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In [1], there is an error of misusing a commutator formula in the proof of Lemma14

2.7 so that the commutator estimate (2.23) is not valid. But we instead can show a15

weaker result as follows, which is sufficient for our use.16

Lemma 0.1. Let s ∈ (0, 1), p ∈ [2,∞], r ∈ [1,∞]. Let R−1 := m(D)Λ−1, Λ =17

(−∆)1/2 and m(D) be a zero-order pseudo-differential operator with its symbol m(ξ) ∈18

C∞(Rd \ {0}). Assume that u = (u1, · · · , ud) is a smooth divergence-free vector field19

and φ is a smooth scalar function. Then we have20

‖[R−1, u · ∇]φ‖Bsp,r ≤ C‖∇u‖Lp
(
‖φ‖Bs−1

∞,r
+ ‖φ‖L2

)
+ C‖u‖L2‖φ‖L2 ,(0.1)21

22

where C > 0 is a constant depending only on s, p and d.23

Proof. Bony’s decomposition gives24

[R−1, u · ∇]φ25

=
∑
q∈N

[R−1, Sq−1u · ∇]∆qφ+
∑
q∈N

[R−1,∆qu · ∇]Sq−1φ+
∑
q≥−1

[R−1,∆qu · ∇]∆̃qφ26

=: I + II + III,2728

where we have adopted the standard notations in the Littlewood-Paley theory (see [1,29

Section 2]). For I, there exists a bump function ψ̃ ∈ C∞c (R) supported on an annulus30

of Rd away from zero such that31

I =
∑
q∈N

[R−1ψ̃(2−qD), Sq−1u · ∇]∆qφ(0.2)32

33

with R−1ψ̃(2−qD) = 2q(d−1)h(2q·)∗ and h ∈ S(Rd). Thus by using Minkowski’s34
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inequality we find that for every j ≥ −1,35

2js‖∆jI‖Lp ≤ C2js
∑

q∈N,|q−j|≤4

‖[R−1ψ̃(2−qD), Sq−1u · ∇]∆qφ‖Lp36

≤ C2js
∑
|q−j|≤4

∫
Rd

2q(d−1)|h(2qy)||y|dy ‖∇Sq−1u‖Lp‖∇∆qφ‖L∞37

≤ C‖∇u‖Lp
∑
|q−j|≤4

2q(s−1)‖∆qφ‖L∞ ,38

39

which ensures that40

‖I‖Bsp,r ≤ C‖∇u‖Lp‖φ‖Bs−1
∞,r

.41
42

The error in [1, Lemma 2.7] appears in the treating of II, where it was thought a43

similar formula (0.2) holds for II, but indeed it is not correct. Instead, for II, noting44

that45

II =
∑
q∈N

(
R−1ψ̃(2−qD)

(
∆qu · ∇Sq−1φ

)
−∆qu · ∇R−1Sq−1φ

)
,46

47

and using the fact R−1∇∆j (j ∈ N) is bounded on Lp(Rd) for p ∈ [2,∞], we obtain48

2js‖∆jII‖Lp49

≤ C2js
∑

q∈N,|q−j|≤4

(
2−q‖

(
∆qu · ∇Sq−1φ

)
‖Lp + ‖∆qu‖Lp‖∇R−1Sq−1φ‖L∞

)
50

≤ C
∑

q∈N,|q−j|≤4

2qs‖∆qu‖Lp
(
‖Sq−1φ‖L∞ + ‖∇R−1∆−1φ‖L∞ +

∑
0≤l≤q−1

‖∆lφ‖L∞
)

51

≤ C‖∇u‖Lp
∑
|q−j|≤4

(
2q(s−1)‖∆−1φ‖L2 +

∑
0≤l≤q−1

2(q−l)(s−1)2l(s−1)‖∆lφ‖L∞
)
,52

53

which combined with the discrete Young’s inequality leads to that for every s < 1,54

‖II‖Bsp,r ≤ C‖∇u‖Lp
(
‖φ‖Bs−1

∞,r
+ ‖φ‖L2

)
.55

56

For III, in light of the divergence-free property of u, we split it as the following57

III =
∑
q≥3

R−1∇ ·
(
∆qu ∆̃qφ

)
−
∑
q≥3

∆qu · ∇R−1∆̃qφ+
∑

−1≤q≤2

[R−1∇·,∆qu]∆̃qφ58

=: III1 + III2 + III3.5960

For III1, since R−1∇ is bounded on Lp(Rd) for p ∈ [2,∞), we deduce that for j = −161

(realizing 2p
p+2 = 2 for p =∞),62

2−s‖∆−1III1‖L∞ ≤ C
∑
q≥3

‖∆qu ∆̃qφ‖
L

2p
p+2

63

≤ C
∑
q≥3

‖∆qu‖Lp‖∆̃qφ‖L2 ≤ C‖∇u‖Lp‖φ‖L2 ,64

65
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and for every j ∈ N and s > 0,66

2js‖∆jIII1‖Lp ≤ C2js
∑

q≥3,q≥j−3

‖∆jR−1∇ · (∆qu ∆̃qφ)‖Lp67

≤ C
∑

q≥3,q≥j−3

2(j−q)s2q‖∆qu‖Lp2q(s−1)‖∆̃qφ‖L∞68

≤ Ccj‖∇u‖Lp‖φ‖Bs−1
∞,r

,69
70

where {cj}j∈N is such that ‖cj‖`r = 1. The estimation of III2 is similar as that of71

III1, and we get72

‖III1‖Bsp,r + ‖III2‖Bsp,r ≤ C‖∇u‖Lp
(
‖φ‖Bs−1

∞,r
+ ‖φ‖L2

)
.73

74

For III3, we directly have75

‖III3‖Bsp,r ≤ C
∑

−1≤j≤6

∑
−1≤q≤2

(
‖∆jR−1∇ · (∆qu ∆̃qφ)‖Lp + ‖∆qu · ∇R−1∆̃qφ‖Lp

)
76

≤ C
∑

−1≤q≤2

(
‖∆qu ∆̃qφ‖L1 + ‖∆qu · ∇R−1∆̃qφ‖L1

)
77

≤ C
∑

−1≤q≤2

‖∆qu‖L2‖∆̃qφ‖L2 ≤ C‖u‖L2‖φ‖L2 .78

79

Therefore, collecting the above estimates yields the wanted estimate (0.1).80

We can use Lemma 0.1 to replace [1, Lemma 2.7] in the application, which is81

mainly used in the section 3 and appendix B of [1]. Indeed, in (3.10) and (3.20) of82

[1], it needs to estimate ‖[R−1, u · ∇]θ‖L1
T (L

2) and ‖[R−1, u · ∇]θ‖L1
T (L

p) (p > 2), and83

they both are controlled by the following84

‖[R−1, u · ∇]θ‖
L1
T (B

1− 2
p

2,1 )
85

≤ C‖∇u‖L1
T (L

2)

(
‖θ‖

L∞T (B
− 2
p

∞,1)
+ ‖θ‖L∞T (L2)

)
+ C‖u‖L1

T (L
2)‖θ‖L∞T (L2)86

≤ C‖u‖L1
T (H

1)‖θ‖L∞T (L2∩L∞);87
88

while in (3.45) and (B.7), it suffices to control ‖[R−1, u · ∇]θ‖
L1
t (B

γ′
∞,1)

and ‖[R−1, u ·89

∇]θ‖
L1
t (B

γ′
r,1)

for every 0 < γ′ < 1− 2
p and r ≥ 2, and from the Besov embedding they90

can be bounded as follows91

‖[R−1, u · ∇]θ‖
L1
t (B

γ′+ 2
p

p,1 )
+ ‖[R−1, u · ∇]θ‖

L1
t (B

γ′
2,1)

92

≤ C‖∇u‖L1
t (L

p∩L2)

(
‖θ‖

L∞t (B
γ′+ 2

p
−1

∞,1 )
+ ‖θ‖

L∞t (Bγ
′−1
∞,1 ∩L2)

)
+ ‖u‖L1

t (L
2)‖θ‖L∞t (L2)93

≤ C‖∇u‖L1
t (L

p∩L2)‖θ‖L∞t (L2∩L∞) + ‖u‖L1
t (L

2)‖θ‖L∞t (L2).94
95

Hence, the main results including Theorem 1.1 in [1] still hold true.96

Finally, we remark that the error of misusing commutator formula also appears97

in the proof of Lemma 2.5-(3) and Lemma 2.4-(3) in [1], but they can be easily fixed98

without using the commutator structure, so the validity of Lemma 2.5-(3) and Lemma99
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2.4-(3) is not affected. Indeed, in Lemma 2.4-(3), it suffices to estimate ‖II‖B−εp,r with100

ε ∈ (−1, 1), (p, r) ∈ [1,∞]2 and101

II :=
∑
j∈N

[m(D),∆ju · ∇]Sj−1φ = II1 − II2,102

103

and104

II1 :=
∑
j∈N

m(D)ψ̃(2−jD)
(
∆ju · ∇Sj−1φ

)
, II2 :=

∑
j∈N

∆ju · ∇m(D)Sj−1φ,105

106

where m(D) is a zero-order pseudo-differential operator with symbol m(ξ) ∈ C∞(Rd \107

{0}) and ψ̃ is defined as in (0.2), then we have that for q ≥ −1,108

2−qε‖∆qII‖Lp109

≤ C2−qε
∑

j∈N,|j−q|≤4

(
‖m(D)ψ̃(2−jD)(∆ju · ∇Sj−1φ)‖Lp + ‖∆ju∇m(D)Sj−1φ‖Lp

)
110

≤ C2−qε
∑

j∈N,|j−q|≤4

‖∆ju‖L∞
(
‖∇Sj−1φ‖Lp + ‖∇m(D)Sj−1φ‖Lp

)
111

≤ C‖∇u‖L∞
∑

j∈N,|j−q|≤4

2−j(ε+1)
( ∑
−1≤j′≤j−1

2j
′
‖∆j′φ‖Lp

)
112

≤ C‖∇u‖L∞
∑
|j−q|≤4

∑
−1≤j′≤j−1

2(j
′−j)(1+ε)2−j

′ε‖∆j′φ‖Lp ,113

114

which leads to the desired inequality115

‖II‖B−εp,r ≤ C‖∇u‖L∞‖φ‖B−εp,r .116
117

While for Lemma 2.4-(3), it suffices to show (5.29) in [1], that is, for every ε ∈ (0, 1)118

and (p, r) ∈ [1,∞]2,119

‖II1‖B̃−ε,`+1
p,r,W

+ ‖II2‖B̃−ε,`+1
p,r,W

. ‖∇u‖B0,`+1
W
‖φ‖B−ε,`+1

p,r,W
.(0.3)120

121

In fact, using Lemmas 5.1 and 5.2 in [1], we find that for every q ≥ −1 and λ ∈122

{0, 1, · · · , `+ 1},123

2−qε‖∆q(TW·∇)λII1‖Lp124

. 2−qε
∑

j∈N,j∼q
‖(TW·∇)λm(D)ψ̃(2−jD)(∆ju · ∇Sj−1φ)‖Lp125

. 2−qε
∑

j∈N,j∼q

λ∑
µ=0

‖(TW·∇)µ(∆ju · ∇Sj−1φ)‖Lp126

. 2−qε
∑

j∈N,j∼q

∑
µ1+µ2≤λ

‖(TW·∇)µ1∆ju‖L∞‖(TW·∇)µ2∇Sj−1φ‖Lp127

.
∑

j∈N,j∼q

∑
µ1+µ2≤λ

2−j(1+ε)
( ∑
j1∼j

µ1∑
µ3=0

‖(TW·∇)µ3∆j1∇u‖L∞
)( ∑

j′≤j−1

‖(TW·∇)µ2∇∆j′φ‖Lp
)

128

. cq
∑

µ1+µ2≤λ

( µ1∑
µ3=0

‖∇u‖B̃0,µ3
W

)∥∥∥∥( ∑
j′≤j−1

2(j
′−j)(1+ε)2−j

′(1+ε)‖(TW·∇)µ2∆j′∇φ‖Lp
)
j∈N

∥∥∥∥
`r

129

. cq‖∇u‖B̃0,`+1
W

λ∑
µ2=0

‖∇φ‖
B̃−1−ε,µ2
p,r,W

130

. cq‖∇u‖B̃0,`+1
W

‖φ‖B̃−ε,`+1
p,r,W

. cq‖∇u‖B0,`+1
W

‖φ‖B−ε,`+1
p,r,W

,131
132
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with {cq}q≥−1 satisfying ‖cq‖`r = 1, and similarly,133

2−qε‖∆q(TW·∇)λII2‖Lp134

. 2−qε
∑

j∈N,j∼q
‖(TW·∇)λ

(
∆ju · ∇m(D)Sj−1φ

)
‖Lp135

. 2−qε
∑

j∈N,j∼q

∑
λ1+λ2≤λ

‖(TW·∇)λ1∆ju‖L∞‖(TW·∇)λ2∇m(D)Sj−1φ‖Lp136

.
∑
j∼q

∑
λ1+λ2≤λ

2−j(1+ε)
( ∑
j1∼j

λ1∑
λ3=0

‖(TW·∇)λ3∆j1∇u‖L∞
)( j−1∑

j′=−1

‖(TW·∇)λ2∇m(D)∆j′φ‖Lp
)

137

.
∑
j∼q

∑
λ1+λ2≤λ

2−j(1+ε)
( λ1∑
λ3=0

‖∇u‖
B̃0,λ3
W

)
×138

×
(
‖(TW·∇)λ2∇m(D)∆−1φ‖Lp +

j−1∑
j′=0

‖(TW·∇)λ2∇m(D)∆j′φ‖Lp
)

139

. ‖∇u‖B̃0,`+1
W

∑
j∼q

λ∑
λ2=0

2−j(1+ε)
(
‖∇m(D)∆−1φ‖Lp +

j−1∑
j′=0

λ2∑
λ4=0

2j
′
‖(TW·∇)λ4∆j′φ‖Lp

)
140

. cq‖∇u‖B̃0,`+1
W

(
‖∆−1φ‖Lp +

λ∑
λ4=0

∥∥∥∥( ∑
0≤j′≤j−1

2(j
′−j)(1+ε)2−j

′ε‖(TW·∇)λ4∆j′φ‖Lp
)
j∈N

∥∥∥∥
`r

)
141

. cq‖∇u‖B̃0,`+1
W

‖φ‖B̃−ε,`+1
p,r,W

. cq‖∇u‖B0,`+1
W

‖φ‖B−ε,`+1
p,r,W

,142
143

then the desired inequality (0.3) follows immediately.144
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