy
T \"W

n (113), by using the formula V ([R1_2q,u - V]0) = [VRi_24,u- V]0 — (Vu) - VR1_2,0 and (26),
we see that

8“8@_1 ([Rl_ga, (VN V] 9) HL% (B;/;_lza)
< Ce||W | peo (oo | VO ([R1 -2, u - V) Q)HL% (525)

< Ce||0fy ([VR1-2a,u - V] 6) I, (50) T Cel|ofy (Vu - VR1-240) I, (525)
+ Ce||[V, 0] ([R1—2a,u-V]0) ||

= Ny + Ny + Ns.

L} (BL™)

To estimate Ny, we use (24) in Lemma 2.2, the induction assumption (103) together with the estimate
108) (with the embedding CJ; 21+ <y BY F27498) e find
w w

N1 < Ce||[VR1-24,u - V] 9||L% (72%)
< C(IVull ey + el gz ) 101 e (s s2-a0
<C,
where in the last line we have used the following estimate (which is a consequence of (50) and (52))
t 1 1
clelzgzm) <€ [ leulfaleVuliedr < O (leullye + 1eVulym) < C.
and C > 0 independent of € depends on Hy(T) with Hy(T) > Ce®®eP(CT) By applying (23), (25),
(103) and (108), the second term N3 can be estimated as
NQ S CE HV’U, . VRl_QQQHLtl (B,‘Z‘L_QQ,[)

< Cel[Full () [VR1-206 e 20

< C&HVUHLtl (B%’f) (HQHL?O (B;/‘;Jrzfm,e) + ||W||L?o (Bé{f*l) HGHL?O (53‘7274(1,271))
<C.

For N3, we use (114), (103), Lemma 2.2, together with the estimates of Ny, Ny, one obtains that

M= =0 <VW Vo' [Riza,u- V] 9)’L%(BZ£,,12°‘)
l—
<5 oSt B 5]
Z:?
<C HVWIILoo 0. ‘Vag T Ri—2a, By
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< Cel[ W e (1 ZHV@E =1 (R 1t V] 9‘

L} (B 2)
-2
S CQHV(UQJ,QO“U‘V] )HLI( v/ —2a,0— 1) +C€Z H v az . Z:| ([Rl 20"” v] 9)) Ll(BW/—Qaai)
t w
—20-2—i o
<ctceY 3 | (YW Vo (R seu - 910))| 3 (52)
= = t \Pw
<ctce Y |[IWevo T (Ricsaus VIO
0<itj<t—2 e )
<C+Ce Z Hvaf;%ifj ([R1—2a,u - V] ‘9)‘ Ll(B'Y —2a, 1+]) ’
0<itj<t—2

where C' > 0 is independent of ¢ and depends on Hy(t) with Hy(T) > H,_1(T) > Ce®>PeP(CT) By
repeating the above process and using (87) we end up with

N3 < C+Ce ”V ([Rl_ga,u . V] H)HL% (BW/EQQ) < C.

Hence, it follows from (110), (113), (115), (116) and the above estimates on Ni-N3 that

t
_ +1
IEl gy = 108 Ty )+ WPy ey <€ (14 [ IO lage IE Ol ggear) - 117
and (recall that 0 <y < ')
t
2v7 L A —2
[V2V+A FHLg(cg;LM) < C+C/0 ||W(T)\|B#||r(T)\|deT. (118)

Then, using (106), (109) and (118), we find that for all (v,~") such that
0<vy<2a—-1<9 <min{l,40—-2-2 7422 -1},

t
Hall;VVQW(t)HC"ﬁl + “6a}~_lv2u“L%(C7*1) < C/() (”FHB;}‘;‘Z + ”quc‘j‘f + 1) HWHCJV*MdT +C,

(119)
where C' > 0 is independent of € and depends on Hy(T) > Ce®® e (CT) By using (112), (114) and
Lemma 2.2 and Lemma 6.2, we infer that

H[v2va€V]W(t)ch—1 HLfo(m—l)

-1

< S ||o (VAW - voy W)
7=0

+2> |0 (VW - Vo TW)
j=0

-1 /-1

V2w - Vo I w || +2ZHVW V2o W

7=0

HLtOO(C’"/fl)

(\

yg)

Loo (C’wal ¥ Loo (Cg‘;l»j)

J

Il
~ O

-1
O3 (I7W e 905 W ety
7=0

IN

+ ”VW”L?(B%“V28€;1_jw“Lf°(cav‘l’j)>

IN

NV e (g ) I e =y (1 I ey )
c,

IN
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and

H[V,Béﬁ;l}VuHL%(m 1) S Haj (VW - Vo, JVU)HL}(cw—l)

<
~ HM(\
o

IN

> VW - Vo vul ()

<.

Z t 4
= CZ/ VWl [ VO Vil gy dr
j=0""0

t
<C [ IWElgye 190 e
Consequently, taking advantage of the following estimates

W (@)l grre < 103 W ()| crer + W (@)l g1
< C||V2o W ()| gy + | 2105 W (2) HLOO+C
< Cllof VAW D) |1 + [ [V 0 ]W )| o + IW () L2 [|05 W (1)
< C|| o VW ()| s + C,

+C

O e +

and

HVUHLl vy S HBI@IVUHU o +”VUHL1 7.l
Hew) ) (ei')

< OO Tull g sy + 1A 10 V] 1y gy +C

< Clo V2ull oy + IV 8‘“]WHW >
+CIW e (1|00 V]| 1 ey + €

<

Ol Vul| 1 sy + C/O W) g [V g7 + .

and in combination with the estimates (117), (119), we deduce that for all 0 < v < 2a — 1 and
20— 1 <+ <min{1,4a—2—%,7+2a—1},

I (0 e+ ¥l oy + Ty oy
t
<C [ (IP@ g+ 1Tu()lgge + 1) W (Dl gonedr + .
0 w w w

where C' > 0 depends on Hy(T') but is independent of e. Grénwall’s inequality and assumption (103)
guarantee that

W (i)t Hvu”LlT(CJ‘}”l) + HFHLIT(B%,M)
< Cexp {CHWHLIT () + Oy () + CT} < Ho(T),

which corresponds to (104), as desired. Therefore, the estimate (101) is proved.

It remains to prove the estimate (102). One may follow the same steps as the proof of the estimate

(101) up to possibly minor modifications. The main issue is the estimate of [|[A, 95| LB but

it was already done in [7] (the notation must be adapted as +' used here corresponds to 7' + 1) For
the proof of (102) in the case ¢ = 1 and D = R? we also refer to [7]. Hence, the proof of Theorem
1.1 is completed.
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5. INFINITE PRANDTL NUMBER LIMIT IN THE TORUS TZ2

This section is devoted to the proof of Theorem 1.2 concerning the passage to the limit when the
Prandtl number Pr goes to infinity. Before that, we present a general convergence result of the system
(Bo) without assuming the temperature patch structure.

Proposition 5.1. For each ¢ € (0,1], consider (u®,0%) a global reqular solution of the Boussinesq-
Navier-Stokes system (By) defined on T? for a € (1, 1] with uniformly bounded initial data (u§, 05) €
(H' x L*®)(T?), V- u§ =0 and [, 05dz = 0. We suppose that the initial data converge to (ug,6p) €
(H! x L>®°)(T?) as e — 0.

Then, as ¢ — 0, up to extraction of a subsequence, (u®,0%) converges to a global unique weak
solution (u,0) € L*([0,T], H'(T?)) x L*>([0,T] x T?) of the (fractional) Stokes-transport system
(STy) given by (3).

Remark 5.1. Concerning the existence and uniqueness of the global weak solution for the (fractional)
Stokes-transport system (3), one refers to the work [29] (see Corollary 7) for the case « = 1 and to
[11] (see Theorem 1.5) for the case a € (%, 1). Note that from the assumption we have [p, pdz =0,
which is the compatibility condition for the system (3).

Proof of Proposition 5.1. Since 9 ng 05(z) dx = 0, from the equation verified by 6 in (1) we
find

0°(z,t) de = | 65(z) de =0, Vt>D0.
T2 T2

Integrating the evolution equation in u in (1) over the spatial variable gives

d
e— [ u(x,t) do :/ 0°(x,t)eadr = 0, that is, / ut(z,t) doe = / ug(x) de.
dt Jpe T2 T2 T2

Thanks to Poincaré’s inequality, one gets

1
o () oy < 1900+ o) = iy [ wntiata] L, +C] [ aetatyaa]
T2 L T2

< OV () ooy + /T uj(x)da.

According to Propositions 3.1, 3.2, we have that ¢ is uniformly bounded in L(H'(T?)) and 6° is
uniformly bounded in L3°(L>°(T?)). Thus, up to extraction of subsequences, we have the weak-x
convergence, as € — 0,

u® —=*u, in LP(HY(T?)), (120)
0= —* 0, in LF(L>(T?).
It follows from the lower semicontinuity of weak limit that u € L¥°(H'(T?)) and 6 € L3 (L>(T?)).
From the equation 0;0° = —div (u® 6°) and
[div (u® 0)|| oo (1) < Cllu® 07| Leo 12y < Ol 1o (22)[|0° || e () < C,
we know that 9;0° is uniformly bounded in L (H ~1(T?)). Since L?*(T?) — H 2 (T?) is compact, we

use the Aubin-Lions lemma or the Rellich compactness theorem (see Lemma 2.10 or [12]) to infer the
strong convergence:

6° =0, in C([0,T], H 2(T?)). (121)

Now we can pass the limit to show that (u, ) solves the (fractional) Stokes-transport system (3).
We only need to show the convergence of the nonlinear terms, since the linear ones can be dealt with
in a standard way. For all ( € S(T? x [0,77]), we have that as ¢ — 0,

| [ [ - u)canat] < el eun 9 a0 ot < ol s Wl oy = 0.
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‘/OT/T div (uEGE)Cdxdt—/OT/TQ div (u0) Cdxdt’

< ‘/OT/TQ(UE—U)'VCdedt‘+‘/()T/Tzu€'VC(9€—«9)dxdt

T
€ e -
<| [ [ =) Teodad] TGl g 160, g 20 (22

where the convergence in (122) follows from (120), (121) and the estimate that

and

[[u® - VCHLIT(H%) < w® - Vel < Cllutllge(alICh Ly wzioey < €.
]

Corollary 5.1. Under the assumptation of Proposition 5.1, one can get 6° and 6 in Proposition 5.1
satisfies 0° — 0 in L(L9(T?)) for all 1 < q,r < oo.

Proof of Corollary 5.1. Since 6 is uniformly bounded in L3 (L>(T?)) and 6 € L5°(L>(T?)), thanks
to the interpolation and embedding properties of Lebesgue spaces, we only need to show #° — 6 in
LZ(L*(T?)). Since (u,0) € L>([0,T], H*(T?)) x L>=([0,T] x T?) is a global unique weak solution of
the (fractional) Stokes-transport system (3), one gets [|0[|2(12) = [|0ollp2(r2) and [|0]| z2(0,7)xT2) =
T1/2||«90HL2(T2). Similarly we have [|6%||p2(j0,r)x2) = T1/2||98HL2(T2). Since 6 converges to 6y in
L>(T?)  L*(T?), one finds that [|6°[| ;2o r)xT2) converges to [|0]|r2(jo.r)xm2) as € — 0. Taking
advantages of 65 — 0 in L%([0,T] x T?), one gets that 6° — 6 in L2.(L?(T?)). O

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let X7 be the particle-trajectory generated by the velocity u®, that is, X7
solves

d

5t W) = (Xi W) 1), Xi(W)le=o = v (123)

Denote by Xf’_l the inverse map of X7, then Xf’_l satisfies
t
X0 @) =2 — / u (1, X5 0 Xf’_l(a:))dT. (124)
0

Thanks to Proposition 3.3, we have the following uniform estimates, Vu® € Li(C?*~(T?)) for
a € (5,1) and Vu® € LE(BL, o(T?)) for a = 1. Since

uF(0,t) = /Tr? uf(z,t)de = /T? ug(z)dz < Collug|l 2

for all ¢ € [0,7], we get that u® € LL(C?*(T?)) uniformly in € if o € (3,1) and u® € LL(C'7(T?)),
for all ¥ € (0,1) uniformly in € if & = 1. Therefore, using (11) we find that the system (123) has a
unique solution X () : T2 — T? on [0,7] which is a measure-preserving homeomorphism satisfying
that X7 and its inverse X'~ belong to L2 (C?*(T?)) if a € (3,1) and belong to L (CH7(T?)),
7 € (0,1) if & = 1. Besides, from the equation of # in (1), it holds that

0°(w,t) = 00 (X; ' (2))1pery(2), with D*(t) = X;(Do). (125)
By using the equations (123) and (124), we also know that atxf’ﬂ € L¥(H(T?)) uniformly in &,

thus Aubin-Lions lemma guarantees that there exist X;(-) : T> — T? and its inverse X; '(-) : T — T2
such that, as € — 0 and up to the extraction of a subsequence,

Xp = XA i ([0, T];CH(T?), 7 € (0,20 —1).

Moreover, X;(-) is a measure-preserving homeomorphism that solves the limit equation (2) in the sense
of distribution, and also Xj™ € L¥(C?*(T?)) if o € (3,1) and Xj*' € LF(CT7(T?)), ¥ € (0,1)
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if @« = 1. Passing to the limit in (125), we recover that 6(x,t) which solves the first equation in (3)
satisfies
0(x,t) = 00(X; ' (2))1pg (), with D(t) = X¢(Dy).
If £ = 1, the regularity of Xtil implies the global persistence of the regularity C'*7 of dD(t), that
is, (13) with & = 1 holds. If k& > 2, then recalling that ¢o(z) € CF7(T?) satisfying (6) is the
level-set characterization of Dy, we have that the domain D*(t) can be characterized by ¢°(z,t) =
g,—1 . .
¢o(X; (z)) satisfying that
Orp” +u” - V" =0, ¢ li=o(x) = po().

Since ¢° is bounded in L (C*7(T?)) (see (98) and (99)) and uf is controlled in L (H'(T?)), one
gets that dyp° belongs to L¥°(H(T?)) uniformly in e. Since C?™(T?) — C?**71(T?) (1 < 7) is
compact, Lemma 2.10 yields that, up to the extraction of a subsequence,

¢° — ¢, in C([0,T],C*"(T?)),0 <71 < 7. (126)

By letting ¢ — 0 in the equation of ¢, we find that ¢(x,t) = @o(X; ! (x)) is the level-set characteri-
zation of the domain D(t) and it solves the equation (in the sense of distribution)

dhp+u-Vo=0, ¢l=o(z) =)

Besides, it follows from the weak- limit of ¢ that ¢ € L$°(C?*™(T?)), and this proves that the
global persistence of the C?*7 regularity of dD(t).

For the case k > 2, in light of (100) and (102), we have 8’;‘,—81W€ € L¥(C7(T?)) uniformly in ¢,
with W¢ := V1. From the equation (80) and the fact that [Oy-,d; + uf - V] = 0, we get

O (08 We) +us - V(05 W) = ol (W= - V).
The uniform estimates (100) and (102) together with (26) and the striated estimate (23) imply that
[Ju® - Vaﬁ/_sIWEHLlT(cvfl) < CHUE”LIT(LOO)Haﬁz_alngL%O(cw) <C,

and

921 - Tl ey < IWE - Vil ity < IV g [V

ke, <
T(C"szl,k 1) >~ C,

where C' > 0 is independent of ¢, thus it follows that 0, (8{},}1W‘5) € LL(C71(T?)) uniformly in e.
Using the Aubin-Lions lemma ensures that, up to an extraction of a subsequence,

MWe — fr, in L2([0,T],C72(T?)), 0 < 72 < 7. (127)

We claim that f = 8’“ W with W := V4. Indeed if k = 3, it follows from (126) that f3 = 03, W.
Now assume that f, = 8Z 'W for each £ € {3,--- ,k — 1}, we shall show that fy,; = 9%, W. Noting
that by using (126) and (127), we find that for all { € S(T? x [0,77),

T
/ (8- W) ¢ dedt = / / (0529 (O=C) dadt
']1'2 0 T2

T T
— —/0 - fg (8{/[/{) dxdt = /0 /rﬂ‘2 (8ng) Cdxdt,

and it follows from the uniqueness of the limit that f,11 = Ow fr = ﬁﬁ,W. Thus the induction method
ensures that fi = a{f‘;lW, as desired.

Furthermore, the weak-x* limit of 8{};1 W¢ implies that B‘va_ 'W € Lg(C7(T?)). In combination with
(100), this shows the global persistence of C¥*7 regularity of the boundary patch dD(t). Therefore,
the proof of Theorem 1.2 is finished. O
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6. PROOF OF LEMMA 2.2: STRIATED ESTIMATES
Let us denote
Ryaram)i= [ [ Tlai(e+ fir 7,) dydr,
1 [0,1]m RdH ) h(r)
where ¢ € N, h € C ([0,1]™;S (R?)), f; € L> ([0,1]™) for all 7 € (0,1)™. Note that when f; = 0 and
Jga h(7,y)dy = 1, the identity becomes Ry (v, ..., am) = [] au(z).

First we recall the following important result whose proof can be found [7].

Lemma 6.1. Let (k, N) € Z* xZ*, p € (0,1), and W = {Wi}, .,y e a set of regular divergence-free
vector fields of R? satisfying that

k-1
WV llgronr = S I @ww) W 14y < 0. (128)
A0

Let o (i =1,...,m) be such that supp &; C B (0,C;27), C; > 1, and let ¢ be a smooth function with
compact support in a ball. Then, we have that for all s € R, (p,7) € [1,00]? and £ € {0,1,...,k},

(Tww) Ry (s ctm) ||, < € min (ZH Ty ol 1 H(Tw-v)“jajHLoo)

1<i<m . iy
lul<e 1<j<m,j#i
(129)
with = (p1,. .., pm) and |p| = p1 + -+ - + pm, and
l
[(Tw-)w (277D) 8|, < € 3 I1(Tww) 6| s (130)
A=0

and

H <2qu (Tw-v)" Aq¢“Lp>q2_1

and

o @EN @) Va6 ,,) ], < Clelge . (3D

>—1ller ™
IVollge < Cllollgre. (132)
p,m W p,r, W
In the above the positive constant C' depends on ||W||z11pk-1.
w

Based on Lemma 6.1, we obtain the following useful striated estimates.

Lemma 6.2. Let W = {W;} .,y be a set of reqular divergence-free vector fields of R? satisfying
(128) with (k,N) € Z+ xZ*, p € (0,1). Let m(D) := A%mo(D), o > —1, and mo(D) be a zero-order
pseudo-differential operator with my(§) € C*° (Rd\{O}), Then, there exists a positive constant C
depending on ||WH51W+,J,1§71 such that the following statements hold for all ¢ € {0,1,... k}.

(i) We have that for all ¢ > —1,

4
18 (Tiw-0) V(D) < O3 2904 T 9], (133)

and for all ¢ € N,

L
2@ Bl <0 >0 Y Twe) A0V . (134)

q1€N,|q1—q|<Ng A=0

with Ny € N depending only on £.
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(ii) For all s <0, we have

l ¢
Tl , < Cmin{ 3 [ollgp hollgespe D lolle lolgye (135)
: 2 o 2 IVl
and
J4
Tl < O3 Il ol (130)
While for all s < 1,
l
ITouwvligse = < CZJ lwllgsy vl gress (137)
/'L:
and for all s € R,
l
ITunley,, <€ 3 IFullgy gy (139
l’ll:

(iii) Assume that v is a divergence-free vector field of R?, then we have that for all s > —1,

L 4 4
IR Vullgye,, S min{ 3 ollgg IVuilgy e > el IVl 3 lolggplolgesy |-
N:

n=0 ©n=0

(139)
(iv) We have that
[@llgse < Clldllgse < Cll@llgse , Vse(=1,1), (140)
p,m, W p,r, W p, 7, W
< 10 < 141
6l < Cllolans < Cllolgae, (141)
Wlgee < CIWllgee , ¥s>—1, (142)
»,r,W D, W
and,
2S < s s > .

I8l500 < Clldllger  +ClollgyelWilgee . Y521 (143

Proof of Lemma 6.2. The only statement which needs to be proved is (133) since the other estimates
are the same as Lemma 5.2 in |7]. We prove it via the induction method. We first remark that (133)
for ¢ = 0 is true: this follows from Lemma 2.5. Assume that it holds for all ¢ € {0,--- , ¢} with some
¢€{0,1,--- ,k — 1}, we want to prove that (133) is true at the rank (¢ + 1). Similarly as (30), we
notice that

(Tw.v) V(D) f = —[Vm(D), Tw.v| f + Vm(D) (Tw.v) f

=_ Z [Vm(D), Sq—1W - V] Ay f+Vm(D) (Tww) f
q1€N

== > |Vm(D) (277 D) Sy W - V| Ay, f + V(D) (Tv) f,

and
Vm(D) (27D) Sy s W - V| Ay, f

= 2q1(d+1+0) . E1(2q1y) (Sq1,1W($ - y) - Sq1*1W(:B)) : VA(h f(l‘ - y)dy
R

= 2u(1+o) / hi(y) (Sq—1W (z = 27y) — Sq,1W(2)) - VA f (z —27"y) dy
R4

1 ~
= —2q1”/ / hi(y)y - VSq -1 W (m — 727q1y) VA, f (QZ — 27‘113/) dy dr,
0 JRd
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with by = FL(i&m()v(€)) € S(RY). Thus by using the induction assumption together with
Lemma 6.1, we infer that for all ¢ > —1,

|8 (Tw.w) T Vm(D)g|,, < A (Tww) ((Vm(D), Twv] )|, + [[Aq (Tw-v) V(D) (Tw.v) ¢| .,

SO D) 22 @) S A VW L [T )2V AL 8,

q1EN,q1~q p1+p2 <t
l

+ 24(1+0) Z H(Tw.v)/\Jrl(ZSHLp

A=0
441
S ZQ" N Tww) 0]l + > 27 (Tww) @l
A=0 A=1
41
/S Z2q(1+U)H(TW~V)>\¢HLp7
A=0

where in the last line we have used (130) and the following estimate

q1—1
[T TS Wl € 3 2700 (220 | (Ty)" A, YW .0 )
q2=—1

S CHVW”&'P»IH S C||W||5l+p,,u1 < Q.
w w
Hence, by induction, we have proved (133) which is the wanted control. ]
Then, we turn to the proof of Lemma 2.2.

Proof of Lemma 2.2. Since (23) was already proved in Lemma 2.4 in [7], we only need to prove
statements (ii) and (iii). We shall prove (24) and (25) again by induction on the index k. For k = 0,
(24) follows directly from (28), while (25) follows from (29) together with the estimate

Im(D)élp;, < ClA_1m(D)gl|re + C||(2°]|Ajm(D)g||1e)

p,r —
< CIA (D)oo + C|| () Ajellra)
< Cl1cocqy|A1m(D)o| o + Cl16]| o (144)

where C' > 0 is a universal constant (the norm [[W|| 1151 plays no role).
w

Assume that (24) and (25) holds for ¢ € {0,1,...,k—1} (where k = 0 when ¢ = 0 ) with ¢ in place
of the k-index, we intend to prove that they also hold for the £ + 1 case. For the estimation of (24),
thanks to Bony’s decomposition, we have

(D), u-V]p = Y [m(D),Sj—1u-V]Ajp+ > [m(D),Aju-V]S;_1¢

jeN jeN

—|—Zm ) div (A uA, i) Zdiv (Aju m(D)ﬁjxﬁ)
j=3 Jj=3

+ ) [m(D),Aju-V]A¢
—1<j<2

5

= > I
j=1

It follows from (140) that
[[m(D),u - V]¢||Bs L < O||(I, 12,13, 14, I5) || 5

s, 0+1 .
p, W
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For I, noticing that m(D)y (27/D) = 2i(d+o)p (27-) * with hi=FYmy)eS (R?), and
[m(D), Sj—1u-V]Aj(x) = [m(D)d (277 D), Sj_1u - |VA;¢(x)
=27 [ hly) (Sj-1u (o = 27y) = Sy-aula)) - VA (2~ 27y) dy
1 ~ . .
= —ile=1) / / hy)y - VS;—1u (:p — 7'2_Jy) -VA;¢ (x — 2_Jy) dydr,
0o JRrd

we apply Lemma 6.1 and Lemma 6.2 to obtain that for all A € {0,1,...,¢+ 1},
20|80 (Two) il S 2 3 | Ag(Twe) ([m(D)E (277D) , Sj-1u- V] Aj0) |

Ly
JEN,j~q
S 2 Y Y PO @)™ VSl | Tw) ™ VA6,
JEN,j~q A1 +A2<A
DYDY ( > @)™ VAJ"“\Loo>2j(0+5_1)H(TWV)MAJVMLP
JEN,j~g A1+ <A /<1
{41
S ¢ Z ||Vu||goy‘,/>\1||V¢Hg;;,1;vrs,e+1f>\1
A1=0
/+1
< cq/\zjo||Vu||l§ov‘,/x1||¢|]l§;’+:‘,/€+1Al
=

S IVullggorlléllgreon,

with {cq} > satisfying [lcg|,» = 1. It immediately leads to
I 2S < C V o+s .
Tllgeess < CVullgyor 9l greson
Then, we use the strategy as the proof of (30), that is, we decompose I3 as

IQ == Z ’ITL(D)QZJJ(2_JD) (A]U . Vijlgf)) - Z Aj’LL . Vm(D)ijléb = 1271 + 1272.
JeN jeN
For I 1, by using the induction assumptions and taking advantages of (129), (132), (134) and (140),
we find that for all A € {0,1,...,¢+ 1},

208 (Tve) Ball, £ 2% 2 |8 (Bww) m(D)FEID) A VS5 1)
JEN,j~q

Lp

N

A
200y Y 2T M (Aju- VSa9)|

oo > 20(Twe) A (T ) 2 VS0,
JEN,j~q A2 +A3<A

N

A2

DR L L (D WD W RS

JEN,j~q Aa+A3<A q1E€N,q1~j Ay4=0

X < > H(TW.V)A?’VAJ@‘LP)

J'<i—1

SO D> Vullga, Y 20t ol stomh (1 YV A,

JEN,j~q Ag+A3<A w j'<j—1

A

S CQHVUHE?/{JZH Z HVQSHEZ;,%S’AS

A3=0
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S CqHVUHg%H||¢||g;;svyg+1
S ol Vullgggn 9llgorsen,
S 22 > Ay (Tww) (Aju- Vm(D)S;16) |
JEN,j~q
<2 ) D @M A e [[(Twe) 2 V(D) Sj-16]
JEN,jrg A1 +A2 <A
A1
DD 2“8—”( )3 ZH(TW-VMMHLOO)X
FEN,j~g A1 +A2<A q1€N,q1~j A3=0
(H TWV))‘QVm 1¢HLP+ Z H(TWV)AQVW(D)AJ"‘JSHM)
0<5'<j—-1
DYDY HVungQﬂsl(uvfn( A 16
JEN,jr~g Aa+A3<A
I Z Z 2j/(1+U)H(TW-V))\ >
0<j/<j—1A4=0
S IVullgoen
x Y 2”81<”A wuwz > Um0, ¢Hw>

JEN,j~q A=00<j/<j—1

AN

CQHVUHBO e+l Z H¢H ~*+f’ >\2

Ao=0
cqllVul goern ”‘JSHE;jf’V*é“

AN N

CQHVUHB?/{erl ||¢||B;t(’v€+1

where {cq} -, satisfies [cql/,» = 1. Then the above estimates readily give

Hb”’gf{ffvlv < CHVU||BOVVVZ+1||¢||B;¢%+1-

For I3, by applying Lemma 6.1 and Lemma 6.2, we find that for all A € {0,1,...,¢+ 1},

208 (T Bl 52 X

o (Tw-v)* V(D) (A ubs0) |
j>max{3,g—Nx}

A
< gullasto) §° ( > [(Tw.)™ (A ju AJ’¢)HLP>
A1=0 j>max{3,g—N,}
< 2ditste) R o @) 2 Ajul| o | Tww) M50,
j>max{3,g— Ny} A2+A3<A
T S S R T T
A2+A3 <+ j>max{3,g—Nx}
x 200T9|[(Ty.0) 3 A4,
041 A2
S Z Z 2(qj)(1+s+a)<z Z “(TW-V))\4Ajlvu|‘L°°>

A2=0 j>max{3,g— Ny} J1~j Aa=0

% ¢l nc
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S Cq||vu||g0v{f+1||¢’\g;;%+1
S CqHVUHB%H||¢HB;;%+1,

which guarantees that

Msllgrrssen < ClVullgggen @l enen-

For I, similarly as above, we infer that for each A € {0,1,...,¢+ 1},

QQSHAq (Tw.v))\ I4HLP 5 29° Z HAq (Tw.v))\ div (A]uﬁ]m(D)qS) ‘
j>max{3,g—Nx}

A
2NN [T (Agu Aym(D)9) |

Lr

S
A1=0 j>max{3,g— N}
< 2009) > S @) Ajul| || (Tvw) 2 Aym(D) )|,
j>max{3,g—Nyx} A2+A3<A
Y > 2@ NF)||(Tyyg) 2 Aju| oo
A2+A3<l41 j>max{3,g— Ny}
A3
x (Qj(W) > "(TW'V))\4Aj¢“Lp>
Ag=0
/+1 A A2
S Y (S e, vl ) olgeg
A2=0 j>max{3,g—Nx} Ji~7 As=0 proe W
S CqHVU”gOV{fH ||¢||l§;tffv€+1
S <l Vullgoens Hqﬁ”BZ,f,sv’é“ ;

Therefore, we get

Mallgs.err < ClIVullgossalidl greser

Taking advantages of Lemma 2.5, the term [I5 can be easily estimated as follows:

Ny £+1 2

Islgeey < D07 > ([80(Twe) m(D) div (Aud0),

g=—1X=0j=—1
HlAgTw) (Agu- Vm(D)A6) )

2
< Y (|lm(D)div (Ajudio)|,, + || A5 Vm(D)A 6, )

<Cllu= (Y 1850l ) < Cllulioe ol

—1<j<2
Hence, gathering the above estimates, we find the wanted inequality (24).
Then, to prove the control (25), thanks to (22) and (144), we have that
Im(D)ollgsrsz = (DO gy + (D)ol
ClIw - V(m(D)@)llgsess + Clidl pgze + Climico<oy [A-1m(D)d]l s
< (D)W - 6l goes + Im (D)ol o
p,, W D7, W
+ C\|¢||B;j,:ff + CLl_1co<oy [[A—1m(D) || 1p -

IN
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Thanks to the induction assumptions of (24)-(25) and using (32), one can get
[m(D), W - V]gllgess1 < Clidlgerarer (VW] gorer + [IW]zoo)
p,m,W W w
< C S+0O0
< Olollgrenees W g
and
Im(D)owoll st < Cllowlgesoces + ClIWIgse (180l goses + A im(D)iv W ), )
p,mW p,m,W w p,mW
< Cll¢llgssre + ClWllge (6l groer + 19l 555 )
< Ol gs+aere,
P, W

where C' > 0 depends on ||[W||,115k-1. Collecting the above estimates allows us to conclude that (25)
w
holds in the step £ + 1, this ends the proof.
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