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Global regularity for the supercritical dissipative
quasi-geostrophic equation with large dispersive forcing

Marco Cannone, Changxing Miao and Liutang Xue

Abstract

We consider the 2-dimensional quasi-geostrophic equation with supercritical dissipation and
dispersive forcing in the whole space. When the dispersive amplitude parameter is large enough,
we prove the global well-posedness of strong solution to the equation with large initial data. We
also show the strong convergence result as the amplitude parameter goes to ∞. Both results rely
on the Strichartz-type estimates for the corresponding linear equation.

1. Introduction

In this paper, we consider the following 2-dimensional whole-space supercritical dissipative
quasi-geostrophic (QG) equation with a dispersive forcing term⎧⎪⎨⎪⎩

∂tθ + u · ∇θ + ν|D|αθ +Au2 = 0,
u = R⊥θ = (−R2θ,R1θ),
θ|t=0(x) = θ0(x), x ∈ R2,

(1.1)

where α ∈]0, 1[, ν > 0, A > 0, Ri = −∂i|D|−1, where i = 1, 2 is the usual Riesz transform, and
the fractional differential operator |D|α is defined via the Fourier transform

|̂D|αf(ξ) = |ξ|αf̂(ξ).

Here θ is a real-valued scalar function, which can be interpreted as a buoyancy field, u = (u1, u2)
the velocity field and A the amplitude parameter. Equation (1.1) is a simplified model from the
geostrophic fluid dynamics and describes the evolution of a surface buoyancy in the presence
of an environmental horizontal buoyancy gradient (cf. [15]). From the physical viewpoint, the
background buoyancy gradient generates dispersive waves, and thus equation (1.1) provides a
model for the interaction between waves and turbulent motions in the 2-dimensional framework.

When A = 0, equation (1.1) reduces to the known 2-dimensional dissipative QG equation,
which also arises from the geostrophic fluid dynamics (cf. [8, 15]) and recently has attracted
intense attentions of many mathematicians (cf. [4, 7–12, 17, 20, 22] and references therein).
According to the scaling transformation and the L∞-maximum principle (cf. [10]), the
cases α > 1, α = 1 and α < 1 are referred to as subcritical, critical and supercritical cases,
respectively. Up to now, the study of subcritical and critical cases have been in a satisfactory
state. For the delicate critical case, the issue of global regularity was independently solved by
Kiselev, Nazarov and Volberg [20] and Caffarelli and Vasseur [4]. Kiselev et al. [20] proved
the global well-posedness for the periodic smooth data by developing a new method called the
non-local maximum principle method. Almost at the same time and from a totally different
direction, Caffarelli and Vasseur [4] established the global regularity of weak solutions by
deeply exploiting the DeGiorgi’s iteration method. However, in the supercritical case whether
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solutions remain globally regular or not is a remarkable open problem. There are only some
partial results, for instance: local well-posedness for large initial data and global well-posedness
for small initial data concerning strong solutions (for example, [7, 12, 16, 17]), the eventual
regularity of the global weak solutions (cf. [11, 18]).

Equation (1.1) is analogous to the 3-dimensional Navier–Stokes equation with Coriolis
forcing, which is a basic model of oceanography and meteorology dealing with large-scale
phenomena (cf. [6]), ⎧⎨⎩∂tu+ u · ∇u− νΔu+ ∇P +

1
ε
e3 × u = 0,

div u = 0, u|t=0 = u0,
(1.2)

where e3 = (0, 0, 1), ε denotes the Rossby number and u = (u1, u2, u3) is the unknown velocity
field. So far, it is known that global well-posedness of strong solutions to the 3-dimensional
Navier–Stokes equations only holds for small initial data. But in the case of the 3-dimensional
Navier–Stokes–Coriolis system (1.2), when ε is small enough, the presence of fast rotating term
produces stabilization effect and ensures the global well-posedness of strong solution with large
initial data. This result was shown by Babin et al. [1, 2] and also by Gallagher [13] in the case
of non-resonant periodic domains. For the case of whole space, it was proved by Chemin et al.
[5] through establishing the Strichartz-type estimates of the corresponding linear system. By
applying the method of Chemin, Desjardins, Gallagher and Grenier[5], Ngo [21], moreover,
studied the case of small viscosity, that is, ν = εβ with β ∈]0, β0] and some β0 > 0, and proved
the global existence of strong solution as ε small enough. The asymptotic behavior of weak
solutions in the weak or strong sense as ε goes to 0 was also considered by Chemin, Gallagher
and their collaborators (cf. [6, 14]), and they showed that the limiting equation in the whole
space (in general) is the 2-dimensional Navier–Stokes equations with the velocity field ū three
components {

∂tū+ ūh · ∇hū− νΔhū+ (∇hP, 0) = 0,
div ūh = 0, ū|t=0 = ū0,

(1.3)

where ūh � (ū1, ū2), Δh � ∂2
1 + ∂2

2 and ∇h � (∂1, ∂2).
For the dispersive dissipative QG equation (1.1), Kiselev and Nazarov [19] considered the

critical case of A > 0 and α = 1, and by applying the method of non-local maximum principle
they proved the global regularity for the smooth solutions. Note that in their proof, the
dispersive term always plays a negative role.

In this paper, we mainly focus on the dispersive dissipative QG equation (1.1) in the
case of the supercritical regime α < 1 and A large enough. Motivated by the results of the
3-dimensional Navier–Stokes–Coriolis equations, we shall develop the Strichartz-type estimate
of the corresponding 2-dimensional linear equation to prove the global well-posedness of strong
solution to (1.1) with large initial data. We shall also show the strong convergence result.

Before stating our main results, we first give some classical uniform existence results.

Proposition 1.1. Let θ0 ∈ L2(R2) be a 2-dimensional real-valued scalar function. Then
there exists a global weak solution θ (in the sense of distributions) to the dispersive dissipative
QG equation (1.1), which also satisfies the following energy estimate, uniformly in A,

‖θ(t)‖2
L2 + 2ν

∫ t

0

‖|D|α/2θ(τ)‖2
L2 dτ � ‖θ0‖2

L2 ∀t > 0.

Moreover, if θ0 ∈ H2−α(R2), then there is a time T > 0 independent of A such that

θ ∈ C([0, T ];H2−α) ∩ L2([0, T ];H2−α/2)
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with the norm independent of A, and all solutions to (1.1) coincide with θ on [0, T ]. In
particular, an absolute constant c > 0 can be chosen such that if ‖θ0‖H2−α � cν, then the
solution becomes global in time.

Remark 1.2. Since for every s ∈ R, |D|sθ = |D|sθ and |θ̂(ξ)|2 = θ̂(ξ)θ̂(−ξ), we know that∫
R2

|D|sR1θ(x)|D|sθ(x) dx = 〈|D|sR1θ, |D|sθ〉L2 = −
∫

R2
iξ1|ξ|2s−1|θ̂(ξ)|2 dξ = 0, (1.4)

thus the dispersive term does not contribute to the energy-type estimates. Therefore, the proof
of Proposition 1.1 is almost identical to the corresponding classical proof for the supercritical
dissipative QG equation, and we here omit it (cf. [7, 12, 17, 22]).

Now we consider the asymptotic behaviour of equation (1.1) as A tends to infinity. This is
reasonable since all bounds in the above statement are independent of A. In what follows, we
shall also denote by θA the solutions in Proposition 1.1 to emphasize the dependence of A. The
convergence result is as follows.

Theorem 1.3. Let θ0(x) = θ̄0(x2) + θ̃0(x), with θ̄0 ∈ H3/2−α(R) a 1-dimensional real-
valued scalar function and θ̃0 ∈ L2(R2) a 2-dimensional real-valued scalar function. Assume
that θ̄(t, x2) is the unique solution of the following linear equation:

∂tθ̄ + ν|D2|αθ̄ = 0, θ̄(0, x2) = θ̄0(x2). (1.5)

Then there exists a global weak solution θA to the dispersive dissipative QG equation (1.1).
Furthermore, for every σ ∈]2, 4/(2 − α)[ and T > 0, we have

lim
A→∞

∫T

0

‖θA(t) − θ̄(t)‖2
Lσ dt = 0. (1.6)

Next we consider the strong solutions, and we prove the following global result.

Theorem 1.4. Let θ0(x) ∈ H2−α(R2) be a 2-dimensional real-valued scalar function, then
there exists a positive number A0 such that for every A � A0, the dispersive dissipative
QG equation (1.1) has a unique global solution θA satisfying θA ∈ C(R+;H2−α(R2)) ∩
L2(R+; Ḣ2−α/2(R2)). Moreover, if we denote by θ̃A the solution of the following linear dispersive
dissipative equation:

∂tθ̃
A + ν|D|αθ̃A +AR1θ̃

A = 0, θ̃A|t=0 = θ0, (1.7)

then as A goes to infinity,

θA − θ̃A −→ 0 in L∞(R+;H2−α(R2)) ∩ L2(R+; Ḣ2−α/2(R2)). (1.8)

The proofs of both Theorems 1.3 and 1.4 are strongly based on the Strichartz-type estimate
for the corresponding linear equation (1.7), which is the target of the whole of Section 3. The
Fourier localization method and the para-differential calculus are also heavily used in the proof
of Theorem 1.4, and for clarity, we place some needed commutator estimates and product
estimates in the appendix section. The proofs of Theorems 1.3 and 1.4 are settled in Sections 4
and 5, respectively.

Remark 1.5. The Strichartz-type estimate for the corresponding linear equation depends
on the basic dispersive estimate, which is stated in Lemma 3.3. Compared with the dispersive
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estimate in the case of the 3-dimensional Navier–Stokes–Coriolis equations (cf. [6, Lemma 5.2]),
Lemma 3.3 is much more delicate and the value (precisely, the argument) of z is more involved
in the proof. The main reason is that the equation considered here is two dimensional, and the
lower dimension makes it harder to develop the expected dispersive estimate. This can further
be justified if we try to derive the dispersive estimate of the ‘anisotropic’ kernel function, which
is as follows:

H(t, μ, z2, ξ1) �
∫

R

Ψ(ξ) eiμ(ξ1/|ξ|)+iz2ξ2−νt|ξ|α dξ2, (1.9)

with z2 ∈ R, μ > 0 and Ψ defined by (3.5), and we find that it is rather difficult to obtain the
needed dispersive estimate. Note that the suitable dispersive estimate for (1.9) will essentially
be used if one treats the general data θ0(x) = θ̄0(x2) + θ̃0(x) in Theorem 1.4.

Remark 1.6. It is interesting to note that the limiting equation (1.5) is analogous to the
2-dimensional Navier–Stokes equation (1.3), and one can expect that the equation will play a
similar role in other situations.

2. Preliminaries

In this preparatory section, we introduce some notation and present the definitions and some
related results of the Sobolev and Besov spaces.

Some notation used in this paper are listed as follows.

(a) Throughout this paper, C stands for a constant which may be different from line to line.
We sometimes use A � B instead of A � CB, and use A �β,γ,... B instead of A � C(β, γ, . . .)B,
with C(β, γ, . . .) a constant depending on parameters β, γ, . . ..

(b) Denote by D(Rn) the space of test functions which are smooth functions with compact
support, S(Rn) the Schwartz space of rapidly decreasing smooth functions, S ′(Rn) the space
of tempered distributions, S ′(Rn)/P(Rn) the quotient space of tempered distributions up to
polynomials.

(c) Ff or f̂ denotes the Fourier transform, that is, Ff(ξ) = f̂(ξ) =
∫

Rn e
−ix·ξf(x) dx, while

F−1f the inverse Fourier transform, namely, F−1f(x) = (2π)−n
∫

Rn e
ix·ξf(ξ) dξ (if there is no

ambiguity, we sometimes omit (2π)−n for brevity).
(d) Denote by 〈f, g〉L2 �

∫
Rn f(x)ḡ(x) dx the inner product of the Hilbert space L2(Rn).

(e) Denote by B(x, r) the ball in Rn centred at x with radius r.

Now we give the definition of (L2-based) Sobolev space. For s ∈ R, the inhomogeneous
Sobolev space

Hs �
{
f ∈ S ′(Rn); ‖f‖2

Hs �
∫

Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ <∞
}
.

Also one can define the corresponding homogeneous space:

Ḣs �
{
f ∈ S ′(Rn)/P(Rn); ‖f‖2

Ḣs �
∫

Rn

|ξ|2s|f̂(ξ)|2 dξ <∞
}
.

In order to define the Besov spaces, we need the following dyadic partition of unity (cf. [3]).
Choose two non-negative radial functions ζ, ψ ∈ D(Rn) be supported, respectively, in the ball
{ξ ∈ Rn : |ξ| � 4

3} and the shell {ξ ∈ Rn : 3
4 � |ξ| � 8

3} such that

ζ(ξ) +
∑
j�0

ψ(2−jξ) = 1 ∀ξ ∈ Rn;
∑
j∈Z

ψ(2−jξ) = 1 ∀ξ �= 0.
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For all f ∈ S ′(Rn), we define the non-homogeneous Littlewood–Paley operators

Δ−1f � ζ(D)f ; Δjf � ψ(2−jD)f, Sjf �
∑

−1�k�j−1

Δkf ∀j ∈ N,

And the homogeneous Littlewood–Paley operators can be defined as follows:

Δ̇jf � ψ(2−jD)f ; Ṡjf �
∑

k∈Z,k�j−1

Δ̇kf ∀j ∈ Z.

Then we introduce the definition of Besov spaces . Let (p, r) ∈ [1,∞]2, s ∈ R, the non-
homogeneous Besov space

Bs
p,r � {f ∈ S ′(Rn); ‖f‖Bs

p,r
� ‖{2js‖Δjf‖Lp}j�−1‖�r <∞}

and the homogeneous space

Ḃs
p,r � {f ∈ S ′(Rn)/P(Rn); ‖f‖Ḃs

p,r
� ‖{2js‖Δ̇jf‖Lp}j∈Z‖�r(Z) <∞}.

We point out that for all s ∈ R, Bs
2,2 = Hs and Ḃs

2,2 = Ḣs.
Next we introduce two kinds of space–time Besov spaces. The first one is the classical space–

time Besov space Lρ([0, T ], Bs
p,r), abbreviated by Lρ

TB
s
p,r, which is the set of f ∈ S ′ such

that

‖f‖Lρ
T Bs

p,r
� ‖‖{2js‖Δjf‖Lp}j�−1‖�r‖Lρ([0,T ]) <∞.

The second one is the Chemin–Lerner’s mixed space–time Besov space L̃ρ([0, T ], Bs
p,r),

abbreviated by L̃ρ
TB

s
p,r, which is the set of tempered distribution f satisfying

‖f‖L̃ρ
T Bs

p,r
� ‖{2qs‖Δqf‖Lρ

T Lp}q�−1‖�r <∞.

Owing to Minkowiski’s inequality, we immediately obtain

Lρ
TB

s
p,r ↪→ L̃ρ

TB
s
p,r if r � ρ and L̃ρ

TB
s
p,r ↪→ Lρ

TB
s
p,r if ρ � r.

These can similarly extend to the homogeneous ones Lρ
T Ḃ

s
p,r and L̃ρ

T Ḃ
s
p,r.

Bernstein’s inequality is very fundamental in the analysis involving Besov spaces.

Lemma 2.1. Let a, b, p and q be positive numbers satisfying 0 < a � b <∞ and 1 � p �
q � ∞, k � 0, λ > 0 and f ∈ Lp(Rn) with n ∈ Z+. Then there exist positive constants C and
c independent of λ such that

if suppf̂ ⊂ {ξ : |ξ| � λb} =⇒ ‖|D|kf‖Lq(Rn) � Cλk+n(1/p−1/q)‖f‖Lp(Rn)

and

if suppf̂ ⊂ {ξ : aλ � |ξ| � bλ} =⇒ cλk‖f‖Lp(Rn) � ‖|D|kf‖Lp(Rn) � Cλk‖f‖Lp(Rn).

When k ∈ N, similar estimates hold if |D|k is replaced by sup|γ|=k ∂
γ .

3. Strichartz-type estimates for the corresponding linear equation

In this section, we are devoted to show the Strichartz-type estimates of the following linear
dispersive dissipative equation: {

∂tθ̃ + ν|D|αθ̃ +AR1θ̃ = f,

θ̃|t=0 = θ̃0.
(3.1)
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Applying the spatial Fourier transformation to the upper equation, we obtain⎧⎪⎨⎪⎩
∂t

ˆ̃
θ + ν|ξ|α ˆ̃

θ −Ai
ξ1
|ξ|

ˆ̃
θ = f̂ ,

ˆ̃
θ|t=0 = ̂̃

θ0.

Furthermore,

ˆ̃
θ(t, ξ) = eiAt(ξ1/|ξ|)−νt|ξ|α ̂̃θ0(ξ) +

∫ t

0

eiA(t−τ)(ξ1/|ξ|)−ν(t−τ)|ξ|α f̂(τ, ξ) dτ.

Thus by setting

GA(t) : g �−→
∫

R2
ξ

eiAta(ξ)−νt|ξ|α+ix·ξ ĝ(ξ) dξ,

with

a(ξ) � ξ1/|ξ|,
we have

θ̃(t) = GA(t)θ̃0 +
∫ t

0

GA(t− τ)f(τ) dτ. (3.2)

Hence, it reduces to consider the Strichartz-type estimate of GA(t)g, and because the phase
function a(ξ) is somewhat ‘singular’, we shall study the case when ĝ is supported in the set
Br,R for some 0 < r < R, with

Br,R � {ξ ∈ R2 : |ξ1| � r, |ξ| � R}.
The main result of this section is as follows.

Proposition 3.1. Let r and R be two positive numbers satisfying r < R, and g ∈ L2(R2)
satisfying supp ĝ ⊂ Br,R. Then for every p ∈ [1,∞] and q ∈ [2,∞], there exists a positive
constant C = Cr,R,p,q,ν such that

‖GA(t)g‖Lp(R+;Lq(R2)) � CA−1/8p(1−2/q)‖g‖L2(R2). (3.3)

Proposition 3.1 combined with (3.2) and Minkowiski’s inequality (cf. (4.8) below) implies
the following Strichartz-type estimates for the linear system (3.1).

Corollary 3.2. Let r and R be two positive numbers satisfying r < R. Assume that
θ̃0 ∈ L2(R2) and f ∈ L1(R+;L2(R2)) satisfying that

supp ̂̃θ0 ∪
⎛⎝⋃

t�0

supp f̂(t, ·)
⎞⎠ ⊂ Br,R,

and θ̃ solves the corresponding linear dispersive equation (3.1). Then for every p ∈ [1,∞] and
q ∈ [2,∞], there exists a positive constant C = Cr,R,p,q,ν such that

‖θ̃‖Lp(R+;Lq(R2)) � CA−1/8p(1−2/q)(‖θ̃0‖L2(R2) + ‖f‖L1(R+;L2(R2))).

In order to prove Proposition 3.1, we introduce the following kernel function:

K(t, μ, z) �
∫

R2
ξ

Ψ(ξ) eiμa(ξ)+iz·ξ−νt|ξ|α dξ, (3.4)
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where t > 0, μ > 0, z ∈ R2, Ψ ∈ D(R2) is a smooth cut-off function such that Ψ ≡ 1 on Br,R

and is supported in Br/2,2R, and, for instance, we can explicitly define

Ψ(ξ) = χ

( |ξ|
R

)(
1 − χ

(
2|ξ1|
r

))
(3.5)

with χ ∈ D(] − 2, 2[) satisfying χ(x) ≡ 1 for |x| � 1.
As a first step, we show the following basic dispersive estimate of K.

Lemma 3.3. Let r and R be two positive numbers satisfying r < R, and K be defined by
(3.4). Then there exists an absolute constant C = Cr,R such that for every z ∈ R2,

|K(t, μ, z)| � Cmin{1, μ−1/4} e−rανt/4.

Proof of Lemma 3.3. We shall use the method of stationary phase to show this formula.
Denoting by

Φ(ξ, z) � ∇ξ

(
a(ξ) +

z

μ
· ξ
)

= − ξ2
|ξ|3 ξ

⊥ +
z

μ

with ξ⊥ = (−ξ2, ξ1), we introduce the following differential operator:

L � Id − iΦ(ξ, z) · ∇ξ

1 + μ|Φ(ξ, z)|2 ,

and we see that L eiμa(ξ)+iz·ξ = eiμa(ξ)+iz·ξ. From integration by parts, we have

K(t, μ, z) =
∫

R2
eiμa(ξ)+iz·ξLt(Ψ(ξ) e−νt|ξ|α) dξ,

where Lt is given by

Lt � 1
1 + μ|Φ(ξ, z)|2

(
1 + i∇ · Φ − i

2μ
∑

j,k ΦjΦk∂ξj
Φk

1 + μ|Φ|2
)

Id +
Φ(ξ, z) · ∇ξ

1 + μ|Φ(ξ, z)|2 .

Since ξ is supported in Br/2,2R, we find

|∇Φ(ξ, z)| =
∣∣∣∣∇(ξ2ξ⊥|ξ|3

)∣∣∣∣ � 1
r2
,

thus ∣∣∣∣∣1 + i∇ · Φ − i
2μ
∑

j,k ΦjΦk∂ξj
Φk

1 + μ|Φ|2
∣∣∣∣∣ � 1 +

1
r2
.

Since Ψ ∈ D(R2) satisfies |∇Ψ| � 1/r, we infer that

|∇(Ψ(ξ) e−νt|ξ|α)| � |∇Ψ| e−νt|ξ|α + |Ψ|(νt|ξ|α e−νt|ξ|α/2)|ξ|−1 e−νt|ξ|α/2

� 1
r
e−νtrα/4.

If |Φ(ξ, z)| � 1, this is the case of non-stationary phase, and collecting the upper estimates and
noting that μ1/2|Φ| � 1 + μ|Φ|2, we have

|Lt(Ψ(ξ) e−νt|ξ|α)| � 1
r2

min{1, μ−1/2} e−νtrα/4.
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This yields

|K(t, μ, z)| �
∫
Br/2,2R

|Lt(Ψ(ξ) e−νt|ξ|α)| dξ � R2

r2
min{1, μ−1/2} e−νtrα/4.

If |Φ(ξ, z)| � 1, this corresponds to the case of stationary case and is more delicate. Gathering
the necessary estimates as above, we have

|Lt(Ψ(ξ) e−νt|ξ|α)| � 1
r2

1
1 + μ|Φ(ξ, z)|2 e

−νtrα/4,

and it leads to

|K(t, μ, z)| � 1
r2
e−νtrα/4

∫
Br/2,2R

1
1 + μ|Φ(ξ, z)|2 dξ. (3.6)

For the case z = 0, we see that Φ(ξ, 0) = −(ξ2/|ξ|3)ξ⊥ and |Φ(ξ, 0)| = |ξ2|/|ξ|2, thus

|K(t, μ, 0)| � R

r2
e−νtrα/4

∫2R

0

1
1 + μξ22/(4R2)

dξ2 � R2

r2
e−νtrα/4μ−1/2. (3.7)

For every ξ ∈ Br/2,2R and z ∈ R2 \ {0}, we have the following orthogonal decomposition:

ξ = (ξ1, ξ2) = ξz,‖ez + ξz,⊥e⊥z ,

where ez = z/|z|, e⊥z = z⊥/|z|,
ξz,‖ � ξ · ez and ξz,⊥ � ξ · e⊥z .

Noting that ξ⊥ = (−ξz,⊥)ez + ξz,‖e⊥z , we have

|Φ(ξ, z)| =
∣∣∣∣− ξ2

|ξ|3 ξ
⊥ +

z

μ

∣∣∣∣ = ∣∣∣∣(ξ2ξz,⊥
|ξ|3 +

|z|
μ

)
ez −

ξ2ξz,‖
|ξ|3 e⊥z

∣∣∣∣ � |ξ2||ξz,‖|
|ξ|3 ,

and thus for every z �= 0, we have |K(t, μ, z)| � r−2 e−νtrα/4H(μ, z) with

H(μ, z) �
∫
Br/2,2R

1
1 + μξ22ξ

2
z,‖/(8R

3)
dξ.

With no loss of generality, we assume that z = |z|ez = |z|(cosφ, sinφ) with φ ∈ [0, π/2]. Then
for every ξ = (ξ1, ξ2), we have ξz,‖ = ξ · ez = ξ1 cosφ+ ξ2 sinφ, thus if ξ1ξ2 � 0, we observe

ξ2z,‖ � ξ21 cos2 φ+ ξ22 sin2 φ � min{ξ21 , ξ22}.
Hence ∫

B r
2 ,2R∩{ξ1ξ2�0}

1
1 + μξ22ξ

2
z,‖/(8R

3)
dξ1 dξ2

�
∫
Br/2,2R∩{ξ1ξ2�0}

1
1 + μξ22 min{ξ21 , ξ22}/(8R3)

dξ1 dξ2

� R

∫2R

−2R

1
1 + μξ22 min{r2/4, ξ22}/(8R3)

dξ2

� max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
.

Noting that∫
Br/2,2R∩{ξ1ξ2�0}

1
1 + μξ22ξ

2
z,‖/(8R

3)
dξ1 dξ2 = 2

∫
Br/2,2R∩{ξ1�0,ξ2�0}

1
1 + μξ22ξ

2
z,‖/(8R

3)
dξ1 dξ2,
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we find that

H(μ, z) � max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
+

∫
Br/2,2R∩{ξ1�0,ξ2�0}

1
1 + μξ22ξ

2
z,‖/(8R

3)
dξ1 dξ2

� max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
+

∫0

−2R

∫2R

r/2

1
1 + μξ22(ξ1 cosφ+ ξ2 sinφ)2/(8R3)

dξ1 dξ2

� max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
+ H̃(μ, φ),

where

H̃(μ, φ) �
∫2R

0

∫2R

r/2

1
1 + μξ22(ξ1 cosφ− ξ2 sinφ)2/(8R3)

dξ1 dξ2 ∀φ ∈ [0, π/2].

Now it suffices to treat H̃(μ, φ), and we shall divide into several cases according to φ. First for
the endpoint case φ = 0, we directly have

H̃(μ, 0) =
∫2R

0

∫2R

r/2

1
1 + μξ22ξ

2
1/(8R3)

dξ1 dξ2

� 2R
∫2R

0

1
1 + μξ22(r2/4)/(8R3)

dξ2

� R

(
μr2

R3

)−1/2 ∫∞

0

1
1 + ξ̃22

dξ̃2 � R5/2

r
μ−1/2. (3.8)

If φ is close to 0 so that (r/2) cosφ− 2R sinφ � (r/4) cosφ, that is, φ ∈]0, arctan(r/8R)], we
similarly obtain

H̃(μ, φ) �
∫2R

0

∫2R

r/2

1
1 + μξ22(r cosφ/4)2/(8R3)

dξ1 dξ2

� R5/2

r
μ−1/2. (3.9)

For every φ ∈ [arctan(r/8R), π/4], if ξ2 ∈ [0, r/4], we find that ξ1 − ξ2 tanφ � r/2 −
(r/4) tan(π/4) = r/4, thus we obtain

H̃(μ, φ) �
∫2R

0

∫2R

r/2

1
1 + μξ22(cosφ)2(ξ1 − ξ2 tanφ)2/(8R3)

dξ1 dξ2

� R

∫ r/4

0

1
1 + μξ22(r/4)2/(16R3)

dξ2

+
∫2R

r/4

∫2R

r/2

1
1 + μ(r/4)2(ξ1 − ξ2 tanφ)2/(16R)3

dξ1 dξ2

� R5/2

r
μ−1/2 +R

∫
R

1
1 + μ(r/4)2ξ̃21/(16R)3

dξ̃1 � R5/2

r
μ−1/2. (3.10)

For the other endpoint case φ = π/2, we directly obtain

H̃
(
μ,
π

2

)
�

∫2R

0

∫2R

r/2

1
1 + μξ42/(8R3)

dξ1 dξ2 � R
( μ

R3

)−1/4
∫

R

1
1 + ξ̃42

dξ̃2 � R7/4μ−1/4.

(3.11)
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Now we consider the case φ ∈ [φ0, π/2[, where φ0 ∈ [π/4, π/2[ is a number chosen later. Noticing
that

H̃(μ, φ) �
∫2R

0

∫2R

r/2

1
1 + μξ22(ξ1 cotφ− ξ2)2/(16R3)

dξ1 dξ2, (3.12)

if ξ2 � (cotφ)r/4, we observe that ξ1 cotφ− ξ2 � (cotφ)(r/4) > 0, thus

I �
∫ (r/4) cot φ

0

∫2R

r/2

1
1 + μξ22(ξ1 cotφ− ξ2)2/(16R3)

dξ1 dξ2

� 2R
∫ (r/4) cot φ

0

1
1 + μξ22(cotφ)2(r/4)2/(16R3)

dξ2

� R5/2

rμ1/2 cotφ

∫μ1/2r2(cot φ)2/64R3/2

0

1
1 + ξ̃22

dξ̃2

� R7/4μ−1/4 8R3/4

μ1/4r cotφ
arctan

(
μ1/2r2(cotφ)2

64R3/2

)
.

Since limx→0+ arctan(x2)/x = limx→0+ 2x/(1 + x2) = 0, there exists an absolute positive con-
stant c0 such that for every x ∈]0, c0], we obtain arctan(x2)/x � 1. Thus in order to find some
φ0 ∈ [π/4, π/2[ satisfying rμ1/4 cot(φ0)/8R3/4 � c0, we only need to choose

φ0 � max
{
π

4
, arctan

(
μ1/4r

8c0R3/4

)}
,

then, for every φ ∈ [φ0, π/2[, we have

I � R7/4μ−1/4.

If ξ2 � 4R cotφ, then we find that |ξ1 cotφ− ξ2| � ξ2 − 2R cotφ � ξ2/2, thus

II �
∫∞

4R cot φ

∫2R

r/2

1
1 + μξ22(ξ1 cotφ− ξ2)2/(16R3)

dξ1 dξ2

� 2R
∫∞

0

1
1 + μξ̃42/(64R3)

dξ̃2 � R7/4μ−1/4.

If ξ2 ∈ [(cotφ)r/4, 4R cotφ], noting that cotφ � cotφ0 � (8c0R3/4/r)μ−1/4, we have

III �
∫4R cot φ

r(cot φ)/4

∫2R

r/2

1
1 + μξ22(ξ1 cotφ− ξ2)2/(16R3)

dξ1 dξ2

� (2R)(4R cotφ) � R11/4

r
μ−1/4.

Hence in the case of φ ∈ [φ0, π/2[, we have

H̃(μ, φ) � I + II + III � R11/4

r
μ−1/4. (3.13)

Finally, it remains to consider the case φ ∈ [π/4, φ0]. Also by virtue of (3.12), if
ξ2 � r(cotφ0)/4, we know that ξ1 cotφ− ξ2 � (r/2) cotφ0 − r(cotφ0)/4 = r(cotφ0)/4, and
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combining with the fact that r cotφ0 = min{r, 8c0R3/4μ−1/4}, we have

I �
∫ r(cot φ0)/4

0

∫2R

r/2

1
1 + μξ22(ξ1 cotφ− ξ2)2/(16R3)

dξ1 dξ2

� 2R
∫∞

0

1
1 + μξ22(min{r/4, 2c0R3/4μ−1/4})2/(16R3)

dξ2

� max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
.

Otherwise, if ξ2 � r(cotφ0)/4 = min{r/4, 2c0R3/4μ−1/4}, we infer that

II �
∫2R

r(cot φ0)/4

∫2R

r/2

1
1 + μξ22(ξ1 cotφ− ξ2)2/(16R3)

dξ1 dξ2

� R

∫
R

1
1 + μ(r(cotφ0)/4)2ξ̃22/(16R3)

dξ̃2

� max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
.

Therefore in the case of φ ∈ [π/4, φ0], we have

H̃(μ, φ) � I + II � max
{
R5/2

r
μ−1/2, R7/4μ−1/4

}
. (3.14)

Collecting the above estimates, this finishes the proof of this lemma.

Next we are devoted to proving Proposition 3.1 based on Lemma 3.3.

Proof of Proposition 3.1. Noting that

GA(t)g(x) =
∫

R2
Ψ(ξ)ĝ(ξ) eiAta(ξ)−νt|ξ|α+ix·ξ dξ

= K(t, At, ·) ∗ g(x),

where K is defined by (3.4), we apply Lemma 3.3 to obtain

‖GA(t)g‖L∞
x

�r,R (At)−1/4 e−νrαt/4‖g‖L1 .

On the other hand, by the Planchrel theorem, we find

‖GA(t)g‖L2
x

� e−νrαt/2‖g‖L2 .

Thus from interpolation, we have the following dispersive estimates that for every q ∈ [2,∞]
and t ∈ R+,

‖GA(t)g‖Lq
x

= ‖K(t, At, ·) ∗ g(x)‖Lq
x

�r,R (At)−(q−2)/4q e−rανt/4‖g‖Lq′ , (3.15)

where q′ � q/(q − 1) is the dual number of q.
Now we shall use the classical duality method, also called as TT ∗-method, to show the

expected estimates. For every q ∈ [2,∞], denoting by

Uq � {ϕ ∈ D(R+ × R2) : ‖ϕ‖L∞(R+;Lq′ (R2)) � 1},
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we have

‖GA(t)g‖L1(R+;Lq) = sup
ϕ∈Uq

∣∣∣∣∫
R+

〈GA(t)g(x), ϕ(t, x)〉L2
x
dt

∣∣∣∣
= sup

ϕ∈Uq

∣∣∣∣∫
R2

∫
R+
ĝ(ξ)Ψ(ξ) eiAta(ξ)−νt|ξ|α ¯̂ϕ(t, ξ) dt dξ

∣∣∣∣
� ‖g‖L2 sup

ϕ∈Uq

∥∥∥∥∫
R+

Ψ(ξ) ¯̂ϕ(t, ξ) eiAta(ξ)−νt|ξ|α dt
∥∥∥∥

L2
ξ

.

Taking advantage of the Plancherel theorem, the Hölder inequality and (3.15), we obtain∥∥∥∥∫
R+

Ψ(ξ) ¯̂ϕ(t, ξ) eiAta(ξ)−νt|ξ|α dt
∥∥∥∥2

L2
ξ

=
∫

R2
ξ

∫
(R+)2

Ψ(ξ) ¯̂ϕ(t, ξ) eitAa(ξ)−νt|ξ|αΨ̄(ξ)ϕ̂(τ, ξ) e−iτAa(ξ)−ντ |ξ|α dt dτ dξ

=
∫

R+

∫
R+

〈Ψ(ξ)ϕ̂(τ, ξ) ei(t−τ)Aa(ξ)−ν(t+τ)|ξ|α ,Ψ(ξ)ϕ̂(t, ξ)〉L2
ξ
dτ dt

=
∫

R+

∫ t

0

〈K(t+ τ, (t− τ)A, ·) ∗ ϕ(τ, x), (F−1Ψ) ∗ ϕ(t, x)〉L2
x
dτ dt

+
∫

R+

∫∞

t

〈(F−1Ψ) ∗ ϕ(τ, x),K(t+ τ, (τ − t)A, ·) ∗ ϕ(t, x)〉L2
x
dτ dt

� Cr,R

∫
(R+)2

(
1

A|t− τ |
)(q−2)/4q

e−rαν(t+τ)/4‖ϕ‖2
L∞(R+;Lq′ (R2))

dτ dt.

Since, for every q ∈ [2,∞], ϕ ∈ Uq and
∫
(R+)2

(
1

|t− τ |
)(q−2)/4q

e−rαν(t+τ)/4 dτ dt � Cν,q,

we obtain

‖GA(t)g‖L1(R+;Lq) �r,R,q,ν A
−(q−2)/8q‖g‖L2 ∀q ∈ [2,∞].

By the Bernstein inequality and the Plancherel theorem, we also have

‖GA(t)g‖L∞(R+;Lq) �R ‖GA(t)g‖L∞(R+;L2) �R ‖g‖L2 .

From interpolation, we infer that for every p ∈ [1,∞] and q ∈ [2,∞]

‖GA(t)g‖Lp(R+;Lq) �r,R,q,p,ν A
−(1/8p)((q−2)/q)‖g‖L2 .

4. Proof of Theorem 1.3

This section is dedicated to the proof of the global existence and convergence of weak solutions
to the dispersive dissipative QG equation (1.1).

Since θ̄(t, x2) solving (1.5) is globally and uniquely defined, we only need to consider
the difference ΘA(t, x) � θA(t, x) − θ̄(t, x2), with the associated difference equation formally
given by{

∂tΘA + (R⊥ΘA) · ∇ΘA − (Hθ̄)∂1ΘA + ν|D|αΘA +A(R1ΘA) = −(R1ΘA)∂2θ̄,

ΘA(0, x) = θ̃0(x),
(4.1)
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where H is the usual Hilbert transform in Rx2 . Note that we have used the following facts that
∂1θ̄ = 0, R1θ̄ = (−|D|−1∂1)θ̄ = 0 and

R2θ̄(x) =
∫

R2
ξ

eix·ξ
(
−i ξ2|ξ|

)
ˆ̄θ(ξ2)δ(ξ1) dξ =

∫
R

eix2ξ2

(
−i ξ2|ξ2|

)
ˆ̄θ(ξ2) dξ2 = Hθ̄(x2),

and

|D|αθ̄(x) =
∫

R2
eix·ξ|ξ|α ˆ̄θ(ξ2)δ(ξ1) dξ =

∫
R

eix2ξ2 |ξ2|α ˆ̄θ(ξ2) dξ2 = |D2|αθ̄(x2),

with δ(·) the Dirac-δ function.

4.1. Existence of solutions to the perturbed equation (4.1)

We first consider the a priori estimates. By taking the L2 inner product of (4.1) with ΘA,
integration by parts, and from (1.4) and the fact that ∇ · (R⊥ΘA) = 0 and ∂1(Hθ̄(x2)) = 0,
we obtain

1
2
d

dt
‖ΘA(t)‖2

L2 + ν‖|D|α/2ΘA(t)‖2
L2 = −

∫
R2

R1ΘA(t, x)∂2θ̄(t, x2) · ΘA(t, x) dx.

From the Hölder inequality, Sobolev embedding (Ḣα/2(R) ↪→ L2/(1−α)(R)) and the Calderón–
Zygmund theorem, we obtain

1
2
d

dt
‖ΘA(t)‖2

L2 + ν‖|D|α/2ΘA(t)‖2
L2 � ‖R1ΘA(t)‖

L
2,2/(1−α)
x1,x2

‖∂2θ̄(t)‖L
2/α
x2

‖ΘA(t)‖L2

� C‖|D2|α/2ΘA(t)‖L2‖∂2θ̄(t)‖L
2/α
x2

‖ΘA(t)‖L2

� C‖|D|α/2ΘA(t)‖L2‖∂2θ̄(t)‖L
2/α
x2

‖ΘA(t)‖L2 .

Using the Young inequality, we further have
1
2
d

dt
‖ΘA(t)‖2

L2 +
ν

2
‖|D|α/2ΘA(t)‖2

L2 � C

ν
‖∂2θ̄(t)‖2

L
2/α
x2

‖ΘA(t)‖2
L2 .

Gronwall’s inequality ensures that

‖ΘA(t)‖2
L2 + ν

∫ t

0

‖ΘA(τ)‖2
Ḣα/2 dτ � ‖θ̃0‖2

L2 exp
{
C

ν
‖∂2θ̄‖2

L2
t L2/α

}
.

From the Sobolev embedding (Ḣ(1−α)/2(R) ↪→ L2/α(R)) and the energy-type estimate of the
linear dissipative equation (1.5), we find

‖∂2θ̄‖2
L2

t L2/α � ‖θ̄‖2
L2

t Ḣ3/2−α/2 � ν−1‖θ̄0‖2
H3/2−α . (4.2)

Hence, we finally obtain that for every t ∈ R+

‖ΘA(t)‖2
L2 + ν

∫ t

0

‖ΘA(τ)‖2
Ḣα/2 dτ � ‖θ̃0‖2

L2 exp
{
C

ν2
‖θ̄0‖2

H3/2−α

}
. (4.3)

Next we sketch the proof of the global existence of solution to (4.1). We have the following
approximate system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tΘA
ε + (R⊥ΘA

ε ) · ∇ΘA
ε − (Hθ̄ε) ∂1ΘA

ε + ν|D|αΘA
ε +A(R1ΘA

ε )
−εΔΘA

ε = −(R1ΘA
ε ) ∂2θ̄ε,

∂tθ̄ε + ν|D2|αθ̄ε = 0,
ΘA(0, x) = ϕε ∗ θ̃0(x), θ̄ε(0, x2) = ϕ̃ε ∗ θ̄0(x2),

(4.4)

where ϕε(x) = ε−2ϕ(x/ε) and ϕ ∈ D(R2) satisfies
∫

R2 ϕ = 1, while ϕ̃ε(x2) = ε−1ϕ̃(x2/ε) and
ϕ̃ ∈ D(R) satisfies

∫
R
ϕ̃ = 1. Letm > 2 andm ∈ Z+, and fix ε > 0. Since ‖ϕε ∗ θ̃0‖Hm �ε ‖θ̃0‖L2

and ‖ϕ̃ε ∗ θ̄0‖Hm
x2

�ε ‖θ̄0‖L2
x2

, and since −εΔΘA
ε is the subcritical dissipation, from the standard
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energy method we find that for all T > 0

sup
t∈[0,T ]

‖ΘA
ε (t)‖Hm � C(ε, T, ϕ, ϕ̃, ‖θ̃0‖L2 , ‖θ̄0‖L2).

This estimate combined with a Galerkin approximation process yields the global existence of
a strong solution (ΘA

ε , θ̄ε) to (4.4). Furthermore, from (4.3) and the estimation ‖ϕε ∗ f‖Hs �
‖f‖Hs , ∀s ∈ R, we have the uniform energy inequality with respect to ε that for all T > 0

‖ΘA
ε (T )‖2

L2 + ν

∫T

0

‖ΘA
ε (s)‖2

Ḣα/2 ds � ‖ϕε ∗ θ̃0‖2
L2 exp

{
C

ν2
‖ϕ̃ε ∗ θ̄0‖2

H3/2−α

}
� ‖θ̃0‖2

L2 exp
{
C

ν2
‖θ̄0‖2

H3/2−α

}
. (4.5)

Hence this ensures that, up to a subsequence, ΘA
ε converges weakly (or weakly-∗) to a function

ΘA in L∞
T L

2 ∩ L2
T Ḣ

α/2. Similarly as the case of the dissipative QG equation, from the
compactness argument, we further obtain that as ε tends to 0,{

ΘA
ε −→ ΘA,

RjΘA
ε −→ RjΘA, j = 1, 2,

strongly in L2([0, T ];L2
loc(R

2)).

Since θ̄0 ∈ H3/2−α(R), it is clear to see that θ̄ε strongly converges to θ̄ = e−νt|D2|θ̄0 in
L∞([0, T ];H3/2−α(R)). Therefore, we can pass to the limit in (4.4) to show that ΘA is a
weak solution of (4.1).

4.2. Proof of estimation (1.6)

Now we show the strong convergence of ΘA by using the Strichartz-type estimate (3.3). To
this end, we introduce the following cut-off operator:

Ir,R = Ir,R(D) � χ

( |D|
R

)(
Id − χ(|D1|)

r

)
, (4.6)

where 0 < r < R and χ ∈ D(R) satisfies that χ(x) ≡ 1 for all |x| � 1 and χ is compactly
supported in {x : |x| < 2}. Then for the term Ir,RΘA, we have the following estimation (with
its proof placed at the end of this subsection).

Lemma 4.1. Let r and R be two positive numbers satisfying r < R. Then for every T > 0
and σ ∈]2,∞[, there exists an absolute constant C̃ depending on r,R, T, σ, ν, ‖θ̄0‖H3/2−α and
‖θ̃0‖L2 but independent of A such that

‖Ir,RΘA‖L2([0,T ];Lσ(R2)) � C̃A−1/16(1−2/σ). (4.7)

Now we consider the contribution from the part of high frequency and the part of low
frequency in ξ1. From the Sobolev embedding, Berenstein inequality and the energy estimate
(4.3), we obtain, for every σ ∈ [2, 4/(2 − α)[,

‖(Id − χ(|D|/R))ΘA‖L2(R+;Lσ(R2)) � ‖(Id − χ(|D|/R))ΘA‖L2(R+;Ḣ1−2/σ(R2))

� R−(α/2+2/σ−1)‖(Id − χ(|D|/R))ΘA‖L2(R+;Ḣα/2(R2))

� R−(2/σ−(2−α)/2)‖θ̃0‖L2 exp
{
C

ν2
‖θ̄0‖2

H3/2−α

}
.
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Also thanks to the Bernstein inequality (in x1 and x2 separately), we find that for every T > 0
and σ ∈]2,∞],

‖χ(|D1|/r)χ(|D|/R)ΘA‖L2([0,T ];Lσ(R2)) � T 1/2r1/2−1/σR1/2−1/σ‖ΘA‖L∞([0,T ];L2(R2))

�T,R r1/2−1/σ‖θ̃0‖L2 exp
{
C

ν2
‖θ̄0‖2

H3/2−α

}
.

Collecting the upper estimates, we have that for every A, r,R, T > 0 and σ ∈]2, 4/(2 − α)[,

‖ΘA‖L2([0,T ];Lσ(R2)) � C0R
−(2/σ−(2−α)/2) + CR,T r

1/2−1/σ + C̃A−1/16(1−2/σ),

where C̃ depends on r,R, T , ‖θ̃0‖L2 and ‖θ̄0‖H3/2−α but not on A. Hence, passing A to ∞,
then r to 0 and then R to ∞ yields the desired estimate (1.6).

At last it suffices to prove Lemma 4.1.

Proof of Lemma 4.1. By virtue of Duhamel’s formula, we have

Ir,RΘA = GA(t)Ir,Rθ̃0 −
∫ t

0

GA(t− τ)Ir,R(R⊥ΘA · ∇ΘA)(τ) dτ

+
∫ t

0

GA(t− τ)Ir,R(Hθ̄∂1ΘA −R1ΘA∂2θ̄)(τ) dτ

� Γ1 − Γ2 + Γ3.

From the Strichartz-type estimate (3.3), we know that for every σ ∈]2,∞[

‖Γ1‖L2(R+;Lσ(R2)) �σ,r,R A−1/16(1−2/σ)‖θ̃0‖L2(R2).

Applying the Minkowski inequality and again (3.3) to Γ2, we infer that for every σ ∈]2,∞[ and
T > 0,

‖Γ2‖L2([0,T ];Lσ(R2)) �

⎛⎝∫T

0

∣∣∣∣∣
∫T

0

1[0,t](τ)‖GA(t− τ)Ir,R(R⊥ΘA · ∇ΘA)(τ)‖Lσ dτ

∣∣∣∣∣
2

dt

⎞⎠1/2

�
∫T

0

(∫T

τ

‖GA(t− τ)Ir,R(R⊥ΘA · ∇ΘA)(τ)‖2
Lσ dt

)1/2

dτ

�r,R,σ A
−1/16(1−2/σ)

∫T

0

‖Ir,R(R⊥ΘA · ∇ΘA)(τ)‖L2 dτ. (4.8)

From Bernstein’s inequality and the energy estimate (4.3), we further obtain

‖Ir,R(R⊥ΘA · ∇ΘA)‖L1([0,T ];L2(R2)) � R2‖(R⊥ΘA)ΘA‖L1([0,T ];L1(R2))

� R2T‖ΘA‖2
L∞([0,T ];L2(R2))

� R2T‖θ̃0‖2
L2 exp

{
C

ν2
‖θ̄0‖2

H3/2−α

}
.

Thus we have

‖Γ2‖L2([0,T ];Lσ(R2)) �r,R,σ A
−1/16(1−2/σ)T‖θ̃0‖2

L2 exp
{
C

ν2
‖θ̄0‖2

H3/2−α

}
.
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For Γ3, similarly as above, especially from Bernstein’s inequality in x2-variable and the
Calderón–Zygmund theorem, we infer that for every σ ∈]2,∞[ and T > 0,

‖Γ3‖L2([0,T ];Lσ(R2)) � A−1/16(1−2/σ)‖Ir,R((Hθ̄)∂1ΘA − (R1ΘA)∂2θ̄)‖L1([0,T ];L2(R2))

� A−1/16(1−2/σ)(R3/2‖(Hθ̄)ΘA‖L1([0,T ];L2,1
x1,x2 )

+R3/2‖(R1ΘA)θ̄‖L1([0,T ];L2,1
x1,x2 ))

� A−1/16(1−2/σ)R3/2T‖θ̄‖L∞([0,T ];L2(R))‖ΘA‖L∞([0,T ];L2(R2))

� A−1/16(1−2/σ)R3/2T‖θ̄0‖L2‖θ̃0‖L2 exp
{
C

ν2
‖θ̄0‖2

H3/2−α

}
.

Hence, gathering the upper estimates leads to the expected estimate (4.7).

5. Proof of Theorem 1.4

Now we show the global existence of θA as stated in Theorem 1.4. If we consider only equation
(1.1) to obtain the H2−α estimates of θA, due to (1.4), it seems impossible to derive an estimate
global in time unless the data θ0 are small enough (just as Proposition 1.1). Thus we shall adopt
an idea from the work of Chemin, Desjardins, Gallagher and Grenier [6], that is, to subtract
from equation (1.1) the solution θ̃A of the linear equation (1.7) (or its main part Ir,Rθ̃

A with
Ir,R defined in (4.6)). Roughly speaking, since from the Strichartz-type estimate (3.3), θ̃A can
be sufficiently small for A large enough, thus the equation of θA − θ̃A will have small initial
data and small forcing terms, and we can hope to obtain the global existence result.

More precisely, we first introduce θ̃A
m � Ir,Rθ̃

A as the main part of θ̃A which solves the
following equation:

∂tθ̃
A
m + ν|D|αθ̃A

m +AR1θ̃
A
m = 0, θ̃A

m|t=0 = Ir,Rθ0, (5.1)

and since Ir,Rθ0 strongly converges to θ0 in H2−α(R2) as r tends to 0 and R tends to ∞, the
difference θ̃A − θ̃A

m is globally defined and can be made arbitrarily small in the functional spaces
stated in Theorem 1.4. Hence, in what follows, we shall focus on the difference ηA � θA − θ̃A

m

with r small enough and R large enough chosen later, and we shall be devoted to show the
global existence of ηA. The corresponding equation can be written as

∂tη
A + ν|D|αηA +AR1η

A + (R⊥ηA) · ∇ηA + (R⊥θ̃A
m) · ∇ηA = F (ηA, θ̃A

m),

ηA|t=0 = (Id − Ir,R)θ0.
(5.2)

with the forcing term

F (ηA, θ̃A
m) � −(R⊥θ̃A

m) · ∇θ̃A
m − (R⊥ηA) · ∇θ̃A

m. (5.3)

Note that for brevity, we have omitted the dependence of r,R in the notation of ηA and θ̃A
m.

5.1. A priori estimates

In this subsection, we mainly focus on the a priori estimates. The main result is the following
claim: for any smooth solution ηA to (5.2) and for every ε > 0 small enough, there exist three
positive absolute constants r0, R0 and A0 such that for every A � A0, we have

sup
t�0

‖ηA(t)‖2
H2−α(R2) +

ν

2

∫
R+

‖ηA(t)‖2
Ḣ2−α/2(R2)

dt � ε. (5.4)

For every q ∈ N, applying Δq to equation (5.2) and denoting ηA
q � Δqη

A, Fq � ΔqF , we
obtain

∂tη
A
q + ν|D|αηA

q +A(R1η
A
q ) + (R⊥ηA) · ∇ηA

q + (R⊥θ̃A
m) · ∇ηA

q = F̃q(ηA, θ̃A
m),
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with

F̃q(ηA, θ̃A
m) � −[Δq,R⊥ηA] · ∇ηA − [Δq,R⊥θ̃A

m] · ∇ηA + Fq(ηA, θ̃A
m).

Since ηA is real-valued, we know that ηA
q is also real-valued, thus taking L2 inner product of

the upper equation with ηA
q , and from the Bernstein inequality and the integration by parts,

we obtain

1
2
d

dt
‖ηA

q (t)‖2
L2 + ν‖|D|α/2ηA

q (t)‖2
L2 =

∫
R2
F̃q(ηA, θ̃A

m)ηA
q (t, x) dx

� 2−q(α/2)‖F̃q(ηA, θ̃A
m)(t)‖L22q(α/2)‖ηA

q (t)‖L2

� C02−q(α/2)‖F̃q(ηA, θ̃A
m)(t)‖L2‖|D|α/2ηA

q (t)‖L2 .

From Young’s inequality, we have

1
2
d

dt
‖ηA

q (t)‖2
L2 +

ν

2
‖|D|α/2ηA

q (t)‖2
L2 � C0

ν
(2−q(α/2)‖F̃q(ηA, θ̃A

m)(t)‖L2)2.

Integrating in time leads to

‖ηA
q (t)‖2

L2 + ν‖|D|α/2ηA
q ‖2

L2
t L2 � ‖ηA

q (0)‖2
L2 +

C0

ν

∫ t

0

2−qα‖F̃q(ηA, θ̃A
m)(τ)‖2

L2 dτ.

By multiplying both sides of the upper inequality by 22q(2−α) and summing over all q ∈ N, we
obtain∑

q∈N

22q(2−α)‖ηA
q (t)‖2

L2 + ν
∑
q∈N

22q(2−α)‖|D|α/2ηA
q ‖2

L2
t L2

�
∑
q∈N

22q(2−α)‖ηA
q (0)‖2

L2 +
C0

ν

∫ t

0

⎛⎝∑
q∈N

22q(2−3α/2)‖F̃q(ηA, θ̃A
m)(τ)‖2

L2

⎞⎠ dτ. (5.5)

Using Lemma A.1 with s = 2 − α and β = α/2 yields that∑
q∈N

22q(2−(3/2)α)‖[Δq,R⊥(ηA + θ̃A
m)] · ∇ηA‖2

L2 �α (‖ηA‖2

Ḃ
2−α/2
2,2

+ ‖θ̃A
m‖2

Ḃ
2−α/2
2,2

)‖ηA‖2
B2−α

2,2

�α (‖|D|α/2ηA‖2
B2−α

2,2

+ ‖|D|α/2θ̃A
m‖2

B2−α
2,2

)‖ηA‖2
B2−α

2,2
,

where in the second line we used the embedding B2−α
2,2 ↪→ Ḃ2−α

2,2 . From Lemma A.2-(1), we infer
that∑

q∈N

22q(2−(3/2)α)‖Δq(R⊥ηA · ∇θ̃A
m)‖2

L2 � R6−3α‖ηA‖2
L2‖θ̃A

m‖2
L∞ + ‖ηA‖2

B2−α
2,2

‖|D|α/2θ̃A
m‖2

B2−α
2,2

and ∑
q∈N

22q(2−(3/2)α)‖Δq(R⊥θ̃A
m · ∇θ̃A

m)‖2
L2 � R6−3α‖θ̃A

m‖2
L2‖θ̃A

m‖2
L∞ .
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Inserting the upper estimates to (5.5), we obtain∑
q∈N

22q(2−α)‖ηA
q (t)‖2

L2 + ν
∑
q∈N

22q(2−α)‖|D|α/2ηA
q ‖2

L2
t L2

�
∑
q∈N

22q(2−α)‖ηA
q (0)‖2

L2 +
Cα

ν

∫ t

0

(‖|D|α/2ηA(τ)‖2
B2−α

2,2

+ ‖|D|α/2θ̃A
m(τ)‖2

B2−α
2,2

)‖ηA(τ)‖2
B2−α

2,2
dτ

+
Cα

ν
R6−3α

∫ t

0

(‖θ̃A
m(τ)‖2

L2 + ‖ηA(τ)‖2
L2)‖θ̃A

m(τ)‖2
L∞ dτ. (5.6)

Now we consider the low-frequency part. Applying Δ−1 to equation (5.2), we have

∂t(Δ−1η
A) + ν|D|α(Δ−1η

A) +AR1(Δ−1η
A) = Δ−1G(ηA, θ̃A

m),

where

G(ηA, θ̃A
m) � −(R⊥ηA · ∇ηA) − (R⊥θ̃A

m · ∇ηA) − (R⊥ηA · ∇θ̃A
m) − (R⊥θ̃A

m · ∇θ̃A
m).

By using the L2 energy method, we obtain

1
2
d

dt
‖Δ−1η

A(t)‖2
L2 + ν‖|D|α/2Δ−1η

A(t)‖2
L2 � ‖Δ−1G(ηA, θ̃A

m)(t)‖Ḣ−α/2‖|D|α/2Δ−1η
A(t)‖L2 .

By virtue of the Young inequality, we have

1
2
d

dt
‖Δ−1η

A(t)‖2
L2 +

ν

2
‖|D|α/2Δ−1η

A(t)‖2
L2 � C0

ν
‖Δ−1G(ηA, θ̃A

m)(t)‖2
Ḣ−α/2 .

Integrating in time yields that

‖Δ−1η
A(t)‖2

L2 + ν‖|D|α/2Δ−1η
A‖2

L2
t L2

� ‖Δ−1η
A(0)‖2

L2 +
C0

ν

∫ t

0

‖Δ−1G(ηA, θ̃A
m)(τ)‖2

Ḣ−α/2 dτ. (5.7)

From Lemma A.2-(2), we deduce that

‖Δ−1(R⊥ηA · ∇ηA)‖2
Ḣ−α/2 �

∑
−∞<q�0

2−qα‖Δ̇q(R⊥ηA · ∇ηA)‖2
L2

�
∑

−∞<q�0

22q(2−α)‖|D|α/2ηA‖2
L2‖ηA‖2

L2

� ‖|D|α/2ηA‖2
L2‖ηA‖2

L2 ,

and

‖Δ−1(R⊥θ̃A
m · ∇ηA)‖2

Ḣ− α
2

+ ‖Δ−1(R⊥ηA · ∇θ̃A
m)‖2

Ḣ− α
2

� ‖|D|α/2θ̃A
m‖2

L2‖ηA‖2
L2 .

It is also obvious to see that

‖Δ−1(R⊥θ̃A
m · ∇θ̃A

m)‖2

Ḣ− α
2

� ‖Δ−1((R⊥θ̃A
m) θ̃A

m)‖2
Ḣ1−α/2 � ‖θ̃A

m‖2
L2‖θ̃A

m‖2
L∞ .
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Inserting the upper estimates into (5.7), we obtain

‖Δ−1η
A(t)‖2

L2 + ν‖|D|α/2Δ−1η
A‖2

L2
t L2

� ‖Δ−1η
A(0)‖2

L2 +
Cα

ν

∫ t

0

(‖|D|α/2ηA(τ)‖2
L2 + ‖|D|α/2θ̃A

m(τ)‖2
L2)‖ηA(τ)‖2

L2 dτ

+
Cα

ν

∫ t

0

‖θ̃A
m(τ)‖2

L2‖θ̃A
m(τ)‖2

L∞ dτ. (5.8)

Combining this estimate with (5.6) leads to

‖ηA(t)‖2
B2−α

2,2
+ ν‖|D|α/2ηA‖2

L2
t B2−α

2,2

� ‖ηA(0)‖2
B2−α

2,2
+
Cα

ν

∫ t

0

(‖|D|α/2ηA(τ)‖2
B2−α

2,2
+ ‖|D|α/2θ̃A

m(τ)‖2
B2−α

2,2
)‖ηA(τ)‖2

B2−α
2,2

dτ

+
Cα

ν
R6−3α

∫ t

0

(‖θ̃A
m(τ)‖2

L2 + ‖ηA(τ)‖2
L2)‖θ̃A

m(τ)‖2
L∞ dτ.

From the fact that ‖ηA‖L∞
t L2 � ‖θ̃A

m‖L∞
t L2 + ‖θA‖L∞

t L2 � 2‖θ0‖L2 , we moreover find that

|ηA‖2
L∞

t B2−α
2,2

+ ν‖|D|α/2ηA‖2
L2

t B2−α
2,2

� ‖ηA(0)‖2
B2−α

2,2
+
Cα

ν

∫ t

0

‖|D|α/2θ̃A
m(τ)‖2

B2−α
2,2

‖ηA‖2
L∞

τ B2−α
2,2

dτ

+
Cα

ν
‖ηA‖2

L∞
t B2−α

2,2
‖|D|α/2ηA‖2

L2
t B2−α

2,2
+
Cα

ν
R6−3α‖θ0‖2

L2

∫ t

0

‖θ̃A
m(τ)‖2

L∞ dτ. (5.9)

Set

T ∗
A � sup

{
t � 0; ‖ηA‖2

L∞
t B2−α

2,2
<

ν2

2Cα

}
,

due to ‖ηA(0)‖2
B2−α

2,2
= ‖(Id − Ir,R)θ0‖2

B2−α
2,2

, and by the Lebesgue theorem, we can choose some

small number r and large number R such that ‖ηA(0)‖2
B2−α

2,2
� ν2/4Cα, thus T ∗

A > 0 follows

from that ηA is a (continuous in time) smooth solution. Then, through the Strichartz-type
estimate (3.3), we obtain that for every t ∈ [0, T ∗

A[,

‖ηA‖2
L∞

t B2−α
2,2

+
ν

2
‖|D|α/2ηA‖2

L2
t B2−α

2,2
� ‖ηA(0)‖2

B2−α
2,2

+
Cα

ν
R6−3αCr,RA

−1/8‖θ0‖4
L2

+
Cα

ν

∫ t

0

‖|D|α/2θ̃A
m(τ)‖2

B2−α
2,2

‖ηA‖2
L∞

τ B2−α
2,2

dτ.

Gronwall’s inequality yields that for every t ∈ [0, T ∗
A[

‖ηA‖2
L∞

t B2−α
2,2

+
ν

2
‖|D|α/2ηA‖2

L2
t B2−α

2,2
� exp

{
Cα

ν2
‖θ0‖2

H2−α

}
×
(
‖ηA(0)‖2

B2−α
2,2

+
Cr,R,α

ν
A−1/8‖θ0‖4

L2

)
,

where we have used the following fact that

‖θ̃A
m(t)‖2

B2−α
2,2

+ ν‖|D|α/2θ̃A
m‖2

L2
t B2−α

2,2
� ‖θ0‖2

B2−α
2,2

� C0‖θ0‖2
H2−α .

For every ε > 0, we can further choose some small number r and large number R such that

‖(Id − Ir,R)θ0‖2
B2−α

2,2
exp

{
Cα

ν2
‖θ0‖2

H2−α

}
� ε

2C0
,
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where C0 is the absolute constant from the relation (1/C0)‖f‖2
Bs

2,2
� ‖f‖2

Hs � C0‖f‖2
Bs

2,2
,

∀s ∈ R. For fixed r and R, we can choose A large enough so that

A−1/8Cr,R,α

ν
‖θ0‖4

L2 exp
{
Cα

ν2
‖θ0‖2

H2−α

}
� ε

2C0
.

Hence for every ε > 0 and for the appropriate r,R,A (that is, r0, R0, A � A0), we have

sup
t∈[0,T∗

A[

‖ηA(t)‖2
B2−α

2,2
+
ν

2

∫T∗
A

0

‖|D|α/2ηA(t)‖2
B2−α

2,2
dt � ε

C0
.

Furthermore, for every ε � C0ν
2/4Cα, we have T ∗

A = ∞ and

sup
t∈R+

‖ηA(t)‖2
B2−α

2,2
+
ν

2

∫∞

0

‖|D|α/2ηA(t)‖2
B2−α

2,2
dt � ε

C0
.

Therefore (5.4) follows.

5.2. Uniqueness

For every T > 0, let θA
1 and θA

2 belonging to

L∞([0, T ];H2−α(R2)) ∩ L2([0, T ]; Ḣ2−α/2(R2))

be two solutions to (1.1) with the same initial data θ0 ∈ H2−α/2(R2). Thus set δθA � θA
1 − θA

2 ,
and then the difference equation writes

∂tδθ
A + (R⊥θA

1 ) · ∇δθA + ν|D|αδθA +A(R1δθ
A) = −(R⊥δθA) · ∇θA

2 ,

δθA|t=0 = δθA
0 (= 0).

We use the L2 energy argument to obtain

1
2
d

dt
‖δθA(t)‖2

L2 +
ν

2
‖|D|α/2δθA(t)‖2

L2 � ‖(R⊥δθA) · ∇θA
2 (t)‖Ḣ−α/2‖|D|α/2δθA(t)‖L2 .

From the following classical product estimate that for every divergence-free vector field
f ∈ Ḣs1(R2) and g ∈ Ḣs2(R2) with s1, s2 < 1 and s1 + s2 > −1,

‖f · ∇g‖Ḣs1+s2−1(R2) �s1,s2 ‖f‖Ḣs1 (R2)‖∇g‖Hs2 (R2),

we know that

‖(R⊥δθA) · ∇θA
2 (t)‖Ḣ−α/2 �α ‖δθA‖L2‖∇θA

2 ‖Ḣ1− α
2
.

Thanks to the Young inequality, we further find

d

dt
‖δθA‖2

L2 + ν‖δθA‖2
Ḣα/2 �α,ν ‖∇θA

2 (t)‖2
Ḣ1−α/2‖δθA(t)‖2

L2 . (5.10)

Gronwall’s inequality yields

‖δθA(t)‖2
L2 � ‖δθA

0 ‖2
L2 exp

{
C‖θA

2 ‖2
L2([0,T ];Ḣ2−α/2(R2))

}
� ‖δθ0‖2

L2 exp
{
C

ν2
‖θ0‖2

H2−α

}
.

Hence the uniqueness is guaranteed.

5.3. Global existence

From the Friedrich method, we consider the following approximate system:{
∂tη

A
k + ν|D|αηA

k +AR1η
A
k + Jk(R⊥ηA

k · ∇ηA
k ) + Jk(R⊥θ̃A

m · ∇ηA
k )

= JkF (ηA
k , θ̃

A
m), ηA

k |t=0 = Jk(Id − Ir,R)θ0,
(5.11)
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where Jk : L2 �→ JkL
2, k ∈ N is the projection operator such that Jkf � F−1(1B(0,k)(ξ)f̂(ξ))

and θ̃A
m solving (5.1) is the main part of θ̃A. Indeed system (5.11) becomes an ordinary

differential equation on the space JkL
2 � {f ∈ L2 : supp f̂ ⊂ B(0, k)} with the L2 norm. Since

‖Jk(R⊥ηA
k · ∇ηA

k )‖L2 � k‖R⊥ηA
k ‖L2‖∇ηA

k ‖L2 � k2‖ηA
k ‖2

L2

and
‖Jk(R⊥θ̃A

m · ∇ηA
k + R⊥ηA

k · ∇θ̃A
m)‖L2 � k2‖θ0‖L2‖ηA

k ‖L2 ,

and ‖Jk(R⊥θ̃A
m · ∇θ̃A

m)‖L2 � k2‖θ0‖2
L2 , we have that for every r,R > 0 and k ∈ N, there exists

a unique solution ηA
k ∈ C∞([0, Tk[;JkL

2) to system (5.11), with Tk > 0 the maximal existence
time. Moreover, from the L2 energy method and in a similar way as obtaining (5.10), we obtain

d

dt
‖ηA

k ‖2
L2 + ν‖ηA

k ‖2
Ḣα/2 �ν ‖ηA

k ‖2
L2‖θ̃A

m‖2
Ḣ2−α/2 + ‖θ̃A

m‖2
L2‖θ̃A

m‖2
Ḣ2−α/2 .

Gronwall’s inequality and the energy-type estimate of the linear equation (1.7) yield that

‖ηA
k (t)‖2

L2 � exp{Cν‖θ̃A
m‖L2

t Ḣ2−α/2}(‖ηA
k (0)‖2

L2 + ‖θ̃A
m‖2

L∞
t L2‖θ̃A

m‖2
L2

t Ḣ2−α/2)

� exp{Cν‖θ0‖H2−α}(‖θ0‖2
L2 + ‖θ0‖2

L2‖θ0‖2
H2−α).

Hence the classical continuation criterion ensures that Tk = ∞ and ηA
k ∈ C∞(R+;JkL

2) is a
global solution to the system (5.11). This further guarantees the a priori estimate in Section 5.1,
that is, we obtain that there exist positive absolute constants ε0, r0, R0 and A0 independent of
k such that for every 0 < ε < ε0 and A > A0,

sup
t∈R+

‖ηA
k (t)‖2

H2−α + ν

∫
R+

‖ηA
k (t)‖2

Ḣ2−α/2 dt � ε.

On the basis of this uniform estimate, it is not hard to show that (ηA
k )k∈N is a Cauchy sequence

in C(R+;L2(R2)), and thus it converges strongly to a function ηA ∈ C(R+;L2(R2)). By a
standard process, one can prove that ηA solves system (5.2) and ηA ∈ L∞(R+;H2−α(R2)) ∩
L2(R+; Ḣ2−α/2(R2)). Moreover, from the proof in Section 5.1 and by replacing ‖ηA‖L∞

t B2−α
2,2

with ‖ηA‖L̃∞
t B2−α

2,2
in (5.9), one indeed can prove that ηA ∈ L̃∞(R+;B2−α

2,2 (R2)), and this implies

that ηA ∈ C(R+;H2−α(R2)). Finally, let θA = ηA + θ̃A
m, then for A large enough θA is the

unique solution to the dispersive dissipative QG equation (1.1), and as A→ ∞, r → 0, R→ ∞
and ε→ 0 one-by-one, we obtain the expected convergence (1.8).

Appendix

We first consider some commutator estimates.

Lemma A.1. Let v = (v1, . . . , vn) be a smooth divergence-free vector field over Rn and
f be a smooth scalar function of Rn. Then, for every q ∈ N, β ∈]0, 1 + n/2[ and s ∈]β − 1 −
n/2, 1 + n/2[, there exists a positive absolute constant C depending only on β, s and n such
that

2q(s−β)‖[Δq, v] · ∇f‖L2(Rn) � Ccq‖v‖
Ḃ

1+ n
2 −β

2,2 (Rn)
‖f‖Bs

2,2(R
n),

where (cq)q∈N satisfies
∑

q∈N
(cq)2 � 1. Especially, if n = 2 and v = R⊥f, we also have that for

every β > 0 and s > β − 1 − n/2,

2q(s−β)‖[Δq, v] · ∇f‖L2(Rn) � Ccq‖f‖
Ḃ

1+ n
2 −β

2,2 (Rn)
‖f‖Bs

2,2(R
n),

with (cq)q∈N satisfying
∑

q∈N
(cq)2 � 1.
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Proof of Lemma A.1. From Bony’s decomposition, we have

[Δq, v] · ∇f =
∑

|k−q|�4

[Δq, Sk−1v] · ∇Δkf +
∑

|k−q|�4

[Δq,Δkv] · ∇Sk−1f

+
∑

k�q−3

[Δq,Δkv] · ∇Δ̃kf

� Iq + IIq + IIIq.

For Iq, thanks to the expression Δq = hq(·)∗ = 2qnh(2q·)∗ with h � F−1(ψ) ∈ S(Rn), we obtain

2q(s−β)‖Iq‖L2 �
∑

|k−q|�4

‖xhq‖L12q(s−β)‖∇Sk−1v‖L∞‖∇Δkf‖L2

�
∑

|k−q|�4

2q(s−β−1)2k(1−s)

⎛⎝ ∑
k1�k−2

2k1β2k1(1+n/2−β)‖Δ̇k1v‖L2(2ks‖Δkf‖L2)

⎞⎠
�

∑
−∞<k1�q+2

2(k1−q)β2k1(1+n/2−β)‖Δ̇k1v‖L2‖f‖Bs
2,2

� cq‖v‖Ḃ
1+n/2−β
2,2

‖f‖Bs
2,2
,

with (cq)q∈N satisfying
∑

q∈N
(cq)2 � 1. For IIq, we directly obtain that for every s < 1 + n/2

2q(s−β)‖IIq‖L2 �
∑

|k−q|�4;k∈N

2q(s−β)‖Δkv‖L2‖∇Sk−1f‖L∞

�
∑

|k−q|�4;k∈N

2k(s−β)‖Δkv‖L2

⎛⎝ ∑
k1�k−2

2k1(1+n/2−s)(2k1s‖Δk1f‖L2)

⎞⎠
� ‖v‖

Ḃ
1+n/2−β
2,2

⎛⎝ ∑
k1�q+2

2(k1−q)(1+n/2−s)(2k1s‖Δk1f‖L2)

⎞⎠
� cq‖v‖Ḃ

1+n/2−β
2,2

‖f‖Bs
2,2
.

In particular, when n = 2 and v = R⊥f , using the Calderón–Zygmund theorem we obtain

2q(s−β)‖IIq‖L2 �
∑

|k−q|�4;k∈N

2q(s−β)‖Δkv‖L2‖∇Sk−1f‖L∞

�
∑

|k−q|�4;k∈N

2ks‖Δkf‖L22−kβ

⎛⎝ ∑
−∞<k1�k−2

2k1β2k1(1+n/2−β)‖Δ̇k1f‖L2

⎞⎠
� cq‖f‖Ḃ

1+n/2−β
2,2

‖f‖Bs
2,2
.

From the divergence-free property of v, we further decompose IIIq as follows:

IIIq =
∑

k�q−3;k∈N;i

[∂iΔq,Δkvi]Δ̃kf + [Δq,Δ−1v] · ∇Δ̃−1f � III1q + III2q.
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For III1q, from direct computation we find that

2q(s−β)‖III1q‖L2

� 2q(s−β)

⎛⎝ ∑
k�q−3;k∈N;i

‖∂iΔq(ΔkviΔ̃kf)‖L2 +
∑

|k−q|�2;k∈N

‖Δkv · ∇ΔqΔ̃kf‖L2

⎞⎠
� 2q(s−β)

⎛⎝ ∑
k�q−3;k∈N

2q(1+n/2)‖Δkv‖L2‖Δ̃kf‖L2 +
∑

|k−q|�2;k∈N

2k(n/2)‖Δkv‖L22q‖Δqf‖L2

⎞⎠
� ‖f‖Bs

2,2

∑
k�q−3;k∈N

2(q−k)(s−β+1+n/2)2k(1+n/2−β)‖Δkv‖L2 + ‖v‖
Ḃ

1+n/2−β
2,2

2qs‖Δqf‖L2

� cq‖v‖Ḃ
1+n/2−β
2,2

‖f‖Bs
2,2
.

For III2q, due to that III2q = 0 for all q � 3, and similarly as estimating Iq we obtain

2q(s−β)‖III2q‖L2 � 1q∈{0,1,2}‖xhq‖L1‖∇Δ−1v‖L∞‖Δ̃−1f‖L2

� 1q∈{0,1,2}

⎛⎝ ∑
−∞<k1�0

2k1β2k1(1+n/2−β)‖Δ̇k′v‖L2‖f‖L2

⎞⎠
� 1q∈{0,1,2}‖v‖Ḃ

1+n/2−β
2,2

‖f‖Bs
2,2
.

Gathering the upper estimates leads to the expected results.

We also treat some product estimates.

Lemma A.2. Let v be a smooth divergence-free vector field over Rn and f be a smooth
scalar function of Rn. Then we have the following.

(1) If f satisfies supp f̂ ⊂ {ξ : |ξ| � R}, a positive absolute constant C can be found such
that for every q ∈ N, β ∈]0, n/2[ and s > β − 1 − n/2,

2q(s−β)‖Δq(v · ∇f)‖L2 � CR1+s−βcq‖v‖L2‖f‖L∞ + Ccq‖v‖Bs
2,2

‖f‖
Ḃ

1+n/2−β
2,2

, (A.1)

with (cq)q∈N satisfying
∑

q∈N
(cq)2 � 1. Especially, if n = 2 and v = R⊥f, for all β, s satisfying

s+ 1 − β > 0 we also have

2q(s−β)‖Δq(v · ∇f)‖L2 � CR1+s−βcq‖f‖L2‖f‖L∞ . (A.2)

(2) For every q ∈ Z− ∪ {0}, β ∈]0, n/2[, there exists a positive absolute constant C such
that

‖Δ̇q(v · ∇f)‖L2 � C2q(1+n/2−β)‖|D|βv‖L2‖f‖L2 (A.3)

and

‖Δ̇q(v · ∇f)‖L2 � C2q(1+n/2−β)‖v‖L2‖|D|βf‖L2 . (A.4)

Proof of Lemma A.2. (1) We first prove (A.1). Thanks to Bony’s decomposition, we have

Δq(v · ∇f) =
∑

|k−q|�4

Δq(Sk−1v · ∇Δkf) +
∑

|k−q|�4

Δq(Δkv · ∇Sk−1f) +
∑

k�q−3

∇ · Δq(Δ̃kvΔkf)

� Iq + IIq + IIIq.
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For Iq, from the support property of f̂ , we have

2q(s−β)‖Iq‖L2 �
∑

|k−q|�4;2k�R

2q(s−β)‖Sk−1v‖L22k‖Δkf‖L∞ � R1+s−βcq‖v‖L2‖f‖L∞ ,

with (cq)q∈N satisfying
∑

q∈N
(cq)2 � 1. For the other two terms, in a similar and simpler way

as the treatment of IIq and IIIq, we obtain that

2q(s−β)‖IIq + IIIq‖L2 � cq‖v‖Bs
2,2

‖f‖
Ḃ

1+n/2−β
2,2

.

Next we treat (A.2). Since supp v̂ · ∇f ⊂ {ξ : |ξ| � 2R}, we find

2q(s−β)‖Δq(v · ∇f)‖L2 � 1{q; 2q�R}2
q(s−β+1)‖Δq(vf)‖L2

� 1{q;2q�R}R
s−β+1‖f‖L2‖f‖L∞ ,

and it clearly implies (A.2).
(2) We then prove (A.3). We also have the decomposition

Δ̇q(v · ∇f) =
∑

|k−q|�4

Δ̇q(Ṡk−1v · ∇Δ̇kf) +
∑

|k−q|�4

Δ̇q(Δ̇kv · ∇Ṡk−1f) +
∑

k�q−3

∇ · Δ̇q(Δ̇kv
˜̇Δkf)

� İq + İIq + ˙IIIq.

For İq, we directly have

‖İq‖L2 �
∑

|k−q|�4

‖Ṡk−1v‖L∞2k‖Δ̇kf‖L2

�
∑

|k−q|�4

∑
−∞<k1�k−2

2k1(n/2−β)2k1β‖Δ̇k1v‖L22k‖Δ̇kf‖L2

� 2q(1+n/2−β)‖|D|βv‖L2‖f‖L2 .

For İIq, from Bernstein’s inequality we similarly obtain

‖İIq‖L2 �
∑

|k−q|�4

2k(n/2)‖Δ̇kv‖L22k‖Ṡk−1f‖L2 � 2q(1+n/2−β)‖|D|βv‖L2‖f‖L2 .

We treat ˙IIIq as follows:

‖ ˙IIIq‖L2 �
∑

k�q−3

2q(1+n/2)‖Δ̇kv‖L2‖ ˜̇Δkf‖L2

� 2q(1+n/2)

⎛⎝ ∑
k�q−3

2−kβ2kβ‖Δ̇kv‖L2‖f‖L2

⎞⎠
� 2q(1+n/2−β)‖|D|βv‖L2‖f‖L2 .

Collecting the upper estimates yields (A.3). The proof of (A.4) is almost identical to the above
process, and we omit it.
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