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Abstract
This paper is concerned with the global well-posedness issue of the two-
dimensional (2D) incompressible inhomogeneous Navier—Stokes equations
with fractional dissipation and rough density. By establishing the L(I})-
maximal regularity estimate for the generalized Stokes system and using the
Lagrangian approach, we prove the global existence and uniqueness of regular
solutions for the 2D fractional inhomogeneous Navier—Stokes equations with
large velocity field, provided that the initial density is sufficiently close to the
constant 1 in L? N L> and in the norm of some multiplier spaces. Moreover, we
also consider the associated density patch problem, and show the global per-
sistence of C'"7-regularity of the density patch boundary when the piecewise
jump of density is small enough.
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1. Introduction

We consider the two-dimensional (2D) incompressible fractional inhomogeneous Navier—
Stokes (abbr. fINS) equations:

Op +div(pu) =0,

p(Ou+u-Vu) +vA**u+Vr =0, (1)
divu =0, )
(P 1)li=0(x) = (po(x),u0(x)),

where x € R%, v >0 is the kinematic viscosity coefficient, the scalar p is the density, u =
(u',u?) represents the velocity field, and 7 stands for the pressure of the fluid. The fractional
Laplacian operator A%® := (—A)* for o € (0,1) is a nonlocal operator that is defined by the
Fourier transform via

A2f(€) = [¢&),

where? is the Fourier transform of f. From the viewpoint of the stochastic process, the frac-

tional Laplacian A?® is an infinitesimal generator of the symmetric 2a-stable Lévy process

(e.g.see[1]). When p =1 and v =1, (1.1) reduces to the 2D incompressible fractional (homo-
geneous) Navier—Stokes equations

{ Ou—+u-Vu+Au+Vr=0, (1.2)

divu=0, ul=o(x) =uo(x), '

where x € R?, a € (0, 1). The system (1.2) was first proposed by Frisch et al [23] and later
was used in modelling a fluid motion with internal friction interaction [42]. Recently many
purely analytic results have dedicated to the mathematical research of (1.2); for example one
can see [10, 34, 55, 56] and references therein. Compared with (1.2), the density-dependent
system (1.1) can describe the dynamics of flows with variable densities.

In the past decades, there have been a lot of works on the fractionally dissipative systems
arising from many physical applications. The fractional Laplacian operators describe various
phenomena in hydrodynamics [4, 31, 32], fractional quantum mechanics [35], anomalous dif-
fusion in semiconductor growth [53], physics and chemistry [43, 50]. We also mention a related
fractionally dissipative model, known as the Euler-alignment system,

Op +div(pu) =0,

p(Ou+u-Vu)+D(u,p) + Vp(p) =0,

D(u,p) = p(ul®p — A2 (up)) = ca p fou [E5H5 ()dy,
(P, u)]i=0(x) = (po(x), u0(x)),

(1.3)

where x € R, d > 1,a € (0,1), ¢, > 0, pis the density, u is the velocity field, and p(p) = rp?,
k> 0,7y > 1is the pressure. The Euler-alignment system (1.3) is the hydrodynamic limit model
[30] of the Cucker—Smale kinetic model which describes the flocking phenomenon of animal
groups, and one can see [6, 9, 13] for the recent mathematical studies. The model (1.3) can be
viewed as a compressible Euler system with fractional dissipation, and thus one may formally
view system (1.1) as an intermediate model between fractional Navier—Stokes (1.2) and the
Euler-alignment system (1.3).
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When oo =1 and v =1, the fINS system (1.1) corresponds to the classical incompressible
inhomogeneous Navier—Stokes (abbr. INS) system:

Op +div(pu) =0,
p(Ou—+u-Vu) — Au+Vr =0,
divu =0,

(p,u)|i=0 = (po,uo)

1.4)

where x € R?, d = 2,3. The INS system (1.4) originates in describing the dynamics of geophys-
ical flows which are incompressible and also have variable densities [41]. When p = 1, the sys-
tem (1.4) becomes exactly the classical incompressible Navier—Stokes equations. System (1.4)
has been extensively investigated in recent decades. When the density is bounded and (po, 1)
has finite energy, the global existence of weak solutions with finite energy for INS system (1.4)
was obtained in [41, 49]. If the density is bounded and smooth enough (at least continuous with
some fractional derivatives in Lebesgue spaces), the global existence and uniqueness results
can be obtained for the INS system (1.4) in dimension two with large initial data, and in dimen-
sion three under a smallness condition of the velocity (e.g. see [8, 14, 33]). The case of the
rough density admitting piecewise constant densities is of much interest, and can be used in
modelling a mixture of two fluids. Danchin and Mucha [18] developed a novel Lagrangian
approach to address the uniqueness in the rough density case, and proved the global exist-
ence and uniqueness of regular solutions to the INS system (1.4) in the critical Besov spaces
setting, under a smallness condition on the initial velocity and the jumps of initial density.
Huang, Paicu and Zhang [28] in the 2D case removed the smallness condition on the initial
velocity in [18] and got the global well-posedness of solutions by assuming that the jumps of
initial density is sufficiently small (depending on the size of the velocity). Danchin and Mucha
[19] proved the local-in-time existence and uniqueness result of the INS system without the
smallness condition on the jumps of initial density, and they also established the global result
in dimension two (and in 3D case with additional smallness on velocity) if the density is close
to a positive constant. Paicu et al [48] moreover showed the global well-posedness of solu-
tions to the INS system (1.4) in dimension two with initial density only being bounded from
above and below by some positive constants. For bounded initial densities admitting vacuum
states, Danchin and Mucha [20] obtained the global existence and uniqueness result for the INS
system (1.4) in either a periodic torus T¢ or a bounded domain £ C R with smooth bound-
ary. Note that all the above articles dealing with the rough density case essentially apply the
Lagrangian method to show the uniqueness, and one can also see Constantin et al [11, 12] for
such a method applied to the related hydrodynamic models.

Another interesting and closely related result on the discontinuous density for the INS sys-
tem (1.4) is the study of the so-called density patch problem, which was first raised by Lions
[41] regarding the density patch py = 1q, with 2y C R¢ a smooth simple-connected domain.
Since the density solves the transport equation, it formally yields p(z,x) = po(X; ' (x)) with
X! the inverse of X, and X;(+) the particle-trajectory satisfying
%X,(x) =u(t,X,(x)), X, (x)] =0 = x. (1.5)
Thus one has that p(t,x) = 1o (x) with Q(t) := X;(2). The density patch problem asks
whether or not the initial smoothness of the density patch boundary persists globally in time.
The aforementioned works [18, 19, 28, 48] ensure the global well-posedness of patch solu-
tion for INS system (1.4) associated with the density patch initial data in various situations,
and showed the global persistence of either C'- or C!"7V-regularity of the evolutionary patch
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boundary. One can also refer to [7, 21, 24, 38—40] concerning the global persistence of higher
boundary regularity of the density patch.

When v =0, the system (1.1) becomes the density-dependent incompressible Euler
equations, for which the classical incompressible Euler system is a special case. If the initial
data has enough regularity (at least the initial velocity is Lipschitz continuous and the gradient
of initial density is continuous and bounded), the local existence and uniqueness results for
the density-dependent Euler equations can be obtained in many kinds of functional spaces,
and one can refer to [3, 15, 16] and references therein.

As for the fINS equations (1.1) with v > 0, the existing articles [22, 52] only deal with the
hyper-dissipative case with a > % in dimension three, and the global well-posedness results
have been established in this case.

Our main goal in this paper is to show the global-in-time existence and uniqueness result of
2D fINS equations (1.1) with large initial velocity field and rough initial density which admits
jump discontinuities. We restrict to the case % < a < 1, which is reasonable from the maximal
regularity of the fractional Laplacian operator A%>* and the need for the velocity to be at least
Lipschitz continuous.

We also remark that it seems very hard to generalize the global results of [20,
48] to the 2D fINS equations (1.1) with % <a <1 and the density being merely
bounded. One reason is the intrinsic difference between the o =1 case and the a <1
case*: noting that the 2D fINS equations (1.1) are scale-invariant under the following
transformation

p(x,1) = p(Ax, N2%1),  u(x, 1) = N2 (e, A1), w(x, 1) = X2 m(Ax, A29),

for every A > 0, and in combination with the classical L>-energy estimate, one can view the
a =1 case as the energy critical case and the o < 1 case as the energy supercritical case; thus
the time-weighted energy estimates used in [20, 48] work for the critical o =1 case, but will
not directly extend to the supercritical o < 1 case.

Inspired by [28, 45-47], here we compare the solution of the 2D fINS equations (1.1) with
the large solution of the 2D system (1.2) and study the stability issue. We assume v =1 for
brevity. More precisely, let it(x, ) = (&', 4)(x,t) be a 2D vector field solving the 2D fractional
Navier—Stokes equations (1.2) with initial data u, and define

a=p—1, wi=u—u, p:=7m-—T. (1.6)
We investigate the following perturbed system
oa+u-Va=0,
Ow+u-Vw+A**w+Vp=F, a7
divw =0, )
(a,W)‘[:() = (Po - 170)7
where
F:=—adw—adii—a(u-Vw) —a(u-Viu)— p(w-Vi). (1.8)

Our main result reads as follows.

4 This is analogous to the difference of the 2D Navier—Stokes equations (1.2) between o = 1 case and o < 1 case; how-
ever, the system (1.2) has additional uniform bounded quantity, that is, the vorticity w = curlu is uniformly bounded,
which makes the L2-energy supercritical a < 1 case be globally well-posed.

3869



Nonlinearity 36 (2023) 3866 Y Lietal

Theorem 1.1 Let} <o <1,p > 525 andug € H' NBS,(R?), py — 1 € L* NL>*(R?). There
exists a generic constant co € (0, 1) depending only on a "and p such that if

oo = Uz < coexp{ — o luollZurge, (19)

then the 2D fINS system (1.1) has a global-in-time strong solution (p,u,NV'm) satisfying the
estimates

o — Ulroe ey s2nios 2)) < NP0 — 1|2z m2),  and (1.10)

a—1

2c 2o
||uHLoo(R+;LzﬁBﬁ2)+H(8[u,A uavw)||Lz(R+;U’)+||”||L2(]R+;H@) (1+||u0||H|mzl}<’ ) s (111)

with C> 0 a constant depending only on o and p.
If we additionally assume that uy€ B;‘:{S(RZ) with s€(0,1) and py—1¢€

. .2 2
M(B;z)ﬂM(B}’,’j a) satisfying that for a sufficiently small generic constant c, >0
(depending only on o, p, s),

=1l () <cep{-c! (14l )} a1
.2

then the above constructed solution is unique, and u also satisfies that

(2a—1)

s4a—1)
‘|MHL°°(R+;B,'f;“) + |‘””L2(R+;Bﬁgmsﬁg+*) + el @ ginoey < <1 + ||”0H3a+ + [luo ||H|mBa )
(1.13)
with C > 0 a constant depending only on o, p and s.
In the above, M (B;y,) denotes the multiplier space (see definition 2.2 below).

Remark 1.2. We apply the Lagrangian method in the uniqueness part of theorem 1.1. Owing
to the nonlocal effect of fractional Laplacian operator A%, it seems that we need a little bit
more regularity of u than the obtained regularity in the existence part. More precisely, in view
of (6.51) below, one has to control | u|| @) (from which ||| @) is bounded), which is
essentially stronger than the quantity ||u|| L; (2apy in (1.11). So we additionally assume i
is slightly more regular and py — 1 is small enough in the norm of some multiplier spaces,
and we build the refined estimate (1.13). It should be emphasized that, thanks to lemma 2.5
below, the multiplier spaces M(B;,r) for small s contain the elements with piecewise jump
discontinuity.

Next, we consider the density patch problem of the 2D fINS equations (1.1). As a direct
consequence of theorem 1.1, we can show the global well-posedness result and the global
persistence of C'7-patch boundaries, as long as the density jump across the C'+7-interface is
small enough.

Proposition 1.3. Ler 5 < a <1, p> 524, ug € H' NBy7°(R?) with0 < s < | Assume that
Qo is a bounded szmply connected C'-domain of R* with 0 < v < 2a — 1 + s—= and po =
(14+0)1q, + lo; where o € R satisfies

1 -2
o<’ exp (=% (14l ) ) (114)
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with a generic small constant ¢’ > 0 depending only on a,p,s and §y, then the 2D fINS
system (1.1) has a unique global solution (p,u) on R* x R satisfying the estimates (1.11)
and (1.13). The density p has the following expression

p(t) = (14+0)lgw +1lawe with Q(t) = X,(), (1.15)
and the associated patch boundary 9Q(t) € C'V(R?) for every t € R,

Proof of proposition 1.3. Thanks to lemma 2.5 and the smallness condition (1.14), pg — 1 =

2

olg, belongs to L2 NL>® ﬂ/\/l(B;’z) OM(B;”TFM) and it also fulfills (1.9) and (1.12), so
theorem 1.1 guarantees that there is a unique global-in-time regular solution (p,u) to the
2D fINS system (1.1). The estimates (1.11), (1.13) and the continuous embedding Bf}%ﬂ N
H*(R?) — C'"(R?) with 0 <~y <2a—1+s—2/p imply that u € L'(R;W">°(R?))N
L'(]0,T);C"(R?)) for any T >0. By the Cauchy-Lipschitz theory, there exists a unique
particle-trajectory X;(-) : R — R? for every t € R, which solves (1.5) and is a measure-
preserving bi-Lipschitzian homeomorphism with inverse X; '. Besides, owing to [2, prop.
3.10], it is easy to see that

t t
IV | < / IVXE oo [ V() e+ / IVXE L | V() | i,

and thus

(IVull 1 0o
=) < 0.

+ +1 1+
IVX; 1||L$°(C’Y) <IVX; 1||L$°’ZL°°)||VMHL‘T(C’Y)6
The method of characteristics gives that p(x,) = po(X; ' (x)), which leads to (1.15). Since the
initial boundary 9y € C' and X! € L*(C'"7), we conclude that the evolutionary patch
boundary 9€2(t) € Ls°(C"7) with 0 < v < 2 — 1 +5—2/p and T >0 any given, as desired.
O

Let us sketch the proof of theorem 1.1. By applying the technique of vector-valued
Calder6n—Zygmund operators in Lemarié—Rieusset [36, chapter 7], we first establish the
L!(LY) maximal regularity estimates for the generalized Stokes system with fractional dis-
sipation in the whole space R?, which may be of independent interest. Next, by performing
the L2-energy estimate and the L?(L”) maximal regularity estimate for the fractional Navier—
Stokes equations (1.2) and the perturbed system (1.7), we build the a priori estimates for the
2D fINS equations (1.1). Then by an approximation process and the compactness argument,
we show the existence part of theorem 1.1.

As for the uniqueness part, due to the hyperbolic property of the density equation (1.1),
and the low-regularity assumption of the density, we have to adopt the Lagrangian approach
from [18, 19]. Due to the nonlocal effect of fractional Laplacian operator A>®, the process is
more complicated than that in the INS equations (1.4). We rewrite the system of the difference
of two velocities in Lagrangian coordinates as the twisted fractional Stokes system (6.18),
and by making full use of the particle-trajectory technique and the finite-difference charac-
terization of homogeneous Besov spaces, we establish the crucial L?(L?)-maximal regularity
estimate (6.23) for the system (6.18) on a short time interval (one can see remark 6.3 below for
some additional comments). Then, by carefully estimating the right-hand terms of (6.23), we
can show the uniqueness for small time. Moreover, an iteration argument implies the unique-
ness on the whole R, . Note that the uniqueness part needs the stronger regularity of solutions
(as explained in remark 1.2), which is obtained in proposition 4.4 by using the technique of
multiplier spaces. To the best of our knowledge, this seems to be the first result where the
Lagrangian method is used to tackle the uniqueness issue for a fractionally dissipative system.
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The rest of this paper is organized as follows. In section 2, we introduce the definitions
of some functional spaces and their related estimates, and also gather several useful auxiliary
lemmas. Section 3 focuses on the establishment of proposition 3.1 concerning the L{(L%)-
maximal regularity estimate for the generalized Stokes system. Sections 4-6 are devoted to
the proof of theorem 1.1, corresponding to the proof of the a priori estimates, existence, and
uniqueness, respectively.

2. Preliminaries

In this section we compile some notations, definitions of some function spaces and auxiliary
lemmas used in the paper.
The following notations will be used throughout the paper.

e The notation a < b means a < Cb, where the constant C may be different from line to
line. We sometimes use C = C(A, \z..., A,) to indicate the dependence on the coefficients
AL A2y A

e For every p,q € [1,00], k€N, s € R, the function spaces I”(R?), WvP(RY), W (RY),
WS’”(R‘J) denote the Lebesgue space, the Sobolev space, the homogeneous Sobolev space
and the fractional-order Sobolev space, respectively (e.g. see [2]).

e Denote by S(IRY) the space of Schwartz functions, and S’ (R?) its dual, the space of tempered
distributions (e.g. see [27]).

e We abbreviate L(0,T;X) as L1(X), with X = X(R?) a spatial function space. We write
[(frs---fw)llx for [ fillx + -+ [| fullx for n € Z..

e For two matrices A = (a)axa and B = (b;j)axa, denote by A : B the quantity -, ;. ;@iibjis
and denote by AT the transpose matrix of A.

2.1 Functional spaces and related estimates

We first recall some basic knowledge of the Littlewood—Paley theory. One can choose two
nonnegative radial functions y, € S(R?) (see [2]) supported respectively in the ball {¢ €
R?: €] < %} and the annulus {£ € R?: 2 < |¢| < %} such that

XEO+D e =1, for EeR: and Y p27¢) =1, for £€R!\{0}.

Jjz0 Jez

The homogeneous dyadic operators Aj and the homogeneous low-frequency cut-off operators
S; are defined for all j € Z by

Aju=p277D)u=29n2")xu, Su=x(27'D)u= 29n(2)) e u,

with h = F *lcp, h=F"! x and F ~! the Fourier inverse transform.
Next, we introduce the definitions of the homogeneous Besov space and the related Chemin-
Lerner’s mixed spacetime space.

Definition 2.1. (1) Let s € R, 1 < p,r < 0o. Let S’'(R?) be the space of tempered distri-
butions and P(R?) be the set of all polynomials. The homogeneous Besov space B, =

r S d . . .
By, .(R?) is defined as the following quotient space
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By, (R = {ue 8'®)/PER) : ullg, o) = {2 | Au

,
7 (RY) }jeZ o< OO}’

where S’(R?) \ P(R?) is the quotient space.
(2) Lets € R, 1 <p,q,r < oo,andT € (0,00]. The Chemin-Lerner’s mixed spacetime homo-
geneous Besov space L1(0, T; B; ,(R?)), abbreviated as L(B5 ), is defined as the set of all

2
tempered distributions u such that

||M||z;(3;,,,_) = H{zJ'sHAjMHL‘;(U’) }jEZ or < 00

The following product estimate in the homogeneous Besov spaces is useful.

Lemma 2.1 ([2], Corollary 2.54). Let s >0, (p,r) € [1,00]% Then there exists a constant C =
C(s,d) > 0 such that

||y

By (R S C([lu B};J(Rd)”VHLOO(R”’) +[lv B;J(RQ”””L""(R"))' (2.1)

We have the characterization of homogeneous Besov spaces in terms of the fractional heat

. A2
semigroup e =A™,

Lemma 2.2 ([44], Proposition 2.1). Let s >0, (p,r) € [1,00]%. Then, for any ¢ € B;ﬁ(Rd),
there exists a constant C = C(s,p,r,d) > 1 such that

a

_ 5 A2
Cc 1H<P||B,;;‘(Rd)<ut2” [le )

B, (RY)"

r®)|| @, ey S Cliel

We also use the following finite-difference characterization of homogeneous Besov spaces.

Lemma 2.3 ([2], Theorem 2.36). Let s € (0,1) and (p,r) € [1,00]%. Then there exists a con-

stant C = C(s,p,r,d) > 1 such that

[u(v +-) —u()
y[*

C MMl ey <

< CHfHB;”(]Rd) 2.2)

Lr(RY =)

dy
Iyl9

The maximal regularity estimate in the framework of Besov spaces for the fractional heat
equation is useful in the sequel.

Lemma 2.4 ([54], Theorem 3.2). Lets € R, (p,r) € [1,00]% a € (0,1) and 1 < p; < p < <.

. ~  .s—2a+42
Assume that fy € B;,r(Rd), ge L ( B;,r G (R9)) and f solves the fractional heat equation

Af + N°f=g, fl=o=fo.
Then there exists a constant C = C(d, &) > 0 such that for every T € (0,00,

pyr Psr

||f||zg(ix+z;><c Iflls, + el (%) | @3)

The (pointwise) multiplier space of a homogeneous Besov space is defined as follows.

Definition 2.2. Let 1 < p,r < oo,o € R. The multiplier space M(B[‘,’V,(Rd)) of B[(,’J(Rd),
abbreviated as M(Bgﬁ,), is the set of tempered distributions f such that f¢ € B;,,(Rd) for any
¢ € B,f’,_(Rd), with the norm
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||f||M(B;,) = sup ||f¢||3;,(Rd)-

¢HB;’J(R") <1
The following lemma states that patches can be elements of the multiplier space M (B;,).

Lemma 2.5 ([18], Lemma A.7). Let Q2 be the half-space Ri or a bounded domain of R with
C!-boundary. Assume that s € R and p,r € [1,00] are such that —1 —1—117 <s< ’%. Then the
characteristic function 1q(x) of Q belongs to the multiplier space M(BIS,J(]R‘})).

We have the following regularity propagation estimates for a composite function involving
the particle-trajectory map.

Lemma 2.6. Let T € (0,00], (¢,7) € [1,00)% and u € L'(0,T;Lip(R?)) be an incompressible
vector field. Let X, : R? — R? be the particle-trajectory map defined by (1.5) with its inverse
XL, The following statements hold.

(1) Iff€ L0, T;B] (RY)), o € (—1,1), then fo X;"' € L9(0,T; BS (RY)) with

1 p,r

||f0 le:l”L;(B]‘;’,) < C”f”L';(B;’r)ecfo HVMHLOOC{I' (24)

(2) Assume ag € M(B;;,(Rd)), o € (—1,1), and a(t,x) is a smooth solution to the free trans-
port equation Oya+ u - Va =0 associated with a|,—y = ay. Then a € L*=(0, T;M(Bg’r))
with

||a||L7o_c(M(B;:')) g C”aO”M(Bgyr)eCfU HVHHLOOdZ' (25)

Proof of lemma 2.6. If g =00, r=1 and p € (2,4), both inequalities (2.4) and (2.5)
have appeared in [28, section 5]. Here we sketch the proof of the slightly generalized
cases.

(1) Lemma 2.7 of [2] yields

1A ((Af) 0 X )l < Car2™ ||, min{ 2+, 25}l IVHlle o
7,

where ||ct||¢(z) = 1. Together with the condition o € (—1,1) we deduce that

140 XN < (D2 +30 ) IA((Arf) 0 i)

U)
k<j k>j
) . r
< C(E 2k—]ck2—ka 4 E 2]—kck2—k0') HfHBU eCfO [|Vul| oo dt
pyr
k<j k>j

< Ce2 ) f], IVl

Taking the ¢"-norm over j € Z and then taking the L?-norm on [0,7] leads to (2.4), as
desired.

(2) Note that a(t,x) = ag o X; ' (x). By virtue of the definition of the multiplier space M (B,f,) ,
the measure-preserving property of X,il and (2.4), the inequality (2.5) can be easily
deduced (e.g. see [28, proposition 5.1]). O
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2.2. Auxiliary lemmas
We list some useful results related to the fractional Laplacian A®.

Lemma 2.7 ([27], Theorem 7.6.1). Let 1 <r < oocand1 < py,p2,q1, g2 < oosatisfy% = p% +

piz = q—ll + ql—z Given s > 0, then there exists a constant C = C(d, s,r,p1,p2,q1,492) > 0 such that

for every f,g € S(RY),
[ A°(f2) | rey < C(||AYf ANgllporay).  (2.6)

Lemma 2.8 ([44], Lemmas 2.1, 2.2). Let K(x) be the kernel function of the fractional heat
semigroup e N ac (0,1), that is,

1 (&) |8l ey + 11 f1 2o (mey

2c 1 . 2c
K(x)=F (e I8l :7/ EelEl ge 2.7
(0= F ) = o [ et ae @
Then there exists a positive constant C = C(d, ) such that
K(x)| < C(1+[x)7"72, VxeRY (2.8)

and for every B > 0, there exists a positive constant C = C(d, «, ) such that
IAPK(x)| + APV (x)| < C(1+x)) "7, vxe R (2.9)
Lemma 2.9. Let a € (0,1), then for every f€ S(RY) and i € {1,...,d}, we have
- Xi — Vi
B AP () = capy. | o2 (fx) — ) dy, (2.10)
R X =)

(d+20-2)T(4—1+a)
d/202—2cx 1'\( l—a) °

with ¢, =

Proof of lemma 2.9. Recalling that (e.g. see [51, section 5.1])

2a— 2
X3 = [ ey,

4 l4a . .
with ¢, = %‘j;ﬂ)ﬁa) from the integration by parts, we get
1
D A7 2f(x) = ¢4 lim A flx—y)dy
e—0 e |y|d+2a—2
1
=, lim ————0,,(flx) —flx—y))dy
(16*}0 e |y|d+2a72 Y (f )
i Xi — Vi )
= o lim T . dy + lim R,
¢ 61—>0 ly—x|>e |X _y|d+2a (f(x) f(y)) y -+ el—>0

where R :=¢Ca /||, Wﬁ (— ﬁ) (f(x) — flx — y))dy satisfies that

. 1 .
tim R | < [V e lim o /| iy < Y fi =0
y

O

In the proof of proposition 3.1 we use the following boundedness result about Calderén—
Zygmund operators for vector-valued singular integrals, which can be found in [36,
chapter 7].
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Lemma 2.10 (Calderén—-Zygmund operators). Let 1 < p,p;,p> < 00. Let X, X1, X, be three
locally compact o-compact metric spaces, with regular Borel measures i, j11, (12 on those
spaces, respectively. Define E = L' (X1, 111) and F = [P*(Xy, pp). Let L(x,y;x1,x2) be a con-
tinuous function defined on (X x X — A) x X x X, (with A the diagonal set of X x X), then
we define L(x,y) as the operator from E = [P (Xy, ) to F = LP*(Xa, 12) given by the integral

Lyt = | Lleyin cfn)d ().
X
Whenever x ¢ suppf, we define Tf(x) as

THx,x2) = /

/ L(x,y;.x1,x2)f(y, x1)dpa(y)dpe (x1)
XJX

= /X L(x, y)f(y,%2)dpu(y).

Suppose that the space X is equipped with a quasi-distance d satisfying the quasi-triangular
inequality d(x,y) < Cq(d(x,z) + d(z,y)) with C4 > 0 a generic constant; and there exists pos-
itive numbers n and C,, such that ju(B(x,r)) < C,r" for every x € X and r > 0. Assume that T
is bounded from LF (X, 1;E) to L (X, p; F) such that

/ T < € / A0 .
Rk Rk

Assume that L(x,y) is continuous from X x X — A to L(E, F) and satisfies that for some € > 0:

1
||L(x,y) Hop(En—>F) <C

d(x,y)"’
1 d(z,y)°

d(ZJ’) < Ed(-xay) = ||L(x,y) _L(x7Z)HOp(E»—>F) < Cw%
1 d(x,z)¢

d(x,z) < Ed(XJ’) = [|L(x,y) _L(Z?y)Hop(EHF) < Cw-

Then the operator T is bounded from L1(X;E) to L1(X; F) for any 1 < g < .
The following multiplier theorem can be found in theorem 3, section 4.3.2 of [51].

Lemma 2.11. Assume that m: RY\ {0} — C is of class C* with an integer k > [4]+ 1 ([4]
is the integer part of %), and it satisfies that |8§m(£)| < ClEI71P for every € # 0 and || < k.
Then for any f € LP (R?) with 1 < p < oo, there is a constant C such that

[m(D)f1 1 rey < CIIf | (mey-

3. The L] (1”)-maximal regularity estimate for the generalized Stokes system

We mainly focus on showing the following result in this section.

2a(1—1
Proposition 3.1. Let o € (0,1), 1 <p, g < o0, up € B,,ff,(l ")(Rd),fe L4(0,T; 17 (R%)), R €
Wha(0, T; 17 (RY)) with divR € L1(0, T; W?*~1P(R?)). Then the generalized Stokes system

Ou+ AN u+Vr=f
divu = divR, 3.1
uli=o(x) = uo(x),
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has a unique solution (u,Vw). Moreover, there exists a generic positive constant C =
C(d,a,p,q) such that for any T € (0, 00],

lill e 0 75201700 (g + | (A0, Butt, V') | a0, () 52
< C<||u0|\3gz<lfl/q>(Rd) + 1 OR) [| o0, 7200 (ReY) + | diVRHm(o,r;WZa—lm(Rd)))~

Remark 3.2. When o = 1 one can refer to [19] for the L{ (1”)-maximal regularity estimate for
the usual Stokes system; and one can see [26, 29] concerning more general domains including
exterior domains. For a € (0,1), the L} (L?) maximal regularity estimate for the fractional
Stokes system (3.1) with R =0 was also investigated by Giga et al [25, 26] using the abstract
semigroup argument and by Cao et al [5] using the Fourier multiplier method.

The proof of proposition 3.1 relies on the following result, whose proof is placed below in
this section.

Lemma 3.3. Set

Aoof(x,1) := / e (mINT N2 s, (3.3)

0

Then, for any T € (0,00] and 1 < p, g < 0o, the operator Ay, is continuously bounded from
L1(0,T; 1P (R?)) to L1(0,T; L7 (R?)), and there exists a constant C > 0 such that

Il Az f || o 0,700 (RaYy < ClIfllLa(0, 720 (R9)) -

Proof of proposition 3.1. The existence and uniqueness of solutions to the system (3.1) are
standard, and can be proved as those of the usual inhomogeneous Stokes system. Next we are
devoted to proving the regularity estimate (3.2).

Taking the divergence of equation (3.1); leads to

A = —9,divu — A**divu+ divf = —divO,R — div A**R + divf,
thus denoting by P := VA~!div, we see that

Vr =—PI,R—PA**R+Pf. (3.4)
Rewriting the equation (3.1); as

O+ A**u=POR+PA**R+ (1d — P)f =, u|i—o = uo, (3.5)

we see that Duhamel’s formula yields

t
u(x,1) = e up(x) +/ e_(’_T)AMf(x,T)dT, (3.6)
0

where the semigroup operator e g given by (3.12) below.

Applying the operator A’ to the above formula and recalling (3.3) gives
A2u(x, 1) = e ™ A200(x) + Ao f(x, 1). 3.7)
Then by virtue of lemmas 2.2 and 3.3, one finds that

— A% A2a

1A% w10 izr ey < lle o o () + M Azaf oo sy

<
< C””“”Bf,f;(‘—‘/w + Cllfllze0,7:27)
< C””OHBg_c;(lfl/q) + C||(OR,f)

L‘I(O,T;U) + C” diVR”L‘I(O,T;W/Z"_"”)V (38)
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where in the last line the I” (1 < p < o) boundedness property of the singular integral oper-
ators is also used. Thanks to (3.4), and using the Calderén—Zygmund theorem again, we get

V7| a0, 7510 (Rey) < Cll (POR, PA**R,Pf)|1(0,7:1)

(3.9
< CIOR)|2s0,7:00) + Cl leRHL‘f(O,T;vVZQ*W)'
We use the equation (3.1); and gather the above estimates to infer that
10l 00,730 (my) < CIN(A**u, V7 )| 0,750 () 3.10)

S CIOR ) |zao,r500) + CINAIVR]| 40 yp2e1.0) -
Noticing that [|e~"* Az u()HBZcx(I V0 iy S C||u0\|Bza<| V) (o) (following from (2.8)) and
- 77_/ preY -
s 530y < ™ Anoflices s e

t
QCH/ e~ (T =N A2y 1)dr
0

LZ_/(R-F;U])
47’ , e B

< / e (HT =N A2 ) 1 (7)dr
0

< A T) Vo0 (Mg v sy < ClAlLoco,sr)»

it yields from (3.7) that

Lz./ (R4Lr)

e < C|A%u|

L2 (0,185 V) Lo=(0,T;B, 2%/

N2 ~
< Clle”™ AZQMOHLDQ(07T;BF—YZQ/11) + C”Azo‘me(O,T;B;;a/‘f)
CHMOH p2a(l—1/q) + C|m|L”(0,T;U’)

By

<
< (| gaa-o + Cll(OR.s(0,1:2r) + CIIdiVR| 140 7y120 -1y - (3.11)

Therefore, collecting estimates (3.8)—(3.11) we conclude that (3.2) holds, as desired. [
It remains to prove lemma 3.3.

Proof of lemma 3.3. The idea is analogous to that of [36, theorem 7.3] given by Lemarié-
Rieusset. For every ¢ € L7 (R?), set

e_’AzaLp(x) = F! (e—l\§\2a>(x) * (x) = K (x) * p(x), (3.12)
where K, (x) = 1~ 2= K( 75 ). Noting that A**K,(x) =1~ E_I(AMK)(NZQ) we let Q(x, 1) :=
s (A**K) (-7 ). and then it follows that +Q(x,1) = F~ L(|€Pe="1€") and

Ao f(x,1) / / t—Q x—y,t—s)f(y,s)dyds. (3.13)

Rel—S

Without loss of generality, we only need to prove the case of 7= oo because the other case
can be reduced to this case by zero extension in time ¢. Moreover, we denote by f(x,7), Q(x,?),
Asof(x,1) the zero extensions of f(x,1), Q(x,1), Azaf(x,1) to negative values of , respectively.
This is harmless since Ay,f(x,t) depends only on the values of f on (0,7) x R%.
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Now we compute the Fourier transform of %ﬁ(x, t) with respect to spacetime variable (x, 7):

the Fourier transform in x for every 7 > 0 leads to [,,e™™¢ %(Nl(x, f)dx = |§\2ae*’|§|20 , and then
the Fourier transform in ¢ gives

m(€,7) = /Oo e—it7—|§|2ae—\§\2"‘tdt: |£‘2a
7 0 it + [P

Since |m(&,7)| < 1, we immediately get that Ay, is bounded on L*(R x R9).

Next, we consider A,, as a Calderén—Zygmund operator on R? x R endowed with the
Lebesgue measure 1 on R4t! and with the quasi-distance p((x,1), (v,s)) = (Jx — y|** + |t —
5|2) 7= . We also have that for any (x,7) € RY x R and >0,

(B((6,1),1)) = / dyds < Cor 20,

p((y,8),(x,0))<r

Define

L«%axxw>:]{K““”ﬁu—wn—«>:1“<”f)<AMK’<uj§ﬁ%a>'

t—s (t—s)ﬁ“

We claim that L((x,1), (y,s)) satisfies the assumptions in lemma 2.10. Indeed, by making use
of estimate (2.9), if |x — y|** < |t — 5|, one has

||A2“K||Loo C
L Y, < ;
L. 0Dl < =5 <

while if [x — y|?® > |t — 5|, one has

[ T2 A* K] 1o~ C
L((x,7),(y, < < ;
L0, oD < e <

thus, we get
C
d((x, 1), (v,9))

In a similar manner, we can also obtain

’%L((xvt)v(yvs”))‘ - ‘%L((x,t),(y,s))‘ <

IL((x,2), (v,9))] <

(3.14)

C
p((x,1), (v,s

))d+4a’

and foreveryj = 1,2,...,d,
C
201"
p((x,1), (,5)) 2!

Gathering the above estimates with Taylor’s formula, we have that for every j € {1,2,...,d}
and for any sufficiently small (A, 0),

’iL((x,t),(y,s))‘ = \%L((x,t),(y,s))\ <

clh| -
(o), 0o )24 T (), (r,9)) e
(000, e +0))  p((0), (ot ot + 0)
R (N o e (e W S e
p((,), (x4 1+ 6))
(1), (y,5)) 21
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and similarly,

p(O+hs+0),(v,5))
p((x,1), (y,5)) 20!

Therefore, together with (3.14)—(3.16) and the L?>-boundedness of A, we can apply lemma
2.10 to infer that for every 1 < p < o0,

”AZoc?HD’(]Rde) < Cmm(Rdey (3.17)

Next we regard A,,, as a vector-valued Calderén—Zygmund operator on the real line R:

\L((x7t)7(y+h7s—|—9)) _L((x7t>7(y7s))| <C

(3.16)

Aso1) = / L(t, )7 5)ds,

R

where L(t,s) for every {(t,s) € R? : t # s} is given by the integral

~ o~ Ligen(s
L) = A% i) = [ 0G0y ey
R L=
In view of (3.17), we have that A,, is continuously bounded from L”(R;L? (Rd)) to
L7 (R;17(R%)). For every 0 < s < t, note that the Fourier multipliers of L and 0, satisfy that
for every 0 < k < [4]+ 1 and £ #0,

—k
< C;"E—‘ and  sup |9 (J¢|**e~ (V) | <
= |81=k

Clgl
t—s)

sup |a§(|£|2ae—(t—é‘)\£\2“)|
|8|=k

o

—~

Thus lemma 2.11 guarantees that

C C

||L||op(IJ’>—>IJ’) < 5 and ||alL||op(IJ’>—>IJ’) = ||aSL||Op(Ur—>U’) < PEEYE
t—s (t—ys)

Hence, the assumptions in lemma 2.10 are all fulfilled, so that A,,, is continuously bounded
from L4 (R; 17 (R9)) to LI(R; L (RY)) for any 1 < g,p < oo, which completes the proof of pro-
position 3.3 for T = co.

O

4. A priori estimates

In this section, we shall derive the a priori bounds for the vector fields %, w and u.

4.1. A priori estimates for u solving the 2D fractional Navier-Stokes system

Proposition 4.1. Let o € (1/2,1), up € H' ﬂB;z(Rz) with p > 5-2. Then the smooth solu-
tion (u, V') of the 2D fractional Navier-Stokes equations (1.2) satisfies the following:

1700 2y + ||Aab_“|i2(Hl) < Clluo]7 4.1

4a—1

1@l e o) + 102, 25, V) | 210y < Cllatoll e, + Cllol| 5~ 4.2)
Proof of proposition 4.1. The L*-energy estimate gives that for every ¢ € (0, 00],
1700 22y + HAQL_‘”ig(LZ) < luo|7- (4.3)
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Let w :=curlu = 0y, - D,,11" be the vorticity of fluid, then it satisfies

Ow~+u-Vo+Aw =0,
divii =0, (4.4)
@=0 = wo = curl uy.

The energy estimate of system (4.4) also leads to
||Vi‘||i,°°(L2) + ||A°‘Vﬁ||i2(L2) < C(”‘I’HE,‘N(LZ) + HAa@Hi,Z(LZ)) < C”v”O”%Z: 4.5)

which combined with (4.3) yields the desired estimate (4.1).
Next, applying proposition 3.1 with ¢ =2 to system (1.2), we find that for §; > 0 small
enough,

185,y + 11078 A28, 90|20y < Clts, + Clle- Vil 200
< Cluol, + |l

ez [Vl IILz

< C\|uo||5a +C[|[a || Var]| 04 =6

I3

6
Clluoll, +cnunm])|\Vu||Lz<L2)||A2au||;2 n

/6 _
Huollfg;fz + Clluol 'IIA“ Al iz IRl 2 ) + 5 11A% T2 0y

< Clluo | g, + Cluoll ' + LIl 0, (4.6)
where 6, = 29— a’;zgz(gapl)‘;')p 20 € (0,1) (due to p > %) Noting that lims, o+ 5 =
ég”_ 1§ we can choose a suitably small §; > 0 so that 7 = 52%;, and plug it into (4.6) yields
estimate (4.2), as desired. O

4.2. A priori estimates for w solving the perturbed system (1.7)

Proposition 4.2. Let § <a <1,p> 525, ug € H' N B3, (R?), and py— 1 € L* NL>(R?).
Assume that ||po — 1||p is small enough so that (1.9) is satisfied. Then the smooth solution
(a,w,p) = (p—1,u—ia,m — ) of the system (1.7) satisfies the following estimates:

2
Ex(w) == |wllzee 22y + 1AW 212) < Cllaol| 2z eIl 4.7)
and

o C” OH 1A
Ep(w) := HWHL,DO(B;fz) + H(@TW,AZ w, VP)HL,Z(U’) < Cllao|lzznee R (4.8)

where C > 0 depending only on o and p.
Proof of proposition 4.2. It follows easily from the equation (1.7); that
lallee (2nzeey = llp = Ulzee (2nzey < [P0 — 1l2Azoe - 4.9)

By taking the inner product of equation (1.7), with w and using the condition divu =0, we
have

1d o ~
3 i I + 1A = =5 SVl — [ adi-was

—/Za(%Vﬁ)-wdx— p(w- Vi) - wdx

R2

(4.10)
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where we also have used that

1 1
/ (—adw—a(u-Vw)) -wdx = —7/ a81|w|2dx—f/ au - V|w|* dx
R2 2 R2 2 R2

1d 1 .

=5 [ aPacs s [ el
1d )

_ 14 e 411
3t f D

By virtue of the inequality ||V12||L; < Cl| A% A || 7> < C||A%ul|g, and using
the Gagliardo—Nirenberg inequality, we obtain that

| ataVipwas| < Clal [l 2 19, 3
R2

e o 4.12
< Cllao| o | A% 2| A |[w] 2 @.12)
< A [w2: + Cllao 2 A%,
and
] / p(w-Vit) - wdx| < Cllplelw] 2 |[Vall 2 [l
RZ
(4.13)

Cllpollzoe A wll2 | A%l [[wl 2

CllpollZ< A% a7 [wl: + A WIZ.

NN

Applying the Leray projection operator P := Id — VA ~! div to system (1.2) gives that
|0l < A2z + |P(a- Vi) | 2 < |A**al| 2 + [l Vial| 2,

which together with Holder’s inequality and (4.12), (4.13) leads to that

‘/ adji waa| < o] ]
RZ
lall, 2 ||A2a'7||L2HW||Lﬁ + lallzee it - Vit g2 [ w2

<
< Cllaoll2ngo [|A%all g | A%WI| 2 + Cllaol| oo [[ A% ]| 2 [ A% ]| 1 | w]] 2
< ClIA%a| 3wl + ClaolFanpee [|A“El|7: + 1A w][Z- (4.14)

Plugging (4.12) and (4.14) into (4.10), and integrating in time, we obtain that

t
o) + / 1A W] Zadr

t t
< —IIVaw(®| + Cllao 2 /0 A R2dr + Clao|ame /O Ay dr
t
2 a2 2
+C(lpol + 1) / 1AC ] w2
t
< Cllao|Znsoe 0]l + C(llpo ]2 + 1) / 1A ]2 [ Zadr. 4.15)

Utilizing Gronwall’s inequality together with (4.1) implies (4.7), as desired.
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Next let us estimate the L”-type norm of w. Applying proposition 3.1 to equation (1.7),
with w|,—¢ = 0 yields that

6
w) < C Y IF2w), (4.16)

where

Fi:=—adw, Fr = —adm, Fs3:=—p(
Fy:=—p(w-Vw), Fs:=—a(u-Vi), F¢:=—p(w-Vi).

Let ||ag||p~ < 2c , then it is immediate that

1F 200y < llalloe 10:wl 200y < 525 107w ]300 - (4.17)

In view of (4.2), we obtain

4da—1
1Follier) = lladrliz ) < ol [0-l 20y < C(1+ ol iy )- (+.18)

Making use of Holder’s inequality and interpolation inequality, we get that for some small
6> > 0 to be chosen later,
1731l 2 0y < lpllzee ooy il vty [[VW 2+
L@@ %2 )

1

2
%192)d7'>

t
< Clmlu iz (| 1A 1A

1-6
< Cllpoll ol AWy [ A2 5 2
1/6 /6
< Cllpoll 2 ol h 1AWl 212 + 3 1AWl 200y, (4.19)
h 0 A,ZQ_I_(%_?fﬁj 0.1). thus fi li 1 _ at+l=2/p h S 0
where Q—WG( ,1), thus r0m621_>n(}+9—2— 5.—1» We can choose d; > 0 so
1 o+l
that ;- = o
2 +1 « 1 2c
{e3
153 2wy < CHpOHL ||Mo|| AWl 22 + 36 1AWl 2 )
2
C||P0HL30 ' ||Mo||2“ 'HaollLZmLooeC”"”””‘ + 35 1AWl 1
< Claolznpee el + g AWz 1), (4.20)

where in the above we have used (4.7) and the fact || po|| < 1+ ||agl|z> < 2. Similarly, by using
the interpolation inequality, Young’s inequality and estimate (4.7) again, it follows that

IFall 20y < llpllzee ooy Wllzoe ooy IV W] 1210y
1—0 -0
< C||Po|\L°°||W||Loo(Lz ||W||L[oo(3gg )||AaW||Lz(Lz)||A2aWHLIZ(J)

o 0340 2—(03+04)
<CIIPoHLoo(IIWIILfo(LZ)+HA wlzaz)  (Ew) T
2

N

@ 2
< CloolZZ™ (Iwll o) + 1AWz 22y + 5 (B ()
U 2 2
< Cllao|[Fon g el + 55 (B, (W), 4.21)
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where 03 = liﬁ/{;p €(0,1),04 = lfg‘:zl/p € (0,1). By arguing as (4.6), we have

151|200y < llallzee (oo [l - V| 21

< CIIaIILfo(Loo)HﬁllLyo(Hl)HWIIy(Lz IIAZ‘”‘MIILZ(U)

a—1
< Cllaollu ol (|uo||H1nBa ol ) . 422)

The term Fg can be estimated in the same manner as F3 and Fy4:

1Fslli20) < ool [Wllzze o | VE 20
1-6 _ _
< Clpolle w155 2y W<, (19 202) + 1A%l 1300
_ 1+a;/2/p
< Cllpoll % (Iuollmessg, + ol ) "7 Iwllgeaey + ot llse ey
H OH 1 cv
< Cllagllpnz~e "o, +4C1HW||L°C(B“2) (4.23)

Collecting the above estimates on F;, i = 1,...,6, we deduce that

Colluoll 1 e 2
E,(w) < Callao|lzrz~e "2+ (Ep(w))” (4.24)

By choosing ¢ in (1.9) so small that co < (4C,)~!, we conclude the estimate (4.8) by an
elementary computation. O

4.3. A priori estimates for u solving the 2D fINS system (1.1)
Based on the above estimates for # and w, we directly have the following bounds for u.

Proposition 4.3. Let 3 <a<1,p> 52 and uge H' NBY,(R?). Let po—1€L*N
L>°(IR?) be satisfying the condition (1.9) with co = co(c,p) > 0 a sufficiently small constant.
Then there exists a constant C = C(a,p) > 0 such that

4da—1

lllpoe 2o,y + (A% u, B, V) |2 ey 1y + 182 ey < C(1+ o] ;17;1‘]3?2)’ (4.25)
and for any T > 0,
[V ull ooy < C(1+ [luo| ;;rﬂga )VT. (4.26)

Proof of proposition 4.3. The proof of (4.25) is obvious. As for the proof of (4.26), we use
the Sobolev embedding to deduce

||Vu|L;<Loo)<cﬁ||u||L;mme,p><c( ol )ﬁ (427)

H'NBY
as required. 0

Under the additional stronger assumptions on (po, uy), we can show some more refined a
priori estimates, which are of use in the uniqueness part.
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Proposition 4.4. Let s< (0,1), up€H NBYT*(R?), po—1€L?NL®NM(B,)N

.24 2a
M( l’,’T )(R?)). There exists a constant c, >0 depending only on «,p and s so that,
if the condition (1.12) with this c. is satisfied, then we have
sa—2
1Vul ) < C(1+ ol i ). (4.28)

and

||”||Loo(R+;B§j*) + ||(Azau7aluvVW)HLZ(RJF;B;J) + ||”HL2(R+;B§?;)
8<4a1)) 4.29)

12
<01+ lualig + ol

Proof of proposition 4.4. We note that the proof of (4.29) below uses the smallness of ||p —
1 ||L;,o (M ,))» Whichaccording to (2.5) is needed to get the uniform estimate of |||, (R 5W1ho0)

(estimate (4.26) in proposition 4.3 is insufficient for 7= oc). Thus, the proof of proposition
4.4 is divided into two parts.

(1) First we prove (4.28). Applying the Leray operator P:=1d — VA~!'div to the
equation (1.7); yields

Ow 4 N =PF —P(u-Vw), w|—o=wo, (4.30)
with
F:=—adw—adu—a(u-Vw)—a(u-Viu) — p(w-Va),

and then it follows from lemma 2.4 that

”WH~ 24120 +||WH 24 <C H]P)F” 24120 +||P(MVW)H 24120
Lo (Blj] ) L (B,j . ) L <Bﬁ'{1 ) L <Bﬁ'{1 )

<C HF” 24120 +H(MVW)H 24120
L <Bp”y1 ) L} (Bp’{ | )
4.31)
Noting that Vp = VA~ div(F — u- Vw), we use the equation (4.30) to get
||(8TW7VP)” 24120 <C ”F” 24120 +HMVWH 24120 : (4.32)
T N T M

By virtue of definition 2.2 concerning the multiplier space, we find

I1£]
Ll

t Pl Pl

2\ < Clall 2. H(@TW,@TL?,IZ-Vﬁ,u-VW,w-Vﬁ)H e
() T e () u(i)

t

+Cllw- V| (,;H_za). (4.33)

1
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Utilizing the divergence-free condition of u and the interpolation inequality gives that
[lu- V|
Ll

(_%+172a) < ||M®WH ](,%4»272&)
‘ Bp’] L Bp,]

t
<C [ (el Il 5 e+l el ) o
0 B? B

Pl

< C(H“”L?(LOO) + ||MHL2<BZ/p+2—2a>> <||W||L,2(L°°) + [l (Bz/p+z—2a)> :
t p,l t p,1

The interpolation inequality and Sobolev/Besov embedding ensure that

e < €l B 7 < (0l + il
a—1)—=2/p 3(1—
el s < €l = < il + il
Ps
thus we arrive at
[Jua - VWIIL} (Bgr,72a> < Cllull 2 g ivee oy W] 2 (7o ey (4.34)
D,

Repeating the above procedure analogously for w- Vi and u - Vu yields

W22 (e ey (4.35)

4 p,1

||W'W||L] (B,zﬁlfza) < Cllall 2 (e Ayizo o

p,1

||12 ' va”Ll ( %+1—2a> < CHIZHI%IZ(H@QWZ&P) (4.36)

For the estimate of # solving the equation (1.2), note that by interpolation and Besov embed-
ding,
3aa—1-=2/p 2—2a

B}?Z}—_lﬂp ”uO”zl%z;—z/p < CHMOHLZﬂB[‘sz'

||MOHB[%+172(! < C”“OH
.1

Similarly to the proof of (4.31) and (4.32), we obtain

@l roaaa FlEE o2 HN@rm VA 2y,
L (B” ) L} (B:l ) L} (B” >

Pl p,1

Pl t 1

< ol ;s + la-val () < (ol i, + 12 ey ) - 43D

Gathering (4.31)—(4.37) together leads to the estimate

||WH~ 241-2a +||WH 24 +||(87w,Vp)|| 241-2a
(i) M ) A()

1 D)1 Pl

p,1 | Bp

< CHCZ” 24120 HaTW” 24120 + HMOHLZOB"‘, + ||(ﬁ7w)||i2([i]amvvla,ﬁ)
st ) )\ () R

+C|| (i, w) HL,Z(H“FWWMW) ”WHLIZ(H“‘HWMW)' (4.38)
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Observe that owing to lemma 2.6 and inequality (4.37),

||(l|| 24120
i)
gCHaO” 240220\ €

M(B"Jr )

p,1
SCllaoll /2. s\ €
M(B"Jr )

p,1

[[wll 1(52/p+1 B
< Clao] ()¢ 0 exp { € (ol g, + 112 o )
M| B? pe !

Cf(; || Vu||poodr

Cllwll,y (oo +Cly 2
A @) T ENT)

r,1

(4.39)

Recalling that propositions 4.1 and 4.2 guarantee that

da—1
2a—1

Clluoll -
Sobe )+ lliginciens, < Clanlizopee ™75

(fenieer) S (

we insert the above estimates and (4.39) into (4.38) to get

W7 2o T o HI@w, VD) o,
L BY L' B? L' B?

p,1 Pl r,1

<Cllaoll 7 24,00\ €
(i)

10wl 7 2y 0y +1
L' B?
t p,l
Cluol2

+Cllagllprgee ", (4.40)

E(1+H”°Hf11mlx]ﬂ +||u[,|\2<x ') .eClel ()

where C > 0 is a constant depending only on « and p.
According to proposition 4.2 and the continuous embedding W2** N H® < B

B) NBY ., <—>Bz/p+1 > we know thathZ%o(Bz/pH*m)ﬁLT(Bz/pH) for any T > 0.

2/p+1
/H and

p,1

Since w € L°° (B;/ lp +1720‘) by a high-low frequency decomposition argument, one easily
deduces that w € C([0,T]; ;/ PHIZ20 et T* > 0 be the maximal existence time such that

we C([0,T*);B 2/p+1 20‘)OLI([O T*);B 2/‘"'H) Denote by 7" as

d Pyl 1+ \Op 1

T’ :=sup {t <T Wl 2piise +HW 24 < l}. (441)
LOO(B]’ ) Ll BI’ )

We claim T’ = oo. Indeed, by choosing ay small enough so that

Celjao] () exp {CO1+ ol g + ol D} <d @)
M B,
and
—_ Eu 2 boy
Cllaollzrumee” 752 < 3, (4.43)
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we infer from (4.40) that

1
W/ 2iaa TIWIE /2 H&WH ) TIVPL iy <5
L;c') Bpp,l L]T’ Bli,l Bp 1 LIT' Blrp,l

(4.44)

If T’ < oo, then the above shows that the solution can be continued past T', which contradicts
with the maximality of T defined by (4.41). Hence we conclude that 7" = T* = cc.
By combining the estimates (4.37) and (4.44), we get the desired estimate (4.28):

TRy ;Br/p,l

s <N e <01+ i)

(2) Next we show (4.29). Applying the fractional Laplacian operator A* to equation (1.1),
yields that
N u+ ATy + VA T = —A* (a 8,14) —A° (pu -Vu)=:F
with a = p — 1 and divu = 0. By using the Leray operator P := Id — VA ~! div, we get
Oi(ANu) + A**(ASu) =PFy,  (A*u)|i—o = Aup.
Similarly as deriving (4.31) and (4.32), we obtain that for every T € (0, 0],
1A w720 (o) + A Ul 3 2y + 1V, Ot0) [ ) < C([[ A w0

(HMOHB;gx +HIFsllz 0 )-

Be, + ||PF ||L2 B, )
(4.45)
By using definition 2.2, we infer that

1Esll 20 ) < lladuullz i,y + (1 +a)(u-Vu)
(B, (B )
< Cllallgge g ) 10l iy + COU llallge (mgi )1 Vall iz - (446)

Utilizing the interpolation inequality and (4.25) leads to

- Vull iz iy ) < Cllullzge @ lull ey

1-0
C’HMHL"o LzﬂBo‘z) ||MHL2(Ha Hu||L_2r(BSIZJL;+A)

1/6
< Cellul 2o 3 ey + el iz
8(4a—1)

<C. (1 + || (Zail)zz) +€||u||L2T(B,2,f2“)7 4.47)

1
H F‘lBﬁ

where 05 =
get

m and € > 0 is a constant chosen later. By virtue of (2.5) and (4.28), we

ClIVull 1 oo oz ?
el g < ool ™) < Cllan sy exp {1+ hall 5, ) |-
(4.48)

Collecting the estimates (4.45)—(4.48) and using the interpolation inequality B;f”;” NH® —
Bﬁal together with (4.25), we see that for every T € (0, o],
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el ey + Deligiy + 190 gz + Nl 3y

8(4a—1)
“_1)2
< Clhallgg + C- (1+ 3 )

=2
+ Clll sy exp{ € (1+ ool ) JICE.

a—2
+Ce <1 + ||ao||M(B;‘z)exp{ (1 ol e )}) el ez

so that by letting ¢, > 0 in (1.12) small enough and then € > 0 small enough, we conclude the
desired estimate (4.29). O

5. Proof of theorem 1.1: the existence part

In subsection 5.1, as a first step we show the global well-posedness of strong solution to the
2D fINS system (1.1) with the additional regularity assumption Vp, € L= (R?), and then in
subsection 5.2 by the compactness argument we prove the global existence of solution to the
2D fINS system (1.1) with rough density.

5.1 Global well-posedness result for the 2D fINS system with regular density
Our main result in this subsection is the following proposition.

Proposition 5.1. Let < a < 1,p> 52+ and ug € H' N BY,(R?), pg— 1 € L* NL>®(R?) be
with the smallness condition (1.9). In addition, assume ¥ py € L& (]RZ). Then there exists a

unique global-in-time solution (p,u, V) to the 2D fINS system (1.1) which satisfies the estim-
ates (1.10) and (1.11). In addition, it holds that for any T > 0,

196052, < 19,3 exp{ € (14 Il ), ) VT 1)
Proof of proposition 5.1. Since uy € H' ﬂB;Z(IR{Z) with o € (3,1) and p > 52, according
to proposition 4.1 and the standard compactness theory, there exists a unique global-in-time
strong solution z € C(R; H' N B;z) N L*(R,; H'* ) to the 2D fractional Navier-Stokes sys-
tem (1.2) which satisfies estimates (4.1) and (4.2).

Now, it suffices to treat the global existence issue of the perturbed system (1.7). This is
more-or-less a standard process. We here only give a sketch of the proof, and for the details
one can see the arXiv version [37].

We first consider (w"*!,a"™!) (n € N) as the solutions to the following approximate per-
turbed system

0ad" ' +ut-Vat! =0,
athJrl —|—M vwnJrl _|_A2a n+1 _|_vpn+1 ZFnu

5.2)
divw™t! =0,
(a11+lvwn+l)|t:() = (ao,O),
where u" = w" 4+ i and
F"y = —d"ow', F'=—-a"(0m), Fi=-d""" vwth), 5.3)

Fi=—d"(u-Vu), Fi=—(14+a")(w"""Vi).
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We also set u~! (t,x) = 0, w®(t,x) = 0, a°(t,x) = ao(x), u®(t,x) = uo(x). It can admit a unique
solution of system (5.2) by proposition 3.1 and the Banach fixed point theorem.

Then we derive the uniform-in-n estimates for approximate solutions by induction. Indeed,
by arguing as proposition 4.2, under the smallness condition (1.9), we prove that, for any
n € Z4 and k < n, there hold that for any 7 > 0,

Ey(wh) = ”Wk”L,‘X’(LZ) + HAaWk”L,Z(LZ) < C||“OHL2mL°°€C“"°Hf"» 5.4
and

k k k pa2a ko k = = 2
Ep(w") == [|w HL,OO(B;’fZ) + [ (0w, A" W, Vp )HL,Z(U) < Cllao|lrzre EXP{CHMOHHIQB%} (5.5)

with C,C >0 depending only on «,p. In addition, since Vay =V € L%, one can easily
show that for every n € N,

1
Va2, < Va2 exp{ [ 190mar b < [Vl 3 e 66)
' 0

Based on the uniform-in-n estimates (5.4)—(5.6), we can show that {(a",w")},en is a
Cauchy sequence in the L2-energy space on a small interval [0,#,] with t, > 0. Thus, there
exists a limit function (a, w) such that

(@n,wn) = (a,w) in L0, 2, L*(R?)) x (L*(0,£,; L*(R?)) N L*(0,2,; H*(R?))).

By virtue of (5.4), (5.5) and interpolation, we can pass to the limit 7 — oo in the system (1.7)
to deduce that (a, w) solves the perturbed system (1.7) in the distributional sense. By Fatou’s
lemma, we see that (a, w) satisfies E»(w) + E,(w) < oo on [0,1,] and a € L*(0, 1., wha).

Since a € L>°(0,T;L>* N Wl’%) and w is regular enough, we can show the uniqueness in
the standard L?-topology in the Eulerian framework.

Finally, let T, > 0 be the maximal existence time of the above constructed strong solu-
tion (a, w) solving (1.7), then under the smallness condition (1.9), we can use a bootstrapping
argument to show 7T, = oo. Combined with the estimates of u, the proof of proposition 5.1 is
complete. O

5.2. Global existence of solution for the 2D fINS system with rough density

Owing to the low regularity of @y = po — 1 (now we do not assume Vag € Lo any more),
we cannot prove the convergence of the approximate sequences in the L>-topology as in the
previous subsection. Thus we shall use the compactness arguments instead. For completeness,
we outline the proof as follows.

Forevery e >0, let x(-) = € *x(+) and x € C°(R?) be a standard mollifier. Let p§ = x. *
po, then it satisfies Vpf € La (R?). According to proposition 5.1, the perturbed system (1.1)
with initial data (p§,uo) admits a unique global-in-time strong solution (p°, u¢) satisfying the
uniform-in-€ bounds (1.10) and (1.11). Thus we are allowed to pick a subsequence & (¢, — 0
as k — oo) such that

p*—1—=%p—1 in LRy ;L*NL>(R?)), (5.7)
and

ut —i—*u—u in L®(Ry; L2 N BY,(R?)) NL (R WP (R?)), 55
O — it — Su— din in L2(Ry; L7 (R?)). '
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In addition, utilizing the diagonal argument together with the Rellich-type theorems applied
for the compact (space-time) subsets of R?> x R, we conclude

u* —u ae. in Ry x R% (5.9)
In view of
p*Ou™* + p*(u* - Vu™) = 9,(p“*u™*) + div(p“u™* @ u*),

the above convergence is sufficient to pass to the limit in (1.1) in the distributional sense and
hence (p,u) is indeed a distributional solution to the system (1.1). By Fatou’s lemma, the
solution (p,u) is also regular enough and satisfies estimates (1.10) and (1.11). Therefore, the
existence part of theorem 1.1 is proved.

6. Proof of theorem 1.1: the uniqueness part

This section is devoted to proving the uniqueness of constructed solutions in theorem 1.1.
Because of the hyperbolic nature of the coupled system (1.1) and the low-regularity of
density, the Eulerian framework used in the uniqueness proof of proposition 5.1 seems not
effective, and we shall employ the Lagrangian approach as in [18, 19, 48] to tackle with
the uniqueness issue. Inspired by [19], we intend to show the uniqueness by establishing
the L3°(H®) N L3(H**)-estimates of the difference dv of two velocity fields in Lagrangian
coordinates (it seems almost impossible to prove the uniqueness in the usual L3°(L?) N L2(H®)
framework due to the fact that one cannot control the term Vv on the right-hand side). We
write the system of Jv as the twisted fractional Stokes system (6.18) and we derive the crucial
L3(L?) maximal regularity estimate (6.23) on a small time interval. Meanwhile, some right-
hand terms in (6.23) arising from the nonlocal dissipation seem hard to be controlled using
the (natural) quantity ||v;| L3 (e ) instead we have to adopt [lvill L) 8 the bound, which

in turn need the stronger regularity u; € L%(Bﬁ‘ﬁ) obtained in proposition 4.4.

In order to derive the 2D fINS system (1.1) in the Lagrangian coordinates, we firstly intro-
duce some basic results. The particle trajectory X,(-) associated with the velocity u is defined
by the ordinary differential equation

dx;
% =u(t,X,(y)), Xi(¥)|i=0=1y, (6.1)
that is,
X(y)=y +/ u(r,X-(y))dr, yeR?, (6.2)
0

which maps the Lagrangian coordinate y to the Eulerian coordinate x = X;(y). According
to (4.28), we know that u € L' (R, ; WH>°(IR?)), and equation (6.1) admits a unique solution
X,(-) : R?2 — R? for every t € [0,00) which is a measure-preserving bi-Lipschitzian homeo-
morphism satisfying X;*! € L>° (R ; WH>°(R?)). Note that the inverse mapping X; ' (-) : R? —
R? solves that

t
X () :xf/ u(t, X, 0 X, ! (x))dr. (6.3)
0
By letting 0 < 7T < 1 be small enough, we can assume

6.4)

N =

T,
/ |Vt <
0
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Denote by

7)(%)’) = p(tvxt(y))7 V(tvy) = I/l(l‘,X,(y)), H(tvy) = ﬂ(taXt(y))' (6.5)

In the above notation, system (1.1) can be expressed as follows

8[77 = 07

now + A2+ V,I1 =0,
div,v =0,

(M V)li=0(y) = (po(y), u0(¥)),

(6.6)

where A29v(z,y) := A%?u(t,x) = (A**u)(t,X,(y)), V,IL(t,y) := V.7 (t,x) = (V7)) (£, X:(9)),
div,v(t,y) := divyu(t,x) = (div,u) (1, X:(y)). We set

A(t,y) == (DyX)) ' (v) = (D:X; ") o X,(v), with (DyXy); =0, X.,  (6.7)

and set AT the transpose matrix of A, then by the chain rule, some elementary calculation gives
that (e.g. see [18, appendix] or [19, equation (35)])

Vv, =ATV,II, div, v = div,(Av) = AT : V. (6.8)

Since X;(-) is a measure-preserving mapping, according to lemma 2.9, we find that

(V) (X)) = g V1 X,0)
e, [ )= (T - V),
“ Jr X (y) — 2|2

[ ) XD Vel X)) — V(X (2)
= Cab: / X,0) — X (@) P+ ®

_ (X,(y) = Xi(2)) - (AT (t,y) V(t,y) — AT(1,2)V(1,2))
= —CqP-V. 5 dz
R? 1X:(y) — Xi(2)|*+2
= A2%(t,), (6.9)
where ¢, = % and I'(s) is the Gamma function.

Now let (p;,u;,m;),i = 1,2 be two solutions of the 2D fINS system (1.1) with the same
initial data (po,uo). Define

Ui(ta)’) = pi (t7Xi7l(y))7 Vi(tay) = ui(taXiyf(y))) H,‘(t,y) = 7-‘-i(lz)(i,l‘(y)% (610)
where X; ,(y) is the particle trajectory generated by velocity u;:
1

t
X)) =y + / w7 X () dr =y + / v(ry)dr, i=1,2. 6.11)
0 0

Thanks to propositions 4.3 and 4.4, we have the following estimates for the solutions in
Lagrangian coordinates.
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Proposition 6.1. Let 1 <a < 1,p> 52+, up € H' ﬂBl‘ijS(Rz), s€(0,1),and py— 1 € L*N

L>® ﬂM(Bf,J) ﬁ/\/l(l.?jjliza) satisfying conditions (1.9) and (1.12). Then for i = 1,2 we
have

||Vi‘|L°°(R+;LZOB;”2) + 11 0wi, V) |2 ey sy + 1A Vil 2 522) < C, (6.12)
and there exists a constant Ty € (0,1] small enough such that

T, 1 T, 1
/ IVu; ()| L~dt < =, and / [IVvi(2)]| e dt < =, (6.13)
0 2 0 2

and

||ViHL2(0,T1~B2a) <C (6.14)

1p1
Proof of proposition 6.1. From (4.28) and lemma 2.6, we immediately obtain the estimates
of [[Vill oo (i, ;o) and [[A®Vi[12(r, z2) @s in (6.12). By virtue of (6.11), we get that

HVu;
e

VXl oo (2, 100 < e as) .

Then proposition 4.3 and a direct calculation yield
10ill 2Ry sy < N1Orttill 2 ey a0y + IV sill 2 ey il oo 00y < €,

IV7ill 2wy i) VXl (R 20y < C
||VuiHLl(R+;Lao)||VXi,t||Loo(R+;Loc) < C. (615)

VL2 e, ) <
IVVill iy sy <

By letting T > 0 be small enough, the estimate (6.13) follows from (4.28) and (6.15).
Next, we prove the estimate (6.14) from (4.29). Noticing that Next, we prove the estimat

Vvi(t,y) = (VX5 (0))Vu(t,Xia(v) = (VX7 () = 1) Vatr(1, X (v)) + V8, Xi(v)),
and VX;,(y) =1d+ fot Vvi(,y)dr, by virtue of (2.1) and proposition 4.3, we find that
||VV:'||L;,I ey <l (VX}, —1d)Vu, 0Xt,t||Lg_] ey TV OXi,zHL;,I B
< CIIVXi, — Id”L;le B IVuio Xidllzz @)
+ (VX — Id g0 (1<) + 1)[[Vu; OXi,tHL;,l @)
SOV Vuilg, w) IVvillz ey
+C(IIVvi ||L1T1 ey + 1) [V OXmHL;l B2
Letting 77 > 0 small enough, and utilizing lemma 2.6 and (4.29), we obtain
IVvillz o1y < CIVUi 0 Xigllpz a1y < CllVaill a1y < C,
which immediately leads to (6.14). O

In view of (6.10), the system (6.6) holds with (7;,v;,II;) in place of (n,v,II) and with the
same initial data (pg,up). The equation (6.6); gives that

ni(t,y) = po(y), fori=1,2. (6.16)
Set
6v:i=vy—vy, Ol =11, —1I,, JA:=A|—A,, (6.17)

3893



Nonlinearity 36 (2023) 3866 Y Lietal

with A;(t,y) := (V,X;,) "' (y). Then, we arrive at

&(5v+A%l"5v+ VOII = (1 — po)0y0v + 0fi + dfa,
divév = divdg, (6.18)
5V|t:0 = Oa

where

20 L (X1:(0) = X1,4(2)) - (AT (1,5) Vév(t,y) — A] (1,2) Vév(1,2))
A2 6v(t,y) == cap.v./]Rz X10y) X o) 7 dz, (6.19)

O i= (V= V)L — (V = V)T, = (Id — AT)VOII — (5AT) VII,,  (6.20)

Ofr i=cCa p.V./
R

((X[ ,( X], (A (t, )VVQ ty) A (f,Z)VVz(t,Z))
2 |X| 1(0) = X1,(2) P2

6.21
_ (X2(y) —X24(2)) - (A3 (1,y sz (t,y) — Ag(t,Z)sz(t,Z)))dZ ©2D
1X2,1(y) — X2,1(2) P2 '
and
dg:=(Id—A;)v; — (Id — Ax)vy = (Id — A} )6v — 6Av,. (6.22)

Concerning the twisted fractional Stokes system (6.18), we have the following L3, (L?) max-
imal regularity result on a short time interval.

Proposition 6.2. Let (6v,011) be the solution to the system (6.18). There exists a sufficiently
small constant Ty > 0 depending on «,p,s and ”L‘OHHlmB"jY such that
ps
OE(Ty) == H(SV”L;O(HQ) +[|(8:6v, A** v, VCSH)HL§ (L2
! ' (6.23)
< Clldivogliz pa-ry + Cll(F1, 32, 0:08)ll1z, (12

where C depends only on o and the upper bounds in propositions 4.4 and 6.1.

Remark 6.3. Following the ideas of [19, 48], it is convenient to write the system (6.18) as

B,6v + A5y + V4TI = 6hy + OF,
{ divév = diveg, ov]mo =0, 6.24)
where
Shy = caP.V./ ( X.0) " Xiule) vz > (Vov(t,y) — Vov(1,2))dz,
re \X1,:(y) = X1, (2) P2 |y —z[>T2e

and JF denotes the remaining terms. According to proposition 3.1, one can easily build the
following estimate that for 7, > 0 sufficiently small,

OE(T1) < Clldivglizz (gpa-ry + Cllohillzz, 12y + Cll(OF, Bi08)ll13 (12)-

However, by letting 71 > 0 small enough and using lemma 2.3, one has the following estimate

[Vév(t,y) — Vov(t,z)|
Iom I3 L2)<5H/ e

3, (1)
(IVov(t,y) — Vov(t,y + 2) || 2
|Z|1+2a

<e

dZ < EHV(SVHLZ (Bza 1)
R2

3894



Nonlinearity 36 (2023) 3866 Y Lietal

with £ > 0 sufficiently small, but it seems difficult to control [|6A; ||z (2) with the upper bound

e[| Vév]| 12 (ip)- Hence, we instead treat the system (6.18) directly to derive the key estim-
1

ate (6.23), so the proof is more complicated than that in the 2D INS system (1.4).

Proof of proposition 6.2. Taking the inner product of (6.18); with Af?év(z, y), we find
. 0,0v(t,y) A%la(Sv(t,y)dy—F /]RZ \A%]’lév(t,y)ﬁdy
= /R (= VOTL+ (1= po)9idv + 8y + dfs) AT0v(r,y)dy
< el v + o (0TI, + ol 0013 + 5, )12 ). (629)
where ¢ > 0 is a small constant chosen later. Denoting by P := VA~ ! div, we see that
VIl = —Po,dv — PAL*6v + P(—ag 0,0v) + P(5f) + P(3f),

which leads to that

IVOTIZ: <(IIPOSVIIz: + [PAS Vllz2 + P (a0ddv)lze + [P, ) 2)

e (6.26)
<4(l10ndl2 + P8V + llaol 7o 19133 + 1181, 8F) 32)-

Utilizing the equations (6.18); and (6.26) gives
1
18:8vI[72 + *HV5HH§2
< IASROvIIZ: + [laollz 188V II7: + *||V5H||Lz + (81,817
< [IAT vz + 510,087 + SHP(A\Z/IQ(SV)HLZ +6|laolIZ=< [[9:8v (|7 + 61l (31, o) 172
then by assuming ||ao||z < i without loss of generality, we infer that

v

IV < 220, + 10] 28l + 101 P(AZ80) s + 12 1. 35) s

6.27)

10:6v17 +

Letting €; > 0 be a small constant chosen later, we insert (6.26) into (6.25) and then combine
it with £; x (6.27) to obtain

15]|aol|7
0 N300, 5)dy + (1 — -+ 220|281 + (o1 — L0l o s, 1 S o,
]RZ
3 . 15
< (24102 ) (I9dgli3 + IPAZW)IE) + (5 + 1221 ) 1(0h,05) 3

Hence by setting e =¢; = i, and assuming ||ag||re < % without loss of generality, it leads to

1 1
Sv(t,y) A220u(t, y)dy + ~ | A2 v (1) |2 + — [ 0,6v(1) |2 + < || VOTI(7)| 2
- 0,0v(t,y) " v(t,y)dy + H v()llz2 + 16”& vl + 8”v Ol (6.28)

< 15)|8,0g(1)]|7: + 15||7’(A31°‘5V)(f)\|i2 +18((5f1,0/) (0)|I7-.-
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Integrating in the time variable shows that for every ¢ € [0, T}],

t
0,0 A2a5 dyd — A ) ) 0,0 ) VIl )
/0 - v V(T Y) ydT + H VHLZ(L ) Jr ” V”LZ 12) +3 ” ”L () (6.29)

< 150,382, + 15||7><A5f*6v>|\L,z<Lz> + 18||<6f1,5f2>||L;<L2>~
Next, observing that by (6.9), (6.7) and the change of variables
14208 (e,) 1%

_ X1:(y) —X14(2)) - (AIT(t,y)Vév(t,y) fAT(t,z)Vév(t,Z)) 2
=< / / X1.() — X1, ()2 ]

4,62
_2 /R 2

/ (=2 (V (o1, X} () = ¥ (5v(0.X7 ()
RZ
= A2 (0v(0, X5 () 2 = A2 (0v(e. X5 () 2. (630)

dy

2
dz’ dx

x — ]2+

we get
1AZ? v(r. )17 = 12271V (8v(e, X7, () 122
= A2V, (0 (Vov) (2.X7 () 122
> %HV&}(I?XI[( DllFpe—r = 1(1d = VX)) Vov(r, X7 (x)) [0
=:N; +Na, (6.31)

where in the third line we have used the simple inequality (a — b)? > 1a® — b? for a,b > 0.

Notice that (owing to lemma 2.3)

Vév( X7} Vov(t, Xy ! 2
Nl///| RO IO
2C1 R2 JR2 |x—z| o

2
/ |Vov( ty V5V(I,4z)\ dydz.
2C1 R2 JR2 |X1t Xl,t(z)| «

1
2

6.32)

Making use of (6.2) and the mean value theorem yields that fori = 1,2,
t
[ Xia(y) = Xia (@) < |y — 2 +/ |ui(7, X7 (v)) — wi(7,Xi 7 (2)) |d7
0

t
-7+ / IVl ioe [ X (3) — Xir ()|,
0
and

2l < [Xiy) — Xa() | + /0 [vi(r,) — vi(7,2)|dr

t
< [Xuu() — Xer(2)] + / Vvl |y — 2ldr.

Thus Gronwall’s inequality guarantees that

ly —zle” Jo IVl oo dT < |Xi,t(y) *Xz}t(z” <y 7z|ef[)[Hvui”L°°dT'
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Hence, by taking 77 > 0 small enough, we have that for any ¢t < 77,

3 ly—z] 4 )
- {———— <=, V z€e R4, (6.33)
S HL) —x,@) 53 V7

or equivalently,

3 |x7! —Xi_1 z 4
7<| ) =X, (@) <} Wirer: (6.34)
4 ly -z 3

Thus, it follows from (6.32) and (6.33) that

1 Vov(t,y) — Vov(1,2)|?
dydz
(4/3)C, / - y— 2 Y

N1 = 5
> LA E > A%,
~ 8Cy L78e L
and then for every 7 € [0, T}], we can lower bound
1 2 2
[Nz (go,9) 2 87C1||A V1L 12y (6.35)

For the term N, given by (6.31), noticing that VX (x) =AJ(r,y) =A](1,X|] (x))
(from (6.7)), we can apply lemmas 2.6 and 2.7 to find that

Nl o1y < CIEEXE NI, sy 1 = A (1.5 0 e iy

—1 2 —1 2
+ OB, | 1101 (0 D i

2 A2 2 A2
< CUTBI; oM = Ay + CIVAVE, s =]

= LF ()
(6.36)

where in the last line we also have used the embedding B;f’j_l < W2e~ 1P Recalling that under
the condition (6.13),

Ai(t,y) = (DX, ()" = (d+By(1,y)) ™ =1d+ Y (=Bi(1,y))*, i=1.2, (6.37)
k=1
with B;(t,y) :== DX;,(y) —Id = fole,-(T,y) dr, it is easy to see that

1
It = A ey < HB,.H’Z??(Lx)g IVvilly ey < 21Vvilly @) S 2CT7. - (638)

o oo
k=1 k=

For the term |[[Id —Ajf[;c je-1), due to 2a—1—% >0, the nonhomogeneous space
T B,

Blz,‘j_l (R?) — L>°(IR?) is a Banach algebra, thus choosing T} > 0 small enough, proposition
6.1 yields that fori = 1,2,
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NE

1 = Al e -1y < DB e gy

»
Il
MR

k
CT{ VWil a2 1)

Mg

bl
I
-

1 k
(CTf villz, (Bgﬁnya))

\ﬁHViHL;.] (i) S CVTi. (6.39)

Mg

k.
Il

<

a

Using the Sobolev embedding H* N E2*(R2) < W7 (R?) (due to p > 5-2), we also get

Qa—1p=2 (—a)p+2
196, 2 <o, ey 1V Gy < CIOVIL oy (6:40)

1

Collecting estimates (6.36) and (6.38)—(6.40) yields

IN2[] 22 jo, ) < €Ty ||5V|\Lz (ipey T CT VI (6.41)

()

We then consider the first term on the left-hand side of (6.28). In light of (6.19) and (6.30),
we see that

D0v(t,y) A3 6v(t,y)dy

]RZ
. o (a(3) = Xy (2) - (AT () VOv(1,y) — AT (1,2 Vor(1,2))
= Q/RZ Rz 8[6 (t7y> |X1’,(y) _X]J(Z)|2+2a

_ / 0v(1X () A2° (501 X7} (1))
/R2 0 (0v(e, X7} () A (Sv(t, X7/ (x)) ) dx

= [ 0K Tav(eX; () A2 (50(1 X7 ()
R2 ’ ’ ’
= U +,.

dzdy

For ¥, notice that

W= v X )

1d |6V(t7Xl_,rl (x)) = ov(1. X, (2))]”
T 2dr |x — z|2+2e

[av( ty —ov(t,2)|? N
dydz.
2dt /RZ RZ |X1 t X] [( )|2+2a y .

Thus, by letting 77 > 0 be small enough so that (6.33) holds, we integrate in the time variable
and then use (6.33) to deduce that for every ¢ € [0, T}],

dxdz
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t
1
) > — z . 42
| e > s e > G100 (642)
Noting that (from (6.3))
t
8,X;tl (x) = —u;(t,x) —/ Vu; (T,Xi).,- oXl-_’,l (x)) VX; - oXt_l(x)dTa,Xi_J1 (%),
o ,
and

B,X;tl(x) =— (Id—l—/OtVu, (7, Xi,r 0 ( )) VX - o ,_l(x)dT) _1u,-(t,x),

IV

we apply (6.13) and the estimate | VX; ||z~ < e et oo < /e to deduce that for every ¢ €

[0,T1],

! —1
0 e < (1 - / IV |V X e ) ) i)l < .

Using the above inequality, (6.30) and interpolation inequality (6.40), the term W, can be
estimated as

/|\Ilz\d7' /||ax

< C||BTX[T||L,°°(U’)||V5V|\L%(L 22,

VOV XL 0N e 1997, X 2 ()l gz dr

(TaX;,-}—(x))||L,2(ILI2“)

202a—1)p—4 2(1—a)p+4 1 5 )
< CH(SvHLlZ(Ha) H(SV”Lz (E2e) + EHAV] 5v(7—7y)HLIZ(L2)
16V,
2 L) |
g C”(SV”L,Z(HQ) + 128C1 (LZ
1
2 2
< UV e oy + T3 19 e + 7 AV B (6.43)
Integrating in the time interval [0, ] yields that for every ¢ € [0,7}],
2 M ey A28V
2c ” ( )” 2 H L2 (E2e) v L2(17)
/ /R2 Orov Ay dvdydr > CtH(SvHLIOO(HQ) 128¢, 16 . (644

Now we consider ||P(AZ*6v)]|,> (recall that P := VA~ !div). By arguing as in the proof
of (6.30), and using (6.8), (6.19) and the change of variables, we find that

I P(AZ )17
<l div(AZav)|13,

< / / div(AZ*6v)(y
~ R 2 lx =yl
<)

S L

<.

dy‘ dx

o (X1 (0)=X1,4(2)- (AT (1) V8u(1,9) —AT (1,2) Vv (1,2)) 2
/Rz EETh (/R B Cl dz ) dy s

) - Ctpey 1 [ 6= (VX G-V G))) - ~’2 -
/]RZ X ®—X )l divy ((DXI,t (Y)) /]RZ F—zptoe dz | dy| dx
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5/}1{2 /Rq mdiv;((DX;}(y)) A (ov(s, Xu( )d)" dx

< S S (A2 1X )d ’ dx
N/]R2 /]RZ X ®—X, 0l 1Vy (ov( 1;( y

+ / 2 /R R e <i>ixa‘ @)‘div;((ld—(z)xg,‘(y))‘) *(ov(6, X7 (3) )dy‘ di
=T, +7>.

For Y, by using the relation (6.18), and the change of variables again, it follows that

2

T‘S/Rz /Rzm(Az“div(5v(nxr,:(~)>)@>)d9 d
< L1 et (4 (950 9o x5 0) ) ] a5
< [ st (0 (@ e 0)6) o] 0
+ / / e e (A (1d = VX 0) Vov(e. X7} () 6) ) a5 ax
: /]R /R EEEEI (VAZQ*Z(dMg(%XI,‘(-)))(y))dy\zdx
! / / e v (VA2 (0= VX () Vv X, () ))as| s
S/Rz / sy divy (Al(t y)([VAM*Z(divag(t,x;}))]oxl,,(y)))dy‘zdx

)
R2

< [|a"div (Asa,) [VAR 2 (divag(e Xp )] o Xi ()

/ 7 divy (Al(t y) ([VA**2((1d— VXI,I) : Vév(t,X;tl))] oX17,(y)))dy‘2d)~c

2

12
2

+HA Vv (41 (1) [VA*2((1d = VX)) Vav(e, X, )] 0 X ()
< CllA(1,9) |7 VA>3 (div g (1, X7 (1)) () 172
+ClAL (1Y) 17 [VAZ 2 ((1d = VX () : Vo5, X () () 172

12

Similarly to the proof of (6.36), by applying lemma 2.6, proposition 6.1 and letting 77 > 0 be
small enough, we infer that

Il 118065} (DI, ey + 111 = An (1.2} () 5 Vv( X5 I ey

. 2 2 2
< | le&gHL;l (fpa—1y + C[[1d — A, HL.‘,’,IO(LOO) ||V§V||L;l (Fpa—1)

2 2
+C||Id—Al|| $o(320;—1)||v5VH 2 ( 27,,2

< Clldivagl3y oa + CTUIOVE, 0, + CTLISVE, (o) (6.45)

(EP=)

For T, observing that (DX;} (7)) ™' = DXy ,(y) = (DX1,) Xy, (7). and by letting T > 0
small enough (so that (6.34) and the last inequality in (6.46) hold true) we obtain that for every
t 6 [O) Tl]s
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1 . —1 /5 2 —1 Y v ?
T2l S H/R T divs ((1d = (DX,,1) 0 X7 15)) [A (3v(r,Xi )] 0 X1.£(5) ) &5 )
2
< HA" div ((Id— (DX1,7) o Xy 1 (1)) [A**(v(7.X; )] 0X1,7(~)) )
_ 2
S I1d = DX 7 7 e (10 [ A2 (7, X7 2 (D) [[ 2 02
< CHVV] ||12‘}(Loc)HA‘%IO‘(SV(T,X)HE(LE)
1
< CT ALV ) ey < e IAN VT, (6.46)

where in the last line we have used (6.30).
Gathering (6.29) and (6.30), (6.35), (6.41), (6.44)—(6.46), we conclude that for every 7 €
[Oa Tl]a

16v(0)[17, 1 |
8 128C;
<CTh (H(S"”iao(yu) + HévHigl (Hm)> + ClldiV(sg”ile (fPo—1) + C||(5f175f2aarg)||i§] (r?)-

o 1
| A6y Byt §||V5H||ig(m)

1
2
eyt E”aﬂM

Hence, by taking the supremum over [0, 7] and then by letting 7} > 0 be small enough, we
conclude the desired estimate (6.23).
O

Now in order to get the uniqueness result in theorem 1.1, we need to check the terms in the
right-hand side of (6.23). For the term [|dfi ||z ;2 with 0fi = (Id — A7) VOIL — (6AT) V1L,
1
recalling (6.37) and (6.38) and noting that

6A(1y) = 3 (=B (1)) = (=Ba(r.3))
= t (6.47)
= (—l)kB{B];*l*j Dév(t,y)dr,
(S vroim) [ oitrs

with B;(t,y) = fot Dv;(7,y)dr, by letting T; > 0 be small enough, it can be controlled as follows

”(SleL?,] 12y S HId_AlHL;’T(LC’C)HV(SH”LZTI @)+ ||5A||L?o (L12T12> ||VH2||L;] ()
1
3 3
S CT7 || Vollllzg o) + €T ||V5V||L%] (Lﬁ)

1 1
STV VOUlzz 2y + CTE 10V (e + CTUIOV e (7o)
(6.48)
where in the last line we also have used (6.40).
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Next, let us treat the term Jf, given by (6.21). Observe that
o = ¢ / (X1,:(y) = X1,4(2) - (AT (1,y) = A7 (1,y) — (AT (1,2) — A3 (1,2))) Vva (1, y)
“ Jre 1X1.0(y) — X1,4(2) |72
e / (X1,:(y) = X1.4(2)) - (AT (1,2) = A3 (1,2)) (Va(t,y) = Va(1,2))
“ Jre 1X1.0(y) — X1,(2) |2

X1, =X1,1(2) X2, (¥)=X2.(2) T T
+Ca ‘/RZ |:|ler(]y)ixl,r(lz)|22+2a - ‘XZ,IZ(),)y,XZJ(Z)‘ZZ-%—a} ! (A2 (t,y) _A2 (t,z))sz(t,y)dz

dz

dz

V)~ X2,:(y)—X2,1
+ca /R 2 [l — e X ] AT (6,2) (Va(r,y) — Voals,)dz
= dfs +0fs + 05 +9f5.

For df}, by changing variables and using lemma 2.6, we get

_ (X14(y) = X14(2)) - (64T (2,y) — 6A(1,2)))
oAl = 2 / 2 / 2 s e

(x—2) - (6AT(1, X} (x)) — 6AT (1, X7} (2)))
_ CZ ) s
= [l

‘X- Z|2+2a
/2
R

ClOA( X7 () o [ 020X ()
ClBA(3) B V2 (0)

2
dz sz(t,y)’ dy

2
Vv (1, X, (x))‘ dx

(A2 - (6AT (1, X7} (x)))] Vo (1, X7, (x))‘zdx

<
<

In view of (6.47) and lemma 2.7, and using estimates (6.38)—(6.40), we have

oo k—1
10A]| 2o a1y < CV0V ]y ey ;ZO 1B1BS ™ )
=1 j=
co k—1
i
O, eSS BB e
T k=1 j=0 !

1 i 1 k
< CTHI3vlgy iy D K( T (V1,992 13 1))
k=1

) (o7t ¢
L N W CCRB )

1
< T893 iy + TV iy (6.49)

where T| > 0 is small enough so that CT> H(Vlv‘/Z)HLg (B2 i) < % Thus, combining the
1 P,
above two estimates yields that

1
||5f§||L;1 @) S N0Algo (tpa—1y [VV2lliz, (1oey S CTTOVI| 5 ey + CT1[I0V]| e (o). (6.50)
Let us check the estimation of term dfy. Defining

h(t,y,2,0) := 0(X1,(y) — X14(2)) + (1 = 0) (X2,,(y) — X2.,1(2)),

3902



Nonlinearity 36 (2023) 3866 Y Lietal

and using the fundamental theorem of calculus, we find that

Xl,t()’) - Xl,t(Z) _ X2,t(y) — X2,I(Z)
1X1,:(y) = X1 (2) P12 [Xa,(y) — X, (2) P2

/d LA
B 0 do ‘h(tax7y79)|2+2a

—(1 +2a)/0 de. (Xl,t(y) —X2,(y) — (X1.1(2) —Xz,t(Z))>

1 1 ¢
_(1+2a)/o Wda./o (v(r,y) — ov(1,2))dT

This gives that

Lot v(T,y) — 6v(7,2)) - AT(2,2) (Vva(t,y) — Vin(t,
6f£‘:—ca(1+2a)///w( (7,) — ov( Z|)h)(tx2)(),tz))|g+25(ty) 2(89) 4440

y—2)-Vév(r,0y+ (1—0)z)
= —co(1+2 .
¢ *a///@z [ (t,x,y,0)[7 T2

-AX(1,2)(Vva(t,y) — Va(1,2))dzd7dOd6.

Note that

|h(t,y,2,0) — (GHVVIHL,‘(LOO) +(1— G)HVVZHL}(LOO))b’_Z‘
1
T2 ([(Vvi, Vo) [l 2oy [y — 2.
so by choosing T} > 0 small enough, we get h(t,y,z,0) =~ |y — z| for every y#z and ¢ < T}.

Then taking advantage of Minkowski’s inequality, lemma 2.3 and the estimates (6.14), (6.40),
we infer that

1822 22y

Vov(r, 0y + (1 = 0)2)||Vva(t,y) = Vva(1,2)]| _
< | y |
H/ / R? ly — 7] +2e |As(t,2)|dzdTd0

2,12

< H/ / 5 [Vov(r,y+ (1 —0)2)||Vva(t,y) — Vo (t,y +2)

|o[1+20 . (Lg)HAZHL%"(LOO)

Ut [[VSv(ry+ (1= 0)2) [Vna(t,y) = Vva(t,y +2) | 1o
5”/// " dzdrdd
R? |z|1+2

| v,
L%I LT] (Lpfz )

LT1

1
ST

/ [Vva(t,y) = Vo (t,y +2) 2
R? |Z|1+2a

1
< CT? .
< CT; vazHL;I (@ I)HV6V||L%-] <L[%>

1
< CTY H‘SVHL;I (fipay T CT, HJVHL?T(HQ)- (6.51)
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The terms (5]‘% and (5f23 can be estimated similarly as above: due to (6.33) and (6.48), we have
the following bounds

OAT (1 Vva(t,y) — Vo (t
||5f%||L2 12 ch | ( ,y+z)|\ V2( ay) v2(ay+z)|dz
7, (L) - |z|1+2a

L3, (L)

IVv2(t,y) = Vva(t,y +2)llig

<C| Cazl| oAl
2 |z]1+2e L3 “ ||L P (L7-7)
1
2 ,
< CT ||VV2||L§1 (13;71—‘)HV5V||L§l (LPZTPZ)
1
< CTI8vl.3 ey + CT I8Vl 1 (6.52)

and

||6f23||L2 (L2)
CH// [Vév(r,y + (1= 0)2)| |As(t,) — As(t,y + 2)|
R2

|2[1+2a |V (t,y)|dzdTdd

13 (1)

1(1d — As (2, ) — (Id—Az(t,y+Z))||Lgd
|Z|1+2a

1
é CT]‘ ||V5V||L%I (Lp2T2 Z L?]C HVVZHL%,] (L)
1
5 J— .
< CT ||V5V||L%_] (U%)Hld Azllpge a1 1VV2lliz, ()
1
c(1i 16vllz3 (tpay + T1||5V||L;l<>(ya))||Id—A2||L;]o(B;§V,*‘)-

By (2.1) and the embedding Bi?i_l (R?) — L*°(IR?), similarly to the proof of (6.39), we see
that fori = 1,2,

o) k (e’ f & ,
d = Al gy < 2 (CTEIV ary) <D (CTE Il gy < €T
k=1 k=1
so this implies
||5fz||L2 (L) s CT ||5V||L2 (fﬁa +CT1||5V||L°°(Ha (6.53)

Collecting the above estimates on f} —f3 yields that for 77 > 0 small enough,

19f2llzz 22y < <cry 18VIlz2 iy + CTUIOV] o e - (6.54)

Next we consider the estimation related to dg given by (6.22). The algebraic relation (6.8)
gives

divég = (Id — A7) : Vov — (6AT) : vy,
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thus by using lemma 2.7, along with (6.38)—(6.40) and (6.48)—(6.49), we deduce that
||div6g||L%] (ipa—1) < ||(Id—A]T) : V(SVHL%I (ipa—1y T ||5AT : VVZHL%I (iro—1)

< C||Id—A1||L;T(WM—1,V)HV5VHL2T <L]2Tp2> +Clld = Ay flpge o) 10Vl (gme
1
+ ClIoAN go (o) IVV2l13, (1<) +C||5A||L?T (L%) IVvallgs (i)

1/2 . .
<CT633 (g + Tl oy (6.55)

We split 9,0g into the following four terms:
0,08 = O [(Id— A;)dv — (0A) v, ]
= —(0A1)6v+ (Id — A1) 0;6v — (0,0A4) vy — (6A) Oyvs.
Noting that for i = 1,2 (from (6.37))

oo

t
atAi(tay) = (_l)kk(Bi(t,y))kilDvi(t)y)7 Bi(tay) :/ Dvi(Tay)dTa (656)
k=1 0
and
t
n&mmmzwwm—w&wm</W&&mwmw<ﬁwﬁmmm (6.57)
. 0

so by choosing 7 > 0 small enough, we find that

||atA15VHL%l ) S ||atAl||L;l (Loo)||5v||L;>1°(L2)

1/2 1/2
<[Vl 1) 100vl3 2y < CTY2[1010v113 12- (6.58)
Thanks to (6.38) and (6.47), we immediately get
1/2
[I(Id—Ay) 8;5V||L2T] (1?) < Id— A, ||L;]o(Loo) \\8,6v||L%] ) < CT]/ ||875VHL§I (L2)> (6.59)
and

||(6A)81V2”L2T1 (12) S [[6A] - ||atV2HL; )
L (L I

)
(6.60)

Lr

1/2 1/2
<cry/ HVévlle< ) <CTY2[16v1l13 iy + CTIIOV] 3 1
T
In view of the following formula (from (6.56))

at5A(t7y) = *D(SV([,_Y) +Z(71)kkBg_lD6V([7y)
k=2

oo k—2 . . t
+ZZ(—1)"I¢B’1AB§717’ (/0 Dév(T,y) dT) Dv(t,y).
k=2 j=0

Using the Gagliardo—Nirenberg inequality ||V ov

< C||5v|\§.1:é ”5‘}”32;1’ we infer that
10:0A) valzz 12y < [10:0Allz, @) V2l e
< C||V2||L<;]°(L°°)(HV(sVHL;1 ) FIVOvlle @[Vl (1))
1—-L
SCT 2 ([10V] o ey + 19Vl i) (6.61)
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Noticing that 7} < 1 and o € (%, 1), we collect estimates (6.58)—(6.61) to obtain

L

1 1—
||8r58||L;] @) S CTy ||815VHL§I w2 +CT > (||5V||L2Tl (o) + ||5VHL$I°(HU‘))' (6.62)

Therefore, plugging inequalities (6.48), (6.54), (6.55), and (6.62) into (6.23), we find that
for T1 € (0,1] small enough,

1 1—-L
SE(TY) < CT |(05%, V8T 3, gy + T (160135 gy + 109 i)
< CT 7% 5E(TY).

By letting 7 > 0 be a even smaller constant (if necessary) so that CT}_i < %, we conclude
that 6E(f) = 0 on [0,7;]. The Sobolev inequality H(R?) < L™= (R?) or estimate (6.57)
further implies that 6v = 0 for a.e. (y,f) € R? x [0,7}]. By using (6.11) and coming back to
the Eulerian coordinates, we also get X ,(y) = X»,,(y) and u; (¢,x) = uz(1,x) for a.e. (x,1) €
R? x [0, Ty].

Repeating the above procedure and arguing as the corresponding part in [47], we can further
prove u; = up on R? x [Ty,2T;], R? x [2T},3T], ..., where T} > O is a small constant depend-
ing only on «, p, s, and the norms of (u;,7;) in propositions 4.3 and 4.4. Hence the uniqueness
part of theorem 1.1 is proved, which completes the proof of theorem 1.1.
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