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GLOBAL WELL-POSEDNESS AND REFINED REGULARITY

CRITERION FOR THE UNI-DIRECTIONAL EULER-ALIGNMENT

SYSTEM

YATAO LI, QIANYUN MIAO, CHANGHUI TAN, AND LIUTANG XUE

Abstract. We investigate global solutions to the Euler-alignment system in d dimensions
with unidirectional flows and strongly singular communication protocols φ(x) = |x|−(d+α)

for α ∈ (0, 2). Our paper establishes global regularity results in both the subcritical regime
1 < α < 2 and the critical regime α = 1. Notably, when α = 1, the system exhibits a critical
scaling similar to the critical quasi-geostrophic equation. To achieve global well-posedness,
we employ a novel method based on propagating the modulus of continuity. Our approach
introduces the concept of simultaneously propagating multiple moduli of continuity, which
allows us to effectively handle the system of two equations with critical scaling. Additionally,
we improve the regularity criteria for solutions to this system in the supercritical regime
0 < α < 1.
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1. Introduction

In this paper, we consider the hydrodynamic Euler-alignment system described by the
following equations





∂tρ+ div (ρu) = 0,

∂tu+ u · ∇u =

∫

Rd

φ(x− y)(u(y)− u(x))ρ(y)dy,
(1.1)

for (x, t) ∈ R
d × R+, subject to the initial condition

(ρ,u)|t=0(x) = (ρ0,u0)(x).

Here, ρ and u = (u1(x, t), · · · , ud(x, t)) represent the density and velocity vector field, respec-
tively. The second equation of (1.1) includes the alignment force, which is determined by the
communication protocol φ, that measures the strength of the alignment interactions and is
assumed to be non-negative and radially decreasing. The alignment force can be expressed
as a commutator:

∫

Rd

φ(x− y)(u(y)− u(x))ρ(y)dy = −[Lφ,u] ρ := −Lφ(ρu) + Lφ(ρ)u, (1.2)

where

Lφ(f)(x) :=

∫

Rd

φ(x− y)(f(x)− f(y))dy.

The system (1.1) can be seen as a macroscopic representation of the well-known Cucker-
Smale flocking model [10]





ẋi = vi,

v̇i =
1

N

N∑

j=1

φ(xi − xj)(vj − vi),
where

(
xi(t),vi(t)

)
∈ R

d × R
d, i = 1, · · · , N,

which describes the collective motion ofN agents adjusting their velocities based on a weighted
average of their neighbors. For a detailed derivation of (1.1) and related discussions, we refer
the readers to [5, 13, 30] and the references therein.

Our main focus is on the global well-posedness and asymptotic behaviors of the Euler-
alignment system (1.1). Extensive progress has been made in recent years, revealing that
different types of communication protocols lead to different system behaviors. For bounded
and Lipschitz communication protocols, the alignment force (1.2) acts as a nonlocal damping
mechanism. This results in a critical threshold phenomenon: subcritical initial data lead
to global well-posedness, while supercritical initial data lead to the formation of finite-time
singularities. See e.g. [6, 36]. A similar theory has been established for weakly singular
communication protocols, where φ is unbounded but integrable at the origin. See e.g. [38].

Another type of communication protocol that is of particular interest to us is when φ is
strongly singular, meaning it is not integrable at the origin. A prototype example of such a
protocol is given by:

φ(z) = cα|z|−(d+α), cα =
2αΓ(d+α

2
)

π
d
2 Γ(−α

2
)
, α ∈ (0, 2),
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when the operator Lφ is characterized by the fractional Laplacian:

Lφ(f)(x) = Λαf(x) := cαp.v.

∫

Rd

f(x)− f(y)

|x− y|d+α
dy.

The singularity in the communication protocol induces dissipation (or ellipticity) in the
alignment force (1.2), resulting in a regularization effect on the solutions of (1.1). This
phenomenon has been the subject of extensive research, especially in the context of a one-
dimensional periodic domain T. Notably, studies conducted in [12, 31, 32, 33] have demon-
strated that for any smooth non-vacuous initial data, global smooth solutions arise. Further-
more, these results have been extended to encompass general strongly singular communication
protocols [17], as well as scenarios involving misalignment in communications [27]. When the
initial data contain a vacuum, the ellipticity becomes degenerate, leading to the possibility of
finite-time singularity formations [1, 37].

The remarkable success of the theory in one dimension can be largely attributed to the
presence of a conserved auxiliary quantity:

G = ∂xu− Λαρ,

which satisfies the continuity equation

∂tG+ ∂x(Gu) = 0.

The conservation of G plays a crucial role in the analysis and understanding of the system
dynamics. In particular, when the initial condition G0 is identically zero (G0 ≡ 0), it follows
that G ≡ 0, and (1.1) reduces to the following advection-diffusion equation:

∂tρ+ u∂xρ = −ρΛαρ, u = ∂−1
x Λαρ = −∂xΛ

α−2ρ. (1.3)

This equation is recognized and extensively studied as a model for one-dimensional nonlinear
porous medium flow with fractional potential pressure [2, 3, 4]. Furthermore, in the special
case where α = 1, (1.3) corresponds to a one-dimensional model of the two-dimensional critical
quasi-geostrophic equation, which has been investigated in [7].

However, extending the theory to higher dimensions has proven to be challenging and has
not yielded comparable success. A natural replacement for the auxiliary quantity in higher
dimensions is given by:

G := ∇ · u− Λαρ

which satisfies the equation:

∂tG+∇ · (Gu) = (∇ · u)2 − Tr[(∇u)2].

However, this new formulation is no longer conservative, as the right-hand side is not necessar-
ily zero. The absence of a conserved quantity in higher dimensions poses a significant challenge
in extending the results obtained in one dimension. In the multi-dimensional case, the global
well-posedness result remains incomplete and typically requires additional smallness assump-
tions on the initial data. For instance, when the initial velocity amplitude is small relative
to its higher-order norms, Shvydkoy [29] established global existence and stability results for
nearly aligned flocks. Additionally, Danchin et al. [11] demonstrated global well-posedness
for solutions to (1.1) within the critical Besov space framework, under the assumption that
the initial data (ρ0,u0) is sufficiently close to the constant state (1,0) in terms of Besov space
norms.
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Recently, Lear and Shvydkoy introduced a class of uni-directional flows in their work [22].
This class of flows is given by:

u(x, t) = u(x, t)d, d ∈ S
d−1, u(x, t) : Rd × R+ → R. (1.4)

It can be observed that the structure (1.4) is preserved over time by the Euler-alignment
system (1.1). Moreover, under the uni-directional flow condition (1.4), the term (∇ · u)2 −
Tr[(∇u)2] in the equation for G vanishes, leading to the conservation of G.

Without loss of generality, considering the rotational invariance of system (1.1), we can
assume that d = (1, 0, · · · , 0) corresponds to the x1 direction. This leads to the following
system:





∂tρ+ ∂x1(ρu) = 0,

∂tu+ u∂x1u = −Λα
(
ρu

)
+ (Λαρ)u =: Cα(u, ρ),

(ρ, u)|t=0(x) = (ρ0, u0)(x),

(1.5)

Although this system exhibits the characteristics of one-dimensional flow, it is important
to note that the spatial variable x still belongs to R

d, and the dissipation is in d dimensions.
Thus, it differs from the traditional one-dimensional Euler-alignment system. However, we
recall the aforementioned feature of system (1.5), namely the conservation of the auxiliary
quantity:

G = ∂x1u− Λαρ, ∂tG+ ∂x1(Gu) = 0. (1.6)

Based on this conservation property, it is reasonable to inquire whether the system (1.5)
possesses a similar global well-posedness theory as the one-dimensional system. However, this
is not the case.

To illustrate this, consider the special case when G0 ≡ 0, resulting in G ≡ 0 throughout
the system. In this scenario, (1.5) reduces to the advection-diffusion equation:

∂tρ+ u∂x1ρ = −ρΛαρ, u = ∂−1
x1

Λαρ. (1.7)

In contrast to the one-dimensional system (1.3), where the regularity of u can be controlled
by the regularity of ρ through their relationship, in (1.7), only ∂x1u can be controlled by the
regularity of ρ. There is no direct mechanism to control the other partial derivatives of u
based on its relation to ρ.

Instead, one may approach the system (1.5) by focusing directly on the u equation in (1.5)2
and investigate the regularization effect of the alignment force Cα(u, ρ). By enforcing ρ ≡ 1,
we observe that

Cα(u, 1) = −Λαu.

In this case, the equation (1.5)2 becomes the fractal Burgers equation

∂tu+ u∂x1u = −Λαu, (1.8)

which has been extensively studied in [15]. The behavior of solutions depends on the value
of α. When α ∈ (1, 2), the dissipation dominates, resulting in globally well-posed solutions.
However, when α ∈ (0, 1), the dissipation is not strong enough, and finite-time singularity
formations may occur. The critical case arises when α = 1, and it is particularly subtle
to analyze. Global well-posedness has been established using a novel method based on the
modulus of continuity. This approach was invented by Kiselev et al. in their celebrated work
on the critical quasi-geostrophic equations [16], and has been successfully used to analyze
many equations with critical scalings, e.g. [14, 17, 18, 26, 27].
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The uni-directional Euler-alignment system (1.5) has been thoroughly investigated by Lear
and Shvydkoy in their work [22] for the case of α ∈ (1, 2). They establish that the align-
ment force Cα(u, ρ), which behaves similarly to the fractional Laplacian −Λαu, dominates
the Burgers nonlinearity, leading to global well-posedness. Their approach builds upon the
Hölder regularization results developed in [34, 28].

However, in the critical case of α = 1, the intricate structure of C1(u, ρ) presents significant
challenges in extracting sufficient dissipation to counterbalance the nonlinear advection. To
the best of our knowledge, the only available result in the literature is provided by Lear in
[19], where global well-posedness is established for the specific case (1.7). For general equation
(1.5), smallness assumptions are required to obtain global smooth solutions.

Now, we present our first main result on the global well-posedness of the system (1.5) for
1 ≤ α < 2.

Theorem 1.1 (Global well-posedness). Let 1 ≤ α < 2 and (ρ0, u0) ∈ Hm+α(Td)×Hm+1(Td),
where m > d

2 +1 and ρ0(x) > 0. Then there exists a global unique non-vacuous solution (ρ, u)
to the uni-directional Euler-alignment system (1.5) in the following class:

ρ ∈ Cw(R+;H
m+α(Td)), u ∈ Cw(R+;H

m+1(Td)) ∩ L2(R+; Ḣ
m+1+α

2 (Td)).

When α ∈ (1, 2), our theorem recasts the results presented in [22], but through an alterna-
tive approach based on the method of modulus of continuity.

The main contribution of this theorem lies in the critical case when α = 1. Our result
establishes global regularity without imposing any smallness assumptions. Overcoming this
challenge requires extracting sufficient dissipation from the alignment force C1(u, ρ). A major
difficulty arises from the system’s invariance under the critical scaling:

ρ(x, t) ρ(λx, λt), u(x, t) u(λx, λt), ∀ λ > 0. (1.9)

As a consequence, energy-based or scaling-based estimates alone are inadequate to ensure
global regularity. Instead, we employ the method of modulus of continuity, which draws
inspiration from the approach used in [15] on the critical fractal Burgers equation (1.8).

We would like to emphasize an additional major difficulty in the analysis. Unlike the linear
fractional dissipation term C1(u, 1) = −Λu, the alignment force C1(u, ρ) is highly nonlinear
and dependent on the density ρ. In particular, the most dangerous term is the difference
between C1(u, ρ) and ρ C1(u, 1) namely

C1(u, ρ)− ρ C1(u, 1) = cαp.v.

∫

Rd

(ρ(y) − ρ(x))(u(y) − u(x))

|x− y|d+1
dx, (1.10)

which cannot be solely controlled by the linear dissipation −Λu. Additional a priori control
on the regularity of ρ is required. However, utilizing the relation

ρ = ∂x1Λ
−1u− Λ−1G (1.11)

does not provide a sufficient bound. The main obstacle is the lack of L∞ to L∞ bound for
the Reisz transform ∂x1Λ

−1. Consequently, standard approaches employed in [12, 15, 22] do
not yield the desired global well-posedness result.

To overcome this difficulty, we propose a new concept of simultaneously propagating two
moduli of continuity. In addition to propagating the modulus of continuity on u, as done in
[15], we simultaneously propagate a modulus of continuity on ρ through the equation (1.5).
The key lies in smartly choosing a modulus of continuity for ρ that is stronger than what
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can be obtained solely through the relation (1.11). This choice allows us to achieve sufficient
control over the term (1.10).

We believe that this new approach represents an extension of the method of modulus of
continuity and opens up possibilities for studying systems of equations with critical scalings.
By simultaneously propagating multiple moduli of continuity, we can effectively handle the
nonlinear interactions and dependencies in the system, leading to the desired global well-
posedness results. This innovative approach may pave the way for further developments in
the analysis of critical systems and their regularity properties.

Our next result concerns the asymptotic flocking behavior of solutions to (1.5). This
phenomenon has been extensively studied in the general context of the Euler-alignment system
(1.1) (see, e.g., [19, 20, 22, 23, 24, 25, 32, 36]). In particular, the global solution tends to
exhibit certain collective behavior. Specifically, the velocity u converges to its average value
ū, given by

ū :=

∫
T
(ρ0u0)(x)dx∫
T
ρ0(x)dx

, (1.12)

while the density profile tends to a traveling wave flocking state:

ρ(x, t) → ρ∞(x− ūt).

We establish the following result:

Theorem 1.2 (Asymptotic behavior). Let (ρ, u) be the global solution to (1.5) as guaranteed
by Theorem 1.1. Then we have

‖u(t)− ū‖W 1,∞ ≤ Ce−c0 t, ∀ t > 0, (1.13)

where ū is defined as in (1.12), and the rate c0 > 0 depends only on α, d and ū. Consequently,
there exist ρ∞ ∈ Hm+α(Td) such that

‖ρ(·, t) − ρ∞(· − ūt)‖Cβ ≤ Ce−c0 t, ∀ t > 0, 0 < β < 1, (1.14)

The exponential decays observed in (1.13) and (1.14) are commonly referred to as strong
flocking. This result has already been established and documented in the literature, for
instance in [19, 22].

In our analysis, we introduce a time-dependent modulus of continuity on u, inspired by
the approach presented in [14]. This innovative technique enables us to derive the asymptotic
behavior (1.13) as a complementary result to the global well-posedness theorem.

Our final result focuses on the system (1.5) with α ∈ (0, 1). In the context of the fractional
Burgers equation (1.8), it is well-known that the dissipation term Cα(u, 1) is not sufficiently
strong to prevent the formation of singularities within finite time. However, a remarkable
discovery in [12] demonstrated that the alignment force Cα(u, ρ), which incorporates the den-
sity ρ as a weight, actually enhances the dissipation for the one-dimensional Euler-alignment
system, yielding global regularity. The natural question that arises is whether a similar phe-
nomenon can be observed in multi-dimensional systems. Specifically, for the uni-directional
flow described by (1.5), it remains unclear whether the enhanced dissipation effect occurs
solely in the x1 direction, as suggested by (1.7).

Although it is uncertain whether the dissipation induced by Cα(u, ρ) can surpass that of
Cα(u, 1), our subsequent result demonstrates that they are at least comparable. The following
theorem provides a refined regularity criterion for the system (1.5) when α ∈ (0, 1).
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Theorem 1.3 (Regularity criterion). Let 0 < α < 1. and (ρ0, u0) ∈ Hm+α(Td)×Hm+1(Td),
where m > d

2 + 1 and ρ0(x) > 0. Let T ∗ > 0 be the maximum existence time of the smooth
solution for the uni-directional Euler-alignment system (1.5) constructed in Theorem 2.1.
Then provided that

sup
t∈[0,T ∗)

‖u(t)‖Cσ(Td) < ∞, for some σ ∈ (1− α, 1), (1.15)

we necessarily have T ∗ = ∞. Moreover, we obtain the following Lipschitz bounds:

‖∇ρ(t)‖L∞ ≤ C
(
1 + ‖u‖

1
σ−1+α

L∞(R+;Cσ(Td))

)
, ∀t > 0, (1.16)

and

‖∇u(t)‖L∞ ≤ C
(
1 + ‖u‖

1
σ−1+α

L∞(R+;Cσ(Td))

)
e−c0t, ∀t > 0, (1.17)

where C > 0 depends only on α, d, and initial data (ρ0, u0); and the rate c0 > 0 is the same
as in Theorem 1.2.

A regularity criterion has been established in [19], which is stated in (2.1) and asserts that
solutions remain smooth if both ρ and u are Lipschitz continuous. In comparison, our regu-
larity criterion (1.15) imposes a less stringent condition by requiring only Hölder continuity
of u. This represents a significant improvement in terms of the regularity requirement.

We would like to emphasize that the system (1.5) exhibits an invariance property under
the scaling transformation

ρ(x, t) ρ(λx, λαt), u(x, t) λ−(1−α)u(λx, λαt), ∀ λ > 0. (1.18)

Consequently, the criterion (1.15) only necessitates that u belongs to a slightly smoother
space compared to the scale-invariant class L∞(R+;C

1−α(Td)). Our result shares similarities
with the works of Constantin and Wu [9] on the supercritical quasi-geostrophic equation and
Silvestre [35] on the advection-diffusion equation. We employ the same modulus of continuity
method to obtain our result. However, we have not attempted to extend our regularity
criterion (1.15) to the case of u ∈ L∞(R+;C

1−α(Td)). If this were the case, one would expect
that ρ becomes Hölder continuous [34]. Further regularization of the solution is possible. See
relevant discussion in Remark 6.1.

It is worth noting that the regularity criterion (1.15) is also expected to hold for the
fractional Burgers equation (1.8), as it satisfies the same scaling (1.18). Moreover, in [15],
solutions were constructed in such a way that the regularity criterion fails in finite time,
resulting in the development of singularities. However, it remains unclear whether such blow-
up phenomena occur in the context of the uni-directional Euler-alignment system (1.5). This
intriguing question will serve as the focus of future investigations.

The outline of our paper is as follows. In Section 2, we present the local well-posedness
result for system (1.5) and establish some fundamental a priori bounds for the quantities (ρ, u)
and the auxiliary quantity G. Our general approach revolves around the method of modulus
of continuity (MOC). In Subsection 3.1, we set up a framework for simultaneously propagating
the MOCs of ρ and u, while also identifying potential breakdown scenarios that could violate
their preservation. In Subsections 3.2 and 3.3, we demonstrate the general estimates for the
evolution of the MOCs by density ρ and velocity u, respectively, covering the entire range of
0 < α < 2 under possible breakdown scenarios. Then, in Sections 4, 5, and 6, we respectively
prove that the breakdown scenarios cannot occur in the subcritical (1 < α < 2), critical
(α = 1), and supercritical (0 < α < 1) regimes. For the critical regime, we carefully select a
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pair of MOCs for ρ and u to avoid the occurrence of breakdown scenarios. The preservation
of MOCs implies the uniform Lipschitz regularity of (ρ, u), leading to the proofs of Theorems
1.1, 1.2, and 1.3. Finally, we provide the proofs of two auxiliary lemmas in the appendix
section.

Notations: For convenience, we sometimes use R
d instead of Td by periodically extending

the domain to the whole space. The constant C may be different from line to line, and the
notation a . b means a ≤ Cb.

2. Preliminaries

In this section, we state a collection of known results on the unidirectional Euler-alignment
system (1.5) in the existing literature. The 1D theory was established in [12, 31, 32], and the
multi-dimensional case was discussed in [22].

2.1. Local well-posedness. We begin with the local well-posedness result for smooth solu-
tions to the Euler-alignment system (1.5).

Theorem 2.1 (Local well-posedness). Let 0 < α < 2. Suppose that m > d
2 + 1 and

(ρ0, u0) ∈ Hm+α(Td)×Hm+1(Td),

with ρ0(x) > 0. Then there exists a T0 > 0 such that the Euler-alignment system (1.5) with
initial data (ρ0, u0) has a unique non-vacuous solution (ρ, u) on interval [0, T0) in the class

ρ ∈ Cw([0, T0);H
m+α(Td)), u ∈ Cw([0, T0);H

m+1(Td)) ∩ L2([0, T0); Ḣ
m+1+α

2 (Td)).

Moreover, let T ∗ > 0 be the maximal existence time of the above constructed solution, then

if T ∗ < ∞, =⇒ sup
t∈[0,T ∗)

(
‖∇ρ(t)‖L∞ + ‖∇u(t)‖L∞

)
= ∞. (2.1)

The proof of the theorem can be found in e.g. [22, Theorem 1.1]. We omit the details.

Throughout the remainder of this paper, we will use the notation T ∗ to represent the
maximal existence time of the local smooth solution (ρ, u) constructed in Theorem 2.1 for the
unidirectional Euler-alignment system (1.5). This notation will be consistently employed in
our subsequent analysis.

2.2. A priori bounds. We list some useful a priori bounds on the solution (ρ, u) and the
auxiliary quantity G := ∂x1u− Λαρ.

First, by integrating the continuity equation (1.5)1 with respect to x-variable, we have the
conservation of mass ∫

Td

ρ(x, t)dx =

∫

Td

ρ0(x)dx =: ρ̄0. (2.2)

We also have the conservation of momentum:∫

Td

(ρu)(x, t)dx =

∫

Td

(ρ0u0)(x)dx,

which can be deduced from the integration over Td of the momentum equation

∂t(ρu) + ∂x1(ρu
2) = ρ Cα(u, ρ),
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and use the fact
∫

Td

ρ(x) Cα(u, ρ)(x)dx =

∫

Td

∫

Td

φ(x− y)(u(y)− u(x))ρ(x)ρ(y)dxdy = 0.

Next, we define F := G
ρ . Using the equation of G in (1.6), we find

∂tF + u∂x1F = 0, F |t=0(x) = F0(x). (2.3)

It directly yields that

‖F (t)‖L∞(Td) ≤ ‖F0‖L∞(Td) =
∥∥∥
∂x1u0 − Λαρ0

ρ0

∥∥∥
L∞

. (2.4)

From the relation ∂x1u = G+Λαρ = Fρ+Λαρ, we can write the continuity equation (1.5)1
as

∂tρ+ u∂x1ρ = −Fρ2 − ρΛαρ.

This leads to the following a priori bounds on ρ.

Proposition 2.2. There exist positive constants ρ and ρ, depending on α, ρ̄0 and ‖F0‖L∞,
such that

0 < ρ ≤ ρ(x, t) ≤ ρ < ∞, ∀ x ∈ T
d, t ∈ [0, T ∗). (2.5)

The upper bound can be obtained by using the nonlinear maximum principle introduced
by Constantin and Vicol [8]. See e.g. [12, Theorem 2.1] for applications to the 1D Euler-
alignment system. A similar argument leads to a time-dependent lower bound ρ(t) & 1/t. A
uniform lower bound was first obtained in [32], making additional use of (2.2). We refer the
detailed proof to [32, Lemma 3.1].

In combination with (2.4), we also get that for every t ∈ [0, T ∗),

‖G(t)‖L∞(Td) ≤ ‖Fρ(t)‖L∞(Td) ≤ ρ ‖F0‖L∞(Td). (2.6)

Finally, for the velocity u, let us recall

∂tu+ u∂x1u = cα p.v.

∫

Rd

u(y)− u(x)

|x− y|d+α
ρ(y)dy. (2.7)

The standard maximum principle yields the uniform bound

‖u(t)‖L∞(Td) ≤ ‖u0‖L∞(Td), ∀ t ∈ [0, T ∗).

Moreover, we recall the following exponential decay estimate of u (see [36, Theorem 2.2]).

Lemma 2.3. Let α ∈ (0, 2). Assume that u(x, t) is a smooth solution solving equation (2.7)
on [0, T ∗). Denote by

V (t) := sup
x,y∈supp ρ(·,t)

|u(x, t) − u(y, t)|.

Then there exists a constant c0 > 0 depending only on α, d such that for every t ∈ [0, T ∗),

V (t) ≤ V0 e
−c0t. (2.8)
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3. General estimates on the evolution of the modulus of continuity

Our primary analytical tool for studying the global well-posedness of the system is the
innovative modulus of continuity method. This method was initially developed by Kiselev et
al. in [16] for the critical quasi-geostrophic equation. It has proven effective in tackling various
fluid equations with critical scalings and establishing global well-posedness results. Notably,
the method has been successfully applied to the 1D Euler-alignment system in [12, 17, 27],
where global well-posedness is demonstrated for 0 < α < 2.

In this section, we establish the framework of the modulus of continuity method for our
system (1.5) and derive the necessary estimates to establish global well-posedness.

3.1. The modulus of continuity. A function ω(ξ) : (0,∞) → (0,∞) is called a modulus
of continuity (MOC) if ω(ξ) is continuous, nondecreasing, concave, and piecewise C2 with
one-sided derivatives defined at every point in (0,∞). We say a function f obeys the modulus
of continuity ω if

|f(x)− f(y)| < ω(|x− y|), for all x 6= y ∈ R
d.

We start with the following modulus of continuity

ω̄δ,µ(ξ) :=

{
δ
(
ξ − 1

4ξ
1+µ

)
, for 0 < ξ ≤ 1;

3
4δ +

δ
2 log ξ, for ξ > 1,

where µ ∈ (0,min{α, 1}) is fixed later and δ > 0 is a sufficiently small parameter to be chosen
later.

Consider a family of MOC via scaling

ωδ,µ
λ (ξ) := ω̄δ,µ( ξλ) =

{
δλ−1ξ − 1

4δλ
−1−µξ1+µ, for 0 < ξ ≤ λ;

3
4δ +

1
2δ log

ξ
λ , for ξ > λ.

(3.1)

The following lemma states that any bounded Lipschitz function obeys a MOC in this family.
The proof can be found in e.g. [27, Lemma 4.1].

Lemma 3.1. For any function f ∈ W 1,∞(Rd) and for every λ satisfying

0 < λ ≤ 2‖f‖L∞

‖∇f‖L∞

e−4δ−1‖f‖L∞ ,

we have that f obeys the MOC ωδ,µ
λ defined in (3.1).

As ρ0 and u0 are Lipschitz functions, for any given parameters δ and µ, we may pick a

small enough λ such that they both obey ωδ,µ
λ . We choose the following MOC for the density

ω1(ξ) := ωδ1,µ
λ (ξ) (3.2)

with some 0 < δ1 < 1. Our goal is to demonstrate that the density ρ(t) obeys ω1 for all time.
This result implies the desired Lipschitz bound:

‖∇ρ(t)‖L∞ ≤ ω′
1(0

+) = δλ−1 < ∞, ∀ t ∈ [0, T ∗). (3.3)

As discussed in the introduction, our approach involves simultaneously propagating the
MOCs on the density and velocity. For this purpose, we introduce the MOC on the velocity:

ω2(ξ) := ωδ2,µ
λ (ξ), (3.4)

with 0 < δ2 < 1, and our aim is to show that u(t) satisfies the MOC ω2 for all time. In most
cases, we can choose δ1 = δ2, but we keep the flexibility of selecting different parameters δ1
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and δ2. This flexibility will play a crucial role in the critical case when α = 1 (see Remark
3.8).

Furthermore, to obtain the decay estimate (1.13), we consider a time-dependent MOC on
u:

ω2(ξ, t) := e−c0 tω2(ξ), (3.5)

where c0 > 0 is a constant appearing in Lemma 2.3. If u(t) satisfies the MOC ω2(ξ, t), then
we obtain

‖∇u(t)‖L∞ ≤ δ2λ
−1e−c0 t, ∀t ∈ [0, T ∗) (3.6)

where the Lipschitz norm decays exponentially in time.

The following lemma characterizes the only possible breakthrough scenario when the two
MOCs are not satisfied simultaneously. We refer the reader to [16, 14] for the proof.

Lemma 3.2 (Breakthrough scenarios). Let ρ(x, t), u(x, t) be smooth functions on T
d×[0, T ∗).

Assume that ρ0(x) and u0 obeys the MOCs ω1 and ω2, defined in (3.2) and (3.4) respectively.
Let t = t1 ∈ (0, T ∗) be the first time that either ρ(x, t) violates the MOC ω1(ξ) given by
(3.2) or u(x, t) violates the MOC ω2(ξ, t) given by (3.5). Then there exist two distinct points
x 6= y ∈ T

d such that either

ρ(x, t1)− ρ(y, t1) = ω1(ξ) with ξ = |x− y|, (3.7)

or

u(x, t1)− u(y, t1) = ω2(ξ, t1), (3.8)

and also for any x̃, ỹ ∈ T
d and t ∈ [0, t1],

|ρ(x̃, t)− ρ(ỹ, t)| ≤ ω1(|x̃− ỹ|), |u(x̃, t)− u(ỹ, t)| ≤ ω2(|x̃− ỹ|, t). (3.9)

Hence, in order to show that for all time t ∈ (0, T ∗) the solution ρ(x, t) obeys the MOC
ω1(ξ) and simultaneously u(x, t) obeys the MOC ω2(ξ, t), we only need to consider two cases:

(i) No breakthrough for the MOC of ρ: under the scenario (3.7), (3.9), it suffices to show
that

∂t
(
ρ(x, t)− ρ(y, t)

)∣∣
t=t1

< 0; (3.10)

(ii) No breakthrough for the MOC of u: under the scenario (3.8)-(3.9), it suffices to show
that

∂t

(
u(x, t)− u(y, t)

ω2(ξ, t)

)∣∣∣∣
t=t1

< 0,

or equivalently,

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ, t1) < 0. (3.11)

If these estimates (3.10)–(3.11) are proven, it leads to a contradiction and thus implies that
the breakthrough scenario in Lemma 3.2 cannot occur at any time.

Let us provide further comments on the two cases mentioned above. In the case (i), if
ξ > ω−1

1 (ρ), we recall (2.5) and find that

ρ(x, t1)− ρ(y, t1) ≤ ρ < ω1(ξ).

Therefore, scenario (3.7) cannot occur. Thus, we only need to establish (3.10) for

0 < ξ ≤ Ξ1 := ω−1
1 (ρ) = λe2δ

−1
1 ρ− 3

2 . (3.12)
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Similarly, in the case (ii), if ξ > ω−1
2 (V0), we recall (2.8) and find that

u(x, t1)− u(y, t1) ≤ V (t1) ≤ V0 e
−c0t1 < ω2(ξ)e

−c0t1 = ω2(ξ, t).

Therefore, scenario (3.8) cannot occur. Thus, we only need to establish (3.11) for

0 < ξ ≤ Ξ2 := ω−1
2 (V0) = λe2δ

−1
2 V0−

3
2 . (3.13)

We may further choose λ to be sufficiently small as

λ ≤ 1
2e

−
(
2δ−1

1 ρ+2δ−1
2 V0

)
,

to ensure Ξ1,Ξ2 ≤ 1
2 .

Before we proceed, let us introduce some notational conventions for the sake of convenience.
Since there are several quantities related to both ρ and u that have similar expressions, we
will use a subscript i to denote the common representation. Specifically, we will use i = 1 and
i = 2 to refer to the quantities related to ρ and u, respectively.

3.2. Evolution of the MOC on ρ. We begin by presenting general estimates that lead to
(3.10) under the scenario (3.7), (3.9). The analysis for the 1D Euler-alignment system has
been conducted in [12], and we follow a similar procedure. However, it is important to note
that additional difficulties arise due to the higher dimension d > 1.

Below we drop the dependence on the variable t1 for simplicity. Taking advantage of the
equation (1.5)1 and the relations ∂x1u = Λαρ+G, G = Fρ (recalling (1.6) and (2.3)), we see
that

∂tρ = −∂x1(u ρ) = −ρΛαρ− ρ2F − u∂x1ρ,

and thus

∂tρ(x)− ∂tρ(y) = −ρ(y)
(
Λαρ(x)− Λαρ(y)

)
−

(
ρ(x)− ρ(y)

)
∂x1u(x)

− ρ(y)F (x)
(
ρ(x)− ρ(y)

)
− ρ2(y)

(
F (x)− F (y)

)
−

(
(u∂x1ρ)(x)− (u∂x1ρ)(y)

)

=: N1 +N2 +N3 +N4 +N5. (3.14)

The first term N1 in the estimate encodes the dissipation. Indeed, along the lines of [16, 14],
we have

Λαρ(x)− Λαρ(y) = cα p.v.

∫

Rd

ω1(ξ)− ρ(x+ z) + ρ(y + z)

|z|d+α
dz ≥ Dα,1(ξ) > 0, (3.15)

where we denote

Dα,i(ξ) := C1

(∫ ξ
2

0

2ωi(ξ)− ωi(ξ + 2η)− ωi(ξ − 2η)

η1+α
dη

+

∫ ∞

ξ
2

2ωi(ξ)− ωi(2η + ξ) + ωi(2η − ξ)

η1+α
dη

) (3.16)

with the constant C1 > 0 that depends only on α and d. Note that Dα,i(ξ) is strictly positive
as ωi is concave. Clearly, (3.15) implies

N1 ≤ −ρDα,1(ξ). (3.17)

Next, for the term N2, it follows from ∂x1u = Λαρ+ ρF and (2.4) that

N2 ≤ −ω1(ξ)Λ
αρ(x) + ρ ‖F0‖L∞ω1(ξ). (3.18)
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Following [12], we obtain the following bound on −Λαρ(x),

−Λαρ(x) = cα p.v.

∫

Rd

(
ρ(x− z)− ρ(y)

)
−

(
ρ(x)− ρ(y)

)

|z|d+α
dz ≤ Aα,1(ξ), (3.19)

where

Aα,i(ξ) := cα p.v.

∫

Rd

ωi(|ξe1 − z|)− ωi(ξ)

|z|d+α
dz, (3.20)

and e1 := (1, 0, . . . , 0). Here, due to the rotation and translation invariance, we may assume
without loss of generality that

x =
( ξ
2 , 0, . . . , 0

)
, y =

(
− ξ

2 , 0, . . . , 0
)
,

so that x− y = ξe1.

The term N3 can be easily controlled by

|N3| ≤ ρ ‖F0‖L∞ω1(ξ), (3.21)

using (2.5) and (2.4).

For the term N4, we have

|F (x)− F (y)| ≤ ‖∇F‖L∞ξ.

To control ∂x1F , we introduce H :=
∂x1F
ρ , which satisfies

∂tH + u∂x1H = 0, with H0 =
∂x1F0

ρ0
= 1

ρ0
∂x1

(
∂x1u0−Λαρ0

ρ0

)
,

which immediately implies, for every t ∈ [0, T ∗),

‖H(t)‖L∞ ≤ ‖H0‖L∞ , and ‖∂x1F (t)‖L∞ ≤ ρ ‖H0‖L∞ .

For d ≥ 2, additional control on the full gradient ∇F is required. To obtain this control, we
use (2.3) and compute

∂t∇F + u∂x1∇F = −∇u∂x1F, with ∇F0 = ∇
(
∂x1u0−Λαρ0

ρ0

)
.

This yields

‖∇F (t)‖L∞ ≤ ‖∇F0‖L∞ +

∫ t

0
‖∇u(τ)‖L∞‖∂x1F (τ)‖L∞dτ

≤ ‖∇F0‖L∞ + ρ ‖H0‖L∞

∫ t

0
‖∇u(τ)‖L∞dτ.

Given the scenario (3.9), u(t) satisfies ω2(ξ, t) as defined in (3.5). Thus,

‖∇u(t)‖L∞ ≤ e−c0 tω′
2(0

+) = e−c0 tδ2λ
−1, ∀ t ∈ [0, t1].

By integrating over time, we obtain
∫ t1

0
‖∇u(τ)‖L∞dτ ≤ δ2λ

−1

∫ t1

0
e−c0 tdt ≤ δ2

c0λ
.

Hence the term N4 can be estimated as follows

|N4| ≤ ρ2‖∇F (t1)‖L∞ξ ≤ ρ2
(
‖∇F0‖L∞ + ρ

c0
‖H0‖L∞δ2λ

−1
)
ξ. (3.22)

Finally, for the advection term N5, we find (e.g. see [16])

|N5| ≤ |u(x)− u(y)|ω′
1(ξ). (3.23)
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Remark 3.3. In one dimension, one can take advantage of the relation

u = ∂−1
x (Λαρ+G) = −∂xΛ

α−2ρ+ ∂−1
x G,

and use ω1 to control the MOC of u (see [12, Lemma 4.4]). However, in higher dimensions,
we cannot expect that the MOC of u can be controlled by ω1 since the relation only involves the
partial derivative of u in the e1 direction. Therefore, we will separately show that u(t) obeys
ω2(ξ, t) as defined in (3.5). It is worth noting that when α ∈ (0, 1), the term ω2(ξ, t)ω

′
1(ξ)

cannot be controlled by the dissipation. We need additional assistance from the regularity
condition (1.15). Detailed calculations to establish these estimates will be provided in the
subsequent sections.

Combining the estimates (3.14), (3.17), (3.18), (3.19), (3.21), (3.22), (3.23), we can deduce
that for every 0 < α < 2 and ξ > 0,

∂tρ(x, t1)− ∂tρ(y, t1) ≤ −ρDα,1(ξ) + ω1(ξ)
(
Aα,1(ξ) + ρ‖F0‖L∞

)

+ ρ2
(
‖∇F0‖L∞ + ρ

c0
‖H0‖L∞δ2λ

−1
)
ξ + |u(x)− u(y)|ω′

1(ξ).
(3.24)

Now we further estimate the terms on the right hand side of (3.24). The goal is to use the
first term to control all the rest. We start with a lower bound on the dissipative term Dα,1.

Lemma 3.4 (Dissipation bound). Let ωi(ξ) be the modulus of continuity given by (3.2) or
(3.4). Then for every α ∈ (0, 2) and for any ξ > 0, we have

Dα,i(ξ) ≥
{

C1µ(µ+1)2α−1

4(2−α) δiλ
−1−µξ1+µ−α, for 0 < ξ ≤ λ,

C12α−1

α ωi(ξ)ξ
−α, for ξ > λ.

(3.25)

The dissipation bound was originally derived in [16]. We include a proof under our notations
in the Appendix for self-consistency.

The next lemma provides a bound on the term Aα,1. In the case when d = 1, this bound was
derived in [12, Lemma 4.5]. However, in the multi-dimensional case, a significant enhancement
is required specifically for the directions orthogonal to e1.

Lemma 3.5. Let ωi(ξ) be the modulus of continuity given by (3.2) or (3.4). Then for every
α ∈ (0, 2) and for any ξ > 0, we have

Aα,i(ξ) ≤
{
C2δiλ

−µξµ−α, for 0 < ξ ≤ λ,

C2δiξ
−α, for ξ ≥ λ,

(3.26)

where C2 > 0 depends only on α, d and µ.

Proof of Lemma 3.5. Let us denote z = (z1, zh) with zh = (z2, · · · , zd). We split Aα,i(ξ) given
by (3.20) as follows

Aα,i(ξ) = cα p.v.

∫

|z1|≤2ξ

∫

Rd−1

ωi(|ξ − z1|)− ωi(ξ)

|z|d+α
dzhdz1

+ cα p.v.

∫

|z1|≤2ξ

∫

Rd−1

ωi(|ξe1 − z|)− ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.

∫

|z1|≥2ξ

∫

Rd−1

−ωi(ξ) + ωi(|ξe1 − z|)
|z|d+α

dzhdz1

=: Ii,1 + Ii,2 + Ii,3. (3.27)
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For Ii,1, using symmetry, we get

Ii,1 = cα p.v.

∫ ξ

0

∫

Rd−1

−2ωi(ξ) + ωi(ξ − z1) + ωi(ξ + z1)

|z|d+α
dzhdz1

+ cα p.v.

∫ 2ξ

ξ

∫

Rd−1

ωi(ξ − z1)− ωi(ξ)

|z|d+α
dzhdz1

+ cα p.v.

∫ 2ξ

ξ

∫

Rd−1

ωi(ξ + z1)− ωi(ξ)

|z|d+α
dzhdz1, (3.28)

and the first two integrals on the right-hand side of the above formula are both negative due
to the concavity of ωi (i = 1, 2), which gives

Ii,1 ≤ cα

∫ 2ξ

ξ

∫

Rd−1

ωi(ξ + z1)− ωi(ξ)

|z|d+α
dzhdz1 ≤ cαCd,α

∫ 2ξ

ξ

ωi(ξ + z1)− ωi(ξ)

z1+α
1

dz1,

with Cd,α =
∫
Rd−1

1

(1+|zh|2)
d+α
2

dzh < ∞. Arguing as the the estimation in [27, Lemma 4.4]

(with γ = δi
2 ), we get

Ii,1 ≤
{
cαCd,αδiMα(ξ, λ), for 0 < ξ ≤ λ,
cαCd,α

α δiξ
−α, for ξ ≥ λ,

(3.29)

where

Mα(ξ, λ) :=





1
α2(1−α)

λ−α, for 0 < α < 1,

λ−1
(
log λ

ξ + 5
4

)
, for α = 1,(

1
α−1 + 5

4

)
λ−1ξ1−α, for 1 < α < 2.

In order to compare with the dissipation contribution, we state the following inequality, where
we only use the fact that ξ

λ ∈ (0, 1] and µ ∈ (0,min{1, α}),

Mα(ξ, λ) ≤ Cα,µλ
−µξµ−α, with Cα,µ :=





1
α2(1−α)

, for 0 < α < 1,
5
4 + sup

r≥1

log r
r1−µ , for α = 1,

1
α−1 + 5

4 , for 1 < α < 2.

(3.30)

For Ii,2 given by (3.27), we separately consider two cases: for every 0 < ξ ≤ 2λ, noting that
√

(ξ − z1)2 + |zh|2 − |ξ − z1| = |zh|
2√

|ξ−z1|2+|zh|2+|ξ−z1|
, (3.31)

and using the fact that ω′
i(η) ≤ ω′

i(0
+) = δiλ

−1 for all η ∈ R+, we get

Ii,2 ≤ cα p.v.

∫

|z1|≤2ξ

∫

Rd−1

δiλ
−1

|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ cα p.v.

∫

|z1|≤
ξ
2

∫

|zh|≤ξ

δiλ
−1

|z|d+α

|zh|2
ξ/2

dzhdz1 + cα p.v.

∫

|z1|≤2ξ

∫

|zh|≥ξ

δiλ
−1

|z|d+α
|zh|dzhdz1

+ cα p.v.

∫

ξ
2
≤|z1|≤2ξ

∫

|zh|≤ξ

δiλ
−1

|z|d+α
|zh|dzhdz1

≤ C0cαδiλ
−1

(
ξ−1

∫

|z|≤3ξ

1

|z|d−2+α
dz + ξ

∫

|zh|≥ξ

1

|zh|d−1+α
dzh + σd−2ξ

1−α

)
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≤ C0cα
σd−1 + σd−2

α(2 − α)
δiλ

−1ξ1−α, (3.32)

with σn denoting the area of n-dimensional sphere for n ≥ 1 (setting σ0 = 1); whereas for
every ξ ≥ 2λ, we have

Ii,2 = cα p.v.

∫

|z1|≤2ξ

∫

|zh|≥ξ

ωi(|(ξ − z1, zh)|)− ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.

∫

|z1|≤
ξ
2

∫

|zh|≤ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.

∫

{ ξ
2
≤|z1|≤2ξ}∩{|z1−ξ|≥λ}

∫

|zh|≤ξ

ωi(|(ξ − z1, zh)|)− ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.

∫

|z1−ξ|≤λ

∫

|zh|≤ξ

ωi(|(ξ − z1, zh)|)− ωi(|ξ − z1|)
|z|d+α

dzhdz1

=: Ii,2,1 + Ii,2,2 + Ii,2,3 + Ii,2,4. (3.33)

By using (3.1), (3.31) and the following fact that supr∈[1/2,∞) r
− 1

2 log
√
1 + r2 ≤ C0, we find

Ii,2,1 = cα p.v.

∫

{|z1|≤2ξ}∩{|z1−ξ|≥λ}

∫

|zh|≥ξ

ωi(|(ξ − z1, zh)|)− ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.

∫

|z1−ξ|≤λ

∫

|zh|≥ξ

ωi(|(ξ − z1, zh)|)− ωi(|ξ − z1|)
|z|d+α

dzhdz1

≤ cα p.v.

∫

|z1|≤2ξ

∫

|zh|≥ξ

δi
2 log

√
1 + |zh|2

|ξ−z1|2

|z|d+α
dzhdz1

+ cα p.v.

∫

|z1−ξ|≤λ

∫

|zh|≥ξ

δiλ
−1

2|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ C0cαδi

∫

|z1|≤2ξ

∫

|zh|≥ξ

1

|zh|d+α

|zh|1/2
|ξ − z1|1/2

dzhdz1 + C0cαδi

∫

|zh|≥ξ

1

|zh|d+α
|zh|dzh

≤ C0cασd−2δi

(
ξ−

1
2
−α

∫

|z1|≤2ξ
|ξ − z1|−

1
2dz1 +

1

α
ξ−α

)
≤ C0cασd−2

α
δiξ

−α. (3.34)

By virtue of (3.1), (3.31) and the fact that

log |(η, zh)| − log |η| ≤ |η|−1
(
|(η, zh)| − |η|

)
, ∀|η| > 0, zh ∈ R

d−1,

we estimate Ii,2,2 as follows that for every ξ ≥ 2λ,

Ii,2,2 = cα p.v.

∫

|z1|≤
ξ
2

∫

|zh|≤ξ

δi
(
log |(ξ − z1, zh)| − log |ξ − z1|

)

2|z|d+α
dzhdz1

≤ cα p.v.

∫

|z1|≤
ξ
2

∫

|zh|≤ξ

δi|ξ − z1|−1

2|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ C0cαδiξ
−2

∫

|z|≤2ξ

1

|z|d−2+α
dz ≤ C0cασd−1

2− α
δiξ

−α.
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Arguing as (3.34) gives

Ii,2,3 = cα p.v.

∫

{ ξ
2
≤|z1|≤2ξ}∩{|z1−ξ|≥λ}

∫

|zh|≤ξ

δi
(
log |(ξ − z1, zh)| − log |ξ − z1|

)

2|z|d+α
dzhdz1

≤ cα

∫

ξ
2
≤|z1|≤2ξ

∫

|zh|≤ξ

δi log
√
1 + ξ2

|ξ−z1|2

2(ξ/2)d+α
dzhdz1

≤ C0cασd−2δiξ
−1−α

∫

ξ
2
≤|z1|≤2ξ

ξ1/2

|ξ − z1|1/2
dz1 ≤ C0cασd−2δiξ

−α;

Note that |z| ≥ |z1| ≥ ξ
2 for every ξ ≥ 2λ and |z1 − ξ| ≤ λ, we directly have

Ii,2,4 ≤ cα p.v.

∫

|z1−ξ|≤λ

∫

|zh|≤ξ

δiλ
−1

|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ cα

∫

|z1−ξ|≤λ

∫

|zh|≤ξ

δiλ
−1

(ξ/2)d+α
|zh|dzhdz1 ≤ C02

dcασd−2δiξ
−α.

Gathering (3.32), (3.33) and the above estimates on Ii,2,1 - Ii,2,4 leads to that

Ii,2 ≤
{
Cδiλ

−1ξ1−α, for 0 < ξ ≤ λ,

Cδiξ
−α, for ξ ≥ λ,

(3.35)

with C > 0 depending only on α, d.

For Ii,3 given by (3.27), we in fact can control a larger quantity Ĩi,3 given by

Ĩi,3 := cα

∫

|z|≥2ξ

ωi(|ξe1 − z|)− ωi(ξ)

|z|d+α
dz. (3.36)

Noting that from concavity ωi(|ξe1 − z|) − ωi(ξ) ≤ ωi(ξ + |z|) − ωi(ξ) ≤ ωi(|z|), and exactly
arguing as [27, (5.8)] and (3.30), we have that for every 0 < ξ ≤ λ,

Ii,3 ≤ Ĩi,3 ≤ cα p.v.

∫

|z|≥2ξ

ωi(|z|)
|z|d+α

dz ≤ cα σd−1

∫ ∞

ξ

ωi(η)

η1+α
dη ≤ cασd−1Cα,µδiλ

−µξµ−α,

with Cα,µ the constant appearing in (3.30); while for every ξ > λ, by using (3.1) and the
change of variables, we infer that

Ii,3 ≤ Ĩi,3 = cα p.v.

∫

|z|≥2ξ

δi
(
log |ξe1 − z| − log ξ

)

2|z|d+α
dzhdz1 ≤ cαC̃α,dδiξ

−α,

where (noting that |e1 − z| ≤ 2|z|)

C̃α,d := p.v.

∫

|z|≥2

log |e1 − z|
2|z|d+α

dzhdz1

≤ p.v.

∫

|z|≥2

log(2|z|)
2|z|d+α

dz = σd−1 p.v.

∫ ∞

2

log(2r)

2r1+α
dr < +∞.

Thus combining the above two estimates yields

Ii,3 ≤ Ĩi,3 ≤
{
cασd−1Cα,µ δiλ

−µξµ−α, for 0 < ξ ≤ λ,

cαC̃α,d δiξ
−α, for ξ ≥ λ.

(3.37)

Collecting (3.27), (3.29), (3.30), (3.35), (3.37) yields the desired estimate (3.26). �
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3.3. Evolution of the MOC on u. Next, we provide general estimates that lead to (3.11)
under the scenario (3.8)–(3.9). From equation (1.5)2, we observe that

∂t
(
u(x)− u(y)

)
= −

(
u∂x1u(x)− u∂x1u(y)

)
+

(
Cα(u, ρ)(x) − Cα(u, ρ)(y)

)
. (3.38)

The first term on the right-hand side of (3.38) represents the advection term, which can be
estimated similarly to (3.23) as

∣∣u∂x1u(x)− u∂x1u(y)
∣∣ ≤ |u(x)− u(y)| ∂ξω2(ξ, t1) = e−c0 t1 |u(x)− u(y)|ω′

2(ξ). (3.39)

We will apply different estimates to |u(x)− u(y)| in different cases, as mentioned in Remark
3.3.

Our main focus is on the latter term of (3.38). Without loss of generality, we can again
assume that

x =
( ξ
2 , 0, . . . , 0

)
, y =

(
− ξ

2 , 0, . . . , 0
)
.

We split the term as follows:

Cα(u, ρ)(x) − Cα(u, ρ)(y)

= cα p.v.

∫

Rd

ρ(x+ z)
(
u(x+ z)− u(x)

)
− ρ(y + z)

(
u(y + z)− u(y)

)

|z|d+α
dz

= cα

∫

{z:ρ(x+z)≤ρ(y+z)}

ρ(x+ z)[(u(x + z)− u(y + z))− (u(x)− u(y))]

|z|d+α
dz

+ cα

∫

{z:ρ(x+z)≤ρ(y+z)}

(
ρ(x+ z)− ρ(y + z)

)(
u(y + z)− u(y)

)

|z|d+α
dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}

ρ(y + z)[(u(x + z)− u(y + z))− (u(x)− u(y))]

|z|d+α
dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}

(
ρ(x+ z)− ρ(y + z)

)(
u(x+ z)− u(x)

)

|z|d+α
dz

=: J1 + J2 + J3 + J4. (3.40)

For terms J1 and J3, using the scenario (3.8)–(3.9) and (2.5), we have

J1 + J3 ≤ −ρ cα p.v.

∫

Rd

ω2(ξ, t1)− u(x+ z) + u(y + z)

|z|d+α
dz,

and similar to the treatment of Dα,1(ξ) in (3.15) above, we can infer that

J1 + J3 ≤ −ρ e−c0t1 Dα,2(ξ), (3.41)

where Dα,2(ξ) is defined in (3.16) and satisfies (3.25).

For the terms J2 and J4, using the scenario (3.8)–(3.9), we have

J2 + J4 = cα

∫

{z:ρ(x+z)≤ρ(y+z)}

(
ρ(y + z)− ρ(x+ z)

)u(x)− u(y + z)− ω2(ξ, t1)

|z|d+α
dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}

(
ρ(x+ z)− ρ(y + z)

)u(x+ z)− u(y)− ω2(ξ, t1)

|z|d+α
dz

≤ cα

∫

{z:ρ(x+z)≤ρ(y+z)}
|ρ(x+ z)− ρ(y + z)|ω2(|ξe1 − z|, t1)− ω2(ξ, t1)

|z|d+α
dz
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+ cα

∫

{z:ρ(x+z)>ρ(y+z)}
|ρ(x+ z)− ρ(y + z)|ω2(|ξe1 + z|, t1)− ω2(ξ, t1)

|z|d+α
dz

≤ cα e
−c0t1

∫

Rd

|ρ(x+ z)− ρ(y + z)|ω2(|ξe1 − z|)− ω2(ξ)

|z|d+α
dz =: J . (3.42)

Remark 3.6. Let us compare the alignment force Cα(u, ρ) and the linear fractional dissipation
Cα(u, 1). We can repeat the calculation in (3.40) to estimate Cα(u, 1)(x)−Cα(u, 1)(y) by setting
ρ ≡ 1. In this case, the terms J1+ J3 still represent the dissipation, and we have the estimate
(3.41). However, for Cα(u, 1), we find that J2 + J4 = 0. Hence, the difference between the
alignment force Cα(u, ρ) and the linear fractional dissipation Cα(u, 1) is reflected in the term
J . It is crucial to control this term using the dissipation.

The integrand in J exhibits a similar structure to Aα,2(ξ), which was defined in (3.20).
One might expect that it can be controlled by ω1(ξ)Aα,2(ξ). However, this is not the case. To
illustrate this point, we decompose J in a similar manner as (3.27), obtaining the following
decomposition:

J = cα e
−c0t1

∫

|z|≥2ξ
|ρ(x+ z)− ρ(y + z)|ω2(|ξe1 − z|)− ω2(ξ)

|z|d+α
dz

+ cα e
−c0t1

∫

|z|≤2ξ
|ρ(x+ z)− ρ(y + z)|ω2(|ξe1 − z|)− ω2(|ξ − z1|)

|z|d+α
dz

+ cα e
−c0t1 |ρ(x) − ρ(y)|

∫

|z|≤2ξ

ω2(|ξ − z1|)− ω2(ξ)

|z|d+α
dz

+ cα e
−c0t1

∫

|z|≤2ξ

(
|ρ(x+ z)− ρ(y + z)| − |ρ(x)− ρ(y)|

)ω2(|ξ − z1|)− ω2(ξ)

|z|d+α
dz

=: J5 + J6 + J7 + J8. (3.43)

For J5, J6, and J7, we extract ω1(ξ) and treat the remaining terms using similar estimates
as for Aα,2(ξ). Specifically, for J5, we observe that ω2(|ξe1−z|)−ω2(ξ) > 0 for every |z| ≥ 2ξ.
Utilizing (3.9) and (3.36), we deduce that

J5 ≤ cα e
−c0t1ω1(ξ)

∫

|z|≥2ξ

ω2(|ξe1 − z|)− ω2(ξ)

|z|d+α
dz ≤ e−c0t1ω1(ξ)Ĩ2,3, (3.44)

where Ĩ2,3 satisfies (3.37). For J6, we recall that I2,2 is given by (3.27), and using (3.9), we
have

J6 ≤ e−c0t1ω1(ξ)I2,2, (3.45)

where I2,2 satisfies (3.35). Regarding J7, the estimate is similar to that of Ii,1, and by dis-
carding the negative contributions in the estimate of Ii,1, we obtain

J7 ≤ e−c0t1ω1(ξ)×
{
cαCd,αCα,µδ2λ

−µξµ−α, for 0 < ξ ≤ λ,
cαCd,α

α δ2ξ
−α, for ξ ≥ λ.

(3.46)

Gathering (3.44), (3.45), (3.46) yields

J5 + J6 + J7 ≤ e−c0t1ω1(ξ)×
{
C2δ2λ

−µξµ−α, for 0 < ξ ≤ λ,

C2δ2ξ
−α, for ξ ≥ λ,

(3.47)

where C2 > 0 is the constant appearing in Lemma 3.5.
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The most challenging term is J8, which is related to the dangerous singular integral (1.10)
near y = x (or z = 0). We notice that in the estimate (3.28) for the corresponding term
Ii,1 in Aα,i, by symmetrizing z1 around 0 and utilizing the concavity of ωi, we can obtain a
favorable negative sign for the first term in (3.28). However, this is no longer the case with
the prefactor |ρ(x + z) − ρ(y + z)| − |ρ(x) − ρ(y)| in J8, which does not have a specific sign.
Therefore, we can only establish bounds on this term. Using the triangle inequality, we have

J8 ≤ cα e
−c0t1

∫

|z|≤2ξ

∣∣ρ(x+ z)− ρ(x)− (ρ(y + z)− ρ(y))
∣∣
∣∣ω2(|ξ − z1|)− ω2(ξ)

∣∣
|z|d+α

dz =: K.

(3.48)

The following Lemma provides estimates on the bound K.

Lemma 3.7. Let α ∈ (0, 2) and ωi(ξ) (i = 1, 2) be the modulus of continuity given by (3.2)
and (3.4). There exists a positive constant C3 depends only on α and d such that for every
0 < ξ ≤ λ,

K ≤ C3e
−c0t1δ1δ2λ

−2ξ2−α, (3.49)

and for every λ < ξ ≤ Ξ2,

K ≤ e−c0t1 ×
{
C3

(
δ2(λ

−1ξ)α−1 + V0

)
ω1(ξ)ξ

−α, for 1 < α < 2,

C3(δ2 + V0)ω1(ξ)ξ
−α, for 0 < α ≤ 1.

(3.50)

Remark 3.8. In the estimate (3.50), the term K is controlled by

K . ω1(ξ)ξ
−α,

with a potentially large constant coefficient. On the other hand, the dissipation (3.41) has a
lower bound, as shown in (3.25),

J1 + J3 . −ω2(ξ)ξ
−α.

To ensure that K is controlled by the dissipation, we choose δ1 to be much smaller than δ2.
This choice allows us to control K effectively through the dissipation term.

This idea of choosing different values for δ1 and δ2 seems to play a critical role in controlling
K, particularly in the critical case when α = 1.

Proof of Lemma 3.7. For every 0 < ξ ≤ 2λ, noting that ωi(η) ≤ ω′
i(0

+)η = δiλ
−1η for every

η > 0, we see that

K ≤ 2cαe
−c0t1

∫

|z|≤2ξ
ω1(|z|)

ω2(|z|)
|z|d+α

dz

≤ 2cαe
−c0t1δ1δ2λ

−2

∫

|z|≤2ξ
|z|−d−α+2dz ≤ e−c0t1 8cασd−1

2−α δ1δ2λ
−2ξ2−α.

In particular, by virtue of the fact that ω1(ξ) ≥ ω1(λ) = 3
4δ1 for every ξ ≥ λ, the above

estimate gives that for every λ < ξ ≤ 2λ,

K ≤ e−c0t1 64cασd−1

2−α δ2ω1(ξ)ξ
−α.
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For every 2λ ≤ ξ ≤ Ξ2 (with no loss of generality assuming that Ξ2 > 2λ), we have the
following splitting

K ≤ 2cαe
−c0t1

∫

{z:|z|≤2ξ,|z1|≤
ξ
2
}
ω1(|z|)

∣∣ω2(|ξ − z1|)− ω2(ξ)
∣∣

|z|d+α
dz

+ 2cαe
−c0t1

∫

{z:|z|≤2ξ,|z1|≥
ξ
2
}
ω1(|z|)

∣∣ω2(|ξ − z1|)− ω2(ξ)
∣∣

|z|d+α
dz =: K1 +K2.

Noting that |ξ − z1| ≥ ξ
2 ≥ λ for every |z1| ≤ ξ

2 and ξ ≥ 2λ, and by using (3.2), (3.4) and the
change of variables, we infer that for every 2λ ≤ ξ ≤ Ξ2,

K1 = 2cαe
−c0t1

∫

{z:|z|≤2ξ,|z1|≤
ξ
2
}
ω1(|z|)

δ2
∣∣ log |1− z1

ξ |
∣∣

2|z|d+α
dz

≤ cαe
−c0t1δ2ξ

−1

∫

|z|≤2ξ

ω1(|z|)
|z|d−1+α

dz

≤ e−c0t1cασd−1δ2ξ
−1

∫ 2ξ

0

ω1(η)

ηα
dη

≤ e−c0t1cασd−1δ2ξ
−1

(∫ λ

0

δ1λ
−1η

ηα
dη + ω1(2ξ)

∫ 2ξ

λ

1

ηα
dη

)

≤ e−c0t1cασd−1δ2ξ
−1 ×





1
2−αδ1λ

1−α + 2
α−1ω1(ξ)λ

1−α, for 1 < α < 2,

δ1 + 2ω1(ξ) log
2ξ
λ , for α = 1,

1
2−αδ1λ

1−α + 2
1−αω1(ξ)(2ξ)

1−α, for 0 < α < 1,

≤ e−c0t1cασd−1 ×





2
(2−α)(α−1) δ2ω1(ξ)ξ

−1λ1−α, for 1 < α < 2,

4
(
δ2 + V0

)
ω1(ξ)ξ

−1, for α = 1,
6

1−αδ2ω1(ξ)ξ
−α, for 0 < α < 1,

where in the last inequality we have used the facts that δ1 ≤ 4
3ω1(ξ), and in particular for

α = 1 (using (3.13))

log 2ξ
λ ≤ log 2 + log Ξ2

λ ≤ 1 + 2δ−1
2 V0.

For K2, in view of the fact |z| ≥ |z1| ≥ ξ
2 and the concavity of ωi(ξ) (i = 1, 2), we have

K2 ≤ 2cαe
−c0t1

∫

{z:|z|≤2ξ,|z1|≥
ξ
2
}
ω1(|z|)

ω2(|z|)
(ξ/2)d+α

dz

≤ e−c0t122d+1+αcασd−1ω1(2ξ)ω2(2ξ)ξ
−α

≤ e−c0t122d+3+αcασd−1V0 ω1(ξ)ξ
−α,

where in the last line we have used that ω2(ξ) ≤ ω2(Ξ2) = V0. Collecting the above estimates
on K1 and K2 leads to the inequality (3.50) in the case 2λ ≤ ξ ≤ Ξ2, as desired. �

When α ∈ (1, 2), the estimate in (3.50) is not ideal, as λ−1ξ can be very big in the region
ξ ≫ λ. To overcome this difficulty, we derive a refined MOC for ρ, replacing ω1 in the
estimate. This refinement utilizes the relation (3.51), which we recall here:

ρ = ∂x1Λ
−αu− Λ−αG. (3.51)
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We state the following lemma, which demonstrates that the MOC of ρ can be controlled by
the MOCs of u and G. The proof follows the approach in [12, Lemma 4.4], and it will be
provided in the Appendix.

Lemma 3.9. Let 1 < α < 2. Suppose u(t) obeys ω2(ξ, t) defined in (3.5). Then, for any x̃,

ỹ ∈ R
d with ξ̃ = |x̃− ỹ|, we have

|ρ(x̃, t1)− ρ(ỹ, t1)| ≤ C̃4

(∫ ξ̃

0

ω2(η, t)

η2−α
dη + ξ̃

∫ ∞

ξ̃

ω2(η, t)

η3−α
dη

)
+ C0ρ‖F0‖L∞ ξ̃, (3.52)

where C̃4 > 0 depends only on α, d and C0 > 0 an absolute constant. In particular, for every
ξ̃ > λ,

|ρ(x̃, t1)− ρ(ỹ, t1)| ≤ 2C̃4
(α−1)(2−α)ω2(ξ̃)ξ̃

α−1 +C0ρ‖F0‖L∞ ξ̃. (3.53)

By utilizing (3.53) to replace ω1 in the estimate (3.50), we obtain an improved estimate for
K.

Lemma 3.10. Let 1 < α < 2 and ω2(ξ, t) be the modulus of continuity given by (3.4).There
exists a constant C4 > 0 depending only on α and d such that for every λ < ξ ≤ Ξ2,

K ≤ e−c0t1C4

(
ρ‖F0‖L∞ω2(ξ)λ

1−α + V0 ω2(ξ)λ
−1

)
. (3.54)

Proof of Lemma 3.10. The proof of this lemma mainly relies on the following result, which
states that other than the MOC ω1(·), one can obtain an additional control on the quantity
|ρ(x̃, t)− ρ(ỹ, t)| for every x̃, ỹ ∈ R

d.

Now we can use (3.53) to replace the estimate of
∣∣(ρ(x+ z)− ρ(x))− (ρ(y + z)− ρ(y))

∣∣ in
K, so that for every λ < ξ ≤ Ξ2,

K ≤ 2cαp.v.

∫

|z|≤2ξ

(
C0ρ‖F0‖L∞ |z|+ 2C̃4

(α−1)(2−α)ω2(|z|)|z|α−1
)ω2(|z|, t1)

|z|d+α
dz

≤ 2e−c0t1cασd−1

(
C0ρ‖F0‖L∞

∫ 2ξ

0

ω2(η)

ηα
dη + 2C̃4

(α−1)(2−α)

∫ 2ξ

0
ω2(η)

ω2(η)

η2
dη

)

≤ 2e−c0t1cασd−1C0ρ‖F0‖L∞

(∫ λ

0
δ2λ

−1η1−αdη + ω2(2ξ)

∫ 2ξ

λ
η−αdη

)

+ 2e−c0t1cασd−1
2C̃4

(α−1)(2−α)

(∫ λ

0
δ22λ

−2dη + ω2
2(2ξ)

∫ 2ξ

λ

1

η2
dη

)

≤ 2e−c0t1cασd−1C0ρ̄‖F0‖L∞

(
1

2−αδ2λ
1−α + 2ω2(ξ)

1
α−1λ

1−α
)

+ e−c0t1 4C̃4cασd−1

(α−1)(2−α)

(
δ22λ

−1 + 4ω2
2(ξ)λ

−1
)

≤ e−c0t1 32cασd−1

(α−1)(2−α)

(
C0ρ‖F0‖L∞ω2(ξ)λ

1−α + C̃4V0 ω2(ξ)λ
−1

)
,

where in the last line we have used the facts that δ2 ≤ 4
3ω2(ξ) and ω2(ξ) ≤ ω2(Ξ2) = V0. �
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Therefore, collecting (3.11) and (3.38), (3.39), (3.41), (3.42), (3.43), (3.47), (3.48) leads to
that for every α ∈ (0, 2) and 0 < ξ ≤ Ξ2,

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0 t1
(
− ρDα,2(ξ) + |u(x)− u(y)|ω′

2(ξ) + c0 ω2(ξ) +K
)

+ e−c0t1 ×
{
C2δ2ω1(ξ)λ

−µξµ−α, for 0 < ξ ≤ λ,

C2δ2ω1(ξ)ξ
−α, for ξ ≥ λ,

(3.55)

where Dα,2(ξ) satisfies (3.25) and K given by (3.48) satisfies the estimates in Lemmas 3.7 and
3.10.

4. The subcritical regime: global well-posedness and asymptotic behavior

In this section, we finalize the application of the MOC method and provide a proof of
Theorems 1.1 and 1.2 for the subcritical regime when α ∈ (1, 2). The same result has been
previously established in [22], and here we present an alternative proof employing a different
analytical approach.

Our objective is to demonstrate that both ρ(t) and u(t) satisfy the MOCs ω1(ξ) and ω2(ξ, t),
respectively, as defined in (3.2) and (3.5). By leveraging Lemma 3.2, our task reduces to
proving the validity of (3.10) and (3.11). For the sake of simplicity, we assume δ1 = δ2 =: δ,
resulting in ω1(ξ) = ω2(ξ) =: ω(ξ).

We will now proceed to establish the validity of (3.10) for any x 6= y ∈ T
d with ξ = |x−y| ∈

(0,Ξ1] (recalling Ξ1 is given by (3.12)). The proof can be divided into two parts.

• For every 0 < ξ ≤ λ, we apply (3.1), (3.25), and (3.26) to (3.24), resulting in the following
estimate:

∂tρ(x, t1)− ∂tρ(y, t1) ≤ δλ−1−µξ1+µ−α
(
− C1µρ

4 + C2δ + ρ‖F0‖L∞λµξα−µ+

+ ρ2‖∇F0‖L∞δ−1λ1+µξα−µ + ρ3

c0
‖H0‖L∞λµξα−µ + δλ−1+µξα−µ

)
. (4.1)

Note that for the last term of (3.24), we have used

|u(x, t1)− u(y, t1)| ≤ ω2(ξ, t1) ≤ ω2(ξ). (4.2)

The right-hand side of (4.1) can be made to be strictly negative by choosing δ and λ small

enough. Set µ = α
2 . First, we choose δ such that C2δ <

C1αρ

16 . All the rest terms are scaling
subcritical and can be made small by choosing λ small enough. Indeed, we have

λ
α
2 ξ

α
2 + δ−1λ1+α

2 ξ
α
2 + δλ−1+α

2 ξ
α
2 ≤ λα−1(1 + δ−1).

Taking a small λ, depending on δ, α, and C1, ρ, ρ, ‖F0‖L∞ , ‖∇F0‖L∞ , ‖H0‖L∞ , the rest terms

can be made smaller than
C1αρ

16 .

• For every λ < ξ ≤ Ξ1 = λe2δ
−1ρ− 3

2 , we apply (3.1), (3.25), (3.26), and (4.2) to (3.24) and
use the facts that 3

4δ ≤ ω(ξ). It yields

∂tρ(x, t1)− ∂tρ(y, t1) ≤ ω(ξ)
ξα

(
− C1ρ

2 + C2δ + ρ‖F0‖L∞ξα+

+ 4
3ρ

2‖∇F0‖L∞δ−1ξ1+α + 4
3
ρ3

c0
‖H0‖L∞λ−1ξ1+α + δ

2ξ
α−1

)
. (4.3)
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The right-hand side of (4.3) can be made to be strictly negative by choosing δ and λ small

enough. First, we choose δ such that C2δ <
C1ρ

4 . All the rest terms are scaling subcritical
and can be made small by choosing λ small enough. Indeed, we have

ξα + δ−1ξ1+α + λ−1ξ1+α + ξα−1 ≤ λα−1
(
1 + e4δ

−1ρ−3(1 + δ−1)
)
.

Taking a small λ, depending on δ, α, ρ, and C1, ρ, ‖F0‖L∞ , ‖∇F0‖L∞ , ‖H0‖L∞ , the rest terms

can be made smaller than
C1ρ

4 .

Next we justify that (3.11) holds for any x 6= y ∈ T
d with ξ = |x − y| ∈ (0,Ξ2] (recalling

Ξ2 is given by (3.13)). We also consider two cases.

• For every 0 < ξ ≤ λ, by using (3.1) and (3.25), (3.49), (3.55), (4.2), we have

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0t1
(
− C1µρ

4 δλ−1−µξ1+µ−α + δ2λ−2ξ + c0δλ
−1ξ + C3δ

2λ−2ξ2−α + C2δ
2λ−1−µξ1+µ−α

)

≤ e−c0 t1δλ−1−α
2 ξ1−

α
2

(
− C1αρ

8 + δλ−1+α
2 ξ

α
2 + c0λ

α
2 ξ

α
2 + C3δλ

−1+α
2 ξ1−

α
2 +C2δ

)
, (4.4)

where in the last inequality, we take µ = α
2 . The right-hand side of (4.4) can be made to be

strictly negative by choosing δ and λ small enough. First, we choose δ such that

C3δλ
−1+α

2 ξ1−
α
2 + C2δ ≤ (C2 + C3)δ <

C1αρ

16 .

The remaining two terms are scaling subcritical, we may pick λ small such that

δλ−1+α
2 ξ

α
2 + c0λ

α
2 ξ

α
2 ≤ δλα−1 + c0λ

α <
C1αρ

16 .

• For every λ < ξ ≤ Ξ2 = λe2δ
−1
1 V0−

3
2 , using (3.1), (3.25), (3.54), (3.55), (4.2), we have

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0t1 ω(ξ)
ξα

(
− C1ρ

2 + δ
2ξ

α−1 + c0ξ
α + C4

(
ρ‖F0‖L∞λ1−α + V0 λ

−1
)
ξα + C2δ

)
. (4.5)

The right-hand side of (4.5) can be made to be strictly negative by choosing δ and λ small

enough. First, we choose δ such that C2δ <
C1ρ

4 . All the rest terms are scaling subcritical
and can be made small by choosing λ small enough. Indeed, we have

δξα−1 + ξα + (λ1−α + λ−1)ξα ≤ λα−1
(
1 + e4δ

−1V0−3
)
.

Taking a small λ, depending on δ, α, V0, and C1, ρ, ρ, ‖F0‖L∞ , the rest terms can be made

smaller than
C1ρ

4 .

Collecting all the estimates above and applying Lemma 3.2, we obtain the desired Lipschitz
bounds (3.3) and (3.6). In combination with the blowup criterion (2.1), we conclude the global
wellposedness of smooth solution for the system (1.5) in the subcritical regime 1 < α < 2.

Moreover, the estimate (3.6), together with Lemma 2.3 directly implies the exponential
decay of the velocity (1.13). The strong flocking estimate (1.14) follows, see e.g. [22, Pg.
827].
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5. The critical regime: global well-posedness and asymptotic behavior

In this section, we delve into the critical regime characterized by α = 1. Given the critical
scaling (1.9) for both ρ and u, the task of establishing a global well-posedness theory becomes
notably more challenging compared to the subcritical regime.

It is worth addressing a key challenge in applying the framework presented in Section 4.
With α = 1, certain terms in the estimates, such as those in equations (4.1), (4.3), (4.4), and
(4.5), transition from subcritical to critical. For instance, the last term in (4.1) becomes δ,
which can not be made small by choosing a small λ. Nonetheless, we may still control the
term by choosing δ small.

However, there is one critical term that does not become small through diminutive δ and λ
values. It is the penultimate term in (4.5): C4V0λ

−1ξ, coming from the term K. To compound
the challenge, estimate (3.54) is inapplicable in the case of α = 1 due to the coefficient C4

growing infinitely large as α approaches 1. In fact, it is well-known that the Reisz transform
∂x1Λ

−1 does not preserve the MOC ω2(ξ), thereby precluding the validity of (3.54) for the
case of α = 1.

Our main idea is to simultaneously propagate the MOCs of ρ and u. To control the term
K, we may use the fact that ρ obeys the MOC ω1, that is preserved in time. This leads to a
stronger bound (3.50). The aforementioned penultimate term in (4.5) becomes C3V0 (with a
finite C3, in oppose to an infinite C4). However, it is still not guaranteed that this term can

be controlled by the dissipation
C1ρ

2 , for arbitrary initial data.

In light of this, as elaborated in Remark 3.8, we introduce the relation:

δ1 = κδ2, with some κ ∈ (0, 1) chosen later. (5.1)

Thus ω1(ξ) = κω2(ξ), where ω1(ξ) and ω2(ξ) are given by (3.2) and (3.4). By taking a small
auxiliary parameter κ, we are able to control the aforesaid term by the dissipation, for any
smooth initial data.

Let us repeat the estimates in Section 4, using (5.1).

We first prove that (3.10) holds for any x 6= y ∈ T
d with ξ = |x− y| ∈ (0,Ξ1]. Similarly as

(4.1) and (4.3), we set µ = 1
2 and get the following.

• For every 0 < ξ ≤ λ,

∂tρ(x, t1)− ∂tρ(y, t1) ≤ δ1λ
− 3

2 ξ
1
2

(
− C1ρ

8 + C2δ1 + ρ‖F0‖L∞λ
1
2 ξ

1
2+

+ ρ2‖∇F0‖L∞δ−1
1 λ

3
2 ξ

1
2 + ρ3

c0
‖H0‖L∞λ

1
2 ξ

1
2 + δ2λ

− 1
2 ξ

1
2

)
, (5.2)

• For every λ < ξ ≤ Ξ1 = λe2δ
−1
1 ρ− 3

2 ,

∂tρ(x, t1)− ∂tρ(y, t1) ≤ ω1(ξ)
ξ

(
− C1ρ

2 + C2δ1 + ρ‖F0‖L∞ξ+

+ 4
3ρ

2‖∇F0‖L∞δ−1
1 ξ2 + 4

3
ρ3

c0
‖H0‖L∞λ−1ξ2 + δ2

2

)
. (5.3)

Note that the last terms in (5.2) and (5.3) are scaling critical, but can be made small as long
as δ2 is small. Following the same procedure as in Section 4, we may take δ2, κ and then λ
small enough to make sure the right hand-side of (5.2) and (5.3) are negative, finishing the
proof of (3.10).

Next we prove that (3.11) holds for any x 6= y ∈ T
d with ξ = |x− y| ∈ (0,Ξ2].
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• For every 0 < ξ ≤ λ, arguing as (4.4), we have

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0 t1δ2λ
− 3

2 ξ
1
2

(
− C1ρ

8 + δ2λ
− 1

2 ξ
1
2 + c0λ

1
2 ξ

1
2 + C3δ1λ

− 1
2 ξ

1
2 + C2δ1

)
. (5.4)

There are three terms δ2λ
− 1

2 ξ
1
2 , C3δ1λ

− 1
2 ξ

1
2 and C2δ1 that are critical, all of which can be

made small by choosing δ2 and κ small enough. The remain subcritical term can be made
small by choosing λ small enough.

• For every λ < ξ ≤ Ξ2 = λe2δ
−1
2 V0−

3
2 , we follow (4.5) but replace the estimate on K by (3.50).

This leads to

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0t1
(
− C1ρ

2
ω2(ξ)

ξ + δ2
2ξ ω2(ξ) + c0ω2(ξ) + C3

(
δ2 + V0

)ω1(ξ)
ξ + C2δ2

ω1(ξ)
ξ

)

≤ e−c0t1 ω2(ξ)
ξ

(
− C1ρ

2 + δ2
2 + c0ξ + C3

(
δ2 + V0

)
κ+ C2δ2κ

)
. (5.5)

Notably, the most dangerous term C3V0κ can be made small by choosing a small enough
parameter κ. The rest of the terms can be controlled by the dissipation by taking δ2 and λ
small enough, similarly as before.

Thus, by choosing δ2, κ and λ, the right hand-side of (5.4) and (5.5) can be made negative,
finishing the proof of (3.11).

Now we apply Lemma 3.2 to obtain Lipschitz bounds on ρ and u. Global well-posdness
and asymptotic strong flocking behavior follows from the same argument in Section 4. This
completes the proof of Theorems 1.1 and 1.2.

6. The supercritical regime: refined regularity criterion

In this section, our focus is on proving Theorem 1.3, which concerns the refined regularity
criterion for the system (1.5) in the supercritical regime 0 < α < 1.

The main challenge in establishing a global well-posedness theory lies in controlling the
advection term. It has a supercritical scaling under our framework. We impose an additional
regularity criterion (1.15) that allows us to obtain enough control to the advection term.
Notably, our criterion (1.15) only requires a certain Hölder regularity on u, which represents
a significant improvement over existing criteria such as (2.1).

We utilize the criterion (1.15) to obtain an improved bound

|u(x)− u(y)| ≤ ‖u‖Cσξσ. (6.1)

for any x, y ∈ T
d and ξ = |x− y|. The bound (6.1) replaces (4.2) in controlling the advection

term.

In the following, we will verify (3.10) and (3.11). We make use of (6.1) to handle the
advection term, and we claim that the rest of the terms can be treated through the same
procedure as the critical regime in Section 5.

Recalling that ω1(ξ) and ω2(ξ, t) are given by (3.2) and (3.5) respectively, we also assume
that (5.1) holds and thus ω1(ξ) = κω2(ξ) with a small parameter κ ∈ (0, 1) to be chosen later.

We first prove (3.10) holds for any x 6= y ∈ T
d with ξ = |x− y| ∈ (0,Ξ1].
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• For every 0 < ξ ≤ λ, similar to (4.1), we have

∂tρ(x, t1)− ∂tρ(y, t1) ≤ δ1λ
−1−µξ1+µ−α

(
− C1µρ

4 + C2δ1 + ρ‖F0‖L∞λµξα−µ+ (6.2)

+ ρ2‖∇F0‖L∞δ−1
1 λ1+µξα−µ + ρ3

c0
‖H0‖L∞λµξα−µ + ‖u(t1)‖Cαλµξσ−(1−α)−µ

)
,

where we have used (6.1) for the last term. Under the regularity assumption (1.15), σ > 1−α.

We set µ = σ−(1−α)
2 > 0. Then the last term in (6.2)

‖u(t1)‖Cαλµξσ−(1−α)−µ ≤ ‖u(t1)‖Cαλσ−(1−α) (6.3)

is subcritical and can be made small by taking λ sufficiently small. All other terms in (6.2)
can be treated the same as (4.1).

• For λ < ξ ≤ Ξ1 = λe2δ
−1
1 ρ− 3

2 , we follow (4.3) and use (6.1) to get

∂tρ(x, t1)− ∂tρ(y, t1) ≤ ω1(ξ)
ξα

(
− C1ρ

2 + C2δ1 + ρ‖F0‖L∞ξα+

+ 4
3ρ

2‖∇F0‖L∞δ−1
1 ξ1+α + 4

3
ρ3

c0
‖H0‖L∞λ−1ξ1+α

)
+ ‖u(t1)‖Cα

δ1
2 ξ

σ−1. (6.4)

To control the last term, we use the fact ωi(ξ) ≥ ωi(λ) =
3
4δi and obtain

‖u(t1)‖Cα
δi
2 ξ

σ−1 ≤ ωi(ξ)
ξα · 4

3δi
· ‖u(t1)‖Cα

δi
2 ξ

σ−(1−α) ≤ ωi(ξ)
ξα · 2

3‖u(t1)‖Cαe2δ
−1
i ρ− 3

2 · λσ−(1−α).

(6.5)
Taking i = 1, we deduce that the last term in (6.4) is scaling subcritical, and can be controlled
by the dissipation term by choosing λ small enough. All other terms in (6.4) can be treated
the same as (4.3).

Next we show that (3.11) holds for any x 6= y ∈ T
d with ξ = |x− y| ∈ (0,Ξ2].

• For every 0 < ξ ≤ λ, arguing similarly as (5.4) and using (6.1), we obtain

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0 t1δ2λ
−1−µξ1+µ−α

(
− C1µρ

16 + ‖u(t1)‖Cσλµξσ−(1−α)−µ+

+ c0λ
µξα−µ + C3δ1λ

−1+α
2 ξ1−

α
2 + C2δ1

)
. (6.6)

Taking µ = σ−(1−α)
2 and applying (6.3), we know the advection term can be controlled by the

dissipation by choosing a small λ. The remaining terms in (6.6) can be treated same as (4.4).

• For every λ < ξ ≤ Ξ2 = λe2δ
−1
2 V0−

3
2 , analogous to (5.5), we apply (3.50) to the term K and

use (6.1) for the advection term. It yields

∂t
(
u(x, t)− u(y, t)

)
|t=t1 + c0 ω2(ξ, t1)

≤ e−c0t1 ω2(ξ)
ξα

(
− C1ρ

2 + c0ξ
α + C3

(
δ2 + V0

)
κ+C2δ2κ

)
+ e−c0t1‖u(t1)‖Cσ

δ2
2 ξ

σ−1. (6.7)

Applying (6.5) with i = 2, we see that the last term in (6.7) is subcritical, and can be
controlled by the dissipation term by choosing λ small enough. All other terms in (6.7) can
be treated similar as (5.5), by taking sufficiently small δ2, κ and λ.

Now we apply Lemma 3.2 and deduce Lipschitz bounds on ρ and u, which then lead to
global well-posedness and asymptotic strong flocking behavior.
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We would like to emphasize that the parameters δi are independent of the a priori bound
in (1.15). But λ depends on ‖u‖L∞(R+;Cσ(Td)). Moreover, from (6.3) and (6.5), we see the

relation ‖u(t1)‖Cσλσ−(1−α) . 1. Hence, we pick

λ ∼ ‖u‖
− 1

σ−(1−α)

L∞(R+;Cσ(Td))
.

Together with (3.3) and (3.6), we conclude with the Lipschitz bounds (1.16) and (1.17). This
completes the proof of Theorem 1.3.

Remark 6.1. If we extend our regularity criterion (1.15) to encompass the scale-invariant
class

sup
t∈[0,T ∗)

‖u(t)‖C1−α(Td) < ∞, (6.8)

namely σ = 1 − α, we unearth a distinct challenge. In this context, the advection terms
in (6.2), (6.4), (6.6) and (6.7) become critical. Consequently, they can not be made small

by choosing λ sufficiently small. Furthermore, our earlier choice of µ = σ−(1−α)
2 = 0 loses

its relevance. Should we adopt any µ > 0, the last term in (6.2) that reads ‖u(t1)‖Cαλµξ−µ

becomes unbounded when ξ → 0. Therefore, our existing framework falls short of encapsulating
the global well-posedness scenario under the assumption delineated in (6.8).

The implications of whether (6.8) could potentially propel global well-posedness, or whether
global well-posedness might be attainable without any a priori regularity criterion, constitute
intriguing questions that warrant dedicated exploration in the realm of future investigations.

A notable special case worth mentioning is that of ”parallel shear flocks”, which was exam-
ined in [21, Section 4.1]. In this context, we consider shear velocities represented by

ρ = ρ(x2, · · · , xd, t), u = u(x2, · · · , xd, t)
in the system (1.5). Consequently, ∂tρ = 0, causing the advection term in equation (1.5)2 to
vanish. Sine the regularity assumption (1.15) is exclusively utilized to address the advection
terms in (1.5), our framework assures global regularity and asymptotic strong flocking for
parallel shear flocks in the fall range of 0 < α < 2, including the supercritical regime, without
any a priori regularity criterion.

7. Appendix: proof of Lemmas 3.4 and 3.9

We first present the proof of Lemmas 3.4.

Proof of Lemma 3.4. Below we sketch the proof of (3.25). For every 0 < ξ ≤ λ, due to the
concavity of ωi(ξ) given by (3.2) or (3.4), we have ωi(ξ+2η)+ωi(ξ−2η)−2ωi(ξ) ≤ 2ω′′

i (ξ)η
2,

and we use the first integral term in (3.16) to get that

Dα,i(ξ) ≥ −C1

∫ ξ
2

0

2ω′′
i (ξ)η

2

η1+α
dη = −C1

2α−1

2− α
ω′′
i (ξ)ξ

2−α = C1
µ(µ+ 1)2α−1

4(2 − α)
δiλ

−1−µξ1−α+µ.

For every ξ > λ, we keep the second integral term in (3.16), and using the fact 3
4δi ≤ ωi(ξ),

we have

∀η ≥ ξ
2 , ωi(2η + ξ)− ωi(2η − ξ) ≤ ωi(2ξ) = ωi(ξ) +

δi
2 log 2 ≤ 3

2ωi(ξ),

and thus

Dα,i(ξ) ≥ C1

∫ ∞

ξ
2

ωi(ξ)

2η1+α
dη =

C12
α−1

α
ωi(ξ)ξ

−α,
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as expected. �

Next we turn to the proof of Lemma 3.9.

Proof of Lemma 3.9. By the relation (3.51), we have

ρ(x̃)− ρ(ỹ) =
(
∂x1Λ

−αu(x̃)− ∂x1Λ
−αu(ỹ)

)
−

(
Λ−αG(x̃)− Λ−αG(ỹ)

)
. (7.1)

Noting that (see e.g. [26, Proposition 3.1])

∂x1Λ
−αu(x) = cα,d p.v.

∫

Rd

z1
|z|d+2−α

u(x− z)dz,

with cα,d =
Γ(d+2−α

2
)

2α−1πd/2Γ(α
2
)
, and by exactly arguing as [26, Lemma 3.2] (for the case α = 1 see

also [16]), we get

|∂x1Λ
−αu(x̃)− ∂x1Λ

−αu(ỹ)| ≤ C̃4

(∫ ξ̃

0

ω2(η, t1)

η2−α
dη + ξ̃

∫ ∞

ξ̃

ω2(η, t1)

η3−α
dη

)
. (7.2)

For the second term on the right-hand side of (7.1), in view of the L∞-estimate of G in (2.6),
we obtain that for α ∈ (1, 2),

|Λ−αG(x̃)− Λ−αG(ỹ)| ≤ ‖Λ−αG‖Ẇ 1,∞(Td)|x̃− ỹ| ≤ C0‖G‖L∞(Td)ξ̃ ≤ C0ρ‖F0‖L∞ ξ̃.

Combining the above two estimates yields the desired inequality (3.52).

Next, we explicitly calculate the integral in (7.2) for every ξ̃ > λ. Direct calculation gives
that
∫ ξ̃

0

ω2(η, t1)

η2−α
dη ≤

∫ λ

0

δ2λ
−1

η1−α
dη +

∫ ξ̃

λ

ω2(η)

η2−α
dη ≤ 1

α
δ2λ

α−1 +
1

α− 1
ω2(ξ̃)ξ̃

α−1 ≤ 2

α− 1
ω2(ξ̃)ξ̃

α−1,

and

ξ̃

∫ ∞

ξ̃

ω2(η, t1)

η3−α
dη ≤ ξ̃

(
1

2− α
ω2(ξ̃)ξ̃

α−2 +

∫ ∞

ξ̃

δ2
2η3−α

dη

)
≤ 2

2− α
ω2(ξ̃)ξ̃

α−1,

where in the above we have used the fact that δ2 ≤ 4
3ω2(ξ̃). Collecting the above inequalities

gives the desired estimate (3.53). �
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