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Bifurcation theory formula leading to a suitable integral representation of the
Green functions frequencies.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we investigate some special structures of the vortical motions for the
inviscid generalized surface quasi-geostrophic (abbr. gSQG) equation in the unit disc
D C R2. This model describes the evolution of the potential temperature w governed by
the transport equation,

Ow +u - Vw =0, (t,z) € [0,00) x D,
u=—-V+(-A)"1F3u, (1)

Wii=o(z) = wo(x).

Here u = (uy,us) refers to the velocity field, V* = (—ds,0), a € [0,1) is a real pa-
rameter. The fractional Laplacian operator (—A)~1*% is defined via the eigenfunction
expansion of the Laplacian in D with homogeneous Dirichlet boundary condition (see
(9)-(12) below). This model was introduced in [16] for the flat case R? as an interpolation
between 2D Euler equation and the surface quasi-geostrophic (abbr. SQG) model, corre-
sponding to « = 0 and a = 1 in (1), respectively. Notice that the SQG equation was used
as a simplified model to track the atmospheric circulation near the tropopause [43,36]
and the ocean dynamics in the upper layers [49]. A strong analogy with the vorticity
formulation of the 3D incompressible Euler equations was discussed in [13].

These aforementioned active scalar equations have attracted a lot of attention in the
past decades and important progress has been settled in various directions. As to the
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local well-posedness of classical solutions in the whole space, it was performed in various
function spaces. For instance, we refer to [8] where the solutions are constructed in the
framework of Sobolev spaces. The global well-posedness issue is still open except for
the Euler case a = 0. However, L2-weak solutions in the whole space are known to be
global, see [57,53,50]. The nonuniqueness of weak solutions to SQG equation has been
explored recently in [3,42]. Another class of solutions widely discussed in the literature
is described by the patches where the initial data takes the form of the characteristic
function of a smooth bounded domain D, that is, wg = 1p. In this case, the patch
structure is preserved for a short time and the boundary evolves according to a suitable
contour dynamics equation, see [8,58,25]. Similar studies have been achieved for a half
plane [45,46,26] and for any smooth bounded domain [47]. The global in time persistence
of the boundary regularity is only known for the case a = 0 according to Chemin’s result
[9], see also Bertozzi and Constantin [2] for another proof. Notice that some numerical
experiments show strong evidence for the singularity formation in finite time, see for
instance [16,59,60]. For the patch problem associated to gSQG equation in the half
plane, a finite-time singularity result with multi-signed patches has been established by
Kiselev et al. [45] for the case 0 < a < 15 and Gancedo et al. [26] for 0 < o < 1.

The analysis of SQG type equations in bounded smooth domains is much involved
than the flat case due in part to the Green function which is not explicit. This study was
initiated by Constantin and Ignatova [10,11]. They considered the SQG equation with
critical dissipation and obtained the global existence of L?-weak solutions with a global
Lipschitz a priori interior estimates. We also refer to the papers [12,41,62] for more results
and discussions. Concerning the inviscid model (1) in smooth bounded domains, the L?
global weak solutions was constructed by Constantin and Nguyen [15] for the SQG case
a =1, and later generalized in [56] to the case a € (1,2) with more singular constitutive
law in the velocity. The local well-posedness issue in the framework of classical solutions
for the inviscid SQG equation (in bounded smooth domains) was performed in [14]. We
point out that with some slight modification, the results of [14,15,56] can be extended
to the gSQG equation with o € (0,1).

The aim of this work is to construct time periodic solutions in the patch form for the
gSQG model in bounded smooth domains. We will in particular focus on the class of V-
states or rotating patches, whose dynamics is described by a rigid body transformation. In
this setting, the problem reduces to finding some domains D subject to uniform rotation
around their centers of mass. Observe that during the motion the support D; of the
patch solution does not change the shapes and is determined by D; = R, o: D, where
R, ot denotes the planar rotation with center xy and angle Qt. The parameter 2 € R
is called the angular velocity of the rotating domain.

The V-states problem has a long history and it is still the subject of an intensive
research, and many important contributions have been achieved in the last few decades
at the analytical and numerical levels. The first example of rotating patches for the 2D
Euler equation in the plane was discovered by Kirchhoff [44] who proved that an ellipse

ab

of semi-axes a and b rotates perpetually with the uniform angular velocity 2 = [CEOER
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we also refer to [48, p. 232] and [52, p. 304]. One century later, Deem and Zabusky
[20] gave numerical evidence of the existence of implicit V-states with m-fold symmetry.
Afterwards, Burbea [4] provided an analytical proof of this fact using local bifurcation
theory and conformal parametrization. In particular, he proved that for each symme-
try m > 2 a curve of non trivial V-states bifurcates from Rankine vorticity (the radial
shape) at the angular velocities 0 = =1 See also Hmidi, Mateu and Verdera [40],
where the C>° boundary regularity and the convexity of these bifurcated V-states are
established. Real analyticity of the boundary was further obtained by Castro, Cérdoba
and Gémez-Serrano [7]. Hassainia, Masmoudi and Wheeler in [35] studied through some
global bifurcation arguments the analyticity of the V-states along the whole bifurcat-
ing branches. Besides the preceding results, several families of V-states with different
topological structures were recently explored. For instance, it was shown in [7,37] that a
second family of countable branches bifurcate from Kirchhoff’s ellipses. Rotating patches
with only one hole exist near the annulus as proved in [22,38], concentrated multi vortices
centered at regular n-gons or distributed according to suitable periodic spatial patterns
are analyzed in [39,32,27,28]. The study of V-states in radial domains was performed for
Euler equation in [21]. In particular, De la Hoz, Hassainia, Hmidi and Mateu [21] proved
the existence of m-fold symmetric V-states for the Euler equation in the unit disc, which
bifurcates from the trivial solution 1,p at the angular velocity Q2 = %;bm
m>=1andbe(0,1).

The existence of the V-states for the gSQG equation (1) starts with the work of
Hassainia and Hmidi [33] where they showed similar results to Burbea curves in the

for any

whole plane and for o € (0,1). Later, Castro, Cérdoba and Gémez-Serrano [6] proved
the existence of V-states for the range o € [1,2) and obtained the C*°-regularity of their
boundary for all « € (0,2), see also [7] for the real analyticity of the patch boundary. For
other connected topics we refer to the papers [1,5,6,23,21,29,30,39] and the references
therein.

In this paper, we shall focus on the existence of the V-states for the gSQG equation
(1) with o € (0,1) in the unit disc D. More precisely, we want to construct rigid periodic
solutions around radial stationary patches 1,p, b € (0,1) using bifurcation tools. We
remind that the case a = 0 was discussed in [21]. As a by-product we construct an infinite
family of non-stationary global solutions for the gSQG equation in the bounded domain
D, although the global well-posedness/blow up issue is not well understood and remains
an open problem. The situation in bounded domains turns out to be more tricky due to
the non explicit form of Green function associated to the spectral fractional Laplacian.
This has an impact in the study of the regularity of the functional that will describe the
V-states. Later, in Section 3 we shall explore how to recover the boundary equation of the
V-states close to the patch 1,p in terms of polar coordinates 6 € R — /b2 + 2r(6)e®.
In this regard, the deformation radius r solves a nonlinear integro-differential equation
of the following type,
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F(Q,r(0) 2 Qr'(0 +89</ / K*(R g,pem)pdpdn) =0, R(n) = % +2r(n),

N

where K stands for the Green function of the spectral fractional Laplacian (—A)~'"

on the unit disc D, defined via the relation
(-8) " f(w) = [ K@) i .
D

One may easily verify that F(€Q,0) = 0 for every 2 € R and therefore the next step is
to check that the bifurcation tools such as the Crandall-Rabinowitz theorem [18] applies
in this framework. To state our main result, we shall introduce the following angular
velocities,

‘]1 l‘okb o J xmkb)
R ST ~2 Y i) ®)

BT
k>1 i (@o.r) k=1 me1(Zmk)

where J,,, denotes the Bessel functions of order m and z,,  denotes the k-th positive
root of Jy,,(z) = 0, see Section 2.3 for more details. Now, we are in a position to give our
main result.

Theorem 1.1. Let («, b, m) satisfy one of the following conditions

ae (0.1),be (0,55, m>1; (4)
a€c (0,1), be (0,1), m = m"; (5)
ae (0,a%), be (0,1), m > 1; (6)
with m* = m*(a,b) € N (a rough bound is m* < logb(log M/Ql(—:{ogb),l)) and o* =

a*(b) > 0 a small number. Then there exists a family of m-fold symmetric V-states
(Vin)m>1 for the gSQG equation (1) bifurcating from the trivial solution wy = 1pyp at the
angular velocity 2y, | given by (3). In addition, the boundary of the V -states belongs to
the Hélder class C?~°.

More precisely, there exist a constant a > 0 and two continuous functions Q :
(-a,a) = R, r : (=a,a) = C*%(T) satisfying 0) = Q ,, 7(0) = 0, such that
(rs)—a<s<a 1S a one-parameter non-trivial solution of the equation (2) describing V-
states. Moreover, rs admits the expansion

VO e R, ry(0)=scos(mb)+s Z bpm (8) cos(nmb),  bupm = O(s),

n>1

and the mapping 0 — /b2 + 2r4(0) €’ maps the torus T to the boundary of an m-fold
rotating patch with the angular velocity (s).
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Before giving the ideas of the proof, we shall make some comments.

Remark 1.1. Theorem 1.1 shows the existence of global solutions near Rankine vortices.
This issue is open for general initial data.

Remark 1.2. When the domain of the fluid is the ball B(0, R), with R > 1, then by a
scaling argument and applying the preceding theorem, the bifurcation from the unit disc
D occurs at the angular velocities (see [33, Proposition 3])

oo Ay —a o
m,R — R m,R—1"

According to (84), (87) and (88), and using (95) and (108) to control the remainder
terms, we obtain

I'l-a) ra+sg) L(m+ %)
(e ) g

R—oo ™B T 21-eT2(1 - )\T(2-2) T(m+1-2
which corresponds to Hassainia-Hmidi’s result in [33].

On the other hand, when a — 0, as indicated in Lemma 5.1-(i), we recover the result
of De la Hoz, Hassainia, Hmidi and Mateu [21] in the limit.

Remark 1.3. For the SQG equation corresponding to the case o = 1 the situation is
more delicate. By reformulating the boundary equation of V-states to relax the violent
singularity of the kernel, we can give a full description of the linearized operator 9, F'(£2,0)
and the associated dispersion relation. It turns out that the spectrum Q, , coincides with
the limit of €25, , when o — 1 as (85) shows. However, the function spaces used here are
not well-adapted due to a logarithmic loss in frequency when o = 1. We believe that the
L? weighted spaces introduced in [6] could be used in order to generate the V-states in
the critical case o = 1. Notice that the same techniques could give that the boundary is
analytic.

In the proof of Theorem 1.1, the first difficulty that one should face is related to
the kernel function K which has no explicit form as in the whole space for the gSQG
equation [33] or Euler equation in the disc [21]. This makes the regularity problem of
the functional F' introduced in (2) more complicated and to circumvent this issue we
establish in Lemma 2.3 the following decomposition in D x D

Co

K%(z,y) = - T K (2,y)

|z -yl

where K{* is a smooth function in D x . We emphasize that this splitting is valid
for any smooth bounded domain and extends a classical result for 2D Euler equation
[21,24]. Remark that for the specific case of the unit disc one can recover this kernel
from the eigenfunctions of the Laplacian which are explicitly described through Bessel
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functions, see (2.5) below. However, it is not at all clear how to deal with this series and
deduce the splitting mentioned above. Then by virtue of this decomposition together with
Lemma 2.6 dealing with singular kernel integrals on the torus, we can prove the desired
regularity properties of F' needed in the Crandall-Rabinowitz theorem (see Theorem 6.1).

The spectral problem is carefully studied in Section 5 and one important delicate point

[0}

m.pm = 1} In order to get a one

lies on the analysis of angular velocity sequence {2
dimensional kernel we need to check the monotonicity of these frequencies. The formula
(3) seems to be out of use due to the complexity of the sum. Surprisingly, this complicated
form admits a nice integral representation by virtue of Sneddon’s formula [61], from
which we conduct a careful analysis and manage to show the key monotonicity property
of the sequence {Q%b,m > 1} under some constraints on «,b and the symmetry. For
this discussion, we refer to Lemma 2.7 and the proof of Lemma 5.1. Notice that the
rest of the conditions of Crandall-Rabinowitz theorem are satisfied allowing to get an
affirmative answer for the existence of the V-states for the gSQG equation (1) in the disc
D when « € (0,1).

The reminder of the paper is organized as follows. In the next section, we shall present
some technical results related to the spectral fractional Laplacian and the associated
Green function in bounded smooth domain, and then we shall introduce some estimates
on singular kernel integrals and also recall Sneddon’s formula. In Section 3, we shall
write down the boundary equation of V-states in the unit disc. The Sections 4 and 5
are devoted to the proof of Theorem 1.1. In Section 4, we study the linearization and
regularity of the nonlinear functionals in the boundary equation. In Section 5, we conduct
the spectral study of the linearized operator around zero and under suitable assumptions
we obtain a Fredholm operator of zero index. Finally, in the last section we recall the
Crandall-Rabinowitz theorem and give the proof of some auxiliary lemmas used in the

paper.
Notation. Throughout this space we shall use the following convention and notation.

e (C denotes a positive constant that may change its value from line to line.

o The set N = {0,1,2,---} is the set of nonnegative numbers, and N* = {1,2,..}
denotes the set of all positive integers.

o Let X and Y be two Banach spaces. We denote by £(X,Y") the space of all continuous
linear maps T': X — Y endowed with its usual strong topology.

e We denote by D a bounded open domain with smooth boundary of the Euclidean
space R, while we use the notation D to denote the unit disc of the Euclidean space
R2.

2. Tools

This section is dedicated to some technical results related to the structure of the heat
semi-flow and the Green function of fractional Laplacian in bounded smooth domains.
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We shall also discuss some estimates on integrals with singular periodic kernels and recall
Sneddon’s formula which plays a central role on the spectral study.

2.1. Spectral fractional Laplacian and Green function

The main goal of this subsection is to explore the structure of Green function associ-
ated to Dirichlet fractional Laplacian.

We shall first recall how to define the spectral fractional Laplacian in bounded do-
mains. Let D C R? (d > 2) be a bounded open domain with smooth boundary.
The L?(D)-normalized eigenfunctions of the operator —A supplemented with Dirich-
let boundary condition are denoted by ¢;, and the associated eigenvalues counted with
their multiplicities are positive real numbers A; such that

fOI‘ ] 2 1, _A¢j = )\jd)j, ¢j|8D = O7 /gi)?(x)dx =1. (8)
D

It is a classical fact that
0< A <A< .. <A = o0

Now, according to the functional calculus, the spectral fractional Laplacian (—A)~1+%
with a € (0,2) is defined through

o0

AV S (e :71 “ZetA f(x
(~8) 14 f(z) F(l—%)/t ey

/Ko’acy y)dy,

with T’ being the classical Gamma function and K the Green function. Let Hp(t, )
denote the kernel of the heat semigroup e*® on the domain D with Dirichlet boundary
condition, then

' f(z) /Hntxy y)dy.

It is a classical fact that this kernel can be reconstructed from the eigenfunctions (8) as
follows

Vt>0,z,yeD, Hp(t,z,y) = Ze)‘t(b] ®;(y). (10)

j=>1

Consequently, the Green function K® admits different representations



T. Hmidi et al. / Journal of Functional Analysis 285 (2023) 110142 9

t=% Hp(t,z,y)dt (11)

=S "N T 0(@)e5 (). (12)

There is an abundant literature dealing with the analytic properties of the heat kernels,
see for instance [10,19,64]. Here, we shall restrict the discussion to some of them that
will be needed later. In view of the points (31)-(32) in [10] or [19,64], there exists a
time Ty > 0 and positive constant C' depending only on the domain D such that for all
0<t<Tyand z,y € D,

w2
0 < Hp(t,z,y) < C'min { Iq;l—(f/)l , 1} min { @1_(1;)' ) 1}t*%@*7| = (13)
and
o .
|VeHp(tey)| o ) d@) if Ve > diz), (14)
Holtey) S C (1 i M) if VE<d(x)
\/‘E \/{ 9 ~ b)

with d(z) £ d(x,0D) being the Euclidean distance between x and the boundary dD.
The function ¢; is the first eigenfunction of —A as in (8).

Before stating the main result of this section, see Lemma 2.3, on the Dirichlet Green
function K%, we give two auxiliary results on the Dirichlet heat kernel. The first one is
on the higher differentiability of Hp(t) inside the domain D for a short time whose proof
is classical and will be postponed later in the Appendix. Its statement reads as follows.

Lemma 2.1. We have that for every (z,y) € D x D, n € N and for every 0 < t <
min{d(x)?, Ty},

n+d _ |z—y|?

[ViHp(t,z,y)| <Ct™ 2 e o,
with C' depending on d,n and Tj.

Notice that the latter estimate in the preceding lemma degenerates on the diagonal

x = y for small time ¢ in a similar way to the Gauss kernel of the heat semigroup e*® on

lz—y|?
1t . The second

the whole space R? explicitly given by (x,y) — Gi(z—y) = We*
auxiliary result deals with the description of this defect and shows that Hp(t) differs
from G by a smooth contribution uniformly for small time. The proof will be provided

in the Appendix.
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Lemma 2.2. Let (z,y) € D x D, k,l € N and fir 0 < t < min{d(z)?,d(y)?,To}. Then,
we have

|VI;V§/(HD(t7x5 y) - Gt(w - y))| < Ca
where C > 0 depends on d, k, 1, Ty, d(x) and d(y).

Now, we are ready to state the main result of this section dealing with a natural
decomposition of Dirichlet Green function K<. It can be split into a singular one that
coincides with the whole-space Green function and a smooth term with bounded deriva-
tives inside the domain D x D.

Lemma 2.3. Let D C RY (d > 2) be a bounded open domain with smooth boundary. Let
a € (0,2) and K% be the kernel function given by (12). Then we have that for every
r#yeDxD,

Coy

K%(z,y) = W+Kf‘(m,y), (15)
a/2=1prayd__
with cq = %&jﬁ)l) and K{ € C=(D x D).
2
Remark 2.1. This result is compatible with the classical one known for a = 0. For

instance when o = 0 and d = 2, we have
0 1 0
K ($7y):_%log‘x_yl—’_Kl(l‘ay)?

where KY{ is a smooth function in the open domain D x D and partially harmonic in z
and y ([24]).

Proof of Lemma 2.3. For z,y € D fixed, there exists an open domain Dy C Dy C D
such that 2,y € Dy. Denote dy £ min{y/Tp,d(Do,dD)} > 0. Then, we get from (11)
the decomposition

d? 00

a o 1 _ o 1 —_o

K (x,y)— F(l—%)/t 2HD(t7x7y)dt+ F(l—%)/t 2HD(t7x7y)dt

0 d(2)
da 3

]. / o —_a

= — t72Gy(x —y)dt + o /t 2 (Hp(t,z,y) — Ge(x —y))dt
fi-m )t ri-p ) (e =)
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dg

t7 3G —y)dt + K7y (2,y) + Kiy(z,y).

To deal with the first term, we use a change of variables allowing to get

dg dg
1 5 1 a 1 |2~y
ra-3) 0/ o= u)dh = 2) 0/ (@rt)i2°
g4o/2-1 1 o0 o
= S+5-2_—1
= XTI - §) o — yleT? | e
|z—y|?
4d0
P rs -1 1 .
- ﬂd/2r(17 %) |x_y|a+d—2 _K13(xay)v
with
lz—y|?
/2 1 1 IOT
4a B « d
K7 = S+5—2 _—7 :
13($,y) 7Td/2r<1_ %) |x—y|04+d*2 / T2 T2 e d7— (16)

Therefore, we may decompose K* as in (15) with
K?(‘Tvy) = Klal(z7y) + Kfé(ﬂ?,y) - Kft?)(xa y)

In what follows we intend to show that all these functions are C'°°-smooth in D x D.
For K¢, by virtue of Lemma 2.2, we infer that for every k,I > 0 and « € (0, 2),

dg

VEVLKG )| < € [+t
0

<C.

The smoothness of K is a direct consequence of Lemma 6.1. Indeed, using (10) we infer

1 T _a s
VAV Ky (2, y)| = Ta—2) /t 2 (E e /\’tvﬁ%(iﬂ)vfyd’j(y))dt’
2 i>1
dg Jz

<OY_ [ 17 Fe NV Gy V!5 | et

j>1
= d%
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Applying the estimates of Lemma 6.1 with Sobolev embeddings we get in view of Weyl’s
law stating that A\; ~ j as j — o0,

oo

|V’€Vl K¢ (z,y)| (Ze 7 (142, )k2+1+d+1) /t_%e_%tdt
7=>1 dg

< C

Now we shall move to K¢y defined in (16) and show that it is smooth. According to

Taylor expansion of e~ ", we find
o —y|?
/2—1 1 “n oo (—7)
404 - e d —T n
« _ a4 d_o
Kis(z,y) = 2T (1 = §) [z — yloFd—2 / T2 (Z% — )dr
0 n=

_ 1 Z \x —y*"
22n+dzd/2T(1 — 9)dgti—? (n + + 4 1)dz’

which is an absolutely convergent power series and is C'°°-smooth in x and y. Hence,
gathering the above estimates leads to the desired splitting (15) with K¢ € C*°(D x
D). O

The next goal is to explore how the symmetry of the domain can be reflected on the
Green function, in the sense that if the domain D is invariant under suitable planar

transformations then the kernel functions Hp and K¢ will enjoy an adequate symmetry
property. More precisely, we shall establish the following result.

Lemma 2.4. Let D C R? be a bounded open domain with smooth boundary. Let Hp(t,, )
be the kernel of the heat semigroup e'® on the domain D and K%(-,-) be the Green
function defined via (9). Then the following statements hold true.

(i) Let © = (x1,—x2) be the reflection point of x = (x1,x2). If D is invariant by
reflection with respect to the real axis, then

Va,y €D, Hp(t,z,y) = Hp(t,z,y) and K(z,y) = K%(z,y).

(i) If €D =D for some 0 € R, then

Vaz,yeD, Hp(t ez ey) = Hp(t,z,y) and K*(e“z, ey) = K(x,v).
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Proof of Lemma 2.4. (i) Observe that for each y € D,

atHD(tax7y) - A:L’HD(tvxay) = 07 T € D,ZL’ 7é Y,
HD(t,ZE,y) = Oa xr € 8D, (17)
HD(vaay) = 5(33 - y)7

where §(+) is the Dirac J-function centered at the origin. Now we view Hp(t,Z,y) as a
function of x and y as a parameter. Then, we can check that

HD(O’J_:JJ) = 6(j - g) = 6('17 - y) = HD(O?x’y)

and A, (HD(t, :ag)) = (AzHD>(t,i‘, y). In addition, using the fact that z € 0D & x €
0D, we have Hp(t,z,y) = 0 for any = € 90D. Hence, for each y € D, the mapping
x € D — Hp(t,z,y) solves (17). Owing to the uniqueness of the initial-boundary value
problem (17), we conclude that Hp(t,z,y) = Hp(t,z,y). In view of (11), the desired
equality K(z,y) = K*(z,y) directly follows.

(ii) The proof of statement (ii) is quite similar as above, and thus we omit the de-
tails. O

Hereafter we shall give a precise description of the Green function K® when the domain
D is the planar unit disc D. Actually, in this radial case the eigenvalues and eigenfunc-
tions of the spectral Laplacian —A on D have precise expression formula through Bessel
functions and thus the Dirichlet Green function K might be explicitly calculated. We
actually have the following result.

Lemma 2.5. Let D = D be the unit disc of R? and let K* given by (12). Then the
eigenvalues and the eigenfunctions solvmg the spectral problem (8) are described by double

index families {\n k}neN k>1 and {( b, k7 (2) ©)IneN k=1 such that

Mo =22 1, O1(@) = Tu(@ngl2]) An g cos(nd), 62 () = Jn(znrlz]) Ang sin(nd),

where

1 2
TA2, = ——— and wA%,=—"" VYn>1, 18
k= TEwon) M T %)
and J, denotes the first kind Bessel function of order n and {mn’k, k> 1} are its zeroes.
Furthermore, we have

K@y = > a2 (ol @olh ) + 60 @6H ) (19)

neNk>1

Proof of Lemma 2.5. The explicit formula of the eigenvalues and the normalized eigen-
functions of —A on the disc D are well-known, and for instance one can refer to Section



14 T. Hmidi et al. / Journal of Functional Analysis 285 (2023) 110142

5.5 of Chapter V in [17] for the proof. As a result, the formula (19) is an immediate
consequence of the identity (12). O

Remark 2.2. Let © = p1e??,y = pye’ € D, then by setting K(z,y) = G(p1,0, p2, 1), we
get from the expression (19),

Ka(xvy) :G(p1707p2an) = Z xnk SL(/he )(z)(J) (pg@ ) (20)
neENk>1
1<)j<2

= Z T 2An kIn (T, kp1) In (T kp2) (cos(nb) cos(nn) + sin(nb) sin(nn))
neN
k>1

= Z w0 2 AL L T (@0 k1) Jn (T kp2) cos (n(0 —n)).
neN
k>1

Straightforward computations yield

N Dp, G cos ) — 9y GEnl o 0p, G cosn — 0,G=-1
V. K (xvy) = <8P1Gsln0+ach059> ’ vyK (I,y) = (8P2GSH177+8 Gct?sn)

(21)

These identities will be useful later in the explicit computation of the linearized operator
at the equilibrium state, see the proof of Proposition 5.1.

2.2. Singular kernel integrals on the torus

In this subsection, we intend to deal with integrals with singular kernels of the fol-
lowing type

/K (0,m) f(n)dn, (22)

where T is the periodic torus (identified with [0,27)), K : T x T — C is a suitable
singular kernel, and f : T — C is a 2m-periodic function. This structure will appear
later when we will explore the regularity of the nonlinear operator in the rotating patches
formalism, see Section 4. The result that we shall present below is more or less classical
and is analogous to [33,55], and we shall provide a complete proof for the self-containing
of the paper.

Lemma 2.6. Let 0 < a < 1 and assume that there exists Cy > 0 such that K : TxT — C
satisfies the following properties.
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(i) K is measurable on T x T\{(0,6), 6 € T} and

C
[K(O.0) < —5=—, Vn#6€eT. (23)
|SIHT|

(ii) For each n € T, the mapping 0 — K(0,n) is differentiable in T\{n} and

Co

P —
‘aGK(Qv”?” ~ |sin0%77|1+0<’

VO £neT. (24)

Then the linear operator T given by (22) is continuous from L>=(T) to C*=%(T). More
precisely, there exists a constant Cy > 0 depending only on o such that

IT(llcr-o < Caloll flle- (25)

Proof of Lemma 2.6. We first prove that 7 (f) is bounded on T. For every 6 € T, thanks
o (23), we see that

Coll Il /| s < CuColf s

2

()6 |<Co||f||L<x>‘/| n

Next, for every 601,02 € T such that 0 < |f; — 03] < 7, it is obvious that

%|91 — 92| < |6i91 — ei92| = 2}Sin 91;02| < |91 — 92|

Set 7 £ |¢?t — ¢'%2| and define B, () £ {n e T : |251n(’7—59)\ = |e" — e| < r}. With

no loss of generality assume that r < % then we have

T - TG <| [ liE@ ]+ | [ 1l

B3 (01) B, (01)
S OO ORY
B3, (61)
2T+ Jo + Js.

Applying (23) together with a change of variables allow to get the estimate
dn

dn
Ji+ Jo <CO||f||L°°<‘ / Tsin(=0 +‘ / m)
B3 (01) 2 B3 (02)

1 dw J e
<CuColl | [ | < Cutol iy =01
0
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To estimate the third term J3, noting that for every n € BS,(61) and for any « € [0,1],

2| sin 91—7I+(1—2'€)(92—91)‘ _ |ei(91—7]) _ ei(l—*@)(91—92)‘
> |ei(91—17) _ 1| _ |ei(1—n)(61—02) _ 1|
> |ei(91—1’]) _ 1| _ |ei(91—92) _ 1| — |ei7] _ eiél‘ _ |ei01 _ 67;92
> Lle™ — €] = | sin 1= |

Therefore, applying the mean value theorem, (24) and the preceding estimate we find

|01 — 02

K(61,m) — K(02,n)| < CoCo———5——,
| ( 1 77) ( 2 T])| 0|sin n;01|1+a

Vn € BS,.(61).

Consequently, we obtain

0, — 6
I3 <CaCollfll L / @7 g—e|1|+a
Bs.(01) 2
02
<C, Collflle/“Tngdw

<CaCo| fllL=161 — b
Hence gathering the above estimates concludes the proof of (25). O
2.8. Special functions

The main task of this subsection is to recall Sneddon’s formula which is very crucial in
the spectral problem associated to the linearization of the vortex patch equations around
radial solutions that will be explored in Section 5. It allows in our context to derive a
suitable representation of the angular velocities from which periodic solutions bifurcate
from Rankine vortices. Before stating this formula, we need to remind some special
functions and notations (e.g. see [31]). First, the Gamma function I': C \ (=N) — C is
the analytic continuation to the negative half plane of the usual Gamma function defined
on {Rez > 0} by the integral formula

t*~ e tds.

I
oy

It satisfies the classical relation

I'(z+1)=2I'(z), VzeC\(-N). (26)
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On the other hand, for every z € C we denote (z),, the Pokhhammer’s symbol defined
by

(2) 2 z2(z+1)---(z4+n—-1), if n>1,
2. A
1, if n=0.

The following relations are straightforward

(Z)n _ M, (Z)n _ (71)77,1_‘ F(]. — Z)

I'(2) (1—2—-n)’ 27)

provided that all the right-hand quantities are well-defined. In what follows we intend to
recall Bessel functions and some of their variations. The Bessel functions of order v € C
is defined by

Ju(z) = Z M +m+ 1)’ larg(2)] < .

Next, we shall introduce Bessel functions of imaginary argument also called modified
Bessel functions of first and second kind, (e.g. see p.66 of [51])

)V+2m

I(2) = mZ:O M larg(z)| < (28)

[ 1R

and

ml,(2) — 1,(2)

K, (z) = 2 sin(vm)

, veC\Z, larg(z)| <.
However, when j € Z, K; is defined through the formula K;(z) = lim K, (z).
v—j

It is known that for v > 0 the zeros of the Bessel function J, are given by a countable
family {x, x, k € N} of positive increasing numbers with the following asymptotics

o= (k+%—Dr+0(k™"), k— oo

)

We also recall that for any real numbers c1,c2 € R, ¢3 € R\ (—N) the hypergeometric
function z — F'(c1, ¢g; cs; 2) is defined on the open unit disc D by the power series

F(ey,co5e3;2) = ZW$7

n=0

Vz e D,

where (z), is Pokhhammer’s symbol. The hypergeometric series converges in the unit
disc D. Assume that Re(cs) > Re(cg) > 0, then the hypergeometric function has an
integral representation as follows
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|z] < 1.

1
F(e1,c9;c3;52 2=l
( 1,€2,C3 ) F( /
0
When Re(e; + ¢2 — ¢3) < 0, the hypergeometric series is absolutely convergent on the

x) 2 (1 — zz) " da,

03 —C2

F(Cg)r( C3 —C1 — CQ)

closed unit disc and one has the following expression
F C3 — Cl)F(Cg — Cg)

F(Cl7 C2; C3; 1)

Now, we are ready to state Sneddon’s formula that can be found for instance in (2.2.9)

Ky, (p)dm

in [61], or
=415(ap) I, (b
O/p s(ap) I (bp) T.(p)

(24)-(25) in [54].
1,n,B,yeNandl<qg< f+v—2n+2. Then we have

Lemma 2.7. Let 0 < a,b
(29)

bxn k) o

i JB axn k
1 +1(33nk)

1
—J—i—;sin(%(ﬁ—i-’y—%z—q

where

A 1 7r 1—q

J£ —sin(Z(v—B8+4q)) | p " Us(ap)K,(bp)d
0
aﬁF(l—l— B“’ q)

_ B+7 q B— 7 q

= S §+q)F(1+ 1+ B+ 1) (30)
(31)

if a = b, it holds that
L1+ 2390 (g~ 1)

In particular,
242 qr(ﬁ+g+q)r(v—g+q)r(ﬁ ;+q)

J|a:b =

Remark 2.3. For the explicit formula of J stated in the formula (30)-(31), it is enough
to apply the following identities. First, for every b > a > 0, n, 8,y € N, ¢ <2+ 3 — 7,

(see for instance 6.576 of [31])

[ o 1stan i, (o)
0
_ y—B+gq
2 )F(1+B+;_q71+62 ,B+17b2)

T+ HE9rQ
2052H0—D (5 + 1)

Second, it gives that in the particular case of a = b, n, 8,y € N, 1 < ¢ <2+ — 1, (see

for instance 9.122 of [31])
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T(1 - =0T (1 4+ 20T (g — 1)
2qa2—q1"(ﬁ+’2}/+4)1"(,3*’2}/+4>

/pl“’lﬂ(ap)Kw(ap)dp =
0

3. Boundary equation of rigid periodic patches

This section focuses on the vortex patch motion to the gSQG equation (1). In this
setting, the solution takes at least for a short time the form w(t) = 1p,, where D; C D
is smooth and will be chosen close to the small disc bD (0 < b < 1). Then identifying
the complex plane C with R?, one might use the polar coordinates as follows, see for
instance [34],

z(t): T — 0Dy (33)
0 — R(0)e? = /b2 +2r(t,0)e?

We denote by n(t, z(t,0)) = idpz(t,0) an inward normal vector to the boundary dD; of
t

the patch at the point z(t, #). According to [40, p. 174], the vortex patch equation writes

Oz(t,0) -n = u(t,2(¢,0)) -n
= —0p [1/}(t7 Z(t7 0))]7

where ¥(t,2) = (—A)"1T20(t,2) is the stream function. Notice that

bt =(1,6)) = / K (=(t,6), y)dy.
Dy

Now we shall write the patch equation in the particular case of rotating domains D; =
e D with some Q € R, that is,

D=

2(t,0) = e 2(0) = "% (b* +2r(0)) et (34)

Then making a change of variables we deduce from Lemma 2.4 that

b(t =(1,0)) = / K2 (6125(6), ¢4 dy

- / K°(=(6), y)dy
D

In addition

Dz(t,0) = iQz(t,0) = i Qe /b2 + 2r(0)e?,

and
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8i2(t,0) - n(t, 2(t,0)) = Im (atz(t,H)Bgz(t,e))
0 (p).
Therefore we find the equation

Qr'(0) = —0p[¥((t,0))] (35)

= -0 | K“(2(0),y)dy.
/

Using the polar coordinates yields

21 R(n)
[Ee GOy = [ [ K (RO 0 pdpdn, B = VI 2. (30)
D 0 0

According to Lemma 2.3, we have the splitting
K(x,y) = K¢ (z,y) + K{'(2,y) = K¢ (z —y) + Ki'(z,y), (37)

where (z,y) € D? — K{(z,y) is smooth and we make an abuse of notation

a/2-1p(a
K§(z,y) = Kg(z —y) £ 47rF(1 f(%z)) |z —1y|a Tz iay|a' (38)
Therefore, we get due to the fact VK¢ (z,y) = =V, K§(z,v),
27 R(n)
9oV (r(0)) = / / VK (R(0)e™, pe'™) - 0p(R(0)e™)pdpdn (39)
0 0
27 R(n)
=/ / V. K} (R(@)eie,pem) - 9p(R(0)e™) pdpdn
0 0
27 R(n)
7/ / VK¢ (R(G)ew,pei") - 9p(R(6)e™) pdpdn.
0 0

To deal with the last integral term we apply Gauss-Green theorem,

27 R(n)
/ VK¢ (R(0)e™, pe'™) - 99 (R(0)e™) pdpdn
0 0
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z//VyKS‘ (R(G)ew,y) - Og (R(G)ew) dy

:/K3 (R(0)e™, R(n)e™) (= 0, (R(n)e'™)) - 9 (R(B)e™ )dn.
0

Consequently, we find

27 R(n)
ov(r(0) = [ [ V.KE (RO, pe™) - 0n(RO))pdp
0 2o (40)
- / K¢ (R(0)e™ — R(n)e™) (—i0y,(R(n)e™)) - 9o (R(0)e™) dn.
0
Hence the V-states equation reads as follows
F(Q,7(0)) 2 Qr'(0) + 09V (r(0)) (41)
= F1(Q,r(0)) + Fa2(r(0)) =0,
with
2
Fi(,7(0)) 2 Qr'(0) — / K¢ (R(0)e™ — R(n)e™) (-0, (R(n)e™)) - 0o (R(0)e™) dn
0
= Qr'(0) — /Kg‘ (R(G)ew — R(n)em) Im(&](R(n)em)ag(R(H)ew)) dn
' (42)
and
27 R(n)
Fy(r(0)) = / / V. K} (R(G)ew,pem) - 9p(R(0)e™) pdpdn. (43)
0 0

In the previous decomposition we recognize two terms: the first one Fj is the same
functional as in the flat space R? describing the induced patch effect, see (15) in [33],
and the second one F5 describes the rigid boundary effect on the patch.

4. Linearization and regularity of the functional F'

In order to apply the Crandall-Rabinowitz theorem stated in Theorem 6.1, we need
first to fix the function spaces and check the regularity of the functional F' introduced



22 T. Hmidi et al. / Journal of Functional Analysis 285 (2023) 110142

in (41) with respect to these spaces. We should look for Banach spaces X and Y such
that F': R x X — Y is well-defined and satisfies the assumptions of Theorem 6.1. Let
a € (0,1), m € NT and consider the m-fold Banach spaces

X=X,2 {f € C?(T): f(8) = bycos(nm), b, € R, § € T}

n>1

and

Y=Y, 2 {f €CV(T): f(6) = busin(nmé), b, €R, 0 € T}

n>=1

equipped with their usual norms. For ¢y < 1, we denote by B, the open ball of X,
with center 0 and radius e,

B, £{re X, :|rllx,. <€}
Recall from (39) and (41) that

27 R(n)

/
— 0. o 0 _in\ r'(0) o . i6
F(Q,r)=Qr'(0) —|—/ / V. K*(R(6)e", pe') (R(Q)e + R(9)ie )pd,odn (44)
0 0
=F(Q,r)+ Fy(r) =0,
where Q € R, r € X,,, and the functionals I, Fy are defined by (42)-(43).
Notice that Rankine vortices are stationary solutions and therefore
F(Q,00=0, VQeR. (45)

This can be analytically checked using the fact that the stream function is radial, which
follows from the rotation invariance of the Green function stated in Lemma 2.4 via the
following identity

VK (be?, pe) - (ie™) = b9y G(b, 0, p, ). (46)
4.1. Linearization
The next goal is to linearize the nonlinear equation (44) around an arbitrary small

state r. The computations below are formal that can be implemented from the Gateaux
derivative

O F(Q,r)h(0) = %F(Q, r + sh)
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They can be rigorously checked in the Fréchet sense. Denoting by B(r)(0) £ 9g(R(0)e®?),
and via straightforward computations based on (39) and (41)-(43) we get that for any

he X,
2 R(n)
8TF(Q’r)h(e):Qh/(aH/ / Vo K (R(0)e™, pe') - %(B(T-Fsh)(e)) _ pdedy
0 0
h(0) 7 2 rra 0 0
+ WO/ O/ (vxK1 (R(@)e , pe ’7) e ) B(r)(0)pdpdy

w0 h(0) i, h(n) ;
(g R (=B 0) - B)6)

Noting that

and
Oy (—if(me™) - 0 (g(0)e”) = 0,05 (f(m)g(0) sin(n — ), Vf,g€C",
we can rewrite the above equation as
8, F(Q,m)h(0) = [+ Vi(r)(0)] 1 (8) + Va(r)(0)h(B) + Va(r, h) () + Va(r, h)(6)

with

2w R(n)
MO 2 R0) [ [ K (RO, pe) - P pdpan,
0 0

and

(48)

(49)
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27 R(n)
Va(r) / (VKT (R(0)e™, pe'™) - €') - 0y (R(0)e™) pdpdn
0 0 (50)
o R(n) 0 )
+ VK ,pei") - O c pdpdn,
0/0/ (i
and
27
Va(r,1)(6) 2 [ VLK (RO), Rin)e™) - Qa(RO)h(r)dy
0 . (51)
- / K5 (RO)e — R(n)e™) La(h)dn,
0
. f - o (00 i hin)
Va(r,h)(0) & — | VL.K§ (R(0)e — R(n)e™) - (e =% — e —1=
! 0/ 0 ( ne) ( R(6) R(n)> (52)
x 8,00 (R(R(O) sin(y — 0) ) d,
where
a h(n)R(0) sin(n — 6)
La(h) £ 0,09 ( 20 ) (53)

4.2. Strong reqularity

This subsection is devoted to the regularity of the functional F' described by the
formula (44). One gets the following result.

Proposition 4.1. Let o € (0,1), there exists eg > 0 sufficiently small such that the fol-
lowing statements hold true for any m € NT.

(i) F:R x Be, = Yy, is well-defined.
(i) F:R x Be, — Yy, is of class Ct.
(iii) The partial derivative 0q0,F : R X B¢y — L(Xm, Yim) exists and is continuous.

Proof of Proposition 4.1. (i) We shall use the expression of F' detailed in (41), (42) and
(43). First, notice that the regularity of @ € T +— 7/(6) is obvious since r’ € Y,, whenever
7 € Xp. Second, since |||l c2-a< € < 1, then 2 = R(0)e? = /b2 + 2r(0)e? is in the
compact set B(0, /b2 + 2¢9) C D. Next we shall check the regularity of the second part
of Fy given by (42). Set
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FLa(r(®) 2 [ K5 (RO ~ Riue™) (= id,(Rin)e™) - 00 (RO)") d
0
= / K§ (R(0)e” — R(n)e™) (— idy(R(n)e™))dn - 9 (R(O)e).  (54)
0

Since r € C1~%(T) then using the law of product we deduce that
0T s dp(R(0)e”) = (%e“’ +z’R(a)ei") e C1=o(T). (55)

Now, to analyze the regularity of the first term in the right-hand side of (54) it suffices
to combine Lemma 2.6 with the estimates below

Vo £ eT, |K§(REO), Rne™)] < Clsin 2] " (56)
and
0 . . o— —(14a)
D0 KE (R(O)™, R(m)e™)| < Csin 52| (57)
in order to get
2T
0cT /Kg (R(0)e™, R(n)e™) ( — i, (R(n)e™))dn € C*~*(T). (58)
0

Thus the classical law of product gives in view of (54), Fy1(r) € C'=%(T) and then
Fy(r) € C1=%(T). Now, let us check how to get (56) and (57). The first step is to show
the following

Vo,neR, Cylsin 0%"‘ < |R(0)e? — R(n)e™| < Cs |sin 9%” , (59)
with some constants 0 < Cy < Cs. To do so, we write
R(0)e® — R(n)e™ = be™ (eiw*”) - 1) + ((R(G)ew - bew) - (R(n)ei77 - be”’)),
196 (R(0)e™ — bet®)| < |i/b+2 f;fi' < bei) =
and
L e — 1] = 2sin 2| < |0], for 0] <, (60)

that we combine with Taylor’s formula in order to get
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01’ sin 977"‘ < |R(0)e — R(n)e™| < Cg’ sin 0%"

; V0 —nl < (61)

For the general case 8,7 € R there exists a ko such that |0 + 2kom — 7| < 7 and by
periodicity we infer R(# + 2kom)e’(+2k0™) = R(#)e?, and then (61) applies, leading to
(59). Therefore using (59) and the explicit formula of K§ given in (38), we find (56) and
by differentiation

|06 K5 (R(0)e™, R(m)e™)| < [VoKG (R(O)e™, R(1)e™)||96 (R(0)e”)|

—(1+a)

<Csin9%"' ,

achieving (57). The next task is to show that the functional F» given by (43) belongs
to C'=%(T). Recall that (55) holds true, then to get the suitable regularity for Fy it is
enough to show that

21 R(n)
0T o Fyy(r(0)) 2 / / VL K (R(O)e, pepdpdy € C1-(T).  (62)
0 0

Since K¢ is smooth inside the domain D? as in Lemma 2.3 and the patch is far away the
boundary 9D then it is plain that F 1(r) € L>°(T). To establish the Hélder regularity,
we consider two points z; = R(0;)e?t and x5 = R(62)e'?2, and write by the mean value
theorem and the boundedness of V2K¢ in any compact set of D?,

21 R(n)

|[Fo1(r(01)) — F21(r(02))] < //|V K{ (21, pe™) — Vo K{ (22, pe™)|pdpdn
0 0

<z — 29 / // V2K (ka1 4 (1 — K)x2, y)|dyds
0 B(0,vb?+2¢0)

<C|R(61)e™ — R(62)e™|, (63)

where C' > 0 is independent of x1,xy. Therefore, applying (59) gives that F,(r) is
Lipschitz and consequently it belongs to the space C'~® achieving the proof of the claim
(62). To sum, we have proven that the functions § € T — 9p¥(r(0)), F(2,7(0)) belong
to C1=%(T). It remains to check the symmetry for these functions in order to be in the
space Yy,. According to the first line of (41), it suffices to show the symmetry for the
function 8 € T — 0p¥(r(0)).

Now we want to show that 9p¥(r(0)) and F(€,r(0)) has the series expansion as in
Y. In light of (36), statement (i) of Lemma 2.4 and the fact that R(—n) = R(n), Vn € R,
one obtains
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*(R(0)e™", R(n)e™™)pdpdn

I
Oty Tty Tt
o\g o\
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3
=
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=
=

which implies that
0)) = Z cncosnf, with ¢, € R.

Thanks to the statement (ii) of Lemma 2. 4 the fact that R(n) = R(n + 2Z) for every
7 € R and the change of variable n — 7 + we deduce by elementary operations

7 R(n)

( 9—}-2” //KO‘ 9+2’T) UO+3T) R(n)e”’)pdpdn

27 R(n)

_/O/ RICEED) , R(n)é’ ’7+m))pdpd77
(r(6)

Thus

U(r(h)) = \II(T(H + 2%)) = fcn cos (n@ + 2”7”)
k=0
+o00

= Z c,L(cos(nG) cos (222 — sin(n#) sin (%))

k=0
By the uniqueness of Fourier coefficients, we infer that cos (2"7”) =1 and sin (2”7”) =0.

Hence

+oo
U(r(f)) = Z Cnm cos(nm@), with ¢, € R.
n=0

Consequently 9p¥(r) € Y;,, and therefore F': R x B, — Y, is well-defined.
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(if) It amounts to showing that the partial derivatives doF and O, F exist in the
Frechet sense and they are both continuous. For 0qF, it is obvious to see that

aQF(QaT')(a) - rl(e)a

and thus OqF is a linear bounded operator from X,, to Y;, and is independent of €.
Then we only need to check that 9, F(Q2,7) € L(X,,,Ys,) and it is continuous. In light
of (48)-(52), we have the decomposition

O F(Q,r)h(0) = [Q+ Vi(r)(0)] B (0) + Va(r)(0)h(8) + V3(r, h)(0) + Va(r, h)(6). (64)

For the first term on the right-hand side of (64), we may argue as for the estimate of
09U (r(0)) developed in the preceding point (i), leading to

271 R(n)

0 — / / (VoK) (R(0)e™, pe') - " pdpdn € C*~*(T),
0 0

and thus combined with the fact that R~1(0) € C*~*, we deduce from the product law
that

Q@+ Vi(r)h'[ler-a S 1B lcr-o + [Vi(P)llcr-a [l c1-a
S [1hllgz-e (65)

For the second term Va(r)h, described in (50), one easily obtains
Va(r)hllgi-e < Cl[Va(r)llcr-o|[hllcr—o-
To check that Va(r) belongs to C1=%(T), it is enough to show that

271 R(n)

0 — / / (VﬁKf‘ (R(@)eie,pei”) -eie) - O (R(G)eie)pdpdn € C'T(T),
0 0

since the treatment of the remaining term in (50) is quite similar to V4 (r). This latter
term is easily estimated from the product law since KY' is highly smooth inside the
domain D2. For the third term V3(r, h) given by (51), one can easily estimate as before
the first term connected to K{':

27
6 / VLK (R(0)e?, R(n)e™) - 05 (RO ) h(m) dn|| < Cllhl| .
0 Cl—a
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As to the remaining term in V3(r, h), noting that
La(k) =T (9, (3 e™) 8 (R(0)e7)),

one finds by using (55), (56), (57) and Lemma 2.6,

2m
0 / K¢ (R(0)e™ — R(n)e™)La(h)dn
0 Cl-a
2
< /ngww”—meﬂm(%xfym 96 (R(8)e ™) [ o1-
0 Cl—a
S lhlier

Combining with the above two estimates leads to
[Va(r, h)[|c1-a < Cllhl[ca (66)

Now we focus on the last term V4(r, h) given by (52). In view of (47), we write it as

2
Va(r h) = / H(0,n)(i0,(R(n)e™))dn - (99 (R(0)e™)),
0
with
00 & 0G0 - ) (-l o

From the mean value theorem we infer

R(0)

i0 h(6 in h
o0 h(0) _em%( < ClO —nl[[hllcr,

and since h and R are 27-periodic functions then we can argue as (59) in order to get

ew%—emm‘gC

sin ‘%ﬁ‘ I1h]lcs. (68)
Combining this with (38) and (56)-(57) allows to get

[ired

[Pllo

|H(0,n)] < C |99 H (0,m)| < C Vn#60cT.

Applying Lemma 2.6 and (55), we derive that
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IVa(r,h)lc1-a < Cllhllcr (69)
In conclusion, gathering the above estimates, we prove that
10rF (2, 7)h|[c1-a < C||h]l g2,

which implies that 0, F (2, 7) € L(Xm, V).

The next step is to prove that for given Q € R, 9,F (£, r) is a continuous mapping
taking values in the space of bounded linear operators from X,, to Y,,. In other words,
we will show that, for every ry, 1o € B, C Xon,

sup  ||0-F(Q,m1)h — 0. F(Q,r2)h|ci-« — 0, as ||r1 —re||ce-« — 0.

IAllg2—a <1

Thanks to (64) and the algebra structure of Holder spaces, this can be guaranteed by
the following continuous result that as ||r1 — r2]|gz—« — 0,

2 4
DoIVi(r) = Vira)llor-e + sup Y IVi(ri,h) = Vi(ra, h)[[oaa = 0. (70)

o Ihlloa-a<1523

To prove the continuity result (70) regarding Vi, given by (49), we proceed first in a
similar way as in the derivation (40), by writing

27 R(n)

Vi(r)() =R™*(0) / / (= VK& + V. K{) (R(0)e, pe') - e pdpdn
0 0

=
S

VoK (R(0)e', pe'™) - ¢ pdpdn

I
E‘ .
=
O\L\‘;
l:\lﬁ o\

(R(G)ew — R(n)e') (i0,(R(n)e'™)) - e dn

_|_
E‘ -
=

S

3

A V11<T)(9

S~—
+
S~—"
=~
[\v]
N
S
=
—
>
S~—

(71)

3
>

with R(6) £ /b2 + 2r(). The continuity of the mapping r ++ R is immediate. Then it
remains to explore the continuity of the mappings r — Vi1(r), Vi2(r). With the notation

R;j(0) £ \/b2 +2r;(0) one gets

27 R1(n)
Vii(r1) = Vii(ra) =/ / VoK (Ri(0)e”, pe'™) - € pdpdn
0 Ra(n)
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21 R2(n)

—I—/ / (Vfo‘ (Rl(ﬁ)ew,pei”) — V. K? (Rg(e)em,pei”)) e pdpdn.
0 0

In view of the fact that |R1(0) — R2(0)] < % and as K¢ is smooth in D?, we

can use the mean value theorem in order to get
Vii(r1) = Vii(re)l|oe < Cllr1 — raf|pee.

Similarly, by |R} () — R5(0)] < C’% we obtain

[Vi1(r1) = Vir(re)ller < Cllry = r2flcr-
Hence we find by Sobolev embedding,
[Vii(r1) = Vir(re)[lcr-a < Cllr1 = raflo2-a.

For Vi, defined by (71), we write

27
Via(r1) — Via(re) = /H(Q, n) Oy (iRl(n)ei”) -edn

0
27

+ /K(‘)l (RQ(Q)ew — Ry (n)e”’) Oy (iRl (n)e”’ — iR2<77>6m) e dn
0

£ J1+ Jo,
where
H(0,n) £ K§(R1(0)e” — Ri(n)e™) — K& (Ra2(0)e™ — Ra(n)e™). (72)

To estimate J; we proceed as in the estimate of (54), leading to
12l gr-a < CllOy (Ru(m)e™ = Ra(n)e™) ||z
< C|lr1 —ra2llor-

As to the first term J;, we will apply Lemma 2.6 to control the above right-hand term.
Note that

|(R1(6) — Ry(0))e" — (Ri(n) — (m)e™| < |9 ((R — Ry( ))ew)Hme — 17

<
<Clr — 7’2|\cl|9 -l

which implies that (owing to (61) and the 2w-periodicity of R;)
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1B (6)e'® — Ry(m)e™™] — | Ra(6)e” — Ro(m)e|
< |(B1(6) — Ra(6))e™® — (Ra(n) — Ro(m))e™|

< Cfry = ralor [sin aan‘ :

Using (38), (59), (73) and the following inequality
|A® — BY| < Co(A* '+ B* ")|A—B|, VA,B>0,

applied with A = |R1(0) — R1(n)|~! and B = |R2(6) — R2(n)|~* we obtain
. —T2flct
H(8,m)| < 07'” —Tzllor
sin =57 |

On the other hand, straightforward computations yield the splitting

O H(0,1) = VK& (R1(0)e™ — Ri(n)e™) - 9p(R1(0)e™)
— V. K§ (R2 (0)e? — Ra(n)e™) - 8y (Ro (G)ew)
= Hl(ean) + H2(9,77) + H3(6777)
where
(R1(0) — Ra(0))e™ — (Ri(n) — Ra(n))e™
[R1(0)e® — Ry (n)e™|o+2

Ro(0)e?® — Ry(n)e™
|R2(0)e? — Ro(n)etn|ot?

H3(0,n) £ acq 99 (R1(0)e”) - (R(0)e — Ra(n)e™)

|R1(0)e — Ry(n)e™|*t2 — |Ry(0)e’® — Ry(n)e'|*2
|R1(0)e® — Ry(n)ei|+2|Ry(0)e'® — Ry(n)ein|o+2

Hi(0,n) & —acq - Oy (Rl(Q)ew),

H2(0377) = —QClqy

- Oy (R1(9)ei9 — Ry (0)6”),

For Hy and Hj, using (59) and (73), we readily infer that

1 — 7ol
[H1(0,m)| + [H2(0, )| < Cmy Vo #neT.

2

Concerning the last term Hjs, by virtue of the following inequality

|Ak+a _ Bk+a| < Ck,a|A _ B|(Ak+a71 + Bk+a71)7 A B>20,keN,0<a<]l,

and using (59) and (73), we find

(75)
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[r1 — rallon
‘H3(9777)|<0m7 Vo #neT. (76)
2

Putting together (74) and (76) leads to the wanted estimate of 9pH (6, 7). Hence, the
kernel H satisfies the required assumptions in Lemma 2.6, and consequently,

1T1llor-o < Cliry = r2ller 10y (Ra(m)e™) [ < Cllry = r2flen.

Hence, we conclude that r € X,,, — (h +— Vi(r)h) as a mapping from X, to £L(X,,, Y)
is continuous.

Concerning the continuity of r — Va(r) introduced in (50) it can be checked in a similar
way to V; discussed before. Therefore we will skip it.

Concerning the continuity of r — V3(r, h) given by (51), we start with the first term

i & / Vo K{ (Ri(0)e”, Ri(n)e™) - 95 (Ra(6)™ ) h(n)dr
0

s

- / VLK (Ro(0)e”, Ro(n)e™) - O (Ra(0)e™) h(n)d,
0

with R;(0) = /b%+ 2r;(0), j = 1,2. It is easy to see

27
Jy = / VoK (Ry(0)e", Ry(n)e™) - (ae (R1(0)€'®) — 4 (Rg(@)ew))h(n)dn
0

+ / (VIKf(Rl(H)ew,Rl(n)ei") ~ VK (Rg(@)ew,Rl(n)e“’))
0

- Op (Rg (9)6i9) h(n)dn
27

+ / (VIKf‘(RQ(H)ew,Rl(n)em) — V. K¢ (R2(9)ei97R2(n)ei"))
0

- O (R2(9)6i9)h(’r})d7]
£ Ju1+ Jao+ Jus.

For Jy,1, we use the following estimate

196 (R1.(0)e™) — 0 (Ra(0)e™) o1 < [|R1 = Rallcr-a + C||Ry Hlor-o|r) = 15llor-«
+C|IRT = Ry eIl cra
< Cllr1 = raflo2-, (77)
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and argue as (54) in order to get

cr-o < Clhl|pelry — r2llc2-a.
For Jy2, we apply the mean value theorem and the smoothness of K¢ inside D?
1 27
Jio = //89 (Rae™) V2K1 (kRye® + (1 - K)Rz)ew,R1€m)>
0 0
. (Rlel — Rye’ )h(n) dndk,
allowing to get
IMazllore < Clhllo=lRs(0)? — Ry(0)elc1-o
< Clhllzeelrs = raller
The term J4 3 can be analogously treated as above to obtain that
[Ja,3llor-a < Cllhllz= | Ry(m)e'™ — Ra(n)e™ || Lo
< Ol Lo llre = 2l Lo

Hence from the preceding estimates we obtain the continuity for Jy. For the second term
in V3(r, h) given by (51), we consider

2 2

Ji 2 [ K (RO, Baln)em) La, (b~ [ Kg (Ro(0)e”, Ra(m)e L (k)

where for j =1, 2,

)R;(0) sin(n—0)
Ly (1) & 8,0, (H0sta=0))

Notice that

2 2
Js = [ H0.0) Lay(dn+ [ KG (Ral0)e, Ral)e™) (Lo, () — Ly () g
0 0
£ Js1 + Js2,

where H is the kernel function defined by (72). For Js 1, it can be estimated following
the same lines as Jo, leading to
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27
saller-e < [ H@.m0, (%257) dn] . 100(Ra(@)c) s
0

< Clhlerlr = r2ller

For the term J5 2, by using (47), (77) and Lemma 2.6, we similarly get

2
[52llcr-e S H/KS‘(RQ(Q)ew — Ry(n)e™)o, ( bl )dnH 109 (Rre” = Roe™)|gr-a
0

27
w0 [ 5 (R — mamenya, [(e) - (M) an
0

< C|hllerlry = 2oz

Cl—«a

Hence, based the preceding results, we claim that V3(r,h) as a mapping from X,, to
L(X ., Yin) is continuous.

Now we shall investigate the continuity estimate of the last term Vy(r, h). In view of (47)
and (52), we need to consider

S /ﬁl(o’”) (10, (Ra(n)e™))dn - (39 (R1(9)ei9))
0
2
B / Ha(0,m) (10, (Ra(n)e™))dn - (9o (Ra(6)e”) ).
0

with R;(#) = \/b* +2r;(#), j = 1,2 and

Hj(0.n) & VLK (R;(0)e" — Ry(m)e™) - (40— e )
Observe that

2T

Jo= [ (B(6,) = Fa(6.0)) (50, (Bs (n)e™)) - (30 (R (6)c”))

0

2m
+ [ Ba0,m) (10, (Ra(me™) 0, (Ralm)e ) dn- (20 (Ra(0)e”) )
0

+ / Hy(0,n) (i, (Ry (n)e™) ) dn <3o (R1(0)e®) — 05 (Rg(@)ew))

£ Js1+ Jo2 + Jo3- (78)
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Concerning the terms Js 2 and Jg 3, we may proceed in a similar way to Js 1 and Js 2,
and one gets

< C|hllerlr = r2ll o2

For Jg,1, we first notice by the product law

[saller-e < €| [ (Ex@.n) = Halo,m) (0, Ramem)as] .
0

and we shall use Lemma 2.6 in order to tackle the above right-hand term. Direct com-
putations yield the following decomposition

H,(6, 1) — Ha(6,7)

= (VK8 (Ra(0)e”, Ri(m)e™) = VK8 (Ro(8)e”, Ra(m)e™)) - (45 — e 5t )

i ; i0 h(0 in h i0 h(0 in _h
+ V. K§ (Ra(6)e™, Ro(n)e™) - (ew ks — e RO — 1 2OL + ein ] ;gg))

£ 81(97 7]) + 82(97 7])
Noting that

— Y1 + T2 — Y2
|1 — y1]@t2 “ag — yo|*t?

_ ( _ ) ‘xl — yl‘a+2 — |$2 - y2|a+2
Tl |z1 — y1]|*T2[mg — ya|ot+?

Vng(le - yl) - va((Jl(l? - y2) = —QCq

(x2 —y2) — (1 — 1)

+ ac, (22 — ya|ot?

)

and using (59), (68), (73) and (75), we have that

hl|c 1
si0.) < cllledr—rzler g Ly e
’SlnE’"’

Using mean value theorem and the 27-periodicity of R; and h, we find

ePn0)  eh(n)  ePn0) , eh(n)
m@ ) ~ F® T R | < Clhllolln = rafer

sin 51 (79)
According to (57) and (79), we obtain

[r1 — ol |l
60— 7]| ’

|S2(6,n)] < C V9#£neT.

’ sin
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Consequently,

[r1 = raflor[Ihller

|sin G_T"|a ’

[Hy (0,m) — Ha(0,m)| < C Vo #neT. (80)
Now we intend to estimate 99.S1(0,n) and 9ySa(r, ). We see that

0951(0,n) = (viKg (R1(0)e™ — Ry(n)e™) - 0p (R1(0)e™)

(06 — Ra()e) D)) ) (45 - )
+ (Vo K§ (R (9)e®® — Rl(n)ei") - V. K§ (Rg(ﬂ)eia - Rg(n)ei"))
-8y (eio 121(?(3)) .

Note that for every x = (2!, 22) and y = (y',y?) satisfying = # v,

2 1o g 10
VK3 = =y (0 )

4 elat2)ca (z' —yt)? (z' —y")(2? —y?)
|z —ylo+t \(a! —y")(2® —y?) (22 —y?)? ’
and
C
Bch _ <
‘Vm O(x y)| |£L’—y|o‘+3,

then using (59) (and its suitable variation), we know that

a+2)

V2K (R(O)e — Rln)e™)| < O sin %52~ (81)

and for every « € [0, 1],
’ViKg‘ (/{(Rl(ﬂ)ew — Ri(n)e") + (1 — k) (Rg(@)ew — Ra(n)e’ ))‘ < C’{ sin %= 2 (at3),

Thanks to the above estimates, together with (59), (68) and (73), we conclude that

V2K (R1(0)e” — Ri(n)e™) — V2KG (Ra(8)e” — Ra(n)e™)| < C%
Sin 5

and

[r1 = rallor Al o
09— 77‘1-§—o¢ ’

|69SI (ean>| < ¢

Vo #£neT.
| sin
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On the other hand, by direct computations we get

99S2(0,m) = 99 (R2(0)e™) - VZK§ (R2(0)e™ — Ra(n)e™)
( eh(O) _ eh(n) _ €’h(0) e"'"h(n))

R1(9) Ri(n) R2(0) Ra(n)

. . ei@ ei@
VLK (R0~ Fala)e™) 00 (R~ )

and

R0 ci0h(0
9 (25 — i) | < Clikller s = Tl )

Together with (79) and (81), we infer

lr1 —r2llon||hl o
10952(0,m)| < Cq iyt
’bln ’

It follows that

1 — rallor[|Allcr
0— 0—n |1+Oc

|89 H1(0,1) — 89 Ha(0,1)| < Ca (83)

| sin %5
At this stage we can use (80), (83) and Lemma 2.6 to show that
1 e1llcr- < Cllhller]lrs = raflor
Hence from (78) and the above estimates, we have
[ J6llcr-o < Cl[Rllcr]lry = 7rallo2-e,

which ensures that r» — (h — Vy(r, h)) is a continuous mapping from X,,, to £(X,, Y ).
In conclusion, we have established that r — 9, F(Q,r) is a continuous mapping from the
small ball B, of X,,, to L(Xp,, Yim)-

(iii) We shall compute 9q 0, F (€2, ) and prove the continuity of this function. Let r € B,
and h € X,,,, then in view of (48) one has

900, F (0, 1)h(0) = I (6),

which is independent of r and Q. Hence, the continuity of dg0, F' (€2, r) is obvious. This
concludes the proof of the Proposition 4.1. O
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5. Spectral study

In this section we focus on the spectral study of the linearized operator of F(£,r)
around zero, which is denoted by 9,F(,0). It turns out that only some discrete values
of Q are allowed to generate a non-trivial kernel. In addition, we will see that all the
spectral properties required by Theorem 6.1 are satisfied at least for large symmetry m.
The main result of this section reads as follows.

Proposition 5.1. Let (o, b,m) satisfy one of the cases (4)-(5)-(6). Then the following
statements hold true.

(i) The kernel of 0,F(£,0) in Xy, ds non-trivial if and only if Q = Qf, . for some
¢ e NT with

?nb:*‘/l(o)*amb

A 2 a—2 1 20— 2 m,
Z Lo,k Jl o, k

.k JTQnJrl(acm,k)7

k>1 k>1

and in this case, it is a one-dimensional vector space in X,, generated by 6 —
cos(fm@).

(ii) The range of 0-F (27, 1,,0) is closed in Yp, and is of co-dimension one. It is given
by

R (8, F(Q4,,,0)) = {7‘ e C'(T):r(0) = Z ay sin(nm), a, € R}.

n>1
n#l

(iii) Transversality assumption:
D00 F (0 5, 0) (cos(bmb)) & R(O,F(,4,0)).
As one can easily observe, the proof of Theorem 1.1 is a direct consequence of Theo-
rem 6.1, Proposition 5.1 and Proposition 4.1.

The proof of Proposition 5.1 will be done in several steps through the subsections
below.

5.1. Analysis of the linear frequencies

Before proceeding forward, we collect some properties on the asymptotic behavior of
the sequence {Qg ,}m>1 With respect to m and a.

Lemma 5.1. We have the following results.
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(i) Let (o, b,m) satisfy one of cases (4)-(5)-(6) with m* = m*(c,b) € NT (a rough

bound is m* < logb(log 1__1(671%@)1)) and o* = a*(b) > 0 a small number.
Then the map m — Q7 is strictly increasing. In addition, for any m > 1 and
be (0,1),
. o m—1+ b2m
L e e
and

2l 2 T/ PMK 12 (bp) K o
- 2512 (RO B, g,
0

(ii) For a,b € (0,1) fized and m € N large enough,

20-17(1 — @)

o a—1 1
Onb = e ) " +0 (55=) - (86)

m3— o

Proof of Lemma 5.1. (i) By using (84) combined with Sneddon’s formula (29) and (31),
we have

r(1—a)l(1+2) i ( )
— = P M d
V1(0) b2 o7 (1 — 2)I(2 % sm 5 /P p, (87)
0
and
2 . aTm [ a— 2 s (o 7 a— m(bp) m(p)
= 25 (5F) [ 0 Kooty 2 sin(eg) [t 00,
9 0
SRS I -
b2 =oT2(1 - §)T(m+ 1 ) R A
0
1 2
= ;)b*av(n,)b’

where I,,, and K,, are the modified Bessel functions introduced in Section 2.3.
In order to show that €2,  1s strictly increasing in m, we shall analyze the monotonicity
of the sequence {am,b}mZL Consider the Wallis quotient defined by

I(m+ %)

Wo(m) = m,

then we easily see that
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1) 20(—111(1 — Oé)

m _
Gmb = para(1 - 2)

Wo(m).

41

(89)

Straightforward computation based on the identity I'(1 + z) = 2I'(z) allows us to get

l—«a

1+m—3

Wo(m+1) —W(m) =— Wo(m).

(90)

In particular this implies that {W,(m)}m>1 and {ag)b}mgl are strictly decreasing. Now

let us move to the analysis of afj?b. Recalling from (28) that

fo%e) m—+2n
Z G2
= nl(m+n)
and (e.g. see 6.22 (5) of [63])

—+oo
K, (z) = / et cosh(mt)dt > 0, Yz € R,
0

we see that
I, (bz) < ™1, (), Ve>0,0<b<1,
and
I (2)K, () 20, Vx>0.

A refined version of (92) is that for all z > 0 and 0 < b < 1,

Ln(b2) = (0™ = (@) (), with 0 < 7y (2) < ™ min {1, 22},

which can be easily seen from the following formula

o0 o (%x)m—i-Zn
Ly (bx) — b Iy (x) = — b — T ) =
(ba) (@) ;( )n!(m+n)!
_ _33_2 = (b — pmr2n+2) (3a)mt2n
4~ (n+DI(m+n+1)I
Hence, we infer that
(oo}
0<a?, = 2sin(Z)W™ | o210 (bp) Kon(p)d
SOy = ﬂ_Sln( 2 ) p m(bp) Km(p)dp

0

(91)

(93)
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2 : QT m r o —
= —sin(%)b° /p i (p) K (p)dp

T
21 22
2ol —al%). (94)

™
rEra-5)=
(50 2) sin(7§)
we get
@ ) _ 2 . an meF SI'l—a) I'(m+3) 95
O S Qg = S R o OT(m+1-9) (95)
N($ra - a)
= —sin(2r)p*m 2 Wo(m)
2 21-eT(1-¢)
20710 (1 — @) 5
= @ b mwa(m)
P(i-3)
For the remainder term afj?b) , we can show from the second inequality of (93) that
V8 € (0,1), Tmp(p) <O (55)"20",
combined with (32) it yields that for every ¢ € (0,1 — ),
4 b2m 7
(22) a7r 146
0< ay,y <= (4m5/251n7/p°‘ I, (p) K (p)dp
0
é b2m 'n(a_ﬂ') F(QTH)F(TTL + OCTH)F(I - — 5) (96)
T (4m)o/2 70 2 T2 a0D(m 4 1 — 2E(1 — 22’

which will be useful in the sequel. Notice that {ag)b} is positive and {W,(m)} is positive
and decreasing, then

(2)

) p2m2e—1T(1 — q)
m+1,b - ( ) =

Qb F= @ Wa(m).
o I2(1-3)

(
o m,
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Thus in combination with (88), (89) and (90) we obtain

20T (1—a) 1-a p2m2e-11(1 — q)
a awﬁ(m)+ o]
20-I1T(1 —a)  b@

SOI?2(1-2) 1+m-—%

Am4+1,6 — OUmb < - wa(m)

%om(_a_ayu1+m—%w%ﬁﬁ.

Now, we intend to check the monotonicity of {cm p}m>1 for fixed «,b and for m large

enough.

Since for fixed o, b € (0,1), lim
m— 00

N such that o — 1+ (1 +m — $)b*™* < 0 for every m > m*, thus we have

(m+1)b*™ = 0, there exists a constant m* = m(a,b) €

Vm>=m*, my1p — @mp <O0.

On the other hand by using the inequality mb?™ < (fﬁgb)bm, Ym > 1, we infer

(=) + (1 +m =" < —(1—a) + (1= § = ;555)b"

then we may choose m* < @ (log 1_%_1(;71‘;@),1) This gives the condition (5).
Next, we shall check the condition (4) dealing with the monotonicity of {ay, p}m>1 for
fixed o € (0, 1) but small b. For this aim we introduce the function
p(m) 2 (1+m— 2™+, m e [1,00).
Differentiating in m gives

¢’ (m) = p*mte (1 +2(logb)(1 +m — %))

We can observe that if ¢’(1) < 0 then ¢'(m) < 0 for any m > 1. Let b* € (0,1) be such
that

1+2(logh*)(2— 2) <0. (97)

Then for any b € [0,b*] and m > 1,

Fix b* £ | /2=% then the condition (97) becomes
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1 +log(21:%)(2 - 5)<0.
This inequality holds true for any a € (0, 1). Finally we get the following

Va € (0,1),b€ (0,0),m =21, ami1p — mp <O0.

The last point to discuss is (6) related to the monotonicity of {cump}tm>1 for fixed

b e (0,1) and small a. In view of (89), (94) and (95), we have

27 M(1-) 1 5, 02
amb—‘TﬁTtgr(az—b J¥a(m) + i

(98)

By choosing 6 = % in (96), we infer that (under the additional constraint a € (0, 1))

a (22)| é b>m Sin(M)r(%+%)F<m+%+%)r<%_a)_
w {@mn  E Tn T- )NG - 9)
Applying Gautschi’s inequality
s TDx+1) _
1 1-s 1 1
Vo >0,Vs e (0,1), = <7F(x+s)<(x+ )
we deduce that for any m > 1, a,b € (0,1),
(1+m)et . I'(m+a) o ma—1
mb=1 T T(m+b)  (m+ 1)1
leading to
lma—b F(m + a’) < 2ma—b.
S Tt h) S
It follows from the right-hand side inequality of (100) that
Fm+$+1
¥m > 1,Ya € (0,1), —jﬁi—é——§2<2nﬂ_5
m+q-73)

Inserting (101) into (99) yields for any m > 1, a € (0, 3),

I+ HrG - a)
923/2— al“(% %

(22) b2m
o, p| < m sin( %)

Cob*™
< o3 Q,

(99)

(100)

(101)

(102)

with Cy an absolute constant. On the other hand, by applying the right-hand side in-

equality in (100) we infer
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¥Ym > 1,Va € (0,1), Wy(m) < 2m>~ 1L (103)

Combining this inequality with (90) we deduce that

-«
2(14+m — §)ml-«
1
8m2o

Vm > 1,Va € (0,1), Wo(m+1) —Wy(m) < —

(104)

<

Putting together (98) with (102), (103) and (104), allows us to get for any m > 1,«a €
(0, ),

—9 2
Omt1b — Omp < —C1me™ 7 + C2b™™,

for some absolute constants Ci,Cs > 0. Therefore, for fixed b € (0,1) we can find
m =mm(b) € N such that

Vae (0,%),Ym>m, ami1p — Omp <O0. (105)
By virtue of (98) we may write

_ (22) 1 o
am’b—vm(a)—i-am’b, V() = Ry (b’l b )wa(m),

which can be decomposed as follows

m(0) + om(a). (106)
Using the mean value theorem together with (102) yield

Vo€ [0,3], Yme 1, m+1], |om(e)| < Csa, (107)
for some constant C3 = C3(b) depending only in b. It is obvious that

1_b2m
2m

V,n(0) =

According to [21, Proposition 15], the sequence {V,,(0)},,>1 is strictly decreasing in m.
Then we can find € = £(b) > 0 such that

Vm e [1,m], Vmt1(0) —V,,(0) < —e.

Combining this inequality with (106) and (107) implies
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Vm € [1,m], amt1p — @mp < —€ + 2C30.
By taking o* £ ﬁ, which depends only on b, we get
Va € (0,a%), Vm € [1,T],  ®mi1,b — Qmp < 0.
It follows from (105) that
Va € (0,a"),Ym =1, ami1,p — @mp < 0.

This concludes the proof of the monotonicity.
Let us move to the computation of hm Qg - Putting together (98), (102) yields

1— b2m
2m

lim QAm b = %(1 - bzm)WQ(m) =
a—0

For —V1(0) given by (84), by virtue of (87), one can expect that

a—0

lim (—V4(0)) = % + 2 fim (sm (%5) 7Op 0('O)dp).

In light of (91), we observe that

I]_(bil)‘) 1
< < gbz, Vo>
0 To() Sbx z=0
Then we use Remark 2.3 and (26) to get
T bp K bl
N Y Ry A e
0 0 (108)
br2(1+ 2) o o 9
= ZF(1+ %1+ $52;0%).

Note that the hypergeometric function F(1+ §,1+ §;2; :b%) is a convergent series for
every o € (0,1) and b € (0,1), and it converges to F(l7 1;2;0%) = —bg(ii;bz)
(e.g. see 9.12 of [31]). Thus we find

asa — 0

lim (— Vi(0)) = 3.

a—0

Hence, we have lim QF , = lim (= Vi(0) — ) = =L 4 desired.
Finally, we con51der hm1 Q% . In view of (87) and (88), and using the monotone
a— b

convergence theorem, we have
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(Lig)_ Tmrs) )

re-%) Tn+1-3)

1
i o =— lim I'(1
lim Qp — lim (

2 [ (12(bp)Kolp) | T2 (bp)Kom(p)
/ < L) T In(p) )d”'

™
0

As proved by Lemma 3-(1) in [33], we obtain

1 ri+9) T(m+2 2

— lim I'(1 — ==
o5 dim, I a)(F(QQ) r(m+1——

In addition, using Remark 2.3, (92) and (108), we infer that

o0

[ I(bp)Ko(p) /b
ORI 4y < | 2 pL(bp) Ko(p)d
/ Ty < [ qonnoto
2
=PTR(3 32:0) < 4o,
and
12
/ (b"’ /bml (bp)Eom (p)dp
I,
0
L(3)T(m+ 3)
_12m 2 2 1 1 2
= P Ty Fln o g w1
< EFR(1, 3150267 < 4oc.

Hence, it follows that

)

17 (bp) Ko (p)

2m
lim QF, :w_kzz:

a—n1 M

This ends the proof the first point (i).
(ii) By virtue of Lemma A.1 in [34] we get

Wi (@) = ——= + O (5—=) .

Then we deduce from (88), (89) and (

2011 (1 —
( a)ma—l+0(m3 a) +O(b2m)

Gmb = Ter2(1 - 9)

This concludes the proof of (86). O

2 ?(Il b)Kolp) 12,
-+ = ) 4
Q ] Im(p)

95) that for any o, b € (0,1),

)ar

47
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5.2. Proof of Proposition 5.1
(i) Consider
0 €R— h(0) =Y ancos(nmb) € X, with a, €R, (109)
and let us check that
O F(Q,0)0h(0) = = an(Q — QF,, ,)nmsin(nmb). (110)
n=1
Then the result of statement (i) about the kernel structure follows immediately from this
description. To proceed with, we apply first (48) with » = 0 in (48), leading to
0rF(0)h(0) = [+ V1(0)(0)] 1 (8) + V2(0)(0)(6) + V5(0, h)(0) + Va4 (0, h)(6). (111)

Below we shall analyze the right-hand side terms of (111) one by one. From (49), we
have

2w b

Vi(0)(0) = b_l//VmKa(beie,pei") e pdpdn. (112)
00

Noting that (owing to (21))
vxKa (bewv PQGin) ! eiO = 8plc:(ba 97 P2, Tl)a
which yields in view of (20) and Fubini’s theorem

2

b
= b_l//(aplG)(b,G,p, n)pdpdn
00

=2mb Y af i AG TG (bxo k)
k>1

Jo(zo,kp) pdp

O\o—

= —2mb™" Y g P A Ty (bro k)
k>1

Jo (mo,kp) pdp.

O\@

a

In addition, thanks to the identity /tJO (t)dt = aJi(a) (see e.g. 6.561 of [31]), it follows

0
that
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b

b
/Jo (zokp)pdp = w—Jl (wo,kb).
0

)

Hence we find that V7(0)(0) is independent of § and by virtue of (18),

Jl To kb)
_ oy g i), (113)
k>1 Ji(zo.k)

For Va(r)(6) given by (50), we use dp(R(0)e'?)|,—o = ibe'?, together with (45)-(46) and
(20) to find

2w b

=b" 1// VQKO“ et pet) ~ew) - (ibe') p dpdn

0

(=)

2w b
+b- 1//V1KQ 7pei”) - (%) pdpdn
0

0

27 b
(ViK{’(bew,pem) . ew) - (i) pdpdn + b2 //8@G(b, 0, p,n)pdpdn

O\g O\g}
S O — _

(Vin‘(bem,pem) . em) - (ie")p dpdn.

By virtue of the splitting (37) we may write
VIKY =V, (V. K* -V, K§) = V2K*+ V,V,K§.

Applying Gauss-Green theorem and using straightforward computations we deduce that

[ )

T

(Vy VoK (be’, pe™) - (i) - € pdpdn

I I Ot~
i“ Tty F=>; “T—=

(Vy Vo K§ (b y) - (ie?)) - edy

(Vo K§ (be™ be'™)(be'™) - (ie'?)) - e”dn

us

V. K§ (be? — be™) - e sin(n — 0)dn

o
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2
1 —cos(n—6)

= (—a)cab_a W Sin(’l] — G)dn =

Next, we intend to compute the following integral

27 b

// VQK"‘ ,pem) -eie) - (i) p dpdn.
0

0

Direct computations based on (21) give that

VK (bew pe') - (ie'?) = sin(n — 0)9,,G + p~ ' cos(n — )9, G,
VK (be, pe™) - e = cos(n — 0)9,, G + sin(n — 0)b~ 19 G,
V,K“ (be“g,pel ) el = 0,,G(b,6,p,m),

and
(V2K (b, pein) - ) - (ie”) = b0, 4G (b, 0, p,1m) — b~ 20yG(b, 0, p,1).

Thus, we infer from (20) and Fubini’s theorem

27 b

= // VZKO‘ e, pe') - ew) - (ie?) pdpdn
0

0

(b0, 00G (0,6, p. 1) = pb™ 204G (1,0, p, ) ) dpdly

O\§ O\§
S . O ~—

( Z xz;fAi,kan(xn,kp) (bilxn,k*];b(xn,kb)

neN
k>1

- biZJn(xmkb))n sinn(n — 9)) dpdn
= 0. (114)

The next task is to evaluate the contributions induced by the nonlocal operators V3 and
V4. The computation will be done in a formal way and can be justified by standard
approximation arguments that we will omit here. For V3(r, h) given by (51), it is easy to
check

La(h)]y=0 = —h'(n) cos(n — ) + h(n) sin(n — 0) = =8, (h(n) cos(n — 0)),
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leading to
27 27
V3(0,h)(0) = / VK& (be® be') - (ibe')h(n)dn — / K& (be™ — be™)L 4(h)|r=o(n)dn.
0 0
Due to that
K§ (be' —be™) = K¢ (b — be’ %),
and |1 — e™| = |2sin 7|,
2
[ K56 b Lol
0

= _Zan/Ko (b—be' =)o, (cos(nmn) cos(n — 0))dn

n>1

= — Z an/KO (b — be' 9y (cos(nmn + nmb) cosn)dn

n>1

= Zan/a b ( 25111 T )cos(nmn—i—an) cosndn

n=1
o [ cos(nmb) cos(um) — sin(nmd) sin(mi)
cos(nm@) cos(nmn) — sin(nm@) sin(nmn ,
:—Zan / 2 sin 2o+ cosnsinndn
n>1 0 2
2 ( )
sin(nmn) cosnsinn
= Zan sin nmﬁ)/ @sin )+ dn.
n=1
Note that V,K§(x —y) = facaﬁ, and for ey, (0) £ ™™ we have

/VIK{)"(bew — be') - (ibe™)h(n)dn

=) anRe / V. K§ (be'® — be™) - (ibe™)epm (n)dn

n>1

2

B ace [ (e —e?) - (ie?)
N Z an R be / [1 — ei(n=0)|a+2 enm (17)d1]
0

n=1
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_ aca sin(n — 6)
- Z n Re / |1 67‘ n—0) ‘oz+2 enm(n)dn

n>=1

By a change of variables and applying the orthogonality of trigonometric functions, we
further deduce that

/ Vo K§(be® — be'™) - (ibe'®)h(n)dn

27
QCqy, sinn
= 2_anRe | Ttean(0) / = gmparz eom (M)
n>1 0
27 .
B .acy sinn .
— Z a, Re zb—aenm(é)) / W sin(nmn)dn
n>=1 0
27 . i ( )
sinn sin(nmn
:—Zan % sin ”m@/—ufem\w? dn
n>1 0

Using (18), (20) and (46), one can see that

/ VoK (be', be'™) - (ibe'?) h(n)dn

—Zan Re /V Kb e’ bem) (Zbe )enm(n)dn

n>=1

—Zan Re /agG (b,0,b,m)enm(n)dn

n>1

—ZanRe< Z x?sze w7 (20.1:b) /Esmf n—10) mm"dn)

n>1

Consequently, we find

/ VK (be' be™) - (ibe™)h(n)dn

= Z an, Re(enm Z xl?‘kQA@ sz zo 1b) /Ebln o) mm"dn)

n>1 LeN
k>1
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=— E A, MM Q. SID(MO),
n>1

with

J xmkb)
223 pppomn (115)
,; * 1 (T k)

Hence, gathering the preceding identities yields

27
Qcy sin(nmn)(1 — cosn) sin .
V3(0,h)(0) = — Z an, (nm Qb — b—a/ ( 717)£ ein|a+2n) ndn) sin(nm#).
n>1 0

(116)
For Vy(r, h) given by (52), when r = 0, one has

Coor 1—cos(n—0) _ VLK (be™ — be) - e,

a 6 % 0 _
vaO (be — be 77) B — patl |1 — 675(77*9)|04+2 =

leading to
27
Vi(0,h) =—b / (VL EK§ (be™, be'™) - (e”h(6) — e™h(n))) sin(n — 6)dn
0

27
Cat 1 —cos(n—0) .
=5 (W (h(0) + h(n)) ) sin(ny — 6)dn.
0

Recalling the expression of h in (109), we infer that

n=3a, Re(cg‘—f 7(%(%”(9) + enm(n))) sin(n) — 9)d77>
0

n=1
2m 1
Caq X — Cos?M .
= ;an Re b—aenmw)/ <|1—e”7|04+2(1 + 6nm(7]))> SlIl’T]dT]
n= 0

1—-cosn .
- Z an, Re ba enm / = cm]at? sin(nmn) sinn dn

n>=1
1 —cosn .
=— Z an ~ sin(nm#) |1 1= cmprz sin(nmn) sinn dn. (117)
n>1

Putting together (116) and (117) allows to get
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V3(0,h) + V4(0,h) = — Z p, Oy, p M SIN(NMO). (118)

n>1

Consequently, collecting equalities (111), (113), (114), (118), we obtain
0 F (L, Z Q + 11(0) + amn,b)nm sin(nmf). (119)

In light of Lemma 5.1-(i), the map m — Qf, , = —Vi(0) — ay, is strictly increasing
in the considered cases. Hence, the kernel of 9, F(€2,0) is nontrivial if and only if there
exists £ € NT such that

0= *Vl(()) — Oym b = Q?m,b'

Moreover, the kernel of 9, F (Q?m,m 0) is one-dimensional vector space generated by the
function 6 — cos(¢mf), as desired.

(ii) Now we intend to show that for any m, ¢ > 1 the range R(0,F' (€27, ,0)) coincides
with the subspace

Zom é{feCl (T): £(0) = ;bnsin(nmﬂ),bneR,éeT}. (120)
nq/éf

Note that this sub-space is closed and of co-dimension one in the ambient space Y,,. In
addition, one can easily deduce from (110) the trivial inclusion R(9,F(Qf,, ;,0)) C Zm,
and therefore it remains to show the converse. For this purpose, let f € Z;,,, we shall
try to find a pre-image h € X, satisfying 8TF(Q‘;m7b, 0)(h) = f. From the relation (119),
it reduces to

an(QG s — Qo p)nm =bn, Vn>1,n#L.
This uniquely determines the sequence {ay, }n>1n2¢ With

by,
m(Q?m b ng b) 7

ap = Vn>1,n#/4.
However, the coefficient a, is free and we can take it to be zero. Then, for § — f(6) =
oo}
> by sin(nmb) € Yy, in order to show h € X,;,, we only need to prove that
n=1
n#L

. 2—« r]r
0 — Z R S — cos(nmf) € C<~(T),

or equivalently
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0 — i i bn cos(nm@) € C*~*(T).

« —
n>0+1 ¢m,b nm,b)

We shall skip the proof of this point because it is quite similar to that of Proposition 8-(2)
n [33]. We use essentially the same arguments together with the asymptotic structure
(86).

(iii) According to the continuity property of the second derivative dq 0, F, the transver-
sality assumption reduces to

aQarF(QaO)(h) 0=0¢%

Lm,b’

h=cos(tm) & R(OrF (2, ,0)).
This is indeed obvious by virtue of (120), due to that
000, F(Qp, 1, 0) cos(bmb) = —bmsin(émb) ¢ R(9,F (25, 5,0)) = Zem.-
This achieves the proof of Proposition 5.1.
6. Appendix

We intend to recall some tools used in the paper and discuss the proofs of some results
established before. The first result concerns the classical Crandall-Rabinowitz theorem
on the bifurcation from simple eigenvalues which can be stated as follows, see [18].

Theorem 6.1 (Crandall-Rabinowitz theorem). Let X and Y be two Banach spaces, V a
neighborhood of 0 in X and let F : R X V — 'Y be with the following properties:

(i) F(X,0) =0 for any A € R.
(ii) The partial derivatives Fy, F, and F, exist and are continuous.
(iii) N(Lo) and Y/R(Ly) are one-dimensional.
(iv) Transversality assumption: Fi;(0,0)zo ¢ R(Ly), where
N(Lo) = span{xo}, Lo = 0,F(0,0).

If Z is any complement of N(Ly) in X, then there is a neighborhood U of (0,0) in R x X,
an interval (—a,a), and continuous functions ¢ : (—a,a) — R, ¢ : (—a,a) = Z such
that (0) =0, ¥(0) =0 and

FH0) U = { (9(6). §x0 +60(&) : el <af U {(00) : (\0) € U}

The next result deals with the asymptotic growth of the normalized eigenfunctions
to the spectral Laplacian in bounded smooth domains. The proof can be deduced from
the standard elliptic estimates (see for instance Section 6.3 of [24]) and we here omit the
details.
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Lemma 6.1. Let D C R? be a bounded smooth domain and {¢;,7 = 1} be the orthonormal
basis of L?(D) of eigenfunctions of —Ap satisfying the constraints (8). Then we have

|6l mon Dy < Crn(14X5)", VneN,
where Cp, > 0 is a constant independent of j but may depend on n.

The current purpose is to prove Lemma 2.1 following the ideas developed in estimating
(36) of Constantin and Ignatova [10].

Proof of Lemma 2.1. We take two points (z,y) € D x D, and we consider © € B(z, g),
where § > 0 is defined as

Fix (Z,y) and take the function (¢, z) — h(t,z) = Hp(t, z,y), with Hp the heat kernel
defined by (10). Now, we apply Green’s formula on the domain U = B(z,d) x (0,t) to
obtain (denote n as the outer normal vector of dB(Z, d))

0= [ [0 = 8005 2) Gurslo = 2) 4 1o 2)(0. + 3G — )]s
U
= h(t,2) ~ Gyl —)

A S

Oh(s, z)
on

Gis(z — z)} do(2)ds,

0 9B(z,5)

which leads to
Hp(t,r,y) = Gi(z — y)

_j / [wh(s,z)—ah“"z)@s@—z) do(2)ds.

on on

By differentiating n-times in x in the above formula, and using the upper bounds
(13)-(14), we have that for every 0 < ¢t < Tp,

|ViHp(t,z,y) — ViGi(z —y)|

t
_dtnt1 |e—z|2 d ly—z|2

Qc/ / (t—s)" 2 pn+1(%)€_4(t*5>57567 s dzds
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min{t,d(y)2}

n _ _le—y|? _ ly—=|?
+C (t—s)f%pnoztil)e 4<‘ES>57%p1(|y\/§Z|)67 or - dzds
0 OB(z,0)
¢
_d+n |z —z| _le—y|? —2 1 $i(y) _ly—=|2?
+C (t=s)" p”(—\m)e 9872 Gy g€ O dads,

min{t,d(y)2} 0B(Z,0)

where py(€) are polynomials of degree k. These integrals are all nonsingular. Note that
since in the first integral of the right hand side one has the restriction |z — z| > %, then
by elementary arguments we deduce that

o2
(t — 5)*§pl(‘z’z‘) < Clz — 2| Feri-o

Similarly, by noting that

Yy—z =z _ X =
T -z —|z—yl =3, if |7yl <22,
we obtain
_ ly—=]|
sTEn () < Cly — 2 e

On the other hand, it is known that the first eigenfunction satisfies

0 < ¢1(y) < Cod(y),
with Cy > 0 a constant depending on D, and it gives

$1(y) < 05—1.

ly—zld(y)

From the inequality

|lz—y|” le—z” | ly—z®
t < 2( + s )’

t—s

we see that

_lz—21? _ly—=z|? _lz—yl?
Cs

e~ 8—9) <e o, C~' £ 16 + 4C.

Putting together the above estimates yields for every 0 < t < min{Ty, d(z)?},
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_lz—y)? din _ lz—yl?

|V Hp(z,y,t) — VIGi(x —y)| < Ce” o t6~ 4" 20t "2 e o,

where in the last inequality we have used the fact that § ~ d(Z) ~ d(z). Thus the desired
estimate follows from the estimate of the heat kernel in the full plane G;, which is easy
to check. O

The next goal is to establish the proof of Lemma 2.2.

Proof of Lemma 2.2. We borrow the idea from the treatment of (171) in [10]. For z
and y fixed, there exists an open domain Dy C Dy C D such that x,y € Dy. Denote
by do £ min{y/Tp,d(Dg,dD)} > 0. Let x € C* be a cutoff function such that x = 1
on {z|d(z,Dg) < 3do} and x = 0 on {z|d(z,Dg) > 35do}. Observe that h(t,z) =
X(2)G¢(z — y) solves the following equations

(0 = A)A(t,2) = =[(AX(2))Gi(z — ) + 2(VX(2)) - VGilz — y)] £ F(t, 2,y),

h(0,2) = x(2)d(z — y),
h(t,z)|op =0,

with d(-) the Dirac mass centered at 0. Thus Duhamel’s formula gives
t
h(t, z) = e h(0, z) + /e(t_s)AF(s, z,y)ds,
0

which, in combination with (e’ f)(2) = [ Hp(t, 2z, w) f(w)dw yields

t

NGz —y) = x(v)Hp (b, 2,9) + / / Hp(t — 5, 2,w)F(s, w, y)dwds
0 D

for all z € D. Noting that x(z) = x(y) = 1, and setting z = x, we obtain

t

HD(tvxvy)_Gt(x_y)://HD(t_Svfaw)[AX(w)Gs(w_y)
0 D

+2Vx(w) - VGy(w — y)|dwds. (121)

The integral on the right-hand side is not singular and indeed C'**-smooth. In fact, notice
that the fact supp Vx C {w|3do < d(w,Dy) < do} ensures 3do < |z —w), |y —w| < C,
and by using the Gaussian upper bounds combined with Lemma 2.1, we have that for
every 0 <t < d%,
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t
VQVL(//HD(t —s,z,w)F(s,w,y) dwds)
0 D

t
< c/ (t— s)~ "F' e €T (|vgas(w — )+ VS G (w — y)|>dwds <C,
0

d,

=)

40 <d(w,Dg)<

&

as desired. O
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