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REMARKS ON SELF-SIMILAR SOLUTIONS

FOR THE SURFACE QUASI-GEOSTROPHIC EQUATION

AND ITS GENERALIZATION

MARCO CANNONE AND LIUTANG XUE

(Communicated by Joachim Krieger)

Abstract. We prove some nonexistence results of self-similar singular so-
lutions for the surface quasi-geostrophic equation and its generalization by
relying on the fundamental local Lp-inequality of the self-similar quantity.

1. Introduction

In this paper we focus on the following generalized surface quasi-geostrophic
equation:

(1.1)

⎧⎪⎨
⎪⎩
∂tθ + u · ∇θ = 0, (t, x) ∈ R

+ × R
2,

u = R⊥
γ θ = (−R2,γθ,R1,γθ),

θ|t=0 = θ0,

where Ri,γ = ∂xi
(−Δ)−

γ
2 , i = 1, 2, γ ∈ [1, 2] are pseudo-differential operators

which generalize the usual Riesz transform. When γ = 1, (1.1) is just the surface
quasi-geostrophic equation which arises from the geostrophic fluids and is viewed
as a two-dimensional model of the 3D Euler system (cf. [7,12]). When γ = 2, (1.1)
corresponds to the classical 2D Euler equations in vorticity form. (1.1) in the case
1 < γ < 2 is the intermediate toy model introduced by Constantin et al. [6].

It is well-known that the 2D Euler equations preserve the global regularity for
the smooth data (e.g. [1, 15]) by using the L∞-norm conservation of θ, while for
the SQG equation and its generalization with 1 ≤ γ < 2, although they are of
very simple form and have been intensely studied, it still remains open whether the
solutions blow up at finite time or not.

The equation (1.1) is invariant under the scaling transformations that for α > −1,

θ(t, x) �→ θλ(t, x) = λα+γ−1θ(λα+1t, λx), ∀λ > 0.

We say a solution is self-similar if θ = θλ for all λ > 0. The self-similar blowup
singularity is an important scenario that may occur in the evolution of θ and is the
main concern in this note. More precisely, we assume there exists (t∗, x∗) ∈ R

+×R
2

such that the solution θ develops a self-similar singularity at (t∗, x∗) of the form

(1.2) θ(t, x) =
1

(t∗ − t)
α+γ−1
1+α

Θ

(
x− x∗

(t∗ − t)
1

1+α

)
, α > −1
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for all x ∈ R
2 and 0 < t < t∗. In terms of the profile function Θ = θ|t=1, we

formally get

(1.3)

{
α+γ−1
α+1 Θ+ 1

α+1 y · ∇Θ+ U · ∇Θ = 0,

U = R⊥
γ Θ.

The finite time singularity of self-similar type has been studied for many non-
linear evolution equations, and one can see the recent review paper [11], especially;
we refer to [3, 8, 14] and references therein for the nonexistence results of self-
similar solutions for the 3D Euler equations. For the general transport equation
(1.1), Chae in [3] proved that there exists no nontrivial self-similar solution (1.2) if
Θ ∈ Lp1 ∩ Lp2(R2) with p1, p2 ∈]0,∞], p1 < p2, and the particle trajectory gener-
ated by the velocity u is a C1-diffeomorphism from R

2 to R
2 for all t ∈]0, t∗[. For

the SQG equation, i.e. (1.1) in the case γ = 1, Castro and Córdoba in [2] considered
a particular type of solution θ(t, x) = x2fx1

(t, x1), which has infinite energy, and
constructed self-similar blowup solutions to the reduced equation of f(t, x1) for any
α > −1.

In this short paper, being different from [3], we show the nonexistence results
for self-similar solutions by relying only on the intrinsic local Lp-inequality of Θ,
and also give some insight on the further study of the self-similar blowup problem.
Our first result is as follows.

Theorem 1.1. Let γ ∈ [1, 2], p ∈]1, 2
γ−1 [ (we adopt the convention 2

γ−1 = ∞ for

γ = 1). Suppose that Θ ∈ C1
loc ∩ Lq(R2) with 2p+2

γ+1 ≤ q < 2
γ−1 . Then for all −1 <

α ≤ 2
q−γ+1 or α > 2

p−γ+1, we have Θ ≡ 0, while for all 2
q−γ+1 < α ≤ 2

p−γ+1,

we have

(1.4)

∫
|y|≤M

|Θ(y)|pdy � M2−p(α+γ−1), ∀M � 1.

Moreover, for 2
q − γ + 1 < α < 2

p − γ + 1, if Θ additionally satisfies that

(1.5)

∫
|y|≤M

|Θ(y)|pdy = M2−p(α+γ−1)oM (1), with lim
M→∞

oM (1) = 0,

then we have Θ ≡ 0.

As a corollary of the upper theorem, we have the following excluding result for
all of the range of α.

Corollary 1.2. Suppose that Θ ∈ C1
loc ∩ L

2p+2
γ+1 ∩ L

2(2p+3+γ)

(γ+1)2 (R2) with p ∈]1, 2
γ−1 [.

Then for all α > −1, we have Θ ≡ 0.

If θ0 ∈ L∞(R2), we a priori have ‖θ(t)‖L∞ ≤ ‖θ0‖L∞ for all t ∈ [0, t∗[, and thus
(1.2) necessarily implies that

(1.6) |Θ(y)| � |y|−(α+γ−1), ∀|y| � 1.

Since p < 2p+2
γ+1 < 2(2p+3+γ)

(γ+1)2 and they all tend to 2
γ−1− as p → 2

γ−1−, we see that

for Θ ∈ C1
loc(R

2) and α > 0 there exists some p ∈]1, 2
γ−1 [ so that the assumption

of Corollary 1.2 can be satisfied and it yields Θ ≡ 0.
If θ0 ∈ Ḣ−γ/2(R2), then due to the structure of nonlinearity, we a priori have

θ(t) ∈ Ḣ−γ/2(R2) for all t ∈ [0, t∗[. Thus for every γ ∈]1, 2], by interpolation we
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find that

(1.7) ‖u(t)‖L∞ = ‖R⊥
γ θ(t)‖L∞ � ‖θ(t)‖Ḣ−γ/2∩L∞ � ‖θ0‖Ḣ−γ/2∩L∞ .

Noting that

u(t, x) =
1

(t∗ − t)
α

1+α
U

(
x− x∗

(t∗ − t)
1

1+α

)
, α > −1,

and from (1.7), we necessarily have

(1.8) |U(y)| � |y|−α, ∀|y| � 1.

The scenario (1.6) and (1.8) for α > 0 can be excluded by Corollary 1.2, while for
1 < γ ≤ 2 and 1 − γ < α ≤ 0, by using the local Lp-inequality with p ∈] 2

γ−1 ,∞[,

we have the following result.

Proposition 1.3. Let γ ∈]1, 2]. Assume that Θ ∈ C1
loc(R

2) and for all 1 − γ <
α ≤ 0,

(1.9) |Θ(y)| � 1

|y|α+γ−1
and |U(y)| � |y|−α, ∀|y| � 1.

Then we have Θ ≡ U ≡ 0.

As mentioned above, the starting point of the argument in showing Theorem 1.1
and Proposition 1.3 is the local Lp-inequality of Θ (2.2). By appropriately choosing
the numbers m1,m2 in (2.2), and from the integrable and asymptotic assumptions
of Θ and U , we can use the iteration method to show

∫
|y|≤M

|Θ(y)|pdy → 0 as

M → ∞, which implies Θ ≡ 0. We also notice that (2.2) is derived from the local
Lp-equality of θ (2.1), which in turn can be ensured for the weak solution θ under

the condition θ ∈ C1
loc((0, t∗)× R

2) ∩ L∞
t (Lp

x ∩ L
2/(γ−1)
x ) (one can refer to [4] for a

less regular assumption to guarantee (2.1)).

Remark 1.4. For the 2D Euler system, i.e. (1.1) in the case γ = 2, Proposition 1.3
guarantees that if Θ ∈ C1

loc(R
2) and (1.9) is satisfied, then there are no nontrivial

self-similar solutions for any α > −1. This is consistent with Yudovich’s classical
result (cf. [15]) that the 2D Euler system has a global unique solution for the initial

data with bounded vorticity and finite energy (equivalently, θ0 ∈ L∞ ∩ Ḣ−1(R2)).
But for the equation (1.1) in the case 1 ≤ γ < 2, there is still a possibility to have
nontrivial self-similar singular solutions for some −1 < α ≤ 1− γ.

For the SQG equation, i.e. (1.1) in the case γ = 1, if Θ ∈ C1
loc∩Lp+1∩Lp+2(R2)

with p ∈]1,∞[, we have Θ ≡ 0 for all α > −1. In particular, this excludes the
scenario that Θ has the decaying asymptotics, but it remains open for the case that
Θ has nondecaying asymptotics, for instance, the scenario from (1.6) that

(1.10) 1 � |Θ(y)| � |y|−α, for − 1 < α < 0, ∀|y| � 1.

A similar problem also holds for the 3D Euler system, and since what we can rely
on is just the L2-energy conservation of velocities, it leaves open more scenarios
for the corresponding self-similar solutions, e.g. the scenario that the self-similar
velocities for each 0 < α < 3

2 having the decay asymptotics of |y|−α is still not
excluded (cf. [14]).

At last, we recall the related results for some 1D models of the SQG equation and
3D Euler equations. The typical examples are the Burgers equation ∂tθ + θθx = 0
and the nonlocal CCF model ∂tθ + H(θ) θx = 0, where θ is a 1D scalar and H
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is the Hilbert transform. It is known that the Burgers equation forms the finite-
time shock singularity, while for the CCF equation, it was proved in [9] that some
solutions develop the cusp singularity at finite time. The authors in [10,11] moreover
considered the structures of such singularities for the Burgers and CCF equations
to find that the singularities are of self-similar type with some indexes in the range
−1 < α < 0. Despite being in a different setting, this is compatible with our results
above and suggests that the scenarios like (1.10) are potentially serious cases to be
further considered.

The outline of this paper is the following: we prove Theorem 1.1 in Section 2,
and we present the proofs for Corollary 1.2 and Proposition 1.3 in Section 3.

2. Proof of Theorem 1.1

2.1. Local Lp-inequality. The first basic assumption is that the solution θ is
regular enough to satisfy the local Lp-equality (1 < p < ∞):∫

R2

|θ(t2, x)|pχ(t2, x)dx−
∫
R2

|θ(t1, x)|pχ(t1, x)dx

=

∫ t2

t1

∫
R2

|θ(t, x)|p∂tχ(t, x) dxdt+
∫ t2

t1

∫
R2

|θ(t, x)|p(R⊥
γ θ) · ∇χ(t, x) dxdt,

(2.1)

where χ ∈ C∞
c (R+ × R

2) and 0 < t1 < t2 < t∗. This can be guaranteed by the

locally regular solution θ ∈ C1
loc((0, t∗)× R

2) ∩ L∞
t (Lp

x ∩ L
2/(γ−1)
x ).

With no loss of generality, we assume that x∗ = 0 and t∗ = 1. Let φ(x) = φ(|x|)
be a radial smooth test function such that 0 ≤ φ ≤ 1, φ(x) ≡ 1 for 0 ≤ |x| ≤ 1

2 ,
and φ(x) ≡ 0 for |x| > 1. Let χ = φ; then (2.1) becomes∫
R2

|θ(t2, x)|pφ(x) dx−
∫
R2

|θ(t1, x)|pφ(x) dx =

∫ t2

t1

∫
R2

|θ(t, x)|p(R⊥
γ θ)·∇φ(x) dxdt.

According to (1.2), we see that

(1− t2)
2−p(α+γ−1)

1+α

∫
|y|≤(1−t2)

− 1
1+α

|Θ(y)|pφ(y(1− t2)
1

1+α ) dy

=(1− t1)
2−p(α+γ−1)

1+α

∫
|y|≤(1−t1)

− 1
1+α

|Θ(y)|pφ(y(1− t1)
1

1+α ) dy

+

∫ t2

t1

∫
1
2 (1−t)

− 1
1+α ≤|y|≤(1−t)

− 1
1+α

(1− t)
2−α−p(α+γ−1)

1+α |Θ(y)|p(R⊥
γ Θ)

· ∇φ(y(1− t)
1

1+α ) dydt.

By denoting mi = (1−ti)
− 1

1+α and integrating on the t-variable in the last integral,
we get that for all 0 < m1 < m2,∣∣∣∣ 1

m
2−p(α+γ−1)
2

∫
|y|≤m2

|Θ(y)|pφ(ym−1
2 ) dy−

− 1

m
2−p(α+γ−1)
1

∫
|y|≤m1

|Θ(y)|pφ(ym−1
1 ) dy

∣∣∣∣
≤ C

∫
m1
2 ≤|y|≤m2

|Θ(y)|p|R⊥
γ Θ(y)|

|y|3−p(α+γ−1)
dy.

(2.2)

Licensed to Beijing Normal University. Prepared on Sun Apr 19 01:50:14 EDT 2015 for download from IP 219.142.99.10.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SELF-SIMILAR SOLUTIONS FOR GENERALIZED SQG EQUATION 2617

2.2. Proof of Theorem 1.1. First we consider the case −1 < α ≤ 2
q − γ + 1 and

2p+2
γ+1 ≤ q < ∞. We claim that as m2 → ∞,

1

m
2−p(α+γ−1)
2

∫
|y|≤m2

|Θ(y)|pφ(ym−1
2 )dy → 0.

Indeed, for a large number K � 1 and m2 > K, by the Hölder inequality we have

1

m
2−p(α+γ−1)
2

∫
|y|≤m2

|Θ(y)|pφ(ym−1
2 )dy

≤ 1

m
2−p(α+γ−1)
2

∫
|y|≤K

|Θ(y)|pdy +
C0

m
2p/q−p(α+γ−1)
2

(∫
K≤|y|≤m2

|Θ(y)|qdy
) p

q

≤ 1

m
2−p(α+γ−1)
2

∫
|y|≤K

|Θ(y)|pdy + C0

(∫
|y|≥K

|Θ(y)|qdy
) p

q

.

Passing m2 to ∞ and then K to ∞, the claim is followed. Now (2.2) reduces to the
following form (by choosing m1/2 = M):

(2.3)
1

M2−p(α+γ−1)

∫
|y|≤M

|Θ(y)|pdy ≤ C

∫
|y|≥M

|Θ(y)|p|R⊥
γ Θ(y)|

|y|3−p(α+γ−1)
dy.

From the Hölder inequality, Calderón-Zygmund inequality and Hardy-Littlewood-
Sobolev inequality, we get

1

M2−p(α+γ−1)

∫
|y|≤M

|Θ(y)|pdy ≤ C
1

M2−γ−p(α+γ−1)+2(p+1)/q
‖|Θ|p‖

L
q
p
‖R⊥

γ Θ‖Lr

≤ C
1

M2−γ−p(α+γ−1)+2(p+1)/q
‖Θ‖p+1

Lq ,

with r the index such that 2
r = 2

q − (γ − 1). Hence

(2.4)

∫
|y|≤M

|Θ(y)|pdy ≤ CMaq , with aq = γ − 2(p+ 1)

q
.

Clearly, if aq < 0, that is, q < 2(p+1)/γ, we conclude the proof by passing M → ∞.
Otherwise, by interpolation, we get

(2.5)

∫
|y|≤M

|Θ(y)|
2p+2
γ+1 dy ≤ CMaqbq , with bq =

q − 2(p+ 1)/(γ + 1)

q − p
< 1.

In order to control the growth of the nonlocal term u = R⊥
γ Θ (γ ∈ [1, 2]), we have

the following lemma.

Lemma 2.1. Assume that
∫
|y|≤M

|Θ(y)|pdy ≤ CMa for all 1 < p < 2
γ−1 , a <

2− p(γ − 1) and M ≥ 1. Then we have

(2.6)

∫
|y|≤M

|R⊥
γ Θ(y)|

2p
2−p(γ−1)dy ≤ CM

2a
2−p(γ−1) .

In our application, from aq = γ − 2p+2
q < γ − (p+ 1)(γ − 1) < 2 − 2p+2

γ+1 (γ − 1)

(due to q < 2
γ−1 ) and (2.5), we have

(2.7)

∫
|y|≤M

|R⊥
γ Θ(y)|

2p+2
2−p(γ−1)dy ≤ CM

(γ+1)aqbq
2−p(γ−1) .
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Proof of Lemma 2.1. From the expression

R⊥
γ Θ(y) = p.v.

∫
R2

K⊥
γ (y − z)Θ(z)dz, with K⊥

γ (z) = C0
(−z2, z1)

|z|4−γ
,

we have the splitting∫
|y|≤M

|R⊥
γ Θ(y)|

2p
2−p(γ−1)dy =

∫
|y|≤M

∣∣∣ ∫
|z|≤2M

K⊥
γ (y − z)Θ(z)dz

∣∣∣ 2p
2−p(γ−1)

dy

+

∫
|y|≤M

∣∣∣ ∫
|z|≥2M

K⊥
γ (y − z)Θ(z)dz

∣∣∣ 2p
2−p(γ−1)

dy

= I + II.

For I, from the Calderón-Zygmund inequality and Hardy-Littlewood-Sobolev in-
equality, we get

I ≤ C
(∫

|z|≤2M

|Θ(z)|pdz
) 2

2−p(γ−1) ≤ CM
2a

2−p(γ−1) .

For II, by the dyadic decomposition, we find that

II ≤ C

∫
|y|≤M

( ∞∑
k=1

∫
2kM≤|z|≤2k+1M

1

|y − z|3−γ
|Θ(z)|dz

) 2p
2−p(γ−1)

dy

≤ C

∫
|y|≤M

( ∞∑
k=1

1

2(3−γ)kM3−γ

∫
2kM≤|z|≤2k+1M

|Θ(z)|dz
) 2p

2−p(γ−1)

dy

≤ CM2

( ∞∑
k=1

1

2k(3−γ)M3−γ
(2kM)2−

2
p (2k+1M)

a
p

) 2p
2−p(γ−1)

≤ CM
2a

2−p(γ−1)

( ∞∑
k=1

2−k 2−p(γ−1)−a
p

) 2p
2−p(γ−1) ≤ CM

2a
2−p(γ−1) .

Gathering the upper estimates leads to the desired result. �

Now from (2.5) and (2.7), we treat (2.3) as follows:

1

M2−p(α+γ−1)

∫
|y|≤M

|Θ(y)|pdy

≤
∞∑
k=0

C

(2kM)3−p(α+γ−1)

(∫
|y|≤2k+1M

|Θ(y)|
2p+2
γ+1 dy

) (γ+1)p
2p+2

×
(∫

|y|≤2k+1M

|R⊥
γ Θ|

2p+2
2−(γ−1)pdy

) 2−(γ−1)p
2p+2

≤ C

M3−p(α+γ−1)−aqbq(γ+1)/2

∞∑
k=0

1

2k
(
3−p(α+γ−1)−aqbq(γ+1)/2

)
≤ C

M3−p(α+γ−1)−aqbq(γ+1)/2
,

(2.8)

where we have used the fact that 3−p(α+γ−1)−aqbq(γ+1)/2 > 3−2p/q−aq > 0.
Hence ∫

|y|≤M

|Θ(y)|pdy ≤ CMaq b̃q−1, with b̃q =
bq(γ + 1)

2
< 1.
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If aq b̃q − 1 < 0, then the proof is over. Otherwise,∫
|y|≤M

|Θ(y)|
2p+2
γ+1 dy ≤ CM (aq b̃q−1)bq .

Once again we have

∫
|y|≤M

|Θ(y)|pdy ≤ C

M

∞∑
k=0

1

2k(3−p(α+γ−1))

∫
2kM≤|y|≤2k+1M

|Θ(y)|p|R⊥
γ Θ(y)|dy

≤ CMaq b̃
2
q−b̃q−1.

By repeating the above steps, we deduce that∫
|y|≤M

|Θ(y)|pdy ≤ CMaq b̃
N
q −b̃N−1

q −···−b̃q−1.

Since b̃q < 1, by choosing N large enough, the power of M will be negative, which
yields Θ ≡ 0.

Then we consider the case α > 2
p − γ + 1. We also begin with the local Lp-

inequality

1

m
2−p(α+γ−1)
2

∫
|y|≤m2/2

|Θ(y)|pdy ≤ 1

m
2−p(α+γ−1)
1

∫
|y|≤m1

|Θ|pdy

+ C

∫
m1/2≤|y|≤m2

|Θ(y)|p|R⊥
γ Θ|

|y|3−p(α+γ−1)
dy.

By choosing m2 = 2M � 1 and m1 = 2, we have

(2.9)
1

M2−p(α+γ−1)

∫
|y|≤M

|Θ(y)|pdy ≤ C + C

∫
1≤|y|≤2M

|Θ(y)|p|R⊥
γ Θ(y)|

|y|3−p(α+γ−1)
dy.

The Hölder inequality leads to

1

M2−p(α+γ−1)

∫
|y|≤M

|Θ(y)|pdy

≤ C + C
(∫

1≤|y|≤2M

1

|y|
(3−p(α+γ−1))q
(γ+1)q/2−p−1

dy
) (γ+1)q/2−p−1

q ‖Θ‖pLq‖R⊥
γ Θ‖Lr ,

where r is the index such that 2
r = 2

q − (γ − 1). The only case we need to treat is

when (3−p(α+γ−1))q
(γ+1)q/2−(p+1) < 2, and in this case we get

∫
|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1) + CMaq , with aq = γ − 2(p+ 1)

q
.

If aq < 0, i.e. q < 2(p+ 1)/γ, then the proof is finished. Otherwise, we get

(2.10)

∫
|y|≤M

|Θ(y)|pdy ≤ CMaq and

∫
|y|≤M

|Θ(y)|
2p+2
γ+1 dy ≤ CMaqbq .
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Now we use a bootstrap argument as before, but with suitable modification. In-
serting (2.10) into (2.9) we obtain∫

|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1)

+
C

M

[log2 M ]∑
k=−1

2k(3−p(α+γ−1))

∫
M

2k+1 ≤|y|≤ M

2k

|Θ(y)|p|R⊥
γ Θ|dy

≤ CM2−p(α+γ−1) + CMaq b̃q−1

[log2 M ]∑
k=−1

2k(3−p(α+γ−1)−aq b̃q),

where [log2 M ] is the integer part of log2 M . If 3− p(α+ γ − 1)− aq b̃q ≥ 0, then∫
|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1) + CM2−p(α+γ−1) log2 M → 0, as M → ∞.

Otherwise, we get∫
|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1) + CMaq b̃q−1.

If aq b̃q − 1 < 0, then the proof is over. Otherwise, we can repeat the above process
to get ∫

|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1) + CMaq b̃
N
q −b̃N−1

q −···−b̃q−1,

and for N large enough, we finish the proof.
Next we consider the case 2

q − γ +1 < α ≤ 2
p − γ +1 to show the estimate (1.4).

The proof is quite similar to the above, and we only need to consider the situation
that ∫

|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1) log2 M.

In this case, for some ε ∈]0,min{1, p( 2q − γ + 1)}[, we roughly have∫
|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1)+ε

and ∫
|y|≤M

|Θ(y)|
2p+2
γ+1 dy ≤ CM (2−p(α+γ−1)+ε)bq .

Since 2− p(α+ γ − 1) + ε < 2− p(γ − 1), we can apply Lemma 2.1 again to get∫
|y|≤M

|Θ|pdy ≤ CM2−p(α+γ−1)

+
C

M

[log2 M ]∑
k=−1

2k(3−p(α+γ−1))

∫
M

2k+1 ≤|y|≤ M

2k

|Θ(y)|p|R⊥
γ Θ(y)|dy

≤ CM2−p(α+γ−1) + CM (2−p(α+γ−1)+ε)b̃q−1

×
[log2 M ]∑
k=−1

2k(3−p(α+γ−1))2−k(2−p(α+γ−1)+ε)b̃q

≤ CM2−p(α+γ−1).
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Finally, we treat the case 2
q − γ + 1 < α < 2

p − γ + 1 under the additional

assumption (1.5). From (1.5), we can eliminate the m2-integral in (2.2) by passing
m2 to infinity. Setting m1 = 2M > 0, we have

1

M2−p(α+γ−1)

∫
|y|≤M

|Θ(y)|pdy ≤ C

∫
|y|≥M

|Θ(y)|p|R⊥
γ Θ(y)|

|y|3−p(α+γ−1)
dy.

Dyadic decomposition leads to∫
|y|≤M

|Θ(y)|pdy ≤ C

M

∞∑
k=0

1

2k(3−p(α+γ−1))

∫
2kM≤|y|≤2k+1M

|Θ(y)|p|R⊥
γ Θ(y)|dy.

From (1.4) and Lemma 2.1, similarly to obtaining (2.8), we get∫
|y|≤M

|Θ(y)|pdy ≤ CM (2−p(α+γ−1))b̃q−1
∞∑
k=0

1

2k(3−p(α+γ−1))
2k(2−p(α+γ−1))b̃q

≤ CM (2−p(α+γ−1))b̃q−1.

If (2− p(α+ γ − 1))b̃q − 1 < 0, then the proof is over. Otherwise, by iteration we
obtain ∫

|y|≤M

|Θ(y)|pdy ≤ CM (2−p(α+γ−1))b̃Nq −b̃N−1
q −···−b̃q−1.

Since b̃q < 1, for N sufficiently large, the power will be negative and the proof is
finished.

3. Proofs of Corollary 1.2 and Proposition 1.3

3.1. Proof of Corollary 1.2. We apply Theorem 1.1 based on the Lp and L
2p+2
γ+1

local inequality respectively: since Θ ∈ C1
loc∩L

2p+2
γ+1 , we get Θ ≡ 0 for all −1 < α ≤

γ+1
p+1 −γ+1; while since Θ ∈ C1

loc∩L
2(2p+γ+3)

(γ+1)2 , we get Θ ≡ 0 for all α > γ+1
p+1 −γ+1.

Therefore Θ ≡ 0 for all α > −1.

3.2. Proof of Proposition 1.3. We start with the local Lp-inequality (2.2). For
some p ∈] 2

α+γ−1 ,∞[, e.g. p = 4
α+γ−1 , it directly satisfies α > 2

p + 1 − γ. Then by

choosing m1 = 2M0 and m2 = 2M � M0 (M0 is a constant such that (1.9) holds
for |y| ≥ M0) in (2.2), we have∫

|y|≤M

|Θ|pdy ≤ CM2−p(α+γ−1)

∫
|y|≤2M0

|Θ|pdy + CM2−p(α+γ−1)

×
∫
M0≤|y|≤2M

|Θ(y)|p|U(y)|
|y|3−p(α+γ−1)

dy.

(3.1)

Taking advantage of (1.9) and the fact that α+ 1 > 0, we get∫
|y|≤M

|Θ(y)|pdy ≤ CM2−p(α+γ−1) + CM2−p(α+γ−1)

∫
M0≤|y|≤2M

1

|y|3+α
dy

≤ CM2−p(α+γ−1).

Passing M to infinity leads to Θ ≡ 0. From U = R⊥
γ Θ, we have U ≡ 0.
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[2] A. Castro and D. Córdoba, Infinite energy solutions of the surface quasi-geostrophic equa-
tion, Adv. Math. 225 (2010), no. 4, 1820–1829, DOI 10.1016/j.aim.2010.04.018. MR2680191
(2011g:35239)

[3] Dongho Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler
equations, Comm. Math. Phys. 273 (2007), no. 1, 203–215, DOI 10.1007/s00220-007-0249-8.
MR2308755 (2008h:35280)

[4] Dongho Chae, On the conserved quantities for the weak solutions of the Euler equations
and the quasi-geostrophic equations, Comm. Math. Phys. 266 (2006), no. 1, 197–210, DOI
10.1007/s00220-006-0018-0. MR2231970 (2007j:76019)
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