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ABSTRACT. We study the temperature front problem for the
3D viscous Boussinesq equation. We prove that the Ck,γ (k ≥ 1,
0 < γ < 1) and W 2,∞ regularity of a temperature front is locally
preserved along the evolution as well as globally preserved under
a smallness condition in a critical space. In particular, beside
giving another proof of the main result in [28], we also extend
it to a more general class of regular patches.

1. INTRODUCTION

In this paper, we study the 3D incompressible Boussinesq system with viscous
dissipation. It is a well-known evolution equation which models the natural con-
vection phenomena in geophysical flows ([44, 47]) and reads as follows, for any
(t, x) ∈ R+ ×Rd where d ≥ 2:

(1.1)




∂tv + v · ∇v − ν∆v +∇p = θed,
divv = 0,

∂tθ + v · ∇θ = 0,

(θ, v)
∣∣
t=0(x) = (θ0, v0)(x),

where ed = (0, . . . ,0,1)t and ν > 0 is the viscosity coefficient (without loss of
generality, we assume that ν = 1 for simplicity). The unknowns are the scalar
temperature θ, the velocity field v = (v1, . . . , vd)t, and the scalar pressure p.

The Boussinesq system may be viewed as a generalization of very important
models from incompressible fluid mechanics ([17, 43]). Indeed, when θ ≡ 0,
the Boussinesq system is nothing but the incompressible Navier-Stokes equation.
The force models the so-called vortex-stretching phenomena which is observed
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in either 2D or 3D. In the 2D inviscid case, the Boussinesq equation is analogous
to the 3D axisymmetric Euler equations with swirl [45].

In the last decades, the Boussinesq system has been widely studied and many
results have been obtained. Regarding the 2D viscous Boussinesq system (1.1), the
global regularity issue for smooth solutions has been first mentioned in a paper by
Moffatt [46] and was rigorously proved by Chae [9] and also by Hou, Li [32].
We can also mention a work by Abidi and Hmidi [1] who proved the global well-
posedness of strong solution with rough initial data.

Concerning weak solutions, several results have been proved. In particular,
Hmidi and Keraani [29] studied the Cauchy problem for the 2D Boussinesq sys-
tem (1.1) associated with data in the energy space (θ0, v0) ∈ L2×L2. The unique-
ness of such a weak solutions has been proved by Danchin and Paı̈cu in [20]. The
regularity issue in Sobolev spaces (based on L2) has been also studied in a work by
Hu, Kukavica, and Ziane [33].

Some authors have also considered the case where the Boussinesq system has
some anisotropic term or some partial dissipation. These cases are physically rele-
vant to consider when one wants to take into account large scale atmospheric and
oceanic flows (for more, see [2, 7, 30, 36, 38]).

Regarding the Boussinesq equation (1.1) in higher dimension (i.e., d ≥ 3),
Danchin and Paı̈cu [21] studied the Cauchy problem associated with sufficiently
regular initial data (in scale-invariant Lorentz and Besov spaces), and proved that
the system is globally well posed under the smallness on the critical quantity
‖v0‖Ld,∞ + ν

−1‖θ0‖Ld/3 .

The latter result may be viewed as a generalization of the classical result by
Fujita and Kato on the incompressible 3D Navier-Stokes equations [25,34]. Later
on, the same authors [20] were able to not only weakened the above Besov space
assumption but also the smallness condition by considering Lorentz spaces.

As far as the inviscid Boussinesq system (i.e., ν = 0 in (1.1)) is concerned, it
is worth recalling that, unlike the incompressible 2D Euler equations, the global
regularity issue for the 2D Boussinesq system is still an outstanding open problem.
One expects global regularity according to numerical simulations presented in [24]
at least when the domain is periodic; however, in [42] the author proposed a
potential scenario of finite-time blowup using a numerical approach if the domain
is bounded and smooth (see also [18]). The latter work [42] has opened the
door to the introduction of several new 1D and 2D modified Boussinesq models
[8, 15, 16, 35] and different physical scenarios in 3D [51].

One of the main goals of this paper is to study the Boussinesq temperature
patch problem. This problem deals with the propagation of discontinuity of the
temperature along a free interface which makes the study physically relevant [44].
More precisely, we study the evolution of a initial temperature which is defined
as the characteristic function of a bounded domain D0 ⊂ R

d, which is further
assumed to be simply connected throughout this paper. The patch structure is
preserved along the evolution so that θ(x, t) = 1D(t)(x) where D(t) = ψt(D0),
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and where the particle trajectory ψt(x) is given by

(1.2)
∂ψt(x)

∂t
= v(t,ψt(x)), ψt(x)

∣∣
t=0 = x.

This special type of patch solution and the study of the propagation of their
boundary regularity along the evolution have been initiated some decades ago
for the 2D incompressible Euler equations with initial vorticity ω0 = 1D0 . The
global propagation of the Ck,γ regularity (where (k, γ) ∈ Z+×(0,1)) of the initial
patch in the case of the 2D incompressible Euler equations goes back to a work of
Chemin [13] using the para-differential calculus. Another approach—using geo-
metric cancellations in some singular integral operators—has allowed Bertozzi and
Constantin [4] to give a new proof of the persistence of the regularity of the patch.
Some years after, Gamblin and Saint-Raymond [26] studied the 3D case. They
were able to prove the local well-posedness for any initial patch with C1,γ regu-
larity. We refer also to a work of Danchin [19] for a similar regularity persistence
result in higher dimension.

As we have recalled, the main question usually raised when studying patch-
type solutions is whether the initial regularity of the patch is preserved along the
evolution or not. The temperature patch problem of Boussinesq system (1.1) was
initiated in a work of Danchin and Zhang [22]. By using para-differential cal-

culus, they were able to prove that for sufficiently regular data θ0 ∈ B
2/q−1
q,1 (R2),

q ∈ (1,2), with temperature patch initial data 1D0 , the evolved temperature patch
is globally well posed and its C1,γ regularity is preserved for all time, while in
higher dimension for θ0 ∈ B

0
d,1 ∩ L

d/3(Rd), d ≥ 3, which also contains 1D0 , the
same global C1,γ regularity persistence result is obtained under a smallness assump-
tion on ‖v0‖Ld,∞ + ν

−1‖θ0‖Ld/3 . More recently, Gancedo and Garcia-Juárez [27]
in the 2D case gave a different proof of the global C1,γ propagation of temperature
patch, and furthermore they obtained the W 2,∞ and C2,γ regularity persistence of
the patch boundary. They were able to use some hidden cancellations in the time-
dependent Calderón-Zygmund operators and in the tangential derivative along
the patch boundary. Recently, in [10], Chae, Miao, and Xue were able to prove
that the Ck,γ (with k ≥ 1 and γ ∈ (0,1)) regularity of the temperature patch is
preserved along the evolution of the 2D Boussinesq system (1.1).

Regarding the 3D case, the best known results deal with temperature patch
with regularity W 2,∞ and C2,γ . Indeed, these cases have been studied indepen-
dently by Danchin and Zhang [22] and Gancedo and Garcı́a-Juárez [28] in a
recent work. They considered the initial patch of non-constant values (e.g., θ0 =

θ̄01D0 with θ̄0 defined on D0) which is usually called the temperature front initial
data [44]. They proved that the C1,γ , W 2,∞ and C2,γ regularity is preserved along
the evolution if the critical quantity ‖v0‖Ḣ1/2 +‖θ0‖L1 is small enough. They also
proved that the temperature front preserved its regularity locally in time (without
any smallness assumption).
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Our goal in this paper is not only to improve the regularity of temperature
fronts but also to give an alternative proof to the one in [28]. Roughly speak-
ing, our generalization may be stated as follows: assume that ∂D0 ∈ Ck,γ , where
(k, γ) ∈ Z+ × (0,1); then, ∂D(t) ∈ Ck,γ for any t ∈ [0, T ] (T = ∞ if a smallness
condition is assumed in some critical space). More precisely, we are going to prove
the following theorem.

Theorem 1.1. Let v0 ∈ H1/2(R3) be a divergence-free vector field, and assume
that θ0 ∈ L1∩Ls(R3), s > 3. Then, there exists a positive time T , which depends on
v0, θ0 and s, such that the Boussinesq system (1.1) has a unique solution (v, θ,∇p)
on [0, T ] which satisfies, for any q ∈ (3,6), that

(1.3)




v ∈ C([0, T ],H1/2(R3))∩ L2([0, T ],H3/2 ∩ L∞)

∩ L̃1([0, T ], Ḃ1+3/q
q,∞ ),

θ ∈ L∞([0, T ], L1 ∩ Ls(R3)).

Let T∗ be the maximal time of existence of such a solution; then, T∗ = ∞ provided
there exists a constant c∗ > 0 such that

(1.4) ‖v0‖L3,∞(R3) + ‖θ0‖L1(R3) ≤ c∗.

Moreover, if one starts initially with the temperature front

(1.5) θ0(x) = θ
∗
1 (x)1D0(x)+ θ

∗
2 (x)1Dc0 (x),

where D0 ⊂ R
3 is a bounded simply connected domain, then one has the following

regularity persistence results for all t < T∗:

(1) If ∂D0 ∈ C1,γ(R3), γ ∈ (0,1), θ∗1 ∈ L
∞(D0), θ∗2 ∈ L

1 ∩ L∞(Dc0), and
v0 ∈ H1 ∩W 1,3(R3), then we have

θ(x, t) = θ∗1 (ψ
−1
t (x))1D(t)(x)+ θ

∗
2 (ψ

−1
t (x))1D(t)c (x),

and

∂D(t) = ψt(∂D0) ∈ L
∞([0, T ], C1,γ(R3)).

(2) If additionally, ∂D0 ∈ W 2,∞(R3), θ∗1 ∈ Cµ1(D0), θ∗2 ∈ Cµ2 ∩ L1(Dc0)
where µ1, µ2 ∈ (0,1), and v0 ∈ W 1,p(R3), p ∈ (3,∞). Then,

v ∈ L∞([0, T ],W 1,p)∩ Lγ([0, T ],W 2,∞)) with 1 ≤ γ <
2p
p + 3

and

∂D(t) ∈ L∞([0, T ],W 2,∞(R3)).
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(3) If additionally, ∂D0 ∈ Ck,γ(R3), k ≥ 2, γ ∈ (0,1), θ∗1 ∈ Ck−2,γ(D0),
θ∗2 ∈ C

k−2,γ∩L1(Dc0) and v0 ∈ H1∩W k,p(R3) where p ∈ (3,∞). Then,
we have

∂D(t) ∈ L∞([0, T ], Ck,γ(R3)).

Remark 1.2 (Boundary regularity persistence in other function spaces).
Since the velocity field v is already Lipschitz continuous (see (4.6)), the flow map
ψt defined by (1.2) is regular enough, and it is straightforward to see that the Cγ

(0 < γ < 1) and the W 1,∞ regularity of temperature front boundary is preserved
on [0, T∗). It is also an interesting question to ask whether or not the temperature
front boundary can preserve its regularity in other function spaces like the Sobolev
space W k,∞ with k ≥ 3. It is worth noting that we can analogously prove the
regularity persistence result of temperature fronts in W k,r with k ≥ 3 and 3 <
r < ∞. Indeed, it suffices, for instance, to follow the same idea as Remark 1.2
in [10] (where the 2D case is treated). However, the endpoint case r = ∞ is
more tricky. This is mainly due to that the fact that Calderón-Zygmund singular
integral operators are not bounded in L∞.

Our main theorem clearly covers the cases C1,γ , W 2,∞ as well as C2,γ which
have been obtained in [28]. Besides allowing more general temperature front
initial data (1.5) than [28], we are proving the persistence of a bigger class of
regular temperature patch.

The existence and uniqueness part of Theorem 1.1 is mainly based on a pri-
ori estimates for the velocity v in Ḣ1/2. The estimate in Ḣ1/2 will be useful to
prove higher regularity results (see, e.g., Lemma 3.1), and in particular the persis-
tence results in Theorem 1.1. Note that the uniqueness issue is not that standard.
This is mainly due to the fact that the velocity field v may not be in L1

T (Lip).
In order to avoid this difficulty, to prove the uniqueness we rather work in the

Chemin-Lerner’s space-time homogeneous Besov space, that is, L̃1
T (Ḃ

1+3/q
q,∞ ) to-

gether with the use of Lemma 3.2 (which may be viewed as a slight modification
of the uniqueness result in [20]). It is worth mentioning that the global existence
is already proved by Danchin and Paı̈cu [20].

The existence and uniqueness result in critical spaces being proved, the re-
maining part of Theorem 1.1 deals with the regularity persistence results of tem-
perature front. The main goal is to measure the regularity of an initial temperature
front ∂D0 evolving according to the Boussinesq system. The geometric quantity
one has to study is therefore ∂D(t) = ψt(∂D0) where ψt stands for the particular
trajectory which is given by the ODE (1.2). The latter quantity is strongly related
to the striated regularity of the system W (t) = {W i(t)}1≤i≤5 (see Lemma 2.3),
where W (t) is the system of evolved tangential divergence-free vector fields sat-
isfying (2.2). We want to emphasize that, compared to [28], we introduce a new
quantity (it may be called Alinhac’s good unknown, and such a technique was first
introduced by Hmidi et al [30, 31] for the study of Boussinesq system)

Γ := Ω− (R−1,2θ,−R−1,1θ,0)t ,
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which satisfies the equation

∂tΓ + v · ∇Γ −∆Γ = Ω · ∇v + ([R−1,2, v · ∇]θ,−[R−1,1, v · ∇]θ,0)t

with R−1,j := ∂jΛ−2, Λ = (−∆)1/2, j = 1,2, and Ω = ∇ ∧ v the vorticity field.
Such a good unknown Γ plays a central role in the proof of the persistence of the
regularity in the class C1,γ , W 2,∞ and in several striated estimates for the velocity
v in the sequel.

To show the C1,γ and W 2,∞ persistence of regularity of the patch, according
to Lemma 2.13, it suffices to show that the velocity field v belongs to L1

T (C
1,γ)

and L1
T (W

2,∞), respectively. Via the Biot-Savart law, we may decompose ∇v into
the sum of controlled terms as follows:

(1.6) ∇v = (−∆)−1∇∇∧Ω = Λ−2∇∇∧ Γ︸ ︷︷ ︸
under control

+∇2 ∂3Λ−4θ +Λ−2∇θ ⊗ e3.

By exploiting the commutator estimate and making use of the smoothing effect,
the quantity Γ indeed can be well controlled. Since θ belongs to L1∩L∞ uniformly
in time, one can directly prove that ∇2 ∂3Λ−4θ and Λ−2∇θ belong to L1

T (C
γ) for

all γ ∈ (0,1), which then ensures the wanted L1
T (C

1,γ) estimate of v. Then, in
order to control the quantity ‖∇2v‖L1

T (L
∞), it suffices to prove that ∇3 ∂3Λ−4θ

and ∇2Λ−2θe3 belong to L∞T (L
∞).

It is worth mentioning that the situation is quite analogous with that in
the vorticity patch problem of 2D Euler equations (where one needs to control
L1
T (L

∞) of ∇v = ∇∇⊥(−∆)−1
1D(t)); we here adopt the method of striated es-

timates initiated by Chemin [12, 13] and its generalization to 3D Euler by [26].
Although ∇3 ∂3Λ−4 is a fourth-order Riesz transform, by using Lemmas 4.1 and
4.3, we can conclude that∇3 ∂3Λ−4θ and moreover∇2v belong to L1([0, T ], L∞)
as desired.

To prove the persistence of the C2,γ regularity of the patch, instead of using the
complicated contour dynamics method as in [28], we essentially consider the reg-
ularity of a series of evolved tangential vector fields W (t) = {W i(t)}1≤i≤5 for the
temperature front. According to Lemma 2.3, it suffices to show W ∈ L∞T (C

1,γ).
In estimating the Cγ norm of ∇W , we mainly need to treat the striated term
∂W∇v := W · ∇2v in L1

T (C
γ). By using (1.6), we treat the Γ term and θ term

separately, and together with striated estimates in Lemma 2.10 and the commu-
tator estimate in Lemma 2.12, we can give the striated estimate ‖∂W∇v‖L1

T (C
γ).

Then, Grönwall’s inequality ensures the desired control in L1
T (C

1,γ) of W .
To get the regularity persistence in Ck,γ , with k ≥ 3, according to Lemma 2.3,

we only need to show the striated regularity ∂k−1
W W ∈ L∞T (C

γ). To do so, we use

the induction method. Moreover, the function spaces Bs,ℓr ,W (see Definition 2.6)
and the high-order striated estimates established in Lemma 2.8 will be essential
throughout the proof of the main theorem.
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Suppose we already have controlled the quantitiesW ,∇v and Γ in some well-

chosen striated spaces Bs,ℓr ,W with ℓ ∈ {1, . . . , k − 2} (see (5.3) below). We thus
aim at showing the corresponding estimates by replacing ℓ with ℓ+ 1.

To get control of the C−1,γ (i.e., Bγ−1
∞,∞) norm of ∂ℓW∇

2W , one needs to es-

timate the quantity ∂ℓ+1
W ∇2v in L1

T (C
−1,γ) and other (low-order) striated esti-

mates. In view of (1.6) once again, we tackle with the term in Γ and the term
in θ separately. More precisely, by making use of the smoothing estimate of
transport-diffusion equation and the induction assumptions, the L1

T (C
−1,γ) norm

of ∂ℓ+1
W ∇2Λ−2∇∧ Γ can be controlled in terms of Γ itself and W in some Bs,ℓr ,W

norms. Then, by using Lemma 2.4 which deals with the striated regularity of θ,

we can also control the L1
T (C

−1,γ) norms of ∂ℓ+1
W ∇3 ∂3Λ−4θ and ∂ℓ+1

W ∇2Λ−2θ.
Collecting all these estimates and applying the Grönwall inequality, we get the

wanted estimates at the rank ℓ + 1, so that the induction process guarantees the
desired estimate (5.2), which implies the L∞T (C

γ) regularity of ∂k−1
W W .

The paper is organized as follows. In Section 2, we introduce the notion of
admissible conormal system adapted to the temperature patch and the definition

of special type of Besov spaces Bs,ℓp,r ,W which are known in the literature as stri-
ated Besov spaces. In the latter section, we also include a series of useful results
on estimates in the striated setting, and we also present some auxiliary lemmas.
Then, in Section 3 we give a detailed proof of the existence and uniqueness part
in Theorem 1.1. The sections 4 and 5 are dedicated to the proof of the regularity
persistence results stated in Theorem 1.1; in particular, we prove that the regu-
larity of the patch in the space C1,γ , W 2,∞, C2,γ is preserved along the evolution
of the temperature front in Section 4. We present in Section 5 the persistence in
the Ck,γ regularity for any k ≥ 3. Finally, we present a detailed proof of some
technical lemmas in Appendix A: namely, Lemmas 2.11 and 3.1.

2. PRELIMINARIES AND AUXILIARY LEMMAS

2.1. The admissible conormal vector system. To obtain the (higher order)
regularity persistence of patches, we need to introduce the striated (i.e., conormal)
vector fields.

Let us first present the definition of an admissible system (see [26]).

Definition 2.1. A system W = (W 1,W 2, . . . ,WN) of N continuous vector
fields is said to be admissible if the function

[W ]−1 def
=

(
2

N(N − 1)

∑
µ<ν

|Wµ ∧W ν|2
)−1/4

< ∞,

where the wedge product X ∧ Y is defined as

X ∧ Y = (X2Y3 −X3Y2, X3Y1 −X1Y3, X1Y2 −X2Y1)
t
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for any two vector fields X = (X1, X2, X3)t and Y = (Y1, Y2, Y3)t .

Now, let D0 ⊂ R3 be a bounded simply connected domain with ∂D0 ∈ Ck,γ

with k ≥ 1, 0 < γ < 1. Then, there exists a function F ∈ Ck,γ such that F ≡ 0
on ∂D0 and ∇F|∂D0 ≠ 0. The following result deals with the existence of an
admissible system of divergence-free tangential vector fields of ∂D0.

Proposition 2.2. For any two-dimensional compact Ck,γ-submanifold ∂D0 of
R

3, we can find an admissible system consisting of five divergence-free and Ck−1,γ-
vector fields tangent to ∂D0.

Proof. The proof follows an idea from Gamblin and Saint-Raymond (see
[26]); we include it for the sake of completeness. By continuity, there exists some
ε > 0 such that ∇F ≠ 0 on Σε = {x ∈ R3 : dist(x, ∂D0) ≤ ε}. Let χ ∈ C∞ be a
bump function so that χ = 1 on R3 \ Σε and χ = 0 on Σε/2. Set

(2.1)




W 1
0 = (0,−∂3F, ∂2F)t,

W 2
0 = (∂3F,0,−∂1F)t,

W 3
0 = (−∂2F, ∂1F,0)t,

W 4
0 = (∂3(χx3),0,−∂1(χx3))t ,

W 5
0 = (−∂2(χx1), ∂1(χx1),0)t .

Clearly, {W 1
0 , . . . ,W

5
0 } is composed of Ck−1,γ divergence-free vector fields that

are all tangent to Σ. Moreover, this system is admissible because of the fact that
|W 4

0 ∧W
5
0 | ≡ 1 on R3 \Σε and |W 1

0 ∧W
2
0 |

2+|W 1
0 ∧W

3
0 |

2+|W 2
0 ∧W

3
0 |

2 = |∇F|2 ≥
δ > 0 on Σε. ❐

Consider an initial temperature patch θ0 which is non-constant and satisfies
(1.5). Since the patch boundary ∂D0 is a two-dimensional compact submanifold
of Ck,γ(R3) regularity, where k ≥ 1 and γ ∈ (0,1), thanks to Proposition 2.2, we
can find an admissible system W0 = {W

1
0 , . . . ,W

5
0 } such that

divW i
0 = 0 and W i

0 ∈ C
k−1,γ(R3) are tangent to ∂D0, i = 1, . . . ,5.

As in the vorticity patch problem for the Euler equation (see, e.g., [12, 13,
26]), we consider the evolution of the vectorsW (t) = {W 1(t), . . . ,W 5(t)} where
W i(t) is a solution of

(2.2) ∂tW
i + v · ∇W i = W i · ∇v = ∂W iv, W i

∣∣
t=0(x) = W

i
0(x),

for all i = 1, . . . ,5 and all initial data W i
0 verifying (2.1). Since divW i satisfies the

transport equation

∂t(divW i)+ v · ∇(divW i) = 0, divW i
∣∣
t=0 = divW i

0 = 0,
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we see that W i(t, x) is still divergence free. According to Lemma 1.4 of [45], we
also have

(2.3) W i(t, x) = (∂W i0ψt)(ψ
−1
t (x)), i = 1, . . . ,5,

whereψt : R3 → R
3 is the particle-trajectory map (which is a solution to the ODE

(1.2)) with inverse ψ−1
t .

The following result is fundamental as it shows the deep relationship between
the (higher-order) boundary regularity of ∂D(t) with the striated regularity of the
system W (t) = {W i(t)}1≤i≤5.

Lemma 2.3. Let T > 0, k ≥ 2, and γ ∈ (0,1). Letψt(·) : R3 → R
3 defined by

(1.2) be the measure-preserving bi-Lipschitz particle-trajectory map on [0, T ]. Then,
the temperature patch boundary ∂D(t) = ψt(∂D0) preserves its Ck,γ(R3) regularity
on the time interval [0, T ], provided that

(2.4) ∂ℓWW ∈ L∞([0, T ], Cγ(R3)) for all 0 ≤ ℓ ≤ k− 1.

Proof. To prove this lemma, we follow the same approach as [26, 39]. More
precisely, we notice that since D0 is a simply-connected domain with its boundary
∂D0 ∈ Ck,γ(R3), according to the finite covering theorem, there exists a finite
number of charts {Vβ,ϕβ}1≤β≤m covering the two-dimensional compact Ck,γ-
submanifold ∂D0 with

ϕβ : Uβ 7 -→ Vβ ⊂ R3,

(s1, s2) 7 -→ϕβ(s1, s2) = (ϕ
1
β,ϕ

2
β,ϕ

3
β)(s1, s2) ∈ Vβ,

where Uβ is an open set of R2, Vβ is an open set of R3 near a neighborhood of
∂D0, ϕβ ∈ Ck,γ , β = 1, . . . ,m.

To show that ∂D(t) = ψt(∂D0) ∈ Ck,γ , it suffices to prove

∂k1
s1 ∂

k2
s2 (ψt(ϕβ(s1, s2))) ∈ L

∞
T (C

γ(Uβ)), for all 0 ≤ k1 + k2 ≤ k.

Define the tangential vector fields Yi(ϕβ(s1, s2)) := ∂siϕβ(s1, s2) for i = 1,2;
then, Yi ∈ Ck−1,γ(Vβ), and by the chain rule we get that

∂si(ψt(ϕβ(s1, s2))) = ∂siϕβ(s1, s2) · ∇ψt(ϕβ(s1, s2))

= Yi(ϕβ(s1, s2)) · ∇ψt(ϕβ(s1, s2))

= (∂Yiψt)(ϕβ(s1, s2)), i = 1,2.

By induction we see that

∂k1
s1 ∂

k2
s2 (ψt(ϕβ(s1, s2))) = (∂

k1
Y1
∂k2
Y2
ψt)(ϕβ(s1, s2)).
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Then, using the fact that ϕβ ∈ Ck,γ , it suffices to prove that

(2.5) (∂k1
Y1
∂k2
Y2
ψt)(·) ∈ L

∞
T (C

γ(Vβ)), for all 0 ≤ k1 + k2 ≤ k.

Since W0 = {W i
0}1≤i≤5 is an admissible system (see Definition 2.1), for

(s1, s2) ∈ Uβ, without loss of generality we assume that for i1 ≠ i2 ∈ {1, . . . ,5},

|W i1
0 ∧W i2

0 |(ϕβ(s1, s2)) > 0.

Then, that W i
0 ∈ C

k−1,γ guarantees there exists an open set Ṽβ ⊂ Vβ such that

(2.6) ϕβ(s1, s2) ∈ Ṽβ, inf
x∈Ṽβ

|W i1
0 ∧W i2

0 |(x) > 0.

This means {W i1
0 ,W

i2
0 } can be seen as the base of the tangent vector fields of ∂D0

on Ṽβ. Hence, Y1, Y2 on Ṽβ can be expressed as a linear combination of W i1
0 and

W i2
0 :

(2.7) Y1 = µ11W
i1
0 + µ12W

i2
0 , Y2 = µ21W

i1
0 + µ22W

i2
0 ,

where the coefficients are determined by

µjk =
〈Yj ,W

ik
0 〉|W

ik̄
0 |

2 − 〈Yj ,W
ik̄
0 〉〈W

i1
0 ,W

i2
0 〉

|W i1
0 ∧W i2

0 |
2

,

for j, k = 1,2 and (k, k̄) ∈ {(1,2), (2,1)},

where 〈·, ·〉 denotes the inner product of R3. Then, the fact W i
0 , Yj ∈ C

k−1,γ(Vβ)

together with (2.6), allows us to find that the coefficients µij ∈ Ck−1,γ(Ṽβ), for
all k ≥ 2 and i, j = 1,2. This property combined with (2.7) imply that in order
to show (2.5), it suffices to prove that for i ≠ j ∈ {1, . . . ,5} one has

(2.8) ∂k1

W
j
0

∂k2

W i0
ψt ∈ L

∞
T (C

γ(Ṽβ)), ∀0 ≤ k1 + k2 ≤ k.

On the other hand, by using the identity (2.3) and its equivalent form, that
is, W i(t,ψt(x)) = ∂W i0ψt(x) one finds, via a direct computation, that for all
i, j ∈ {1, . . . ,5},

∂
W
j
0
∂W i0ψt(x) = ∂W j0

(W i(t,ψt(x)))

= ∂
W
j
0
ψt(x) · (∇W

i)(t,ψt(x))

= (∂W jW
i)(t,ψt(x)).
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By induction, we see that for all k1, k2 ∈ N,

∂
k1

W
j
0

∂
k2+1

W i0
ψt(x) = (∂

k1

W j ∂
k2

W iW
i)(t,ψt(x)).

Hence, in order to show (2.8), since ψt ∈ L∞T (W
1,∞) ⊂ L∞T (C

γ), one only needs
to prove that

∂k1

W j ∂
k2

W i(W
i,W j)(t,ψt(x)) ∈ L

∞
T (C

γ(Ṽβ)), ∀0 ≤ k1 + k2 ≤ k− 1,

but the latter is a direct consequence of

∂
k1

W j ∂
k2

W i(W
i,W j)(t, ·) ∈ L∞T (C

γ(R3)), ∀0 ≤ k1 + k2 ≤ k− 1.(2.9)

Since obviously (2.4) implies (2.9), the proof of Lemma 2.3 is done. ❐

The lemma below deals with the striated estimate of the initial temperature
front.

Lemma 2.4. Let k ≥ 2, and 0 < γ < 1. Assume first that D0 ⊂ R
3 is

a bounded simply connected domain with boundary ∂D0 ∈ Ck,γ(R3), and fur-
ther that θ0(x) = θ

∗
1 (x)1D0(x) + θ

∗
2 (x)1Dc0 (x) satisfies θ∗1 ∈ Ck−2,γ(D0) and

θ∗2 ∈ L
1 ∩ Ck−2,γ(Dc0). Let W0 = {W

i
0}1≤i≤5 be defined as in (2.1). Then, for all

ℓ ∈ {1,2, . . . , k− 1} we have

(2.10) ∂ℓW0
θ0 ∈ C

−1,γ(R3) = B
γ−1
∞,∞(R3),

where C−1,γ(R3) is composed of tempered distributions f verifying the following prop-
erty: there exists g ∈ Cγ(R3) so that f is the derivative of g in the sense of distri-
bution. Besides, if ∂D0 ∈ C1,γ , and θ0(x) = θ

∗
1 (x)1D0(x) + θ

∗
2 (x)1Dc0 (x) with

θ∗1 ∈ C
µ1(D0) and θ∗2 ∈ L

1 ∩ Cµ2(Dc0), 0 < µ1, µ2 < 1, we have

(2.11) ∂W0θ0 ∈ C
−1,µ(R3), with µ = min{µ1, µ2}.

Proof. We start with the proof of (2.10). We follow an idea of F. Sueur
[50]. More precisely, by using Rychkov’s extension theorem ([49]), there exist

two functions θ̃∗i (R
3) ∈ Ck−2,γ(R3), i = 1,2, such that θ̃∗1 |D0 = θ

∗
1 (x) and

θ̃∗2 |Dc0 = θ
∗
2 (x). Hence, θ0 = θ̃

∗
1 · 1D0 + θ̃

∗
2 · 1Dc0 . Therefore, it is sufficient to

show that for all 1 ≤ ℓ ≤ k− 1, one has

∂ℓW0
(θ̃∗1 · 1D0), ∂

ℓ
W0
(θ̃∗2 · 1Dc0 ) ∈ C

−1,γ(R3).

Since the divergence-free vector fields W
j
0 ∈ W0 (1 ≤ j ≤ 5) are tangential to the

patch boundary ∂D0, the operator ∂ℓW0
commutes with the characteristic functions
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1D0 and 1Dc0 . Moreover, recall that the characteristic functions 1D0 and 1Dc0 are
pointwise multipliers in the Hölder space C−1,γ(R3) (see, e.g., Theorems 1 and 2
in the book of Runst and Sickel [48]).

Therefore, one only needs to show ∂ℓW0
θ̃∗i ∈ C

−1,γ(R3), i = 1,2. Using the
product estimate (2.16) as many times as needed, we deduce that for i = 1,2 and
for all ℓ ≤ k− 1,

‖∂ℓW0
θ̃∗i ‖C−1,γ ≲ ‖W0‖L∞ ‖∇∂

ℓ−1
W0
θ̃∗i ‖C−1,γ(2.12)

≲ ‖∇∂ℓ−2
W0
θ̃∗i ‖C−1,γ + ‖∇2 ∂ℓ−2

W0
θ̃∗i ‖C−1,γ

≲ ‖∇θ̃∗i ‖C−1,γ + · · · + ‖∇ℓθ̃∗i ‖C−1,γ

≲ ‖θ̃∗i ‖Cℓ−1,γ < ∞,

where the constants above depend only on ‖W0‖W 1,∞ and ‖W0‖W ℓ−1,∞ , which is
the desired result.

The proof of (2.11) is analogous. Indeed, by using Rychkov’s extension theo-

rem, we have θ0 = θ̃
∗
1 1D0 + θ̃

∗
2 1Dc0 with θ̃∗i ∈ C

µ(R3), i = 1,2. Since we have
the control given by (2.16) and we have W0 ∈ L∞(R3), one immediately gets that

‖∂W0θ0‖C−1,µ ≲ ‖∂W0 θ̃
∗
1 ‖C−1,µ + ‖∂W0 θ̃

∗
2 ‖C−1,µ

≲ ‖W0‖L∞ ‖(θ̃
∗
1 , θ̃

∗
2 )‖Cµ < ∞. ❐

2.2. Besov spaces. Let χ and ϕ ∈ C∞c (R
d) be two nonnegative radial func-

tions which are supported, respectively, in the ball {ξ ∈ R
d : |ξ| ≤ 4

3} and the

annulus {ξ ∈ R
d : 3

4 ≤ |ξ| ≤ 8
3}. We assume that they satisfy the following

identities:

χ(ξ)+
∑

j≥0

ϕ(2−jξ) = 1, ∀ξ ∈ Rd,

and ∑

j∈Z

ϕ(2−jξ) = 1, ∀ξ ≠ 0.

We define the frequency localization operator ∆j and the low-frequency cut-off

operator Sj as follows:

(2.13)




∆jf :=ϕ(2−jD)f = 2jdh(2j·)∗ f , j ∈ N,

∆−1f := χ(D)f = h̃(·)∗ f ,

Sjf := χ(2−jD)f = 2jdh̃(2j·)∗ f , j ∈ N,

where f ∈ S′(Rd), h = F−1ϕ, h̃ = F−1χ, and F−1 is the inverse Fourier
transform. We also use the homogenous frequency localization operator ∆̇j given
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by

∆̇jf := ϕ(2−jD)f = 2jd
∫

Rd
h(2jy)f(x −y)dy, j ∈ Z.

For all f , g ∈ S′(Rd), note that we now have the Bony decomposition fg =
Tfg + Tgf + R(f , g), with

Tfg :=
∑

q∈N

Sq−1f∆qg,

R(f , g) =
∑

q≥−1

∆qf ∆̃qg, ∆̃q := ∆q−1 +∆q +∆q+1.

Now we present the definitions of Besov spaces.

Definition 2.5. Let s ∈ R, p, r ∈ [1,∞] and T > 0. Denote by S′(Rd) the
space of tempered distributions, and denote by S′(Rd)\P(Rd) the quotient space
of tempered distributions up to polynomials. We define the nonhomogeneous
Besov space Bsp,r (R

d) (or Bsp,r in short) to be the set of all f ∈ S′(Rd) satisfying

‖f‖Bsp,r :=
∥∥{2qs‖∆qf‖Lp}q≥−1

∥∥
ℓr < ∞,

and we define the homogeneous Besov space Ḃsp,r(R
d) (or Ḃsp,r ) to be the set of

all f ∈ S′(Rd) \ P(Rd) satisfying

‖f‖Ḃsp,r :=
∥∥{2qs‖∆̇qf‖Lp}q∈Z

∥∥
ℓr < ∞.

Define the space-time Chemin-Lerner’s space L̃ρT (B
s
p,r ) as the set of all f ∈ S′(Rd)

such that

‖f‖L̃ρT (Bsp,r ) :=
∥∥{2qs‖∆qf‖LρT (Lp)}q≥−1

∥∥
ℓr <∞,

and the homogeneous version L̃ρT (Ḃ
s
p,r ) can be similarly given.

We also introduce the definitions of striated Besov spaces.

Definition 2.6. Let W = {W i}1≤i≤N be a family of regular vector fields

W i : Rd → R
d. For all s ∈ R, p, r ∈ [1,∞], ℓ ∈ N, we denote by Bs,ℓp,r ,W the set

of all f ∈ Bsp,r such that

‖f‖
B
s,ℓ
p,r ,W

:=
ℓ∑

λ=0

‖∂λWf‖Bsp,r(2.14)

=
ℓ∑

λ=0

∑

λ1+···+λN=λ

‖∂λ1
W1
· · · ∂λNWNf‖Bsp,r < ∞,
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and we denote by B̃s,ℓp,r ,W the set of f ∈ Bsp,r such that

‖f‖
B̃
s,ℓ
p,r ,W

:=
ℓ∑

λ=0

‖(TW·∇)
λf‖Bsp,r

=
ℓ∑

λ=0

∑

λ1+···+λN=λ

‖(TW1·∇)
λ1 · · · (TWN·∇)

λNf‖Bsp,r

< ∞.

In particular, when p = ∞, we shall use the following short notation:

B
s,ℓ
r ,W := Bs,ℓ∞,r ,W , B̃

s,ℓ
r ,W := B̃s,ℓ∞,r ,W ,

B
s,ℓ
W := Bs,ℓ∞,1,W , B̃

s,ℓ
W := B̃s,ℓ∞,1,W ,

where we used the notation ∂W if = W
i · ∇f (i = 1, . . . , N) and

∂λWf =
{
∂λ1

W 1 · · · ∂
λN
WNf : λ1 + · · · + λN = λ

}
.

We shall use the following basic properties of Bs,ℓp,r ,W .

Lemma 2.7. Let s, s̃ ∈ R, ℓ, ℓ̃ ∈ N, r , r̃ ∈ [1,∞], and p ∈ [1,∞]. The space

B
s,ℓ
p,r ,W satisfies that

B
s,ℓ
p,r ,W ⊂ B

s̃,ℓ
p,r ,W for s ≥ s̃,

B
s,ℓ
p,r ,W ⊂ B

s,ℓ̃
p,r ,W for ℓ ≥ ℓ̃,

B
s,ℓ
p,r ,W ⊂ B

s,ℓ
p,r̃ ,W for r ≤ r̃ ,

‖f‖
B
s,ℓ+1
p,r ,W

= ‖∂ℓ+1
W f‖Bsp,r + ‖f‖Bs,ℓp,r ,W

‖f‖
B
s,ℓ+1
p,r ,W

= ‖∂Wf‖Bs,ℓp,r ,W
+ ‖f‖Bsp,r .

We shall also need to use some product and commutator estimates in Bs,ℓp,r ,W ,
which are stated below (for the proof, see, e.g., Lemma 2.4 of [10]).

Lemma 2.8. Let k ∈ N, σ ∈ (0,1), and let W = {W i}1≤i≤N be a family of
regular divergence-free vector fields on Rd satisfying that

‖W‖
B

1+σ,k−1
∞,W

< ∞.

Letm(D) be a zero-order pseudo-differential operator defined as a Fourier multiplier
with symbol m(ξ) ∈ C∞(Rd \ {0}). Assume that v is a smooth divergence-free
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vector field of Rd and f : Rd → R is a smooth function. Then, for all ε ∈ (0,1)
and all p, r ∈ [1,∞], there exists a constant C > 0 depending only on d,k, ε and
‖W‖

B
1+σ,k−1
∞,W

such that the following estimates hold:

‖v · ∇f‖
B
−ε,k
p,r ,W

≤ Cmin
{ k∑

µ=0

‖v‖B0,µ
W
‖∇f‖

B
−ε,k−µ
p,r ,W

,
k∑

µ=0

‖v‖B−ε,µp,r ,W
‖∇f‖

B
0,k−µ
W

}
,

(2.15) ‖m(D)f‖
B
−ε,k+1
p,r ,W

≤ C‖f‖
B
−ε,k+1
p,r ,W

+ C(1+ ‖W‖
B

1,k
W
)(‖f‖

B
−ε,k
p,r ,W

+ ‖∆−1m(D)f‖Lp),

and ∥∥[m(D),v · ∇]f
∥∥
B
−ε,k
p,r ,W

≤ C(‖∇v‖
B

0,k
W
+ ‖v‖L∞)‖f‖B−ε,kp,r ,W

.

The following result deals with the relation between the norms of Bs,ℓp,r ,W and

B̃
s,ℓ
p,r ,W (see, e.g., Lemmas 5.1, 5.2 of [10]).

Lemma 2.9. Under the assumptions of Lemma 2.8, we have that there exists a
constant C > 0 depending only on d, k, s, and ‖W‖

B
1+σ,k−1
∞,W

such that, for any ℓ ≤ k,

‖∇f‖
B̃
s,ℓ
p,r ,W

≤ C‖f‖
B̃
s+1,ℓ
p,r ,W

, for s > −1,

C−1‖f‖
B
s,ℓ
p,r ,W

≤ ‖f‖
B̃
s,ℓ
p,r ,W

≤ C‖f‖
B
s,ℓ
p,r ,W

for s ∈ (−1,1),

C−1‖f‖
B

1,ℓ
W
≤ ‖f‖

B̃
1,ℓ
W
≤ C‖f‖

B
1,ℓ
W
,

‖f‖
B̃
s,ℓ
p,r ,W

≤ C‖f‖
B
s,ℓ
p,r ,W

+ C‖f‖
B

1,ℓ
W
‖W‖

B
s,ℓ
p,r ,W

for s ≥ 1,

‖W‖
B̃
s,ℓ
p,r ,W

≤ C‖W‖
B
s,ℓ
p,r ,W

, for s > −1.

Note that for the particular case k = 0,1, the dependence of W in the con-
stant C in the Lemma 2.8 can be computed explicitly (see, e.g., Lemma 2.5 of
[10]).

Lemma 2.10. Let v be a smooth divergence-free vector field of Rd; moreover,
let f : Rd → R be a smooth function. Let m(D) be a zero-order pseudo-differential
operator defined as a Fourier multiplier with symbol m(ξ) ∈ C∞(Rd \ {0}). Then,
the following statements hold true where C is a positive constant which depends only
on d and ε:

(1) For any ε ∈ (0,1) and (p, r) ∈ [1,∞]2, we have

(2.16) ‖v · ∇f‖B−εp,r ≤ Cmin{‖v‖B−εp,r ‖∇f‖L∞ ,‖v‖L∞ ‖∇f‖B−εp,r }.
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(2) For any ε ∈ (−1,1) and (p, r) ∈ [1,∞]2, we have

‖∂Wm(D)f‖B−εp,r ≤C‖W‖W 1,∞ ‖f‖B−εp,r + C‖∂Wf‖B−εp,r ,(2.17)

and ∥∥[m(D),v · ∇]f
∥∥
B−εp,r ≤ C‖v‖W 1,∞ ‖f‖B−εp,r .

If the divergence-free vector fields W i in W only belongs to Cγ(Rd) with
0 < γ < 1, then we have the following estimate (2.18), whose proof is placed in
Appendix A.

Lemma 2.11. Let the assumptions of Lemma 2.10 be satisfied. Then, for all
(p, r) ∈ [1,∞]2, 0 < ε,γ < 1, there exists a nonnegative constant C = C(ε, γ,d)
such that

(2.18) ‖∂Wm(D)f‖B−εp,r ≤ C‖W‖Cγ ‖f‖B1−γ−ε
p,r

+ C‖∂Wf‖B−εp,r .

2.3. Useful lemmas. We shall now state a useful commutator estimate (see
Lemma 0.1 in [11]).

Lemma 2.12. Letm(D) be a zero-order pseudo-differential operator defined as a
Fourier multiplier with symbolm(ξ) ∈ C∞(Rd \{0}). Let p ∈ [2,∞], r ∈ [1,∞],
R̃−1 := m(D)Λ−1 with Λ = (−∆)1/2. Assume v is a smooth divergence-free vector
field of Rd, and θ is a smooth scalar function. Then, we have that for every s ∈ (0,1),

∥∥[R̃−1, v · ∇]θ
∥∥
Bsp,r

≤ C(‖∇v‖Lp (‖θ‖Bs−1
∞,∞
+ ‖θ‖L2)+ ‖v‖L2 ‖θ‖L2),

with C > 0 a constant depending on s, p, and d.
Some basic facts on the particle-trajectory map are collected below (see, e.g.,

Proposition 3.10 in [3]).

Lemma 2.13. Assume v(x, t) is a divergence-free velocity field belonging to
L1([0, T ], Ẇ 1,∞(Rd)). Let ψt(x) be the particle-trajectory generated by velocity v
which solves that

∂ψt(x)

∂t
= v(ψt(x), t), ψt(x)

∣∣
t=0 = x,(2.19)

that is,

ψt(x) = x +

∫ t
0
v(ψτ(x), τ)dτ.

Then, the system (2.19) has a unique solution ψt(·) : Rd ֏ R
d on [0, T ] which is

a volume-preserving bi-Lipschitzian homeomorphism and satisfies that ∇ψt and its

inverse ∇ψ−1
t belong to L∞([0, T ] × Rd) with ‖∇ψ±1

t ‖L∞(Rd) ≤ e
∫ t
0 ‖∇v(τ)‖L∞ dτ .

In addition, the following statements hold true:
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(1) If v ∈ L1([0, T ], C1,γ(Rd)), then ψ±1
t ∈ L∞([0, T ], C1,γ(Rd)) with

(2.20) ‖∇ψ±1
t ‖Cγ ≲ e

(2+γ)
∫ t
0 ‖∇v‖L∞ dτ

(
1+

∫ t
0
‖∇v(τ)‖Cγ dτ

)
.

(2) If v ∈ L1([0, T ],W 2,∞(Rd)), then ψ±1
t ∈ L∞([0, T ],W 2,∞(Rd)) with

‖∇2ψ±1
t ‖L∞ ≲ e

3
∫ t
0 ‖∇v‖L∞ dτ

∫ t
0
‖∇2v(τ)‖L∞ dτ.

We have the following estimates for the transport and transport-diffusion
equations (one can see [3] for the proof of (2.21)–(2.23) and see [10] for the
proof of (2.24)).

Lemma 2.14. Assume (ρ, r , p) ∈ [1,∞]3 and −1 < s < 1. Let u be a
smooth divergence-free vector field and φ be a smooth function solving the following
transport/transport-diffusion equation:

∂tφ+u · ∇φ− ν∆φ = f , φ
∣∣
t=0(x) = φ0(x), x ∈ Rd.

The following statements hold:
(1) If ν > 0, then there exists a constant C which depends on d and s such that

for any t > 0,

ν1/ρ‖φ‖
L̃
ρ
t (B

s+2/ρ
p,r )

≤ C(1+ νt)1/ρ
(
‖φ0‖Bsp,r + ‖f‖L̃1

t(B
s
p,r )

(2.21)

+

∫ t
0
‖∇u(τ)‖L∞ ‖φ(τ)‖Bsp,r dτ

)
.

(2) If ν = 0, then there exists a constant C which depends on d and s such that
for any t > 0,

‖φ‖L∞t (Bsp,r ) ≤ C

(
‖φ0‖Bsp,r + ‖f‖L1

tB
s
p,r

(2.22)

+

∫ t
0
‖∇u(τ)‖L∞ ‖φ(τ)‖Bsp,r dτ

)
,

and

‖φ‖L∞t (Bsp,r ) ≤ Ce
C
∫ t
0 ‖∇u(τ)‖L∞ dτ(‖φ0‖Bsp,r + ‖f‖L1

t(B
s
p,r )).(2.23)

(3) If ν > 0, then there exists a constant C which depends on d and s such that
for any t > 0,

v1/ρ sup
q∈N

22q/ρ‖∆qφ‖Lρt (Lp)(2.24)

≤ C

(
v1/ρ sup

q∈N

‖∆qφ0‖Lp +

∫ t
0
‖∇u‖Lp ‖φ‖B0

∞,∞
dτ + ‖f‖L1

t(L
p)

)
.
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We shall need to use the following smoothing estimates of nonhomogeneous
heat equation (see, e.g., [3] for the proof ).

Lemma 2.15. Let T > 0, s ∈ R and 1 ≤ ρ1, p, r ≤ ∞. Assume v0 ∈ Ḃsp,r (R
d)

and f ∈ L̃ρ1
T (Ḃ

s−2+2/ρ1
p,r ). Then, the nonhomogeneous heat equation

∂tv −∆v = f , v
∣∣
t=0 = v0

has a unique solution v in L̃ρ1

T (Ḃ
s+2/ρ1
p,r ) ∩ L̃∞T (Ḃ

s
p,r ), and there exists a constant

C = C(d) > 0 such that for all ρ ∈ [ρ1,∞],

‖v‖
L̃
ρ
T (Ḃ

s+2/ρ
p,r )

≤ C(‖v0‖Ḃsp,r + ‖f‖L̃ρ1
T (Ḃ

s−2+2/ρ1
p,r )

).(2.25)

In particular, if v0 ∈ Ḣs and f ∈ L2
T (Ḣ

s−1), we have

‖v‖LρT (Ḣs+2/ρ) ≤ ‖v0‖Ḣs + ‖f‖L2
T (Ḣ

s−1), ∀ρ ∈ [2,∞].(2.26)

Finally, we recall a product estimate used in the uniqueness part which may
be found in [20].

Lemma 2.16. Let (αq)q∈Z be a sequence of nonnegative functions over [0, T ],
and let s1, s2, p satisfy

(2.27) 1 ≤ p ≤ ∞,
d

p
+ 1 > s1,

d

p
> s2, and s1 + s2 > dmax

{
0,

2
p
− 1

}
.

Assume that for all q′ ≥ q and t ∈ [0, T ]. Then, we have

0 ≤ αq′(t)−αq(t) ≤
1
2

(
s1 + s2 +Nmin

{
0,1−

2
p

})
(q′ − q).

Then, for all r ∈ [1,∞], there exists a constant C depending only on s1, s2, N, and
p such that, for all functions b and solenoidal vector field a over Rd, the following
estimate holds for all t ∈ [0, T ]:

sup
q∈Z

∫ t
0

2q(s1+s2−1−N/p)−αq(τ)‖∆̇q div(ab)‖Lp dτ

≤ C‖b‖L̃rt (Ḃ
s1
p,∞)

sup
q∈Z

‖2qs2−αq‖∆̇qa‖Lp‖Lr ′t .

3. EXISTENCE AND UNIQUENESS RESULT OF

3D BOUSSINESQ SYSTEM (1.1) WITH v0 ∈ H1/2

The proof is split into three classical steps.
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Step 1: Local existence of the solution. First, we prove the a priori estimates.
From the transport equation (1.1), we have that for all s ∈ (3,∞], the L1 ∩ Ls

norm are preserved along the evolution, that is,

(3.1) ‖θ(t)‖L1∩Ls ≤ ‖θ0‖L1∩Ls , ∀ t ≥ 0.

Now we focus on the estimates for the velocity v. The basic L2-energy estimate
for the second equation in (1.1) gives

1
2

d

dt

∥∥v
∥∥2
L2 +

∥∥∇v
∥∥2
L2 ≤

∣∣∣∣
∫

R3
v3θ dx

∣∣∣∣ ≤ ‖v‖L2 ‖θ‖L2 ≤ ‖v‖L2 ‖θ0‖L2 ,

which implies that ‖v‖L∞T (L2) ≤ ‖v0‖L2 + T‖θ0‖L2 and

(3.2)
∥∥v
∥∥2
L∞T (L

2) +
∥∥∇v

∥∥2
L2
T (L

2) ≤ 4(1+ T 2)
(∥∥v0

∥∥2
L2 +

∥∥θ0

∥∥2
L2

)
.

Set v = et∆v0 +w where et∆ stands for the heat semigroup; then, one has

∂tw −∆w = −P((w + et∆v0) · ∇(w + et∆v0))+ P(θe3),(3.3)

forw
∣∣
t=0 = 0, where P = Id−∇∆−1 div is the Leray projection operator. By mul-

tiplying both sides of equation (3.3) by Λw and integrating in the space variable,
one finds (as in [28] or (A.6) below)

1
2

d

dt

∥∥w
∥∥2
Ḣ1/2 +

∥∥w
∥∥2
Ḣ3/2

≤

∣∣∣∣
∫

R3
Λw · P((w + et∆v0) · ∇(w + et∆v0))dx

∣∣∣∣+
∣∣∣∣
∫

R3
Λw · P(θe3)dx

∣∣∣∣
≤ ‖w‖Ḣ3/2(‖(w + et∆v0) · ∇(w + et∆v0)‖Ḣ−1/2 + ‖θ‖Ḣ−1/2)

≤ ‖w‖Ḣ3/2

(∥∥w
∥∥2
Ḣ1 +

∥∥et∆v0

∥∥2
Ḣ1 + ‖θ‖L3/2

)
,

which, together with the use of interpolation and the Cauchy-Schwarz inequality,
allows us to find

d

dt

∥∥w
∥∥2
Ḣ1/2 +

∥∥w
∥∥2
Ḣ3/2 ≤ C1

∥∥w
∥∥2
Ḣ1/2

∥∥w
∥∥2
Ḣ3/2 + C1

∥∥et∆v0

∥∥4
Ḣ1 + C2

∥∥θ0

∥∥2
L3/2 ,

where C1, C2 > 0. Therefore, as long as

(3.4) C1

∫ T
0

∥∥et∆v0

∥∥4
Ḣ1dt + C2

∥∥θ0

∥∥2
L3/2T ≤

1
4C1

,

we may use the continuity method to get that

∥∥w
∥∥2
L∞T (Ḣ

1/2) +
∥∥w

∥∥2
L2
T (Ḣ

3/2) ≤
1

2C1
.(3.5)
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Then, the classical estimate for the heat operator et∆v0 in (2.26) allows us to write

∥∥v
∥∥2
L∞T (Ḣ

1/2) +
∥∥v
∥∥2
L2
T (Ḣ

3/2) ≤
1
C1
+ 2

∥∥v0

∥∥2
Ḣ1/2 .(3.6)

By noticing that ‖et∆v0‖L4
T (Ḣ

1) ≤ ‖v0‖Ḣ1/2 (which is a consequence of (2.26)), we

see there exists a positive real number M , which depends on v0, such that

∥∥et∆vh
0

∥∥4
L4
T (Ḣ

1) ≤
∥∥vh

0

∥∥4
Ḣ1/2 ≤

1

64C2
1

, where vh
0 = F

−1(1{|ξ|>M}v̂0(ξ)
)
.

Therefore, one finds

C1

∥∥et∆v0

∥∥4
L4
T (Ḣ

1) + C2

∥∥θ0

∥∥2
L3/2T

≤ 8C1

∥∥et∆vh
0

∥∥4
L4
T (Ḣ

1) + 8C1

∥∥et∆(v0 − v
h
0)
∥∥4
L4
T (Ḣ

1) + C2

∥∥θ0

∥∥2
L3/2T

≤
1

8C1
+ 8C1M

2
∥∥et∆(v0 − v

h
0 )
∥∥4
L4
T (Ḣ

1/2) + C2

∥∥θ0

∥∥2
L3/2T

≤
1

8C1
+
(
8C1M

2
∥∥v0

∥∥4
Ḣ1/2 + C2

∥∥θ0

∥∥2
L3/2

)
T .

Hence, as long as

T ≤
1

8C1
(
8C1M2

∥∥v0

∥∥4
Ḣ1/2 + C2

∥∥θ0

∥∥2
L3/2

) ,

we have the local existence of a solution (v, θ) which satisfies the estimate (3.6).
We now state the following result on the regularity estimates of v whose proof

is in Appendix A.

Lemma 3.1. Assume that (v, θ) is a smooth solution to the 3D Boussinesq system
(1.1) on [0, T ] satisfying (3.1) with s > 3. Assume one has

∥∥v
∥∥2
L∞T (Ḣ

1/2) +
∥∥v
∥∥2
L2
T (Ḣ

3/2) ≤ C0E(T),(3.7)

where E(T) :=
∥∥v0

∥∥2
Ḣ1/2 +

(∥∥θ0

∥∥2
L1∩Ls +

∥∥θ0

∥∥
L1∩Ls

)
T + 1.

Then, there exists a positive constant C such that

‖v‖L2
T (L

∞) ≤ CE(T)
3/2,(3.8)

and for all q > 3,

‖v‖
L∞T (Ḃ

−1+3/q
q,∞ )

+ ‖v‖
L̃1
T (Ḃ

1+3/q
q,∞ )

≤ CE(T)2.(3.9)
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The a priori estimates (3.1), (3.6) and Lemma 3.1, are enough to show the ex-
istence (e.g., by using a standard approximation process). First, solve the Cauchy
problem (1.1) with frequency localized initial data (θ0,n, v0,n) := (Snθ0, Snv0),
n ∈ N, where Sn is defined by (2.13). It is clear that (θ0,n, v0,n) belongs to
Hs(R3) for all s. Then, it follows from [21] that we obtain a local (unique)
smooth solution (θn, vn,∇pn) to the system (1.1) associated with (θ0,n, v0,n).
Moreover, the a priori estimates below ensure that (θn, vn) satisfies (1.3) on [0, T ]
uniformly in n. Hence, by using the Rellich compactness theorem, for instance
(see [37]), one can pass to the limitn →∞ (up to a subsequence) to show there ex-
ist functions (θ, v,∇p) satisfying (1.3) which are solutions to the 3D Boussinesq
system (1.1) in the sense of distribution.

Step 2: Local uniqueness. Let (θ1, v1,∇p1) and (θ2, v2,∇p2) be two solu-
tions of the 3D Boussinesq system (1.1) with the same initial data and satisfying
(1.3). We shall use the following uniqueness result.

Lemma 3.2. Assume that for some p ∈ [1,6) and i = 1,2, we have

θi ∈ L
∞
T (Ḃ

−1+3/p
p,∞ ), vi ∈ L

∞
T (Ḃ

−1+3/p
p,∞ )∩ L̃1

T (Ḃ
1+3/p
p,∞ ).(3.10)

There exists a constant c > 0 depending on p such that if there is an r ∈ (1,∞] such
that

‖v1‖L̃1
T (Ḃ

1+3/p
p,∞ )

+ ‖v2‖L̃rT (Ḃ
−1+2/r+3/p
p,∞ )

≤ c,(3.11)

then (θ1, v1,∇p1) ≡ (θ2, v2,∇p2) on R3 × [0, T ].

Proof. When r = ∞, Lemma 3.2 is nothing but Theorem 3 in [20]. It suffices
to prove the lemma for the remaining values of r , namely, r ∈ (1,∞). In this case,
we may still extend the uniqueness result of Danchin and Paı̈cu [20]. Indeed, we
may use the following useful estimate:

sup
q∈Z

∫ t
0

2q(−2+3/p−η)−εq(τ)‖∆̇q div(δv ⊗ v2)‖Lp dτ(3.12)

≤ C‖v2‖L̃rt (Ḃ
−1+2/r+3/p
p,∞ )

sup
q∈Z

∥∥2q(−2/r+3/p−η)−εq(τ)‖∆̇qδv‖Lp
∥∥
Lr
′
t
,

and the interpolation inequality

sup
q∈Z

∥∥2q(−2/r+3/p−η)−εq(τ)‖∆̇qδv‖Lp
∥∥
Lr
′
t

≤ C

(
sup

τ∈[0,t], q∈Z

2q(−2+3/p−η)−εq(τ)‖∆̇qδv‖Lp

+ sup
q∈Z

∫ t
0

2q(3/p−η)−εq(τ)‖∆̇qδv‖Lp dτ
)
,
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where δv = v1 − v2, 0 < η < −1 + 3 min{2/p,1}, r ′ = r/(r − 1) is the dual
index of r and

εq(t) := C
∑
q1≤q

2q1(1+3/p)
∥∥∥
∑

|k|≤N0

∆̇q1+kv1

∥∥∥
L1
t (L

p)
.

In order to get the inequality (3.12), it suffices to apply Lemma 2.16 with s1 =
−1 + 2/r + 3/p, s2 = −2/r + 3/p − η, s1 + s2 = −1 + 6/p − η and such that
they satisfy (2.27).

Using (3.12) and following the same strategy as the proof of Theorem 3 in
[20], we can show the uniqueness result under the smallness condition (3.11). ❐

Now, with Lemma 3.2 proved, we see that (1.3) implies the condition (3.10).
Then, by letting r = 2 and using the absolute continuity of the Lebesgue inte-
gral, we see there exists a small time T1 > 0 depending only on ‖vi‖L̃1

T (Ḃ
1+3/p
p,∞ )

and ‖vi‖L̃2
T (Ḃ

3/p
p,∞)

such that (3.11) is satisfied for r = 2 and p ∈ (3,6). There-

fore, Lemma 3.2 gives the uniqueness on R3 × [0, T1]. Repeating this process on
[T1,2T1], [2T1,3T1], . . . , and so on, and after a finite time, we can conclude the
uniqueness on the whole set R3 × [0, T ].

Step 3: The global existence of solution under the smallness condition
(1.4). Using a result of Danchin and Paı̈cu [21] (see Theorem 1.4), we know
that under the smallness condition (1.4), there exists an absolute constant C0 > 0
such that for any T > 0,

(3.13) ‖v‖L∞T (L3,∞) ≤ C(‖v0‖L3,∞ + ‖θ0‖L1) ≤ C0c∗.

Taking the inner product of both sides of the first equation in (1.1) with Λv,
we get

1
2

d

dt

∥∥v
∥∥2
Ḣ1/2 +

∥∥v
∥∥2
Ḣ3/2 ≤ ‖v‖Ḣ3/2 ‖v · ∇v‖Ḣ−1/2 + ‖v‖Ḣ3/2 ‖θ‖Ḣ−1/2 .

Then, note that, by using classical paradifferential calculus together with the fact

that L3,∞(R3)֓ Ḃ−1+3/r
r ,∞ (R3) for r > 3, we have that

‖v · ∇v‖Ḣ−1/2 ≤ C‖Tvv‖Ḣ1/2 + C‖R(v,v)‖Ḣ1/2

≤ C‖v‖Ḃ−1
∞,∞
‖v‖Ḣ3/2 ≤ C‖v‖L3,∞ ‖v‖Ḣ3/2 .

Therefore, by using (3.13) one gets

1
2

d

dt

∥∥v
∥∥2
Ḣ1/2 +

∥∥v
∥∥2
Ḣ3/2 ≤ C

∥∥v
∥∥2
Ḣ3/2 ‖v‖L3,∞ + ‖v‖Ḣ3/2 ‖θ0‖L3/2

≤
∥∥v
∥∥2
Ḣ3/2

(
2CC0c∗ +

1
4

)
+ C

∥∥θ0

∥∥2
L3/2 .
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By choosing c∗ > 0 in (1.4) so that 2CC0c∗ ≤
1
4 , we obtain that

∥∥v
∥∥2
L∞T (Ḣ

1/2) +
∥∥v
∥∥2
L2
T (Ḣ

3/2) ≤
∥∥v0

∥∥2
Ḣ1/2 + CT

∥∥θ0

∥∥2
L3/2 .

By using the blowup criterion from Step 1, we easily conclude the global
existence result.

4. PROPAGATION OF THE C1,γ , W 2,∞, C2,γ REGULARITY OF

THE TEMPERATURE FRONTS

The goal of this section is to prove the persistence of the regularity of the temper-
ature front for the 3D Boussinesq equation (1.1). We shall respectively show that
the C1,γ ,W 2,∞ and C2,γ of the temperature front is preserved along the evolution.
Before going any further, let us introduce a new quantity Γ (in the spirit of the so-
called Alinhac’s good unknown (see also [30, 31] where this idea was first applied
to the Boussinesq system).

Let Ω = (Ω1,Ω2,Ω3) = ∇∧v be the vorticity of the fluid, where the notation
∧ stands for the wedge operation, that is,

Ω = ∇∧ v = (∂2v
3 − ∂3v

2, ∂3v
1 − ∂1v

3, ∂1v
2 − ∂2v

1)t.

Applying the operator ∇∧ to the equation (1.1) gives the vorticity equation:

∂tΩ+ v · ∇Ω−∆Ω = Ω · ∇v + (∂2θ,−∂1θ,0)t .(4.1)

Note that

∂tΩ+ v · ∇Ω−∆(Ω−Λ−2(∂2θ,−∂1θ,0)t) = Ω · ∇v,

where Λ = (−∆)1/2.
Let us set R−1,j = ∂jΛ−2, j = 1,2, and

(4.2) R−1 := (R−1,2,−R−1,1,0)
t.

Then, R−1θ = Λ−2∇∧(θe3) = Λ−2(∂2θ,−∂1θ,0)t , and the vector-valued quan-
tity R−1θ satisfies

∂tR−1θ + v · ∇R−1θ = −[R−1, v · ∇]θ,

with

[R−1, v · ∇]θ := ([R−1,2, v · ∇]θ,−[R−1,1, v · ∇]θ,0)t .(4.3)

By introducing a new unknown Γ = (Γ 1, Γ 2, Γ 3) defined as

Γ := Ω−R−1θ,

we see that Γ verifies

(4.4) ∂tΓ + v · ∇Γ −∆Γ = Ω · ∇v + [R−1, v · ∇]θ.
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4.1. Propagation of the C1,γ regularity of the temperature fronts. We
start by proving the regularity of the velocity v. More precisely, we are going to
prove that if θ0 ∈ L1 ∩ L∞(R3) and v0 ∈ H1 ∩ W 1,p(R3), p > 2, then for all
r ≥ 1, one has

(4.5) ‖v‖L∞T (H1∩W 1,p) + ‖v‖L̃1
T (B

min{2,3−3/p}
∞,∞ )

+ ‖Γ‖L̃rT (B2/r
p,∞)

≤ CeCE(T)
3
,

where E(T) has been defined in (3.7). We comment that such a regularity estimate
(4.5) also plays an important role in the propagation of W 2,∞ and higher Ck,γ

regularity of the temperature fronts.
Assume that the above control holds; then, for the temperature front data

θ0(x) = θ
∗
1 (x)1D0(x)+ θ

∗
2 (x)1Dc0 (x) ∈ L

1 ∩ L∞(R3)

and v0 ∈ H1 ∩W 1,3(R3), by using (2.20) together with the fact that

(4.6) v ∈ L̃1
T (B

2
∞,∞) ⊂ L

1
T (B

1+γ
∞,1 ) ⊂ L

1
T (C

1,γ), γ ∈ (0,1),

we would get that ψ±1
t (x) ∈ L

∞(0, T ;C1,γ(R3)), which clearly implies

∂D0 ∈ C
1,γ

-⇒ ∂D(t) = ψt(∂D0) ∈ L
∞(0, T ;C1,γ).

Let us now prove (4.5). Assume v0 ∈ H1; we first prove the control in H1 of
the velocity v. To do so, we multiply the vorticity equation (4.1) with Ω, then
integrate with respect to the space variable, and find that

1
2

d

dt

∥∥Ω
∥∥2
L2 +

∥∥∇Ω
∥∥2
L2 ≤ ‖Ω‖L6 ‖∇v‖L3 ‖Ω‖L2 + ‖∇Ω‖L2 ‖θ‖L2

≤ C
(∥∥∇v

∥∥2
Ḣ1/2

∥∥Ω
∥∥2
L2 +

∥∥θ0

∥∥2
L2

)
+

1
2

∥∥∇Ω
∥∥2
L2 ,

which, together with the use of Grönwall’s inequality and (3.7), gives

∥∥Ω
∥∥2
L∞T (L

2) +
∥∥∇Ω

∥∥2
L2
T (L

2) ≤ C
(∥∥Ω0

∥∥2
L2 +

∥∥θ0

∥∥2
L2T

)
eC

∫ T
0 ‖v‖

2
Ḣ3/2dt

≤ CeCE(T).

Combining this control with (3.2) and interpolation, we get, for all ρ ∈ [2,∞],

(4.7)
∥∥v
∥∥2
L∞T (H

1) +
∥∥∇v

∥∥2
L2
T (H

1) +
∥∥v
∥∥2
L
ρ
T (H

1+2/ρ) ≤ Ce
CE(T).

Now, we deal with the estimates in L1
T (B

γ
∞,1) of Ω where γ ∈ (0, 1

2). Using
the smoothing estimate (2.21) with u ≡ 0 and the embedding

H1
֓ B

1/2+γ
2,1 ֓ B

γ−1
∞,1
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for all γ ∈ (0, 1
2), one obtains from equation (4.1) that for all γ ∈ (0, 1

2),

‖Ω‖L1
T (B

γ
∞,1)

(4.8)

≲ (1+ T)
(
‖v0‖H1 +

∫ T
0
‖(v · ∇Ω,Ω · ∇v,∇θ)‖Bγ−2

∞,1
dt

)

≤ C(1 + T)
(
‖v0‖H1 +

∫ T
0
‖v ⊗Ω‖H1 dt +

∫ T
0
‖∇θ‖Bγ−2

∞,1
dt

)
.

Then, by using the fact that ‖∇θ‖Bγ−2
∞,1
≲ ‖θ‖L∞ ≤ C‖θ0‖L∞ and

‖v ⊗Ω‖H1 ≤ ‖v ⊗Ω‖L2 + ‖∇(v ⊗Ω)‖L2

≲ ‖v‖L6 ‖Ω‖L3 + ‖∇v‖L6 ‖Ω‖L3 + ‖v‖L∞ ‖∇Ω‖L2

≲
∥∥∇v

∥∥2
H1 +

∥∥v
∥∥2
L2 ,

we get from (4.8) and (4.7) that, for all γ ∈ [0, 1
2),

‖Ω‖L1
T (B

γ
∞,1)

(4.9)

≲ (1+ T)
(
‖v0‖H1 +

∥∥∇v
∥∥2
L2
T (H

1) +
∥∥v
∥∥2
L2
T (L

2) + ‖θ0‖L∞T
)

≤ CeCE(T).

Furthermore, we have that for all γ ∈ [0, 1
2),

(4.10) ‖v‖L1
T (B

1+γ
∞,1 )

≲ ‖∆−1v‖L1
T (L

∞) + ‖Ω‖L1
T (B

γ
∞,1)

≤ CeCE(T).

Now, assume that v0 ∈ H1 ∩W 1,p with p > 2. We want to control the Lp

norm of Γ . Multiplying both sides of the equation (4.4) by |Γ |p−2Γ and integrating
in the space variable and then doing an integration by parts, we find

1
p

d

dt

∥∥Γ
∥∥p
Lp + (p − 1)

∫

R3
|∇Γ |2 |Γ |p−2 dx

≤ (p − 1)
∣∣∣∣
∫

R3
(Ω⊗ v) : (∇Γ )|Γ |p−2 dx

∣∣∣∣+
∥∥[R−1, v · ∇]θ

∥∥
Lp
∥∥Γ
∥∥p−1
Lp

≤ (p − 1)
(∫

R3
|∇Γ |2 |Γ |p−2 dx

)1/2(∫

R3
|Ω|2 |v|2 |Γ |p−2 dx

)1/2

+
∥∥[R−1, u · ∇]θ

∥∥
Lp
∥∥Γ
∥∥p−1
Lp

≤ (p − 1)
∥∥Γ
∥∥p−2
Lp

∥∥Ω
∥∥2
Lp
∥∥v
∥∥2
L∞ +

∥∥Γ
∥∥p−1
Lp

∥∥[R−1, v · ∇]θ
∥∥
Lp

+
1
2
(p − 1)

∫

R3
|∇Γ |2 |Γ |p−2 dx.
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Then, since Ω = Γ +R−1θ and R−1θ = (R−1,2θ,−R−1,1θ,0)t , we find that

1
2

d

dt

∥∥Γ
∥∥2
Lp ≤ (p − 1)

∥∥Ω
∥∥2
Lp
∥∥v
∥∥2
L∞ + ‖Γ‖Lp

∥∥[R−1, v · ∇]θ
∥∥
Lp(4.11)

≤
∥∥Γ
∥∥2
Lp
(
2(p − 1)

∥∥v
∥∥2
L∞ + 1

)

+ 2(p − 1)
∥∥R−1θ

∥∥2
Lp
∥∥v
∥∥2
L∞ +

∥∥[R−1, v · ∇]θ
∥∥2
Lp .

We then use the Hardy-Littlewood-Sobolev inequality which allows us to get that,
for all p > 2,

(4.12) ‖R−1θ‖Lp ≲ ‖Λ−1θ‖Lp ≲ ‖θ‖L3p/(p+3) ≲ ‖θ0‖L3p/(p+3).

Therefore, using Lemma 2.12, we obtain that

∥∥[R−1, v · ∇]θ
∥∥
Lp ≲

∥∥[R−1, v · ∇]θ
∥∥
B

1/2
p,∞

(4.13)

≲ ‖Ω‖Lp(‖θ‖B−1/2
∞,∞

+ ‖θ‖L2)+ ‖v‖L2 ‖θ‖L2

≲ (‖Γ‖Lp + ‖R−1θ‖Lp)L2∩L∞‖θ‖L∞ + ‖v‖L2 ‖θ‖L2

≲ (‖Γ‖Lp + ‖θ0‖L3p/(p+3))‖θ0‖L2∩L∞

+ (‖v0‖L2 + T‖θ0‖L2)‖θ0‖L2 .

Using (4.12) and (4.13) in (4.11), one finds

d

dt

∥∥Γ (t)
∥∥2
Lp ≤ C

(
1+

∥∥θ0

∥∥2
L∞ +

∥∥v(t)
∥∥2
L∞
)(∥∥Γ (t)

∥∥2
Lp +

∥∥θ0

∥∥2
L3p/(p+3)

)

+ C(1+ T)2
∥∥(v0, θ0)

∥∥2
L2

∥∥θ0

∥∥2
L2 .

Hence, Grönwall’s inequality and the control of v in L2L∞ given by (3.8) imply

‖Γ‖L∞T (Lp) ≤ C
(
1+ T 2 +

∥∥v
∥∥2
L2
T (L

∞)

)
(4.14)

× exp
{
C
∥∥v
∥∥2
L2
T (L

∞) + C(1 + T)
}

≤ CeCE(T)
3
,

where C > 0 depends on p and on the norms of (v0, θ0). Note we have used that

‖Γ0‖Lp ≤ ‖Ω0‖Lp + ‖R−1θ0‖Lp ≤ C‖v0‖W 1,p + C‖θ0‖L3p/(p+3) ≤ C.

Moreover, we get the control in Lp of Ω from (4.14) and (4.12), that is,

‖Ω‖L∞T (Lp) ≤ ‖Γ‖L∞T (Lp) + ‖R−1θ‖L∞T (Lp) ≤ Ce
CE(T)3 .
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By taking advantage of the high/low frequency decomposition, one finds that for
all p > 2,

‖v‖L∞T (W 1,p) ≤ ‖∆−1v‖L∞T (W 1,p) + ‖(Id−∆−1)v‖L∞T (W 1,p)(4.15)

≤ C‖v‖L∞T (L2) + C‖Ω‖L∞T (Lp)
≤ CeCE(T)

3
.

Recalling the equation verified by Γ (see (4.4)), and using the smoothing effect
given by (2.24) and Lemma 2.12, one obtains that, for all p > 2 and r ≥ 1,

sup
j∈N

2(2/r)j‖∆jΓ‖LrT (Lp)(4.16)

≲ ‖Γ0‖Lp +
∫ T

0
‖∇v‖Lp ‖Γ‖B0

∞,∞
dt

+
∥∥[R−1, v · ∇]θ

∥∥
L1
T (L

p) + ‖Ω · ∇v‖L1
T (L

p)

≲ ‖Ω0‖Lp + ‖R−1θ0‖Lp

+ ‖v‖L∞T (W 1,p)(‖Ω‖L1
T (L

∞) + ‖θ‖L1
T (L

1∩L∞))

+ T‖Ω‖L∞T (Lp) ‖θ‖L∞T (L∞) + T‖(v, θ)‖L∞T (L2)

≤ CeCE(T)
3
,

where in the last inequality we have used (4.9), (4.15), and the fact that

‖R−1θ‖B0
∞,∞
≤ C‖θ‖L1∩L∞ .

Then, using (4.14) and (4.16), we find that for any p > 2 and r ≥ 1,

‖Γ‖L̃rT (B2/r
p,∞)

≤ CT 2/r‖∆−1Γ‖L∞T (Lp) + sup
j∈N

2(2/r)j‖∆jΓ‖LrT (Lp)(4.17)

≤ CeCE(T)
3
.

Finally, using (4.17) and the continuous embedding B2
3,∞ ֓ B

γ
∞,1 for γ ∈ (0,1),

we may get a more refined estimate than (4.9)–(4.10) for all γ ∈ [0,1). More
precisely, we have

‖v‖
L̃1
T (B

min{2,3−3/p}
∞,∞ )

(4.18)

≤ ‖∆−1v‖L1
T (L

∞) + C‖Ω‖L̃1
T (B

min{1,2−3/p}
∞,∞ )

≤ T‖v‖L∞T (L2) + C‖Γ‖L̃1
T (B

2−3/p
∞,∞ )

+ C‖R−1θ‖L1
T (B

1
∞,∞)

≤ C(1+ T)2 + C‖Γ‖L̃1
T (B

2
p,∞) + C‖θ‖L1

T (L
1∩L∞)

≤ CeCE(T)
3
.

Hence, using (4.7), (4.15), (4.17), and (4.18), we find (4.5) holds, as desired.
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4.2. Persistence of theW 2,∞ regularity of the temperature fronts. To show
the control of the L∞T (W

2,∞) norm of the temperature front, by using Lemma 2.13,
it suffices to control the velocity v in the space L1(0, T ;W 2,∞). In view of the Biot-
Savart law and the relation Ω = Γ +R−1θ with R−1θ = Λ−2∇ ∧ (θe3), we see
that

∇v = (−∆)−1∇∇∧Ω(4.19)

= ∇Λ−2∇∧ Γ +∇Λ−4∇∧∇∧ (θe3)

= ∇Λ−2∇∧ Γ +Λ−4∇2 ∂3θ + (Λ−2∇θ)⊗ e3,

where in the last line we have used the formula ∇ ∧ ∇ ∧ f = ∇(divf ) − ∆f ,
therefore we find that

∇2v = ∇2Λ−2∇∧ Γ +∇3 ∂3Λ−4θ + (∇2Λ−2θ)⊗ e3.(4.20)

Since v0 ∈ H1∩W 1,p for some p > 3, we find that, thanks to (4.5) and using

the embedding B2/r
p,∞ ֓ B

1
∞,1 for all r ∈ [1,2p/(p + 3)), we have

‖Γ‖LrT (B1
∞,1)

≲ ‖Γ‖L̃rT (B1
∞,1)

≲ ‖Γ‖L̃rT (B2/r
p,∞)

≤ CeCE(T)
3
,

which readily gives

(4.21) ‖∇2Λ−2∇∧ Γ‖LrT (L∞) ≲ ‖Γ‖LrT (B1
∞,1)

≤ CeCE(T)
3
,

for all r ∈ [1,2p/(p + 3)) and p > 3.
Now, we are going to show that ∇3 ∂3Λ−4θ and ∇2Λ−2θ ⊗ e3 belong to

L∞(R3 × [0, T ]) for all T < T∗ and for all initial temperature front (1.5). It
suffices to focus on the control of ∇3 ∂3Λ−4θ, since the control of the other term
is similar.

We apply some striated estimates pioneered in some works of J.-Y. Chemin
[12, 13] and further developed by P. Gamblin and X. Saint-Raymond [26]. We
start by recalling a fundamental expression formula of ∂j ∂k applied to an admis-
sible system of vector fields (see [26]).

Lemma 4.1. Let 0 < γ < 1 and letW = {W i}1≤i≤N be an admissible system of

Cγ-vector fields. Then, there exist functions aj,k ∈ Cγ(R3) and bℓ,ij,k ∈ C
γ(R3) such

that for all g ∈ S′(R3),

∂j ∂kg = ∆(aj,kg)+
∑

ℓ,i,σ

∂ℓ ∂σ (b
ℓ,i
j,kW

i
σg),(4.22)

(4.23)

where ‖aj,k‖L∞ ≤ 1 and

‖b
ℓ,i
j,k‖Cγ ≤ CN

3
(∥∥[W ]−1

∥∥
L∞

∑

1≤i≤N

‖W i‖Cγ
)19
,

where the constant C depends only on γ.
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Remark 4.2. Note that aj,k and bℓ,ij,k in Lemma 4.1 are constructed via a
partition of unity from local expressions of the form

aj,k =
(Wm ×Wn)j(Wm ×Wn)k

|Wm ×Wn|2
, b

ℓ,i
j,k =

Pℓ,ij,k(W
m,Wn)

|Wm ×Wn|4
,

where Pℓ,ij,k(W
m,Wn) are homogeneous polynomials of (Wm,Wn) of degree 7 and

Wm ×Wn does not vanish.

The following result (see Corollary 3.6 of [26]) will be useful to deal with the
second term in (4.22).

Lemma 4.3. Under the assumptions of Lemma 4.1, we have that

‖Λ−2(∂j ∂kg −∆(aj,kg))‖Cγ ≤ CN3
(∥∥[W ]−1

∥∥
L∞

∑

1≤i≤N

‖Wi‖Cγ
)19
‖g‖Cγco ,

where

‖g‖Cγco := ‖g‖L∞ +
∥∥[W ]−1

∥∥
L∞

∑

1≤i≤N

(‖W i‖Cγ ‖g‖L∞ + ‖∂Wg‖C−1,γ ).

Now, let W (t) = {W i(t)}1≤i≤5 be a family of divergence-free vector fields
which verifies (2.2). According to (4.6) and Lemma 2.13, we know that for all
T < T∗, v ∈ L1(0, T ;C1,γ(R3)), ∀γ ∈ (0,1), and the particle trajectory ψ±1

t

belongs to L∞(0, T ;C1,γ(R3)) and satisfies that

‖ψ±1
t ‖L∞T (C1,γ) ≤ Ce

C
∫ T
0 ‖∇v‖L∞ dτ

(
1+

∫ T
0
‖∇v‖Cγ dτ

)
≤ Ceexp{CE(T)}.

Note that the latter is obtained by using (4.5) and (4.10). Therefore, because of
the formula (2.3), we have that W i ∈ L∞(0, T ;Cγ(R3)) where

‖W i‖L∞T (Cγ) ≤ C‖W
i
0 · ∇ψt‖L∞T (Cγ) ‖ψ

−1
t ‖L∞T (Cγ)(4.24)

≤ Ceexp{CE(T)}.

Moreover, from [26] (see Corollary 4.3) and (4.10), one has the following control:

∥∥[W (t)]−1
∥∥
L∞ ≤ Ce

C‖∇v‖L1
t (L

∞)
∥∥[W0]

−1
∥∥
L∞(4.25)

≤ Ceexp{CE(T)}.

Then, we consider the control of ∂j ∂k ∂λ ∂3Λ−4θ in L∞, for all j, k, λ =
1,2,3. According to (4.22), we infer that

∂λ ∂3Λ−2θ = −aλ,3θ +
∑

m,n,λ

∂m ∂νΛ−2(b
m,n
λ,3 W

n
ν θ)

:= −aλ,3θ + I1,
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and

∂j ∂k ∂λ ∂3Λ−4θ = −aj,k(∂λ ∂3Λ−2θ)+
∑

ℓ,i,σ

∂ℓ ∂σΛ−2(bℓ,ij,kW
i
σ (∂λ ∂3Λ−2θ))

:= I2 + I3.

First, note that ∂Wθ satisfies that

∂t ∂Wθ + v · ∇∂Wθ = 0, ∂Wθ
∣∣
t=0 = ∂W0θ0;(4.26)

then the estimates (2.23), (4.10) and Lemma 2.4 imply that for µ =min{µ1, µ2},

‖∂Wθ(t)‖C−1,µ ≤ ‖∂W0θ0‖C−1,µeC
∫ t
0 ‖∇v(τ)‖L∞ dτ ≤ Ceexp{CE(T)}.(4.27)

For the term I1, by making use of Lemma 4.3, and (4.24), (4.25), (4.27), we get

‖I1‖L∞T (L∞) ≤ C‖I1‖L∞T (Cµ)(4.28)

≤ C
(∥∥[W (t)]−1

∥∥
L∞T (L

∞)

∑

1≤i≤5

‖W i‖L∞T (Cµ)
)19
‖θ‖L∞T (C

µ
co)

≤ Ceexp{CE(T)}.

Therefore, we obtain

(4.29) ‖∂λ ∂3Λ−2θ‖L∞T (L∞) + ‖I2‖L∞T (L∞) ≲ e
exp{CE(T)}.

The control of I3 is analogous to the proof of (4.28). Indeed, by using (4.29)
together with the following estimate (which is an easy consequence of (2.18) and
(4.26)),

‖∂W (∂j ∂kΛ−2θ)‖L∞T (B
µ−1
∞,∞)

≲ ‖W‖L∞T (Cµ) ‖θ‖L∞T (L2∩L∞) + ‖∂Wθ‖L∞T (C−1,µ)

≲ eexp{CE(T)},

we find that

‖I3‖L∞T (L∞)

≤ C
(∥∥[W (t)]−1

∥∥
L∞T (L

∞)

∑

1≤i≤5

‖W i‖L∞T (Cµ)
)19
‖∂λ ∂3Λ−2θ‖L∞T (C

µ
co)

≤ Ceexp{CE(T)}.

Collecting all the above estimates allows us to conclude that

‖∇3 ∂3Λ−4θ‖L∞T (L∞) ≲ e
exp{CE0(T)}.

Finally, the latter control and (4.21) give that, for all r ∈ [1,2p/(p+3)) and
p > 3,

(4.30) ‖∇2v‖LrT (L∞) ≲ e
exp{CE(T)}.
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Then, using Lemma 2.13, we conclude that the particle trajectory ψ±t belongs to
L∞([0, T ],W 2,∞) and that the W 2,∞ regularity is preserved, that is,

∂D0 ∈ W
2,∞

-⇒ ∂D(t) = ψt(∂D0) ∈ L
∞([0, T ],W 2,∞).

4.3. Propagation of the C2,γ regularity of the temperature fronts. The
goal of this subsection is to prove that the C2,γ regularity of the temperature front
is preserved along the evolution.

By using Lemma 2.3, we see that it suffices to prove that (2.4) holds for k = 2,
γ ∈ (0,1). In fact, in the sequel we shall prove an even stronger result, namely,
that

W ∈ L∞(0, T ;C1,γ(R3)),

where the admissible conormal vector system W = {W i}1≤i≤5 verifies (2.2).
Applying the operator ∇2 to equation (2.2) gives that

∂t(∇
2W )+ v · ∇(∇2W ) = ∂W∇

2v + 2∇W ·∇2v +∇2W ·∇v(4.31)

− ∇2v · ∇W − 2∇v · ∇2W ,

where W = {W i}1≤i≤5 and W · ∇ = {W i · ∇}1≤i≤5 are both vector valued.
Thanks to (2.22), we find that for all t ∈ [0, T ],

‖∇2W (t)‖Bγ−1
∞,∞

(4.32)

≲ ‖∇2W0‖Bγ−1
∞,∞
+

∫ t
0
‖∇v(τ)‖L∞ ‖∇

2W (τ)‖Bγ−1
∞,∞

dτ

+

∫ t
0
‖∂W∇

2v(τ)‖Bγ−1
∞,∞

dτ

+

∫ t
0
‖(∇W ·∇2v,∇2v · ∇W )‖Bγ−1

∞,∞
dτ

+

∫ t
0
‖(∇2W ·∇v,∇v · ∇2W )‖Bγ−1

∞,∞
dτ.

Recalling thatW0 = {W
i
0}1≤i≤5 given by (2.1) satisfiesW0 ∈ C1,γ = B

1+γ
∞,∞, we im-

mediately see that ‖∇2W0‖Bγ−1
∞,∞
≲ ‖W0‖Bγ+1

∞,∞
< ∞. Applying the product estimate

(2.16) and (4.24), (4.30) to the last two terms of (4.32), we get

∫ t
0
‖(∇W ·∇2v,∇2v · ∇W )‖Bγ−1

∞,∞
dτ

≲ ‖∇2v‖L1
t (L

∞) ‖∇W‖L∞t (B
γ−1
∞,∞)

≲ ‖∇2v‖L1
t (L

∞) ‖W‖L∞(Cγ) ≤ Ce
exp{CE(T)},
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and ∫ t
0
‖(∇2W ·∇v,∇v · ∇2W )‖Bγ−1

∞,∞
dτ

≲

∫ t
0
‖∇v(τ)‖L∞ ‖∇

2W (τ)‖Bγ−1
∞,∞

dτ.

To control the term ‖∂W∇2v‖L1
t (B

γ−1
∞,∞)

in (4.32), we use the identity (4.20) to find

‖∂W∇
2v‖L1

t (B
γ−1
∞,∞)

≲ ‖∂W (∇
2Λ−2∇∧ Γ )‖L1

t(B
γ−1
∞,∞)

(4.33)

+ ‖∂W (∇
3 ∂3Λ−4θ)‖L1

t (B
γ−1
∞,∞)

+ ‖∂W (∇
2Λ−2θ)‖L1

t (B
γ−1
∞,∞)

:= K1 +K2 +K3.

To control K1, we use (2.17) together with the fact that ∇∆−1 is a bounded oper-
ator on L∞, and we find

K1 ≲

∫ t
0
‖W (τ)‖B1

∞,1
‖∇Γ (τ)‖Bγ−1

∞,∞
dτ + ‖∂W∇Γ‖L1

t (B
γ−1
∞,∞)

(4.34)

≲

∫ t
0
‖W (τ)‖C1,γ ‖Γ (τ)‖Bγ∞,∞ dτ + ‖∂W∇Γ‖L1

t (B
γ−1
∞,∞)
.

It remains to control K2 and K3. To do so, it suffices to observe that

K2 + K3 ≲

∫ t
0
‖W (τ)‖B1

∞,1
‖θ(τ)‖Bγ−1

∞,∞
dτ + ‖∂Wθ‖L1

t (B
γ−1
∞,∞)

≲ ‖W‖L1
t(C

1,γ) ‖θ0‖L∞ + ‖∂Wθ‖L1
t (B

γ−1
∞,∞)
.

Note that Lemma 2.4 now implies that ∂W0θ0 ∈ C−1,γ , and therefore, following
the same approach as the proof of (4.27), one obtains

‖∂Wθ(t)‖Bγ−1
∞,∞
≤ ‖∂W0θ0‖Bγ−1

∞,∞
eC

∫ t
0 ‖∇v‖L∞ dτ ≲ eexp{CE(T)}.(4.35)

Finally, by collecting all the above estimates (4.32), (4.35), one finds that

‖W (t)‖Bγ+1
∞,∞
+ ‖∂W∇

2v‖L1
t (B

γ−1
∞,∞)

(4.36)

≲ ‖W‖L∞t (L∞) + ‖∇
2W (t)‖Bγ−1

∞,∞
+ ‖∂W∇

2v‖L1
t (B

γ−1
∞,∞)

≲ eCE1(T)3 + ‖∂W∇Γ‖L1
t (B

γ−1
∞,∞)

+

∫ t
0
‖W (τ)‖Bγ+1

∞,∞
(‖Γ‖B1

∞,∞
+ ‖∇v‖L∞ + 1)dτ.
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We now study the control of the term ‖∂W∇Γ‖L1
t (B

γ−1
∞,∞)

in (4.34). Since we

have [∂W , ∂t + v · ∇] = 0, it follows from equation (4.4) that

∂t ∂W Γ + v · ∇∂W Γ −∆ ∂W Γ
= −[∆, ∂W ]Γ + ∂W (Ω · ∇v) + ∂W ([R−1, v · ∇]θ)

=: F1,1 + F1,2 + F1,3.

Thanks to the smoothing estimate (2.21), we obtain that the following holds, for
all γ′ ∈ (0,1− 3/p):

‖∂W Γ (t)‖Bγ′−1
∞,1

+ ‖∂W Γ‖L2
t (B

γ′

∞,1)
+ ‖∂W Γ‖L1

t(B
γ′+1
∞,1 )

(4.37)

≤ C(1+ t)
(
‖∂W0Γ0‖Bγ′−1

∞,1

+

∫ t
0
‖∇v(τ)‖L∞ ‖∂W Γ (τ)‖Bγ′−1

∞,1
dτ

)
.

By using the identity Γ0 = Ω0 −R−1θ0 and the embedding

Lp ֓ B0
p,∞ ֓ B

γ′−1+3/p
p,1 ֓ B

γ′−1
∞,1 , ∀0 < γ′ < 1−

3
p
,

we find

‖∂W0Γ0‖Bγ′−1
∞,1

(4.38)

≲ ‖∂W0∇v0‖Lp + ‖∂W0R−1θ0‖Lp

≲ ‖∂W0v0‖W 1,p + ‖∇W0‖L∞ ‖v0‖W 1,p + ‖W0‖L∞ ‖θ0‖Lp < ∞.

By using the product estimate (2.16), we get that

(4.39) ‖F1,1‖L1
t (B

γ′−1
∞,1 )

≤ ‖∆W ·∇Γ‖
L1
t (B

γ′−1
∞,1 )

+ 2‖∇W ·∇2Γ‖
L1
t (B

γ′−1
∞,1 )

≲

∫ t
0
(‖∆W (τ)‖

B
γ′−1
∞,1

‖∇Γ (τ)‖L∞ + ‖∇W (τ)‖L∞ ‖∇2Γ (τ)‖
B
γ′−1
∞,1
)dτ

≲

∫ t
0
‖W (τ)‖

B
γ′+1
∞,1

‖Γ (τ)‖
B
γ′+1
∞,1

dτ.

For the term F1,2, we easily get that

‖F1,2‖L1
t (B

γ′−1
∞,1 )

≲ ‖W‖L∞t (L∞) ‖Ω · ∇v‖L1
t (B

γ′

∞,1)
(4.40)

≲ eexp{CE(T)}
∫ t

0
‖Ω(τ)‖

B
γ′

∞,1
‖∇v(τ)‖

B
γ′

∞,1
dτ

≲ eexp{CE(T)}
∥∥∇v

∥∥2

L2
t (B

γ′

∞,1)
.
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Then, by making use of (4.19), (4.17) together with the (continuous) embedding

L̃2
t(B

1
p,∞)֓ L̃

2
t (B

γ′

∞,1)֓ L
2
t(B

γ′

∞,1) for all γ′ ∈

(
0,1−

3
p

)
,

we find

‖∇v‖
L2
t (B

γ′

∞,1)
≤ ‖Λ−2∇∇∧ Γ‖

L2
t (B

γ′

∞,1)
(4.41)

+ ‖∇2 ∂3Λ−4θ‖
L2
t (B

γ′

∞,1)
+ ‖∇Λ−2θ‖

L2
t (B

γ′

∞,1)

≲ ‖Γ‖
L2
t(L

p∩B
γ′

∞,1)
+ ‖Λ−1θ‖L2(Lp) + ‖θ‖L2

t (B
γ′−1
∞,1 )

≲ ‖Γ‖L̃2
t(B

1
p,∞)

+ ‖θ‖L2
t (L

3p/(p+3)) + ‖θ‖L2
t (L

∞)

≲ eCE(T)
3
.

This inequality applied to (4.40) gives that

‖F1,2‖L1
t (B

γ′−1
∞,1 )

≲ eexp{CE(T)}.(4.42)

Recalling [R−1, v ·∇]θ given by (4.3), and using Lemma 2.12 and (4.15), we get
that for every γ

′
∈ (0,1− 3/p),

‖F1,3‖L1
t (B

γ′−1
∞,1 )

(4.43)

≲ ‖W‖L∞t (L∞)
∥∥∇[R−1, v · ∇]θ

∥∥
L1
t (B

γ′−1
∞,1 )

≲ ‖W‖L∞t (L∞)
∥∥[R−1, v · ∇]θ

∥∥
L1
t (B

γ
′
+3/p

p,1 )

≲ ‖W‖L∞t (L∞)(‖∇v‖L1
t (L

p) ‖θ‖L∞t (L2∩B
γ
′
+3/p−1

∞,1 )
+ t‖v‖L∞t (L2) ‖θ‖L∞t (L2))

≲ eexp{CE(T)},

where in the last line we have used the estimate
∥∥θ
∥∥
L∞T (B

γ
′
+3/p−1

∞,1 )
≤ C

∥∥θ
∥∥
L∞T (L

∞) ≤

c
∥∥θ0

∥∥
L∞ . Hence, applying (4.38), (4.39) and (4.42), (4.43) to (4.37), we infer

that

‖∂W Γ (t)‖Bγ′−1
∞,1

+ ‖∂W Γ‖L2
t (B

γ′

∞,1)
+ ‖∂W Γ‖L1

t (B
γ′+1
∞,1 )

(4.44)

≲ (1+ t)
(
eexp{CE(T)} +

∫ t
0
‖∇v‖L∞ ‖∂W Γ (τ)‖Bγ′−1

∞,1
dτ

+

∫ t
0
‖W (τ)‖

B
γ′+1
∞,1

‖Γ‖
B
γ′+1
∞,1

dτ

)
.
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Noticing that ∂W∇f = ∇∂Wf −∇W ·∇f , and using the product estimate
(2.16), we may control the term ‖∂W∇Γ‖L1

t (B
γ−1
∞,∞)

in (4.36) as follows:

‖∂W∇Γ‖L1
t (B

γ−1
∞,∞)

(4.45)

≲ ‖∂W Γ‖L1
t(B

γ
∞,∞) + ‖∇W ·∇Γ‖L1

t (B
γ−1
∞,∞)

≲ ‖∂W Γ‖L1
t(B

γ′+1
∞,1 )

+ ‖∇W‖L∞t (B
γ−1
∞,∞)

‖∇Γ‖L1
t(L

∞)

≲ ‖∂W Γ‖L1
t(B

γ′+1
∞,∞ )

+ eexp{CE(T)},

where in the last step we have used (4.24) and the following estimate (in view of
(4.17) and

B2
p,∞(R

3)֓ B
1+γ′

∞,1 (R
3)

for all γ′ ∈ (0,1− 3/p)):

(4.46) ‖∇Γ‖L1
t (L

∞) ≲ ‖Γ‖L1
t(B

γ′+1
∞,1 )

≲ ‖Γ‖L̃1
T (B

2
p,∞)

≲ eCE(T)
3
.

Hence, by using the embedding Bγ+1
∞,∞ ֓ B

γ′+1
∞,1 for all γ′ ∈ (0, γ), we collect the

above estimates (4.36), (4.44), and (4.45) to get that

‖W (t)‖Bγ+1
∞,∞
+ ‖∂W Γ (t)‖Bγ′−1

∞,1
+ ‖∂W Γ‖L2

t (B
γ′

∞,1)

+ ‖∂W Γ‖L1
t (B

γ′+1
∞,1 )

+ ‖∂W∇
2v‖L1

t (B
γ−1
∞,∞)

≲ eexp{CE(T)} + (1+ t)
∫ t

0
(‖W (τ)‖Bγ+1

∞,∞
+ ‖∂W Γ (τ)‖Bγ′−1

∞,1
)

× (‖Γ‖
B
γ′+1
∞,1

+ ‖∇v‖L∞ + 1)dτ,

for all γ′ ∈ (0,min{γ,1 − 3/p}). This, together with the use of Grönwall’s
inequality and (4.10), (4.46), gives that

(4.47) ‖W‖L∞T (B
γ+1
∞,∞)

+ ‖∂W Γ‖L∞T (Bγ′−1
∞,1 )

+ ‖∂W Γ‖L2
t (B

γ′

∞,1)

+ ‖∂W Γ‖L1
T (B

γ′+1
∞,1 )

+ ‖∂W∇
2v‖L1

T (B
γ−1
∞,∞)

≲ eexp{E(T)} exp{CT + C(1+ T)‖∇v‖L1
T (L

∞) + (1+ T)‖Γ‖L1
T (B

γ′+1
∞,1 )

}

≲ eexp{CE(T)3}.

Thus, we have proved the persistence of the C2,γ regularity of the temperature
front.

Next, for the use of the induction process in Section 5, we moreover include
some striated estimates of the velocity v. By following the same approach as the
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estimates (4.33), (4.35) and using (2.17), (4.41), (4.47), we obtain that for all
γ′ ∈ (0,min{γ,1− 3/p}),

‖∂W∇
2v‖

L2
T (B

γ′−1
∞,1 )

(4.48)

≲ ‖∂W (∇
2Λ−2∇∧ Γ )‖

L2
T (B

γ′−1
∞,1 )

+ ‖∂W (∇
3 ∂3Λ−4θ,∇2Λ−2θ)‖

L2
T (B

γ′−1
∞,1 )

≲ ‖W‖L∞T (B1
∞,1)
(‖∇Γ‖

L2
T (B

γ′−1
∞,1 )

+ ‖θ‖L2
T (L

1∩L∞))

+ ‖∂W∇Γ‖L2
T (B

γ′−1
∞,1 )

+ ‖∂Wθ‖L2
T (B

γ′−1
∞,1 )

≲ ‖W‖L∞T (B
γ+1
∞,∞)
(‖Γ‖L̃2

T (B
1
p,∞) + T

1/2‖θ0‖L1∩L∞)

+ ‖∂W Γ‖L2
T (B

γ′

∞,1)
+ ‖∂W0θ0‖Bγ

′−1
∞,1
eexp{CE(T)}

≲ eexp{CE(T)3},

and

‖∂W∇v‖L2
T (B

γ′

∞,1)
(4.49)

≲ ‖∆−1 ∂W∇v‖L2
T (L

∞) + ‖∇(∂W∇v)‖L2
T (B

γ′−1
∞,1 )

≲ ‖W‖L∞T (L∞) ‖∇v‖L2
T (L

∞) + ‖∇W‖L∞T (L∞) ‖∇v‖L2
T (B

γ′

∞,1)

+ ‖∂W∇
2v‖

L2
T (B

γ′−1
∞,1 )

≲ eexp{CE(T)3}.

Using the notation (2.14), together with the estimates (4.5), (4.14), (4.41),
and (4.46)–(4.49), we see that for all γ ∈ (0,1) and γ′ ∈ (0,min{γ,1− 3/p}),

‖W‖L∞T (B
γ+1,0
∞,W ) + ‖∇

2v‖L1
T (B

γ−1,1
∞,W ) + ‖∇v‖L2

T (B
γ′ ,1
W )

(4.50)

+ ‖Γ‖
L∞T (B

γ′−1,1
W )

+ ‖Γ‖
L2
T (B

γ′ ,1
W )

+ ‖Γ‖
L1
T (B

γ′+1,1
W )

= ‖W‖L∞T (B
γ+1
∞,∞)

+ ‖(∇2v, ∂W∇
2v)‖L1

T (B
γ−1
∞,∞)

+ ‖(∇v, ∂W∇v)‖L2
T (B

γ′

∞,1)
+ ‖(Γ , ∂W Γ )‖L∞T (Bγ′−1

∞,1 )

+ ‖(Γ , ∂W Γ )‖L2
T (B

γ′

∞,1)
+ ‖(Γ , ∂W Γ )‖L1

T (B
γ′+1
∞,1 )

≲ eexp{CE(T)3}.

As we shall see later, this is the first step in the induction process of Section 5.

5. PROPAGATION OF THE Ck,γ REGULARITY OF

TEMPERATURE FRONT WITH k ≥ 3

In this section, we shall prove that the Ck,γ regularity of the temperature front
∂D(t) is preserved for all [0, T ] where T < T∗ and for all k ≥ 3 and γ ∈ (0,1).
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By using Lemma 2.3, it suffices to prove that

(5.1) (∂ℓWW )(t, ·) ∈ L
∞(0, T ;Cγ(R3)), ∀ℓ ∈ {0,1, . . . , k− 1},

where W = {W i(t)}1≤i≤5 is a family of divergence-free tangential vector fields
W i(t) which satisfies equation (2.2).

We start by proving the following statement. For all k ≥ 3, γ ∈ (0,1) and
γ′ ∈ (0,min{γ,1− 3/p}), one has

‖W‖
L∞T (B

γ+1,k−2
∞,W )

+ ‖∇v‖
L1
T (B

γ,k−1
∞,W )

(5.2)

+ ‖∇v‖
L2
T (B

γ′ ,k−1
W )

+ ‖Γ‖
L∞T (B

γ′−1,k−1
W )

+ ‖Γ‖
L2
T (B

γ′ ,k−1
W )

+ ‖Γ‖
L1
T (B

γ′+1,k−1
W )

≤ Hk−1(T),

where Hk−1(T) < ∞ is an upper bound depending on T and k− 1. Assume for a
while that (5.2) is proved; then, it is not difficult to see that

k−1∑

ℓ=0

‖∂ℓWW‖L∞T (B
γ
∞,∞)

≤ ‖W‖
L∞T (B

γ+1,k−2
∞,W )

+ ‖∂k−1
W W‖L∞T (B

γ
∞,∞)

≤ ‖W‖
L∞T (B

γ+1,k−2
∞,W )

+ C‖W‖L∞T (B
γ
∞,∞) ‖∂

k−2
W W‖L∞T (B

γ+1
∞,∞)

≲ eexp{CE(T)}‖W‖
L∞T (B

γ+1,k−2
∞,W )

≲ eexp{CE(T)}Hk−1(T) < ∞,

which would imply the desired estimate (5.1).
Thus, let us prove (5.2). To do so, we shall use an induction method. Assume

that for each ℓ ∈ {1,2, . . . , k− 2}, the following estimate holds:

‖W‖
L∞T (B

γ+1,ℓ−1
∞,W )

+ ‖∇v‖
L1
T (B

γ,ℓ
∞,W )

(5.3)

+ ‖∇v‖
L2
T (B

γ′,ℓ
W )

‖Γ‖
L∞T (B

γ′−1,ℓ
W )

+ ‖Γ‖
L2
T (B

γ′,ℓ
W )

+ ‖Γ‖
L1
T (B

γ′+1,ℓ
W )

≤ Hℓ(T).

Then, we want to prove that this inequality is also true at the rank ℓ+ 1, that is,

‖W‖
L∞T (B

γ+1,ℓ
∞,W )

+ ‖∇v‖
L1
T (B

γ,ℓ+1
∞,W )

(5.4)

+ ‖∇v‖
L2
T (B

γ′,ℓ+1
W )

+ ‖Γ‖
L∞T (B

γ′−1,ℓ+1
W )

+ ‖Γ‖
L2
T (B

γ′,ℓ+1
W )

+ ‖Γ‖
L1
T (B

γ′+1,ℓ+1
W )

≤ Hℓ+1(T).
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The case ℓ = 1 in (5.3) corresponds to (4.50). We also notice that under
the condition (5.3), we have ‖W‖

L∞T (B
γ+1,ℓ−1
∞,W )

≲ Hℓ(T), so that Lemma 2.8 (with

σ = γ) and Lemma 2.9 can be applied by replacing k with ℓ.
Now, our main goal is to prove (5.4) under the assumption that (5.3) holds.

We first get a control of ∂ℓW∇
2W in L∞T (B

γ−1
∞,∞). Note that ∂ℓW can be any

∂ℓ1

W 1 · · · ∂
ℓ5

W 5 with ℓ1 + · · · + ℓ5 = ℓ, and W = {W i}1≤i≤5 is vector-valued. In
view of equation (4.31) and the fact that [∂W , ∂t + v · ∇] = 0, we see that

∂t(∂
ℓ
W∇

2W )+ v · ∇(∂ℓW∇
2W )

= ∂ℓ+1
W ∇2v + 2 ∂ℓW (∇W ·∇2v)+ ∂ℓW (∇

2W ·∇v)

− ∂ℓW (∇
2v · ∇W )− 2 ∂ℓW (∇v · ∇

2W ) :=
5∑

i=1

Fℓ,i.

Applying the estimate (2.22) to the above transport equation, we get

‖∂ℓW∇
2W‖L∞t (B

γ−1
∞,∞)

(5.5)

≲ ‖∂ℓW0
∇W0‖Bγ−1

∞,∞
+

∫ t
0
‖∇v(τ)‖L∞ ‖∂

ℓ
W∇

2W (τ)‖Bγ−1
∞,∞

dτ

+
5∑

i=1

∫ t
0
‖Fℓ,i‖Bγ−1

∞,∞
dτ.

For the initial data, sinceW0 = {W
i
0}1≤i≤5 belongs to Ck−1,γ(R3), then, following

the same idea as the proof of (2.12), we get that

‖∂ℓW0
∇2W0‖Bγ−1

∞,∞
≲ ‖W0‖Bℓ+1+γ

∞,∞
≲ ‖W0‖Ck−1,γ <∞,

where the hidden constant C depends on ‖W0‖W ℓ−1,∞ . Using Lemmas 2.8 and 2.9,
we find that, for i = 2,4,

‖Fℓ,i‖L1
t (B

γ−1
∞,∞)

≲

∫ t
0
(‖∂ℓW (∇W ·∇2v)‖Bγ−1

∞,∞
+ ‖∂ℓW (∇

2v · ∇W )‖Bγ−1
∞,∞
)dτ

≲

∫ t
0
(‖∇W ·∇2v‖

B
γ−1,ℓ
∞,W

+ ‖∇2v · ∇W‖
B
γ−1,ℓ
∞,W
)dτ

≲

∫ t
0
‖∇W‖

B
0,ℓ
W
‖∇2v‖

B
γ−1,ℓ
∞,W

dτ

≲

∫ t
0
‖W (τ)‖

B
γ+1,ℓ
∞,W

‖∇v(τ)‖
B
γ,ℓ
∞,W

dτ,

and analogously, for i = 3,5,

‖Fℓ,i‖L1
t (B

γ−1
∞,∞)

≲

∫ t
0
‖∇2W‖

B
γ−1,ℓ
∞,W

‖∇v‖
B

0,ℓ
W
dτ
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≲

∫ t
0
‖W (τ)‖

B
γ+1,ℓ
∞,W

‖∇v(τ)‖
B
γ,ℓ
∞,W

dτ.

It remains to get a control of the term Fℓ,1. Since we have (4.20), we see that

‖∂ℓ+1
W ∇2v‖L1

t (B
γ−1
∞,∞)

≲ ‖∂ℓ+1
W ∇2Λ−2∇∧ Γ‖L1

t (B
γ−1
∞,∞)

(5.6)

+ ‖∂ℓ+1
W ∇3 ∂3Λ−4θ‖L1

t (B
γ−1
∞,∞)

+ ‖∂ℓ+1
W ∇2Λ−2θ‖L1

t (B
γ−1
∞,∞)
.

For the last two terms in (5.6), by applying the estimate (2.15) with m(D) =
∇3 ∂3Λ−4 or m(D) = ∇2Λ−2, one gets

‖∂ℓ+1
W ∇3 ∂3Λ−4θ‖L1

t (B
γ−1
∞,∞)

+ ‖∂ℓ+1
W ∇2Λ−2θ‖L1

t (B
γ−1
∞,∞)

(5.7)

≤ ‖∇3 ∂3Λ−4θ‖
L1
t (B

γ−1,ℓ+1
∞,W )

+ ‖∇2Λ−2θ‖
L1
t (B

γ−1,ℓ+1
∞,W )

≲

∫ t
0
(1+ ‖W (τ)‖

B
1,ℓ
W
)(‖θ(τ)‖

B
γ−1,ℓ
∞,W

+ ‖θ(τ)‖L2)dτ

+ ‖θ‖
L1
t (B

γ−1,ℓ+1
∞,W )

.

Recalling that [∂W , ∂t +v ·∇] = 0, we see that, for all j ∈ {0,1, . . . , ℓ+1}, ∂
j
Wθ

satisfies that

∂t ∂
j
Wθ + v · ∇∂

j
Wθ = 0, ∂

j
Wθ

∣∣
t=0 = ∂

j
W0
θ0.

Hence, Lemma 2.4 and (2.23), (4.10) allow us to get that

‖∂
j
Wθ‖L∞t (B

γ−1
∞,∞)

≲ e
‖∇v‖L1

t (L
∞)‖∂

j
W0
θ0‖Bγ−1

∞,∞
≲ eexp{CE(T)},

for all j ∈ {0,1, . . . , ℓ+ 1}, and then

(5.8) ‖θ‖
L∞t (B

γ−1,ℓ+1
∞,W )

≤
ℓ+1∑

j=0

‖∂
j
Wθ‖Bγ−1

∞,∞
≲ eexp{CE(T)}.

Hence, by applying (5.8) into (5.7), one obtains

‖(∂ℓ+1
W ∇3 ∂3Λ−4θ, ∂ℓ+1

W ∇2Λ−2θ)‖L1
t (B

γ−1
∞,∞)

≲

(
1+

∫ t
0
‖W (τ)‖

B
1,ℓ
W
dτ

)
,

where the constant depends on Hℓ(T). For the first term of the righthand side in
(5.6), it suffices to use Lemma 2.8 to find that
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(5.9) ‖∂ℓ+1
W ∇2Λ−2∇∧ Γ‖L1

t (B
γ−1
∞,∞)

≤ ‖∇2Λ−2(∇∧ Γ )‖
L1
t (B

γ−1,ℓ+1
∞,W )

≲

∫ t
0
(1+ ‖W (τ)‖

B
1,ℓ
W
)(‖∇Γ (τ)‖

B
γ−1,ℓ
∞,W

‖Γ (τ)‖Lp)dτ + ‖∇Γ‖L1
t (B

γ−1,ℓ+1
∞,W )

and by noticing that

[∇, ∂ℓW ]f =
ℓ−1∑

j=0

∂
j
W ([∇, ∂W ] ∂

ℓ−1−j
W f ) =

ℓ−1∑

j=0

∂
j
W (∇W ·∇∂

ℓ−1−j
W f ),(5.10)

we find, by using Lemma 2.9, that

‖∇Γ‖
B
γ−1,ℓ+1
∞,W

= ‖∇Γ‖
B
γ−1,ℓ
∞,W

+ ‖∂ℓ+1
W ∇Γ‖Bγ−1

∞,∞

≲ ‖Γ‖
B
γ,ℓ
∞,W

+ ‖∂ℓ+1
W Γ‖Bγ∞,∞ +

∥∥[∇, ∂ℓ+1
W ]Γ

∥∥
B
γ−1
∞,∞

≲ ‖Γ‖
B
γ,ℓ+1
∞,W

+
ℓ∑

j=0

‖∇W ·∇∂
ℓ−j
W Γ‖

B
γ−1,j
∞,W

≲ ‖Γ‖
B
γ,ℓ+1
∞,W

+
ℓ∑

j=1

‖∇W‖
B

0,j
W
‖∂
ℓ−j
W Γ‖

B
γ,j
∞,W

≲ ‖Γ‖
B
γ,ℓ+1
∞,W

+ ‖W‖
B

1,ℓ
W
‖Γ‖

B
γ,ℓ
∞,W
,

which combined with (5.9) and (4.14) gives, up to a constant which depends only
on Hℓ(T),

‖∂ℓ+1
W ∇2Λ−2∇∧ Γ‖L1

t (B
γ−1
∞,∞)

(5.11)

≲

∫ t
0
(1+ ‖W‖

B
1,ℓ
W
)(‖Γ‖

B
γ,ℓ
∞,W

+ 1)dτ + ‖Γ‖
L1
t(B

γ,ℓ+1
∞,W )

.

Collecting all the above estimates (5.5)–(5.11) allows us to write that, up to a
constant which depends on Hℓ(T), we have

(5.12) ‖∂ℓW∇
2W‖L∞t (B

γ−1
∞,∞)

+ ‖∂ℓ+1
W ∇2v‖L1

t (B
γ−1
∞,∞)

≲ ‖Γ‖
L1
t(B

γ,ℓ+1
∞,W )

+

∫ t
0
(‖Γ‖

B
γ,ℓ
∞,W

+ ‖∇v‖
B
γ,ℓ
∞,W

+ 1)‖W‖
B
γ+1,ℓ
∞,W

dτ + 1.

Now, we focus on the term ∂ℓ+1
W Γ . By using equation (4.4) with respect to Γ

and the identity [∂W , ∂t + v · ∇] = 0, we obtain that

∂t(∂
ℓ+1
W Γ )+ v · ∇(∂ℓ+1

W Γ )−∆(∂ℓ+1
W Γ )
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= −[∆, ∂ℓ+1
W ]Γ + ∂ℓ+1

W (Ω · ∇v)+ ∂ℓ+1
W ([R−1, v · ∇]θ)

:=
3∑

i=1

Jℓ+1,i.

Thanks to the smoothing estimate (2.21), for all γ′ ∈ (0,min{γ,1 − 3/p}), we
have

‖∂ℓ+1
W Γ‖

L∞t (B
γ′−1
∞,1 )

+ ‖∂ℓ+1
W Γ‖

L2
t (B

γ′

∞,1)
+ ‖∂ℓ+1

W Γ‖
L1
t (B

γ′+1
∞,1 )

(5.13)

≲ (1+ t)
(
‖∂ℓ+1
W0

Γ0‖Bγ′−1
∞,1

+
3∑

i=1

‖Fℓ+1,i‖L1
t (B

γ′−1
∞,1 )

+

∫ t
0
‖∇v(τ)‖L∞ ‖∂

ℓ+1
W Γ (τ)‖

B
γ′−1
∞,1

dτ

)
.

As for the initial data, we use the relation Γ0 = Ω0 −R−1θ0, together with (5.10)
and Lemmas 2.8, 2.9, we obtain that for any γ′ ∈ (0,min{γ,1− 3/p}),

‖∂ℓ+1
W0

Γ0‖Bγ′−1
∞,1

≲ ‖∂ℓ+1
W0
∇v0‖Bγ

′−1
∞,1

+ ‖∂ℓ+1
W0
R−1θ0‖Bγ

′−1
∞,1

(5.14)

≲ ‖∇∂ℓ+1
W0
v0‖Bγ

′−1
∞,1

+
ℓ∑

j=0

‖∇W0 · ∇∂
ℓ−j
W0
v0‖Bγ

′−1,j
W0

+ ‖W0 · ∇R−1θ0‖Bγ
′−1,ℓ
W0

≲ ‖∂ℓ+1
W0
v0‖W 1,p +

ℓ∑

j=0

‖∇W0‖B0,j
W0

‖∇∂
ℓ−j
W0
v0‖Bγ

′−1,j
W0

+ ‖W0‖B0,ℓ
W0

‖∇R−1θ0‖Bγ
′−1,ℓ
W0

≲
ℓ+1∑

j=0

‖∂
j
W0
v0‖W 1,p + ‖W0‖B0,ℓ

W0

(1+ ‖W0‖B1,ℓ−1
W0

)

× (‖θ0‖Bγ
′−1,ℓ
W0

+ ‖θ0‖L2)

≲ ‖v0‖W ℓ+2,p +
ℓ∑

j=0

‖∂
j
W0
θ0‖C−1,γ + ‖θ0‖L2 < ∞,

where the constant in each step depends on ‖W0‖Bγ+1,ℓ
∞,W0

(which is controlled by

‖W0‖Ck−1,γ ) and where in the last line we have used the estimate

ℓ+1∑

j=0

‖∂
j
W0
v0‖W 1,p ≲ C(‖W0‖W ℓ,∞)‖v0‖W ℓ+2,p .
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Then, by noticing that

Jℓ+1,1 = −[∆, ∂W ] ∂ℓW Γ − ∂W [∆, ∂ℓW ]Γ(5.15)

= −[∆, ∂W ] ∂ℓW Γ − ∂W ([∆, ∂W ] ∂ℓ−1
W Γ )− ∂2

W ([∆, ∂ℓ−1
W ])Γ )

= −
ℓ∑

j=0

∂
j
W ([∆, ∂W ] ∂

ℓ−j
W Γ )

= −
ℓ∑

j=0

∂
j
W (∆W ·∇∂

ℓ−j
W Γ )−

ℓ∑

j=0

∂
j
W (2∇W ·∇2 ∂

ℓ−j
W Γ ),

and by Lemmas 2.8 and 2.9 again, we get that

(5.16) ‖Jℓ+1,1‖Bγ
′−1
∞,1

≲
ℓ∑

j=0

‖∆W ·∇∂
ℓ−j
W Γ‖

B
γ′−1,j
W

+
ℓ∑

j=0

‖∇W ·∇2 ∂
ℓ−j
W Γ‖

B
γ′−1,j
W

≲
ℓ∑

j=0

(
‖∆W‖

B
γ′−1,j
W

‖∇∂
ℓ−j
W Γ‖

B
0,j
W
+

j∑

i=0

‖∇W‖
B

0,i
W
‖∇2 ∂

ℓ−j
W Γ‖

B
γ′−1,j−i
W

)

≲
ℓ∑

j=0

‖W‖
B
γ′+1,j
W

‖Γ‖
B

1,ℓ
W
+

ℓ∑

j=0

j∑

i=0

‖W‖
B

1,i
W
‖∂
ℓ−j
W Γ‖

B̃
γ′+1,j−i
W

≲ ‖W‖
B
γ′+1,ℓ
W

‖Γ‖
B
γ′+1,ℓ
W

,

where in the last line we have used the estimate

ℓ∑

j=0

j∑

i=0

‖W‖
B

1,i
W
‖∂
ℓ−j
W Γ‖

B̃
γ′+1,j−i
W

≲
ℓ∑

j=0

j∑

i=0

‖W‖
B

1,i
W
(‖∂

ℓ−j
W Γ‖

B
γ′+1,j−i
W

+ ‖∂
ℓ−j
W Γ‖

B
1,j−i
W

‖W‖
B
γ′+1,j−i
W

)

≲
ℓ∑

i=0

‖W‖
B

1,i
W
(‖Γ‖

B
γ′+1,ℓ−i
W

+ ‖Γ‖
B

1,ℓ−i
W

‖W‖
B
γ′+1,ℓ−i
W

)

≲ ‖W‖
B

1,ℓ
W
‖Γ‖

B
γ′+1,0
W

(1+ ‖W‖
B
γ′+1,0
W

)

+ ‖W‖
B

1,ℓ−1
W
(‖Γ‖

B
γ′+1,ℓ
W

+ ‖Γ‖
B

1,ℓ
W
‖W‖

B
γ′+1,ℓ
W

)

≲ ‖Γ‖
B
γ′+1,ℓ
W

‖W‖
B
γ′+1,ℓ
W

,
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where the constant depends on ‖W‖
L∞T (B

1+γ,ℓ−1
∞,W )

which is controlled by Hℓ(T). It
follows from (5.16) that

‖Jℓ+1,1‖L1
t (B

γ′−1
∞,1 )

≲

∫ t
0
‖W (τ)‖

B
γ′+1,ℓ
W

‖Γ (τ)‖
B
γ′+1,ℓ
W

dτ.(5.17)

Regarding the term Jℓ+1,2, using the fact that Bγ
′

∞,1 is a Banach algebra, together
with Hölder’s inequality, we see that

‖Jℓ+1,2‖L1
t (B

γ′−1
∞,1 )

(5.18)

≲ ‖W‖L∞t (L∞)

∫ t
0
‖∂ℓW (Ω · ∇v)‖Bγ′∞,1 dτ

≲ ‖W‖L∞t (L∞)

ℓ∑

j=0

j∑

i=0

∫ t
0
‖∂iWΩ · ∂

j−i
W ∇v‖

B
γ′

∞,1
dτ

≲
ℓ∑

j=0

j∑

i=0

∫ t
0
‖∂iWΩ(τ)‖Bγ′∞,1 ‖∂

j−i
W ∇v(τ)‖

B
γ′

∞,1
dτ

≲
( ℓ∑

j=0

‖∂
j
WΩ‖L2

t (B
γ
∞,1)

)( ℓ∑

j=0

‖∂
j
W∇v‖L2

t (B
γ′

∞,1)

)

≲
∥∥∇v

∥∥2

L2
t (B

γ′ ,ℓ
W )

≤ C(Hℓ(T)).

Note that

∇([R−1, v · ∇]θ) = [∇R−1, v · ∇]θ −∇v · ∇R−1θ,

where R−1 is given by (4.2) (which is a sum of pseudo-differential operators of
order -1) and that

[∇R−1, v · ∇]θ := ([∇R−1,2, v · ∇]θ,−[∇R−1,1, v · ∇]θ,0)t .

Therefore, one obtains

‖Jℓ+1,3‖L1
t (B

γ′−1
∞,1 )

≲ ‖W‖L∞t (L∞)
∥∥∇∂ℓW ([R−1, v · ∇]θ)

∥∥
L1
t (B

γ′−1
∞,1 )

≲
∥∥∂ℓW ([∇R−1, v · ∇]θ)

∥∥
L1
t (B

γ′−1
∞,1 )

+ ‖∂ℓW (∇v · ∇R−1θ)‖L1
t (B

γ′−1
∞,1 )

+
∥∥[∇, ∂ℓW ]([∇R−1, v · ∇]θ)

∥∥
L1
t (B

γ′−1
∞,1 )

:= G1 +G2 +G3.(5.19)
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Using Lemma 2.8, (4.10), (5.8), and the inductive assumption (5.3), one finds
that

‖G1‖L1
t (B

γ′−1
∞,1 )

≤
∥∥[∇R−1, v · ∇]θ

∥∥
L1
t (B

γ′−1,ℓ
W )

(5.20)

≲ (‖∇v‖
L1
t (B

0,ℓ
W )
+ ‖v‖L1

t (L
∞))‖θ‖L∞t (B

γ′−1,ℓ
W )

≲ (‖∇v‖
L1
t (B

γ,ℓ
∞,W )

+ ‖v‖L1
t (L

∞))‖θ‖L∞t (B
γ−1,ℓ
∞,W )

≤ C(Hℓ(T)),

and

‖G2‖L1
t (B

γ′−1
∞,1 )

≤ ‖∇v · ∇R−1θ‖L1
t (B

γ′−1,ℓ
W )

(5.21)

≲ ‖∇v‖
L1
t (B

0,ℓ
W )
‖∇R−1θ‖L∞t (B

γ′−1,ℓ
W )

≲ ‖∇v‖
L1
t (B

γ,ℓ
∞,W )

(1+ ‖W‖
L∞t (B

1,ℓ−1
W )

)

× (‖θ‖
L∞t (B

γ′−1,ℓ
W )

+ ‖θ‖L∞t (L2))

≤ C(Hℓ(T)).

Since we have (5.10) and Lemma 2.8, we deduce that

‖G3‖L1
t (B

γ′−1
∞,1 )

≲
ℓ−1∑

j=0

∥∥∇W ·∇∂
ℓ−1−j
W [R−1, v · ∇]θ

∥∥
L1
t (B

γ′−1,j
W )

≲
ℓ−1∑

j=0

‖∇W‖
L∞t (B

0,j
W )

∥∥∇∂ℓ−1−j
W [R−1, v · ∇]θ

∥∥
L1
t (B

γ′−1,j
W )

≲ ‖∇W‖
L∞t (B

1,ℓ−1
W )

ℓ−1∑

j=0

∥∥∇∂ℓ−1−j
W [R−1, v · ∇]θ

∥∥
L1
t (B

γ′−1,j
W )

≲ ‖∇W‖
L∞t (B

1,ℓ−1
W )

(∥∥∇([R−1, v · ∇]θ)
∥∥
L1
t (B

γ′−1,ℓ−1
W )

+
ℓ−2∑

j=0

∥∥[∇, ∂ℓ−1−j
W ]([R−1, v · ∇]θ)

∥∥
L1
t (B

γ′−1,j
W )

)
.

Then, via (5.10) and the estimates (5.20)–(5.21), we get that, up to a constant
which depends only on Hℓ(T), one has

‖G3‖L1
t (B

γ′−1
∞,1 )

≲
∥∥[∇R−1, v · ∇]θ

∥∥
L1
t (B

γ′−1,ℓ−1
W )

+ ‖∇v · ∇R−1θ‖L1
t (B

γ′−1,ℓ−1
W )

+
ℓ−2∑

j=0

ℓ−2−j∑

i=0

∥∥∂iW (∇W ·∇∂
ℓ−2−j−i
W ([R−1, v · ∇]θ))

∥∥
L1
t (B

γ′−1,j
W )
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≲ 1+
∑

0≤j+i≤ℓ−2

∥∥∇W ·∇∂
ℓ−2−j−i
W ([R−1, v · ∇]θ)

∥∥
L1
t (B

γ′−1,j+i
W )

≲ 1+ ‖∇W‖
L∞t (B

0,ℓ−2
W )

(∥∥∇([R−1, v · ∇]θ)
∥∥
L1
t (B

γ′−1,ℓ−2
W )

+
∑

0≤j+i≤ℓ−2

∥∥[∇, ∂ℓ−2−j−i
W ]([R−1, v · ∇]θ)

∥∥
L1
t (B

γ′−1,j+i
W )

)
.

By repeating the above process we find that

(5.22) ‖G3‖L1
t (B

γ′−1
∞,1 )

≤ C(Hℓ(T)).

Hence, collecting the above estimates (5.13), (5.14), (5.17)–(5.18), (5.20)–(5.21),
and (5.22), we conclude that

‖Γ (t)‖
B
γ′−1,ℓ+1
W

+ ‖Γ‖
L2
t (B

γ′,ℓ+1
W )

+ ‖Γ‖
L1
t(B

γ′+1,ℓ+1
W )

(5.23)

= ‖∂ℓ+1
W Γ‖

B
γ′−1
∞,1

+ ‖Γ‖
B
γ′−1,ℓ
W

+ ‖∂ℓ+1
W Γ‖

L2
t (B

γ′

∞,1)

+ ‖Γ‖
L2
t(B

γ′ ,ℓ
W )

+ ‖∂ℓ+1
W Γ‖

L1
t (B

γ′+1
∞,1 )

+ ‖Γ‖
L1
t(B

γ′+1,ℓ
W )

≲ 1+
∫ t

0
(‖∇v(τ)‖L∞ + ‖Γ (τ)‖Bγ′+1,ℓ

W
)

× (‖W (τ)‖
B
γ′+1,ℓ
∞,W

+ ‖Γ (τ)‖
B
γ′−1,ℓ+1
W

)dτ,

where the hidden constant depends on Hℓ(T). Then, since

B
γ′+1,ℓ+1
W ⊂ B

γ,ℓ+1
∞,W ,

by putting (5.23) into (5.12), we obtain, for all γ′ ∈ (0,min{γ,1− 3/p}), that

‖Γ (t)‖
B
γ′−1,ℓ+1
W

+ ‖Γ‖
L2
t(B

γ′ ,ℓ+1
W )

+ ‖Γ‖
L1
t (B

γ′+1,ℓ+1
W )

(5.24)

+ ‖∂ℓ+1
W ∇2v‖

L1
t (B

γ′+1
∞,∞ )

+ ‖∂ℓW∇
2W (t)‖

B
γ′−1
∞,∞

≲ 1+
∫ t

0
(‖∇v(τ)‖

B
γ,ℓ
∞,W

+ ‖Γ (τ)‖
B
γ′+1,ℓ
W

+ 1)

× (‖W (τ)‖
B
γ+1,ℓ
∞,W

+ ‖Γ (τ)‖
B
γ′−1,ℓ+1
W

)dτ,

where the constant depends on Hℓ(T). Following the same step as the proof of
(5.15), (5.10) and using Lemmas 2.8, 2.9, we find that

∥∥[∇2, ∂ℓW ]W
∥∥
L∞t (B

γ−1
∞,∞)

≲
ℓ−1∑

j=0

‖∇2W ·∇∂
ℓ−1−j
W W‖

L∞t (B
γ−1,j
∞,W )
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+
ℓ−1∑

j=0

‖∇W ·∇2 ∂
ℓ−1−j
W W‖

L∞t (B
γ−1,j
∞,W )

≲
ℓ−1∑

j=0

‖∇2W‖
L∞t (B

γ−1,j
∞,W )

‖∇∂
ℓ−1−j
W W‖

L∞t (B
0,j
W )

+
ℓ−1∑

j=0

‖∇W‖
L∞t (B

0,j
W )
‖∇2 ∂

ℓ−1−j
W W‖

L∞t (B
γ−1,j
∞,W )

≲ ‖W‖
L∞t (B

γ+1,ℓ−1
∞,W )

‖W‖
L∞t (B

1,ℓ−1
W )

≤ C(Hℓ(T)),

and

∥∥[∇, ∂ℓ+1
W ]∇v

∥∥
L1
t (B

γ−1
∞,∞)

≲
ℓ∑

j=0

‖∇W ·∇∂
ℓ−j
W ∇v‖

L1
t (B

γ−1,j
∞,W )

≲

∫ t
0
‖W (τ)‖

B
1,ℓ
W
‖∇v(τ)‖

B
γ,ℓ
∞,W

dτ.

Thus, by using Lemma 2.7 together with the frequency decomposition (high/low),
we see that

‖W‖
L∞t (B

γ+1,ℓ
∞,W )

(5.25)

= ‖∂ℓWW‖L∞t (B
γ+1
∞,∞)

+ ‖W‖
L∞t (B

γ+1,ℓ−1
∞,W )

≲ ‖∇2 ∂ℓWW‖L∞t (B
γ−1
∞,∞)

+ ‖∆−1 ∂
ℓ
WW‖L∞t (B

γ−1
∞,∞)

+Hℓ(T)

≲ ‖∂ℓW∇
2W‖L∞t (B

γ−1
∞,∞)

+
∥∥[∇2, ∂ℓW ]W

∥∥
L∞t (B

γ−1
∞,∞)

+ ‖W‖L∞t (L∞) ‖∂
ℓ−1
W W‖L∞t (B

γ
∞,∞) +Hℓ(T)

≲ ‖∂ℓW∇
2W‖L∞t (B

γ−1
∞,∞)

+ 1

where the constant depends on Hℓ(T) in the last inequality. Moreover, we have

‖∇v‖
L1
t (B

γ,ℓ+1
∞,W )

= ‖∂ℓ+1
W ∇v‖L1

t (B
γ
∞,∞) + ‖∇v‖L1

t (B
γ,ℓ
∞,W )

(5.26)

≲ ‖∂ℓ+1
W ∇2v‖L1

t (B
γ−1
∞,∞)

+
∥∥[∇, ∂ℓ+1

W ]∇v
∥∥
L1
t (B

γ−1
∞,∞)

+ ‖∆−1 ∂
ℓ+1
W ∇v‖L1

t (B
γ−1
∞,∞)

+Hℓ(T)

≲ ‖∂ℓ+1
W ∇2v‖L1

t (B
γ−1
∞,∞)

+

∫ t
0
‖W (τ)‖

B
1,ℓ
W
‖∇v(τ)‖

B
γ,ℓ
∞,W

dτ + 1,
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where again the constant depends on Hℓ(T). Therefore, by (5.24) and (5.25),
(5.26), one finds that

‖Γ (t)‖
B
γ′−1,ℓ+1
W

+ ‖W (t)‖
B
γ+1,ℓ
∞,W

+ ‖Γ‖
L2
t(B

γ′ ,ℓ+1
W )

+ ‖Γ‖
L1
t (B

γ′+1,ℓ+1
W )

+ ‖∇v‖
L1
t (B

γ,ℓ+1
∞,W )

≤ C + C

∫ t
0
(‖∇v(τ)‖

B
γ,ℓ
∞,W

+ ‖Γ (τ)‖
B
γ′+1,ℓ
W

+ 1)

× (‖W (τ)‖
B
γ+1,ℓ
∞,W

+ ‖Γ (τ)‖
B
γ′−1,ℓ+1
W

dτ,

where C > 0 depends on Hℓ(T). Then, Grönwall’s inequality and the induction
assumption (5.3) allow us to get that

‖Γ‖
L∞T (B

γ′−1,ℓ+1
W )

+ ‖W‖
L∞T (B

γ+1,ℓ
∞,W )

+ ‖Γ‖
L2
T (B

γ′,ℓ+1
W )

(5.27)

+ ‖Γ‖
L1
T (B

γ′+1,ℓ+1
W )

+ ‖∇v‖
L1
T (B

γ,ℓ+1
∞,W )

≤ C exp{C(T + ‖∇v‖
L1
T (B

γ,ℓ
∞,W )

+ ‖Γ‖
L1
T (B

γ′+1,ℓ
W )

)}

≤ C exp{CHℓ(T)}

≤ Hℓ+1(T).

Now, it remains to control the term ‖∇v‖
L2
T (B

γ′ ,ℓ+1
W )

. By using low/high fre-

quency decomposition, we get

‖∂ℓ+1
W ∇v‖

L2
T (B

γ′

∞,1)
(5.28)

≲ ‖∆−1 ∂
ℓ+1
W ∇v‖L2

T (L
∞) + ‖∇∂

ℓ+1
W ∇v‖

L2
T (B

γ′−1
∞,1 )

≲ ‖∂ℓW∇v‖L2
T (B

γ′

∞,1)
+
∥∥[∇, ∂ℓ+1

W ]∇v
∥∥
L2
T (B

γ′−1
∞,1 )

+ ‖∂ℓ+1
W ∇2v‖

L2
T (B

γ′−1
∞,1 )

.

Thanks to (5.10) and Lemma 2.8, we deduce that

∥∥[∇, ∂ℓ+1
W ]∇v

∥∥
L2
T (B

γ′−1
∞,1 )

≲
ℓ∑

j=0

‖∇W ·∇∂
ℓ−j
W ∇v‖

L2
T (B

γ′−1,j
W )

(5.29)

≲
ℓ∑

j=0

‖W‖
L∞T (B

1,j
W )
‖∇∂

ℓ−j
W ∇v‖

L2
T (B

γ′−1,j
W )

≲ ‖W‖
L∞T (B

1,ℓ
W )
‖∇v‖

L2
T (B

γ′ ,ℓ
W )
.
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By following the same line as the proof of (5.6), it follows from (5.27) that

(5.30) ‖∂ℓ+1
W ∇2v‖

L2
T (B

γ′−1
∞,1 )

≤ ‖∇2v‖
L2
T (B

γ′−1,ℓ+1
W )

≲ ‖∇2Λ−2∇∧ Γ‖
L2
T (B

γ′−1,ℓ+1
W )

+ ‖(∇3 ∂3Λ−4θ,∇2Λ−2θ)‖
L2
T (B

γ′−1,ℓ+1
W )

≲ (1+ ‖W‖
L∞T (B

1,ℓ
W )
)(‖∇Γ‖

L2
T (B

γ′−1,ℓ+1
W )

+ ‖θ‖
L2
T (B

γ′−1,ℓ+1
W )

+ 1)

≲ (1+ ‖W‖
L∞T (B

γ+1,ℓ
∞,W )

)(‖Γ‖
L2
T (B

γ′ ,ℓ+1
W )

+ ‖θ‖
L2
T (B

γ−1,ℓ+1
∞,W )

+ 1).

Collecting all the estimates from (5.28) to (5.30), and using (5.3), (5.8), and
(5.27), we find that

‖∇v‖
L2
T (B

γ′ ,ℓ+1
W )

(5.31)

= ‖∂ℓ+1
W ∇v‖

L2
T (B

γ′

∞,1)
+ ‖∇v‖

L2
T (B

γ′,ℓ
W )

≲ (‖W‖
L∞T (B

1+γ,ℓ
∞,W )

+ 1)(‖∇v‖
L2
T (B

γ′ ,ℓ
W )

+ ‖Γ‖
L2
T (B

γ′ ,ℓ+1
W )

+ 1)

≲ exp{CHℓ(T)}

≤ Hℓ+1(T).

Therefore, (5.31) and (5.27) give the inequality (5.4), as desired. The induction
method finally implies the wanted estimates (5.2) and (5.1), and hence the proof
is complete.

APPENDIX A.

In this section we give the proof of Lemmas 2.11 and 3.1.

Proof of Lemma 2.11. Bony’s decomposition gives that

‖∂Wm(D)f‖B−εp,r ≤ ‖(TW·∇)m(D)f‖B−εp,r + ‖T∇m(D)f ·W‖B−εp,r

+ ‖R(W·,∇m(D)f)‖B−εp,r .

Thanks to the spectrum support property of the dyadic blocks together with the
fact that ∇∆−1m(D) is a bounded operator on Lp with 1 ≤ p ≤ ∞, we have that
for all q ≥ −1,

−qε‖∆q(T∇m(D)f ·W )‖Lp
≤ 2−qε

∑

j∈N, |j−q|≤4

‖∆q(∆jW · Sj−1∇m(D)f)‖Lp

≲ 2−qε
∑

j∈N, |j−q|≤4

2−jγ‖W‖Cγ
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×
(
‖∆−1∇m(D)f‖Lp +

∑

0≤j′≤j

‖∆j′∇m(D)f‖Lp
)

≲ cq‖W‖Cγ ‖f‖B1−ε−γ
p,r

.

Moreover, using the divergence-free property of W , one has that

2−qε‖∆q(R(W·,∇m(D)f))‖Lp

≤ 2−qε
∑

j≥max{q−3,2}

‖∆q div(∆jW ∆̃jm(D)f)‖Lp

+ 2−qε
∑

−1≤j≤1

1{−1≤q≤5}‖∆q(∆jW · ∆̃j∇m(D)f)‖Lp

≲
∑

j≥max{q−3,2}

2q(1−ε)‖∆jW‖L∞‖∆̃jm(D)f‖Lp

+
∑

−1≤j≤1

1{−1≤q≤5}‖∆jW‖L∞ ‖∆̃j∇m(D)f‖Lp

≲
∑

j≥max{q−4,1}

2q(1−ε)2−jγ‖W‖Cγ ‖∆jf‖Lp

+
∑

−1≤j≤2

1{−1≤q≤5}‖W‖L∞ ‖∆jf‖Lp

≲ cq‖W‖Cγ ‖f‖B1−ε−γ
p,r

,

where {cq}q≥−1 is such that ‖cq‖ℓr = 1. Hence, we immediately get that

(A.1) ‖T∇m(D)f ·W‖B−εp,r + ‖R(W·,∇m(D)f)‖B−εp,r ≤ C‖W‖Cγ ‖f‖B1−ε−γ
p,r

.

Note that there exists a bump function φ̃ ∈ C∞c (R
d) supported on an annulus

and
g := F−1(mφ̃) ∈ S(Rd)

so that

(TW·∇)m(D)f =
∑

j∈N

Sj−1W ·∇∆jm(D)f

= −
∑

j∈N

[m(D)φ̃(2−jD), Sj−1W·]∇∆jf +m(D)(TW·∇)f ,

where m(D)φ̃(2−jD) = 2jdg(2j·)∗, and

[m(D)φ̃(2−jD), Sj−1W·]∇∆jf (x)

=

∫

Rd
g(y)(Sj−1W (x + 2−jy)Sj−1W (x)) · ∇∆jf (x + 2−jy)dy.
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Then, we have that for all q ≥ −1,

2−qε‖∆q(TW·∇)m(D)f‖Lp

≤ 2−qε
∑

j∈N, |j−q|≤4

∥∥∆q([m(D)φ̃(2−jD), Sj−1W ·∇]∆jf )
∥∥
Lp

+ 2−qε‖∆qm(D)(TW·∇)f‖Lp

≲ 2−qε
∑

j∈N, |j−q|≤4

2−j‖∇Sj−1W‖L∞ ‖∇∆jf‖Lp + cq‖m(D)(TW·∇)f‖B−εp,r

≲ 2−qε
∑

j∈N, |j−q|≤4

( ∑

−1≤j′≤j−1

2j
′(1−γ)‖W‖Cγ

)
‖∆jf‖Lp

+ cq
∑

0≤j≤3

‖∆−1m(D)div(Sj−1W∆jf )‖Lp + cq‖(TW·∇)f‖B−εp,r

≲ cq(‖W‖Cγ ‖f‖B1−ε−γ
p,r

+ ‖(TW·∇)f‖B−εp,r ).

Following the same approach as the proof of (A.1) to estimate ‖(Id−TW·∇)f‖B−εp,r ,
we see that the above inequality gives

‖(TW·∇)m(D)f‖B−εp,r(A.2)

≲ ‖W‖Cγ ‖f‖B1−ε−γ
p,r

+ ‖∂Wf‖B−εp,r + ‖(Id−TW·∇)f‖B−εp,r

≲ ‖W‖Cγ ‖f‖B1−ε−γ
p,r

+ ‖∂Wf‖B−εp,r ,

which together with (A.1) gives the desired estimate (2.18). ❐

Proof of Lemma 3.1. For the proof of (3.8), we follow the same approach as
Chemin and Gallagher [14] in their study of the 2D Navier-Stokes equation with
an external force. More precisely, we first establish the following control from
(3.7), that is, for all ρ ∈ [2,∞],

(A.3)
∥∥v
∥∥2
L̃
ρ
T (Ḣ

1/2+2/ρ) =
∑

j

2j(1+4/ρ)
∥∥∆̇jv

∥∥2
L
ρ
T (L

2) ≲ E(T)
2.

By noticing that the equation verified by v may be viewed as a nonhomogeneous
heat equation, that is,

(A.4) ∂tv −∆v = −Pdiv(v ⊗ v)+ P(θe3), v(0, x) = v0(x),

and using the smoothing effect estimate of the heat flow (2.25) (with s = 1
2 ,

ρ1 = 2, p = r = 2), we get
∑

j

2j(1+4/ρ)
∥∥∆̇jv

∥∥2
L
ρ
T (L

2)(A.5)

≲
∥∥v0

∥∥2
Ḣ1/2 +

∫ T
0

∥∥P(v · ∇v,θe3)(t)
∥∥2
Ḣ−1/2 dt.
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Then, an easy computation gives that

‖P(v · ∇v,θ)(t)‖Ḣ−1/2 ≲ ‖v · ∇v‖L3/2 + ‖θ‖L3/2(A.6)

≲
∥∥∇v

∥∥2
L2 + ‖θ‖L3/2

≲ ‖v‖Ḣ1/2 ‖v‖Ḣ3/2 + ‖θ0‖L3/2 ,

from which it follows that
∫ T

0

∥∥P(v · ∇v,θ)(t)
∥∥2
Ḣ−1/2 dt ≲

∥∥v
∥∥2
L∞T (Ḣ

1/2)

∥∥v
∥∥2
L2
T (Ḣ

3/2) +
∥∥θ0

∥∥2
L3/2T .

Hence, using this control in (A.5) and (3.7) leads to the desired estimate (A.3).
Now, we split the solution v of equation (A.4) into v = h+w, where h and

w verify

ht −∆h = P(θe3), h(0, x) = v0(x),(A.7)

and

wt −∆w = −Pdiv(v ⊗ v), w(0, x) = 0.(A.8)

Duhamel’s formula gives

h(t) = et∆v0 +

∫ t
0
e(t−τ)∆P(θ(τ)e3)dτ,

and therefore, we have

‖h‖L2
T (L

∞) ≤ ‖e
t∆v0‖L2(R+;L∞) +

∫ T
0
‖et∆Pθ(τ)‖L2(R+t ;L∞) dτ.

Since ‖f‖Ḃ−1
∞,2
≈ ‖et∆f‖L2(R+;L∞) (see, e.g., [3] or [37]) and Ḣ1/2(R3)֓ Ḃ−1

∞,2(R
3),

we get

‖h‖L2
T (L

∞) ≲ ‖v0‖Ḣ1/2 +

∫ T
0
‖Pθ(τ)‖Ḃ−1

∞,2
dτ(A.9)

≲ ‖v0‖Ḣ1/2 + ‖θ0‖L1∩LsT ≲ E(T),

where in the last inequality we have used that, for all s ∈ (3,∞], one has

‖Pθ(t)‖Ḃ−1
∞,2
≲ ‖θ(t)‖Ḃ3/s−1

s,2
≲ ‖θ(t)‖L1∩Ls ≲ ‖θ0‖L1∩Ls .

Then, we will try to get a control of the L2
T (L

∞) of w. Using (A.8) and then
Bernstein’s inequality and Plancherel’s formula, one gets

(A.10) ‖∆̇jw(t)‖L∞ ≲ 2(5/2)j
∫ t

0
e−c22j(t−τ)‖∆̇j(v ⊗ v)(τ)‖L2 dτ.
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Using Bony’s para-product decomposition for any tempered distributions a and b,
that is,

∆̇j(ab) =
∑

j′≥j−4

∆j(Ṡj′a∆̇j′b)+
∑

j′≥j−4

∆j(∆̇j′aṠj′+1b),

we see that by Hölder’s inequality, one has

‖∆̇j(v ⊗ v)‖L2ρ/(ρ+2)
T (L2)

≲
∑

j′≥j−4

‖Ṡj′+1v‖LρT (L∞) ‖∆̇j′v‖L2
T (L

2).

Bernstein’s inequality, Young’s inequality, and estimate (A.3) allow us to get that,
for all ρ ∈ (2,∞],

‖Ṡj′+1v‖LρT (L∞) ≲ 2j
′(1−2/ρ)

∑

k≤j′

2k(1/2+2/ρ)‖∆̇kv‖LρT (L2)2
(k−j′)(1−2/ρ)

≲ cj′2j
′(1−2/ρ) ρ

ρ − 2
E(T),

where {cj}j∈Z satisfies ‖cj‖ℓ2(Z) = 1. Applying Young’s inequality in time variable
to (A.10), one finds that

‖∆̇jw‖L2
T (L

∞)

≲ 2(5/2)j‖e−c22jt‖Lρ/(ρ−1)([0,T]) ‖∆̇j(v ⊗ v)(t)‖L2ρ/(ρ+2)(0,T ;L2)

≲
ρ

ρ − 2
E(T)

∑

j′≥j−4

cj′‖∆̇j′v‖L2
T (L

2)2
(3/2)j′2(j−j

′)(1/2+2/ρ).

Hence, by taking the ℓ1(Z)-norm on j ∈ Z, together with (3.7), we find that, for
all ρ ∈ (3,∞),

‖w‖L2
T (L

∞) ≤
∑

j∈Z

‖∆̇jw(t)‖L2
T (L

∞) ≤ C
ρ

ρ − 2
‖v‖L2

T (Ḣ
3/2)E(T) ≲ E(T)

3/2.

This, combined with (A.9), gives the desired control (3.8).
In order to show (3.9), by making use of Lemma 2.15, Minkowski’s inequality,

and the fact that the Leray projector P is bounded in Lp (1 < p < ∞) ([6], [37]),
we get from the equation (A.4) that for every q ≥ 2,

‖v‖
L∞T (Ḃ

−1+3/q
q,∞ )

+ ‖v‖
L̃1
T (Ḃ

1+3/q
q,∞ )

(A.11)

≲ ‖v0‖Ḃ−1+3/q
q,∞

+ ‖P(v · ∇v − θe3)‖L̃1
T (Ḃ

−1+3/q
q,∞ )

≲ ‖v0‖Ḣ1/2 + ‖v · ∇v‖L1
T (Ḃ

−1+3/q
q,∞ )

+ ‖θ‖
L1
T (Ḃ

−1+3/q
q,∞ )

.

Since θ has a rough regularity, we consider q > 3 and then

‖θ‖
L1
T (Ḃ

−1+3/q
q,∞ )

≲ ‖θ‖L1
T (Ḃ

0
3,∞)

≲ ‖θ‖L1
T (L

1∩L3) ≲ ‖θ0‖L1∩L3T .(A.12)
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Thanks to (2.16) with (p, r) = (q,∞) and q > 3, we get, by Hölder’s and Bern-
stein’s inequalities, that

‖v · ∇v‖
L1
T (Ḃ

−1+3/q
q,∞ )

≲ ‖v‖L2
T (L

∞) ‖∇v‖L2
T (Ḃ

−1+3/q
q,∞ )

(A.13)

≲ ‖v‖L2
T (L

∞) ‖v‖L2
T (Ḣ

3/2).

Finally, by using (A.12) and (A.13) into (A.11), together with (3.7) and (3.8) one
obtains the desired control (3.9). ❐
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[5] JOSEPH V. BOUSSINESQ, Théorie Analytique de la Chaleur, vol. 2, Gauthier-Villars, Paris, 1903.
[6] MARCO CANNONE, Ondelettes, paraproduits et Navier-Stokes, with a preface by YVES MEYER,

Diderot Editeur, Paris, 1995 (French). MR1688096
[7] CHONGSHENG CAO and JIAHONG WU, Global regularity for the two-dimensional anisotropic

Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal. 208 (2013), no. 3, 985–
1004. https://dx.doi.org/10.1007/s00205-013-0610-3 . MR3048599
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