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Global regularity for the supercritical dissipative
quasi-geostrophic equation with large dispersive forcing

Marco Cannone, Changxing Miao and Liutang Xue

ABSTRACT

We consider the 2-dimensional quasi-geostrophic equation with supercritical dissipation and
dispersive forcing in the whole space. When the dispersive amplitude parameter is large enough,
we prove the global well-posedness of strong solution to the equation with large initial data. We
also show the strong convergence result as the amplitude parameter goes to oco. Both results rely
on the Strichartz-type estimates for the corresponding linear equation.

1. Introduction

In this paper, we consider the following 2-dimensional whole-space supercritical dissipative
quasi-geostrophic (QG) equation with a dispersive forcing term

0l +u-VO+ v|D|*0 + Aus = 0,
u = RLQ = (—RgG,Rﬂ), (11)
9|t=0(93) = 90(%), x e RZ,

where o €]0,1[, v > 0, A > 0, R; = —9;|D| ™!, where i = 1,2 is the usual Riesz transform, and
the fractional differential operator |D|“ is defined via the Fourier transform

DI f(&) = [£]* £ (8)-

Here 0 is a real-valued scalar function, which can be interpreted as a buoyancy field, u = (uy, us)
the velocity field and A the amplitude parameter. Equation (1.1) is a simplified model from the
geostrophic fluid dynamics and describes the evolution of a surface buoyancy in the presence
of an environmental horizontal buoyancy gradient (cf. [15]). From the physical viewpoint, the
background buoyancy gradient generates dispersive waves, and thus equation (1.1) provides a
model for the interaction between waves and turbulent motions in the 2-dimensional framework.

When A = 0, equation (1.1) reduces to the known 2-dimensional dissipative QG equation,
which also arises from the geostrophic fluid dynamics (cf. [8, 15]) and recently has attracted
intense attentions of many mathematicians (cf. [4, 7-12, 17, 20, 22] and references therein).
According to the scaling transformation and the L°°-maximum principle (cf. [10]), the
cases > 1, =1 and a < 1 are referred to as subcritical, critical and supercritical cases,
respectively. Up to now, the study of subcritical and critical cases have been in a satisfactory
state. For the delicate critical case, the issue of global regularity was independently solved by
Kiselev, Nazarov and Volberg [20] and Caffarelli and Vasseur [4]. Kiselev et al. [20] proved
the global well-posedness for the periodic smooth data by developing a new method called the
non-local maximum principle method. Almost at the same time and from a totally different
direction, Caffarelli and Vasseur [4] established the global regularity of weak solutions by
deeply exploiting the DeGiorgi’s iteration method. However, in the supercritical case whether
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solutions remain globally regular or not is a remarkable open problem. There are only some
partial results, for instance: local well-posedness for large initial data and global well-posedness
for small initial data concerning strong solutions (for example, [7, 12, 16, 17]), the eventual
regularity of the global weak solutions (cf. [11, 18]).

Equation (1.1) is analogous to the 3-dimensional Navier—Stokes equation with Coriolis
forcing, which is a basic model of oceanography and meteorology dealing with large-scale
phenomena (cf. [6]),

atu+u~Vu—VAu+VP+leg><u:0,
€ (1.2)

divu =0, u|i=0 = uo,

where e3 = (0,0,1), € denotes the Rossby number and u = (uy,uz,us) is the unknown velocity
field. So far, it is known that global well-posedness of strong solutions to the 3-dimensional
Navier—Stokes equations only holds for small initial data. But in the case of the 3-dimensional
Navier—Stokes—Coriolis system (1.2), when € is small enough, the presence of fast rotating term
produces stabilization effect and ensures the global well-posedness of strong solution with large
initial data. This result was shown by Babin et al. [1, 2] and also by Gallagher [13] in the case
of non-resonant periodic domains. For the case of whole space, it was proved by Chemin et al.
[5] through establishing the Strichartz-type estimates of the corresponding linear system. By
applying the method of Chemin, Desjardins, Gallagher and Grenier[5], Ngo [21], moreover,
studied the case of small viscosity, that is, v = €’ with 8 €]0, 3] and some By > 0, and proved
the global existence of strong solution as e small enough. The asymptotic behavior of weak
solutions in the weak or strong sense as € goes to 0 was also considered by Chemin, Gallagher
and their collaborators (cf. [6, 14]), and they showed that the limiting equation in the whole
space (in general) is the 2-dimensional Navier—Stokes equations with the velocity field @ three
components

{@u +ap - V'~ vARu + (V'P,0) = 0, (1.3)

divap, =0, @lg—o = o,

where w0y, = (uy,U2), Ap 2 02 + 02 and V" £ (04, 05).

For the dispersive dissipative QG equation (1.1), Kiselev and Nazarov [19] considered the
critical case of A > 0 and a = 1, and by applying the method of non-local maximum principle
they proved the global regularity for the smooth solutions. Note that in their proof, the
dispersive term always plays a negative role.

In this paper, we mainly focus on the dispersive dissipative QG equation (1.1) in the
case of the supercritical regime o < 1 and A large enough. Motivated by the results of the
3-dimensional Navier—Stokes—Coriolis equations, we shall develop the Strichartz-type estimate
of the corresponding 2-dimensional linear equation to prove the global well-posedness of strong
solution to (1.1) with large initial data. We shall also show the strong convergence result.

Before stating our main results, we first give some classical uniform existence results.

PROPOSITION 1.1. Let 6§y € L*(R?) be a 2-dimensional real-valued scalar function. Then
there exists a global weak solution 6 (in the sense of distributions) to the dispersive dissipative
QG equation (1.1), which also satisfies the following energy estimate, uniformly in A,

t
100112 + 2uj 11DIo720(r) |22 dr < ]2 ¥t > 0.
0

Moreover, if 0y € H?>~“(R?), then there is a time T > 0 independent of A such that
0 € C([0,T); H>=*) n L*([0, T); H*~ /%)
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with the norm independent of A, and all solutions to (1.1) coincide with 6 on [0,T]. In
particular, an absolute constant ¢ >0 can be chosen such that if ||0y||g2-« < cv, then the
solution becomes global in time.

REMARK 1.2. Since for every s € R, [D[*6 = |D|*6 and |0(¢)[> = 6(£)0(—¢), we know that
J [DI*R16(2)|DI°6(x) dx = (|D|*Rab, |D|°0) > = *J G lEPoE) P dg =0, (1.4)
R? R?

thus the dispersive term does not contribute to the energy-type estimates. Therefore, the proof
of Proposition 1.1 is almost identical to the corresponding classical proof for the supercritical
dissipative QG equation, and we here omit it (cf. [7, 12, 17, 22]).

Now we consider the asymptotic behaviour of equation (1.1) as A tends to infinity. This is
reasonable since all bounds in the above statement are independent of A. In what follows, we
shall also denote by 64 the solutions in Proposition 1.1 to emphasize the dependence of A. The
convergence result is as follows.

THEOREM 1.3. Let 6y(z) = fy(z2) + 0o(x), with 6y € H3/2~*(R) a 1-dimensional real-
valued scalar function and 0y € L*(R?) a 2-dimensional real-valued scalar function. Assume
that (t,xz2) is the unique solution of the following linear equation:

3t§+ V|D2|aé = 0, é(O,l‘Q) = éo(ﬂCQ). (15)

Then there exists a global weak solution §* to the dispersive dissipative QG equation (1.1).
Furthermore, for every o €]2,4/(2 — «)[ and T > 0, we have

T
Jim J 164 (t) — 6(t)||%. dt = 0. (1.6)
— 00 0

Next we consider the strong solutions, and we prove the following global result.

THEOREM 1.4. Let 0p(x) € H>~*(R?) be a 2-dimensional real-valued scalar function, then
there exists a positive number Ay such that for every A > Ag, the dispersive dissipative
QG equation (1.1) has a unique global solution 6% satisfying 64 € C(RT; H*=*(R?)) N
L2(R*; H?~*/2(R?)). Moreover, if we denote by 8 the solution of the following linear dispersive
dissipative equation:

8téA + V|D|a(§A + ARléA =0, éA|t:0 = 0, (17)
then as A goes to infinity,
94 — 94 — 0 in L®(RT; H>~*(R?)) N L3(RT; H2~*/2(R?)). (1.8)

The proofs of both Theorems 1.3 and 1.4 are strongly based on the Strichartz-type estimate
for the corresponding linear equation (1.7), which is the target of the whole of Section 3. The
Fourier localization method and the para-differential calculus are also heavily used in the proof
of Theorem 1.4, and for clarity, we place some needed commutator estimates and product
estimates in the appendix section. The proofs of Theorems 1.3 and 1.4 are settled in Sections 4
and 5, respectively.

REMARK 1.5. The Strichartz-type estimate for the corresponding linear equation depends
on the basic dispersive estimate, which is stated in Lemma 3.3. Compared with the dispersive
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estimate in the case of the 3-dimensional Navier—Stokes—Coriolis equations (cf. [6, Lemma 5.2]),
Lemma 3.3 is much more delicate and the value (precisely, the argument) of z is more involved
in the proof. The main reason is that the equation considered here is two dimensional, and the
lower dimension makes it harder to develop the expected dispersive estimate. This can further
be justified if we try to derive the dispersive estimate of the ‘anisotropic’ kernel function, which
is as follows:

H(t, p, 22,61) & J W(¢) enler/ I iz mvtlel® e, (1.9)
R

with zo € R, 4 > 0 and ¥ defined by (3.5), and we find that it is rather difficult to obtain the
needed dispersive estimate. Note that the suitable dispersive estimate for (1.9) will essentially
be used if one treats the general data 0y(z) = 0y(x2) + 0p(z) in Theorem 1.4.

REMARK 1.6. Tt is interesting to note that the limiting equation (1.5) is analogous to the
2-dimensional Navier-Stokes equation (1.3), and one can expect that the equation will play a
similar role in other situations.

2. Preliminaries

In this preparatory section, we introduce some notation and present the definitions and some
related results of the Sobolev and Besov spaces.
Some notation used in this paper are listed as follows.

(a) Throughout this paper, C stands for a constant which may be different from line to line.
We sometimes use A < B instead of A < OB, and use A Sg.4,.. Binstead of A < C(8,7,...)B,
with C(8,7,...) a constant depending on parameters 3,7, .. ..

(b) Denote by D(R™) the space of test functions which are smooth functions with compact
support, S(R™) the Schwartz space of rapidly decreasing smooth functions, §’'(R™) the space
of tempered distributions, S’'(R™)/P(R™) the quotient space of tempered distributions up to
polynomials.

( ) Ff or f denotes the Fourier transform, that is, ff(ﬁ) f (&) = f e~ f(x) dx, while

~1f the inverse Fourier transform, namely, F~!f(z) J'Rn @S f(€) d¢ (if there is no
ambiguity7 we sometimes omit (27)~" for brevity).

(d) Denote by (f,g)r2 £ [p. f(2)g(x)da the inner product of the Hilbert space L*(R™).

(e) Denote by B(x,r) the ball in R™ centred at = with radius r.

Now we give the definition of (L?-based) Sobolev space. For s € R, the inhomogeneous
Sobolev space

HS & {f € S’(R"), ||fH§{5 2 JR”(]_ 4 |£|2)s|f(€)|2df < OO} .

Also one can define the corresponding homogeneous space:

o2 {re SEYPER YN, 2 | 16PIfOPdE <o),

In order to define the Besov spaces, we need the following dyadic partition of unity (cf. [3]).
Choose two non-negative radial functions ¢, ¥ € D(R™) be supported, respectively, in the ball
{6 €R™: €] < g}andtheshdl{gelR”;g < |¢] < 8} such that

O +) w7 =1 YeeR™ Y p27) =1 VE#0.

720 JEL
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For all f € S'(R™), we define the non-homogeneous Littlewood—Paley operators
AL f2CD)fs Af20QRTVD)f, SifE Y Awf ViEN,
—1<k<G—1
And the homogeneous Littlewood—Paley operators can be defined as follows:
Ajf 202D S Y A Viel
keZk<j—1

Then we introduce the definition of Besov spaces . Let (p,7) € [1,0]?, s € R, the non-
homogeneous Besov space

={feS®R"): /5

P,

2 {214 fllze}jz—1ller < oo}
and the homogeneous space
By, 2 {f € S'®R")/P®R"); I fll g, = IH2°I1A; f Iz Ysezllerczy < oo}

We point out that for all s € R, B , = H* and 32 , = H°.

Next we introduce two kinds of space—time Besov spaces. The first one is the classical space—
time Besov space L?([0,T], By ,.), abbreviated by L%.Bj ., which is the set of f € &’ such
that

1Fllzgms, = {218, f 1w}z -1llerll oo, < oo

The second one is the Chemin—Lerner’s mixed space—time Besov space ip([O,T],Bf,,r),
abbreviated by Lp B: ., which is the set of tempered distribution f satisfying

p,T?
1llzg 55 = {218 fll g 10 bgz—1ller < 0.
Owing to Minkowiski’s inequality, we immediately obtain
L’%Bsr%i’%Bsr if r>p and IN/%BS — LyB, . ifp>r

These can similarly extend to the homogeneous ones L” - and Lp B s
Bernstein’s inequality is very fundamental in the analys1s 1nvolv1ng Besov spaces.

LEMMA 2.1. Let a,b,p and q be positive numbers satisfying 0 < a < b < oo and 1 < p <
q<00, k>0, A\>0and f e LP(R") withn € ZT. Then there exist positive constants C and
¢ independent of )\ such that

if suppf C {1 [¢] < A} = [[DI" flloqeny < OXF PV DY g
and
if suppf C {&:aX < |€] < WA} = eA¥|| fllLorny < IDIF fllLeeny < ONFI|F]| o ()
When k € N, similar estimates hold if | D|* is replaced by Sup|y = 97.

3. Strichartz-type estimates for the corresponding linear equation

In this section, we are devoted to show the Strichartz-type estimates of the following linear
dispersive dissipative equation:

{8t9+y|D|a9+AR10_f, (51)

0)i=0 = 6o
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Applying the spatial Fourier transformation to the upper equation, we obtain

0,60 + vleod — 4isLd = J,

€]
Olt=0 = bo.
Furthermore,

A —~ t
§<t’§> _ eviAt(&/\&\)—vt\&\“gO(g) _,_J eiA(t—T)(&/\&\)—V(t—T)Iél‘*f(ﬂ €)dr.
0

Thus by setting
gA(t) g '_>J' eiAta(f)—Vt‘f‘a"rixfg(g) dg,

with
a(€) 2 & /[¢],
we have
0(t) = GA (1) + J GA(t — 1) f(7) dr. (3.2)

Hence, it reduces to consider the Strichartz-type estimate of G4 (t)g, and because the phase
function a(€) is somewhat ‘singular’, we shall study the case when § is supported in the set
By r for some 0 < r < R, with

B.r £ {£€R?:|a] >, €| < R}

The main result of this section is as follows.

PROPOSITION 3.1. Let r and R be two positive numbers satisfying r < R, and g € L*(R?)
satisfying supp § C B, g. Then for every p € [1,00] and q € [2,00], there exists a positive
constant C' = Cy. g 4, Such that

IGA ()9l Lo (r+; Lo (r2)y < CATYEPO2D | g] 12 a). (3.3)

Proposition 3.1 combined with (3.2) and Minkowiski’s inequality (cf. (4.8) below) implies
the following Strichartz-type estimates for the linear system (3.1).

_ COROLLARY 3.2. Let r and R be two positive numbers satisfying r < R. Assume that
0p € L?(R?) and f € L*(R*; L?(R?)) satisfying that

supp o U | | J supp f(¢,-) | C By,
t>0

and 6 solves the corresponding linear dispersive equation (3.1). Then for every p € [1, 0] and
q € [2,00], there exists a positive constant C = Cy. g p 4., such that

1011 Lo (R ;1 (r2yy < CA™YEO2/D (|10l L2y + || £l 2 (me+; 22 (2)))-

In order to prove Proposition 3.1, we introduce the following kernel function:

K(t ju,z) = J (¢) eimal®)tizE—vieEl® ge (3.4)
R

2
S
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where t > 0, > 0, z € R?, ¥ € D(R?) is a smooth cut-off function such that ¥ =1 on B, g
and is supported in B, /5 o, and, for instance, we can explicitly define

o=+ (5)(-+(29)

with x € D(] — 2,2]) satisfying x(x) =1 for |z| < 1.
As a first step, we show the following basic dispersive estimate of K.

LEMMA 3.3. Let r and R be two positive numbers satisfying r < R, and K be defined by
(3.4). Then there exists an absolute constant C' = C,. g such that for every z € R?,

|K(t, i, z)] < Cmin{1, ;fl/4} o Tovt/4

Proof of Lemma 3.3. We shall use the method of stationary phase to show this formula.
Denoting by

&2 1 z
— 5 + —
19K Iz
with £+ = (=&, &), we introduce the following differential operator:

o 1d—i®(¢,2) - Ve
o L)

B(6.9) 2 Ve (al) + =€) =

and we see that £ e#a(&)+i2¢ — ginal@)+i2:¢ From integration by parts, we have

K(t,p,2) = J HaO)+i=E Lt (g) eV HE" g,
R2

where L! is given by

1+ (€, 7)) L+ p|@f? L4 pl@(€, 2) >

Since & is supported in B3 2, we find

Vo(E, 2) = ‘v (5#)' <1l

2y, BIDFY, DF :
L —— 3 <1+iV-<I>—z' M2k & )Id 2(8.2) - Ve

€]3 r
thus
WY, DIk, O 1
ik ST <1y
e ”

Since ¥ € D(R?) satisfies |[V¥| < 1/r, we infer that

V() e 50N)| < [V [0 4 [W(t]g|* e 18772 g 71 e Hiel™ 2
< lefutr“/él
~Y T -
If |®(&, z)| > 1, this is the case of non-stationary phase, and collecting the upper estimates and
noting that p'/?|®| < 1+ p|®|?, we have

@ 1 o
ILH(P(¢) e VIl NS 2 min{17l1,71/2} e virt /4,
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This yields

2
K (t, 1, 2)] < j (W€ e+ 1) de < T min{, /2y e

Br/2,2R
If |@(&, 2)| < 1, this corresponds to the case of stationary case and is more delicate. Gathering
the necessary estimates as above, we have

1 —vtr® /4

ey <L L
L@ S B e R ’

and it leads to

1 a 1
K(t,p,2)| < = e /4J — . 3.6
K2l 5 5 Bojpan 1 HIBE )P (30
For the case z = 0, we see that ®(&,0) = —(&/[¢]?)éL and |®(£,0)| = |&2/|€|?, thus
R oy [PR 1 R2 .
K(t 0) < = e vir /4J e, < L evtr /4 —1/2. 3.7
| (7/1@ )lNT2€ 0 1+M§%/(4R2) €2N 7’26 1% ( )

For every § € B, /505 and 2z € R?\ {0}, we have the following orthogonal decomposition:
E=(&4,&) =6 e + & Ler,
where e, = z/|z|, el = 21 /|2,
EpE&e. and &1 =& e

Noting that £+ = (=&; 1 )e. + &, ex, we have

§2 .1, 2 ’(§2§ZL |Z|> &8 1| 1€&llE)
q)f’z :‘_g + - = — + — e, — ’ez > —,
e U T e ) e P
and thus for every z # 0, we have |K(t,pu, 2)| <r~2e V" /*H(u, z) with
1
Hz) 2 | de.
B, jaan 1 T HEE |/ (BRP)

With no loss of generality, we assume that z = |z|e, = |z|(cos ¢,sin @) with ¢ € [0, 7/2]. Then
for every £ = (£1,82), we have £, | = £ -e. = {1 cos ¢ + & sin @, thus if £1§5 > 0, we observe

&2 = & cos® ¢ + &7 sin® ¢ > min{€7, 3}

Hence

1
SRS
JABSQRQ{&&ZO} 1+ M55537|\/(8R3)

1
) i d&y dg
J‘By-/zng{gng)O} 1+ p&3min{€?, €3}/ (8R3) 1082

2R
1
<R - d
J on T+ p@ {24, 8}/
5/2

- M1/2737/4H1/4} '

< max{

Noting that

1 1
g, dé, = 2J —de, dés,
JBr/2,2Rm{§1§2<0} 1+ pg3e2 ) /(8R?) By jaanni€iz0.62<0) 1+ HEED /(BR?)
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we find that

R5/2 1
H(p, 2) 5max{u1/2,R7/4u1/4} +J d&y d&>
r Brjzannié>0.62<0) L+ HEEZ /(BR?)

2R .
,L/z 1+ p€3 (€1 cos ¢ + Eosin )2 /(8R3) d&, dés

R5/2 -
SmaX{ ul/z,R”“u”‘*} + H(p, ¢),

5/2 0
< max {R / ,u_1/2,R7/4u_1/4} +J
—2R

where

N 2R 2R 1
H(M,¢)=L L/Ql e e e

Now it suffices to treat H (14, @), and we shall divide into several cases according to ¢. First for
the endpoint case ¢ = 0, we directly have

. 2R (2R 1
H(p 0) = Jo L/Z 1 e/ (3m9) 1%

2R 1

2 J 1+ 1€3(r2/2) ) (SR)

2\ —1/2 oo 5/2
ur 1 - _ R —1/2

3

If ¢ is close to 0 so that (r/2)cos¢ —2Rsin¢ > (r/4) cos ¢, that is, ¢ €]0,arctan(r/8R)], we
similarly obtain

5 2R (2R 1
H(p, ¢) < L L/Z 1+ 1€2(r cos ¢/4)2/(8R3) dgy d&o
< ?pu*“. (3.9)

For every ¢ € [arctan(r/8R),m/4], if & €[0,r/4], we find that & —&tang > r/2 —
(r/4)tan(n/4) = r/4, thus we obtain

~ 2R (2R 1
<
oy s Jo L/z T+ 1u€3(e0s 912(&1 — G tam o2 /GFD) 1

- r/4 1
- RL 14 pu&3(r/4)?/(16R3) dSz
2R 2R 1
+ J'r/4 JT‘/Q 1+ ,LL(’I“/4)2(£1 _ 62 tan ¢)2/(16R)3 d§1 d§2

R5/2
S—n
r

1 B R5/2

~1/2 R2
J]R 1+ u(r/4)2€2/(16R)3 LSS P (3.10)

For the other endpoint case ¢ = 7/2, we directly obtain

2R (2R
~ T 1 o\ —L/4 1 ~ _
H — ] < - d&dEs < _dE, < RT/4,m1/4
(3.11)
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Now we consider the case ¢ € [¢g, 7/2[, where ¢g € [7/4, 7/2[is a number chosen later. Noticing
that

} 2R (2R 1
e S e o e 1)

if & < (cot ¢)r/4, we observe that & cot ¢ — & = (cot ¢)(r/4) > 0, thus

Ié J(T-/4)cot¢J2R 1 dé_ dg
0 vja L+ p€3 (€ cot o — &2)2/(16R?3) "1 2

(r/4) cot ¢ 1
S QRL 1+ #E2 (cot 6)2(r/4)2/ (16 R5)

- R5/2 J~ul/2r2(cot $)?/64R3/? 1
~ rul/2cot ¢

d€s

— d¢.
0 14¢&5 ’
,ul/QTQ(COt ¢)2
64 R3/2 '

8R3/4

< R7/4 —1/4 ©*v
~ K i/ 4r cot ¢

arctan <

Since lim, oy arctan(z?)/z = lim, o4 22/(1 + 2%) = 0, there exists an absolute positive con-
stant cg such that for every = €]0, ¢o], we obtain arctan(z?)/x < 1. Thus in order to find some
po € [r/4,7/2[ satisfying ru'/* cot(¢g)/8R3/* < ¢y, we only need to choose

1/4
oo = max z, arctan LA ,
4 860R3/4
then, for every ¢ € [¢o, /2], we have

I S R7/4Iu71/4.

If &5 > 4R cot ¢, then we find that [£; cot ¢ — &o| = & — 2R cot ¢ > &2/2, thus

o0 2R 1
HéJ J dé1 d
4R cot ¢ 'r‘/21+M€§(£1C0t¢_£2)2/(16R3) 51 52
o0 1 -
RJ — & S RV
o 1+uél/(64R?)

If & € [(cot ¢)r/4, 4R cot ¢], noting that cot ¢ < cot ¢ < (8coR*/* /)%, we have

4R cot ¢ 2R 1
I £ J' J' — d&q1 d
r(cot ¢)/4 Jrj2 1+ p€3 (€1 cot ¢ — €2)2/(16R3) it

R11/4
< (2R)(4Rcot9) S ——p~ /%

Hence in the case of ¢ € [¢g, 7/2[, we have

. 11/4
H(p, ¢) <THIT4TII < RTN—I/‘*. (3.13)

Finally, it remains to consider the case ¢ € [r/4,¢p]. Also by virtue of (3.12), if
& < r(cot ¢g)/4, we know that & cotd — & > (r/2) cot ¢ — r(cot ¢g)/4 = r(cot ¢g)/4, and
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combining with the fact that 7 cot ¢g = min{r, 8coR%*~1/*}, we have

N r(cot ¢o)/4 2R 1
12 de, d
L L/Quus%(sleow§2>2/<1633> S
o0 1
<2R d
Jo 1+ pé3(min{r/4, 2co R3/ 4= 1/4})2 /(16 R3) =2
R5/2
< max {H_l/QaR7/4M_1/4} _
T

Otherwise, if & > r(cot ¢g)/4 = min{r/4,2co R3/*u=/*}, we infer that

N 2R 2R 1
H:J J dé1 d
r(cot o) /4 drj2 1+ €3 (E1 cot ¢ — €)% /(16 R3) Gt

R| .
% L+ p(r(cot 60)/4)°E3/ (16R?)

5/2
< max {/N_1/27R7/4#_1/4} .

dés

r

Therefore in the case of ¢ € [r/4, ¢o], we have

. 5/2
H(p, @) SI—l—HSmax{Ru_l/Q,R7/4u_1/4}. (3.14)
r
Collecting the above estimates, this finishes the proof of this lemma. |

Next we are devoted to proving Proposition 3.1 based on Lemma 3.3.
Proof of Proposition 3.1. Noting that

G (t)glo) = | Wle)g(e) eriee-vier v g
= I?(t, At ) * g(x),
where K is defined by (3.4), we apply Lemma 3.3 to obtain
1G4 (0)gllree Srm (A4 e g]| 1.
On the other hand, by the Planchrel theorem, we find
1G4 ()gllz2 < e 2| gl 2.

Thus from interpolation, we have the following dispersive estimates that for every ¢ € [2, 0]
and t € RT,

1G4 (Dgllze = 1K (8, At, )  g(@) | ra Srm (A1)~ @240 gy, (3.15)

where ¢ £ q/(q — 1) is the dual number of ¢.
Now we shall use the classical duality method, also called as TT*-method, to show the
expected estimates. For every ¢ € [2,o0], denoting by

Uy 2 {p € DIRT X R?) : (]| oo (o’ m2y) < 1}
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we have

1G4 () gllpr (m+;20) = sup
pEU,

J]R+ <gA(t)g(x)7 (p(t, x)>L§C dt'

[, [ at@we eeo-sne .6 auag

= sup
pEU,

N

lgllz= sup
PEUY

| w©s.gemee-rer g
R+ Lg

Taking advantage of the Plancherel theorem, the Holder inequality and (3.15), we obtain

2

| w@a.g e g
R+

2
L&

— J (g)é(t é—) itAa(&)—vt|§]” \11(5)@(7, é-) e—iTAa(ﬁ)—u7'|§|°‘ dthdf
Jrz Jmr)2

= . J']R+ (W()@(r, &) =AU v (HTIE" (&) (¢, f))Lg dr dt

= pR+ J()<K(t + 7, (t - T)A, ) * QO(T, LB), (fil\:[/) * gp(t,x»Li dT dt

JrJ J'OO<(}"*1\I/) xp(r,x), K(t+7,(t —t)A,-) * <p(t,x)>Lg dr dt
R+

R L RO
g OT,R J( (A|t—7’|> € ||QD||L°°(R+;L‘1/(R2)) dr dt.

Since, for every ¢ € [2,00], ¢ € U, and
Lo\
J () e DA g dt < C
®+)2 \ [t =] ’
we obtain

||gA(t)g||L1(R+;Lq) Srrgw AT/ gl 2 Vg € [2,00).

By the Bernstein inequality and the Plancherel theorem, we also have

1G4 ()9l Lo w20y Sk NG )G oo wt:12) Sr 9l
From interpolation, we infer that for every p € [1, 0] and ¢ € [2, 0]

||gA(t)g||LP(]R+;Lq) <rRapw A~ (1/8p)((q—2)/q) llgll 2 0

4. Proof of Theorem 1.3

This section is dedicated to the proof of the global existence and convergence of weak solutions
to the dispersive dissipative QG equation (1.1).

Since 6(t,x9) solving (1.5) is globally and uniquely defined, we only need to consider
the difference ©4(¢,7) = 04 (¢, z) — 0(t, z2), with the associated difference equation formally
given by

{at@A + (RYO4) - VOA — (H0)0,04 + v|D|*04 + A(R104) = —(R,104)8,0,

04(0,2) = o (), (4.1)
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where H is the usual Hilbert transform in R,,. Note that we have used the following facts that
ohl = 0, R0 = (7‘D‘7181)9 =0 and

Radte) = [ ¢ (g )i = [ e (i) e des = 70,

and
DPO@) = | e <leedesie) ds = | el b déa = [Daf*0ea)
R2 R
with 6(-) the Dirac-d function.

4.1. Existence of solutions to the perturbed equation (4.1)

We first consider the a priori estimates. By taking the L? inner product of (4.1) with 04,
integration by parts, and from (1.4) and the fact that V- (R+*0©4) = 0 and 9, (H0(z2)) = 0,
we obtain

2dt

From the Hélder inequality, Sobolev embedding (H®/2(R) «— L?>/(1=*)(R)) and the Calderén -
Zygmund theorem, we obtain

GIOAOIE +vIDI0M (€)1 = - | R1OA(ta)0udlt,22) - 01 t,2)

041122 + vIIIDI*2O4(@)1Z2 < IR1OAW) 220-0 020 270 [0 (1)]] 22
< CIIIDzla”@A( Bl 102008 2/ 197 (2] 2
< ClIDI2ON ()| 2|20 27w 10 ()] 2

2dt|

Using the Young inequality7 we further have

A 2 v a/20A 2 Q 204112 A 2
5 SIOA @I + SIDIOA DI < S10:8(0)12. 104 D)3

Gronwall’s inequality ensures that
t
_ c
0401 + v [ 1040, 2t < 1ol exp { 1048120 |
0

From the Sobolev embedding (H~%/2(R) < L?/*(R)) and the energy-type estimate of the
linear dissipative equation (1.5), we find

10201172 Lo SN0 rs2-are S v 1000 Fase-a- (4.2)

Hence, we finally obtain that for every ¢t € R

t ~ C _
040N + v [ 1640 By < 1ol exv { SolErsn |- (4.9

Next we sketch the proof of the global existence of solution to (4.1). We have the following

approximate system:

9,02 + (R+02) - VO£ — (HO.) 0,02 + v|D|*02 + A(R102)

76A®? = *(R1®?) 629_6,

8t§€ -+ I/|D2‘a§€ = 07

04(0,2) = e x 0p(z), 0.(0,72) = Pe * Op(z2),
where ¢ (z) = e *p(z/€) and ¢ € D(R?) satisfies [, o = 1, while §(z2) = e 'p(z2/¢) and
¢ € D(R) satisfies [, = 1. Let m > 2 and m € Z", and fix € > 0. Since |[pc * 0| zm Se [|60]] 22
and |G * Oo ||y e ||90HL§2 , and since —eA©? is the subcritical dissipation, from the standard

(4.4)
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energy method we find that for all 7" > 0
sup |02 (t)l|rm < Cle, T, 0,2, 100l 2, 1160 2)-

t€[0,T]

This estimate combined with a Galerkin approximation process yields the global existence of

a strong solution (04, 6.) to (4.4). Furthermore, from (4.3) and the estimation ||, * f]| g <
[ f1lms, Vs € R, we have the uniform energy inequality with respect to e that for all T' > 0

T
_ c.
QAT+ | 1OA6) s < e ol exo { o ol |

- c -
< 1ol exp { 1ol | (15)

Hence this ensures that, up to a subsequence, ©4 converges weakly (or weakly-*) to a function
04 in L¥L>NL2H*/2. Similarly as the case of the dissipative QG equation, from the
compactness argument, we further obtain that as € tends to 0,
04 — o4
’ strongly in L2([0,T]; L2 . (R?)).

{Rjgg,  Rion g, Stronsly in L2(0.T] I (%)
Since 6y € H3/2’Q(R), it is clear to see that 6. strongly converges to 6 = e ‘P26, in
L>([0,T); H*?~%(R)). Therefore, we can pass to the limit in (4.4) to show that ©4 is a
weak solution of (4.1).

4.2. Proof of estimation (1.6)

Now we show the strong convergence of ©4 by using the Strichartz-type estimate (3.3). To
this end, we introduce the following cut-off operator:

7 =Ton(D) 2 x (1) (10 - XY (4.6)

r

where 0 <7 < R and x € D(R) satisfies that y(z) =1 for all || <1 and x is compactly
supported in {z : |z| < 2}. Then for the term Z, pO4, we have the following estimation (with
its proof placed at the end of this subsection).

LEMMA 4.1. Let r and R be two positive numbers satisfying r < R. Then for every T >0
and o €]2,00], there exists an absolute constant C' depending on 7, R, T, 0, v, ||0g|| y3/2-« and
[[0o]| L2 but independent of A such that

IZ,, RO L2 ((0,73;1 (r2)) < CATH/160=2/2), (4.7)

Now we consider the contribution from the part of high frequency and the part of low
frequency in &;. From the Sobolev embedding, Berenstein inequality and the energy estimate
(4.3), we obtain, for every o € [2,4/(2 — )|,

11 = x(IDI/R)O 2 i+ ;1o g2y < 110 = X(IDI/R)OM L -2/ 2y
S R7OPEOV)(1d — X(IDI/R)OM g+ o2 (m2))

—(2/o—(2—a ) Cia
SR/ )/2)|90||L28Xp{1/2||90||%13/2—a}'
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Also thanks to the Bernstein inequality (in x; and zo separately), we find that for every T > 0
and o €]2, 00],

Ix(ID11/m)X(IDI/R)O | L2 (o 10:10 (r2yy S T 2027 Yo RY27Y 4| e (0. 7):12 (R2))

e c,
St 2 ol exp { 10l |

Collecting the upper estimates, we have that for every A,r, R,T > 0 and o €]2,4/(2 — )],
||®A||L2([0,T];L”(R2)) < COR7(2/07(270¢)/2) + CR7TT1/271/0' + C«AAfl/lGOfZ/U)7

where C' depends on r, R, T, |0o||z> and ||fo|| gs/2—« but not on A. Hence, passing A to oo,
then 7 to 0 and then R to oo yields the desired estimate (1.6).
At last it suffices to prove Lemma 4.1.

Proof of Lemma 4.1. By virtue of Duhamel’s formula, we have
t
7, RO = G ()T, rbo — J Gt — )T, r(RTOY - VO (1) dr
0

t
+ J GA(t — 1)L, r(HOD, 04 — R1040:0) (1) dr
0
AD, Ty +Ts.
From the Strichartz-type estimate (3.3), we know that for every o €]2, o]

1/16(1—2/0)”50

||F1||L2(]R+;LU(]R2)) SO',T,R A™ HL2(]R2)-

Applying the Minkowski inequality and again (3.3) to I's, we infer that for every o €]2, co[ and
T >0,

9 1/2
T T
T2l 2o, 17;L0 (R2)) < J J1[0’t](7')||gA(t—T)IT)R('R,L@A-V@A)(T)”L,,dT dt
0 0
T T 1/2
< (J ”9“‘<t—r>z,R<RL@A-veA><r>||%adt> "
0 T
T
Spro ATL/160=2/0) J |Z, r(REOA - VO ()| 12 dr. (4.8)
0

From Bernstein’s inequality and the energy estimate (4.3), we further obtain

|Zr,(REOA - VO || 1101002 m2)) S B2(RTOMO 110,701 r2))
S RPT(04|F o0 j0.17: L2 (2))

3 c
S BTl exp { S1olEenn |
Thus we have

_ EDYIRUNN. C, =
T2l 22 0,7); 20 (82)) SR A 1CU2/O T3 eXp{y?”%”ifS/“}'
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For T's, similarly as above, especially from Bernstein’s inequality in zs-variable and the
Calder6n—Zygmund theorem, we infer that for every o €]2, co[ and T > 0,
T3 22 (o 7o m2y) S AT 02| T, 5 ((H) 0,10 — (Rl@A)aQ7)||L1([0,T];L2(R2))

S AT DO s o3

R3/2”(R1@A)9”L1 (0.T1:L2%0,))
< AT R0 poe (10,112 () 107 | e 10, 77: 22 (R2))

N Cole _ _ c
S AT BT o1 exp { 1001 |

Hence, gathering the upper estimates leads to the expected estimate (4.7). |

5. Proof of Theorem 1.4

Now we show the global existence of 84 as stated in Theorem 1.4. If we consider only equation
(1.1) to obtain the H2~® estimates of #4, due to (1.4), it seems impossible to derive an estimate
global in time unless the data 6 are small enough (just as Proposition 1.1). Thus we shall adopt
an idea from the work of Chemin, Desjardins, Gallagher and Grenier [6], that is, to subtract
from equation (1.1) the solution #4 of the linear equation (1.7) (or its main part Z, z6* with
I, r defined in (4.6)). Roughly speaking, since from the Strichartz-type estimate (3.3), 04 can
be sufficiently small for A large enough, thus the equation of #4 — 4 will have small initial
data and small forcing terms, and we can hope to obtain the global existence result.

More precisely, we first introduce 0‘4 7, rOA as the main part of §4 which solves the
following equation:

0,0 + v|D|*07 + AR105 =0, 07]i—0 = T, rbo, (5.1)

and since Z, gl strongly converges to 6y in H*>~*(R?) as r tends to 0 and R tends to oo, the
difference 4 — 02 is globally defined and can be made arbitrarily small in the functional spaces
stated in Theorem 1.4. Hence, in what follows, we shall focus on the difference n £ 64 — 2
with 7 small enough and R large enough chosen later, and we shall be devoted to show the

global existence of n*. The corresponding equation can be written as
O™ + VD"t + AR + (R n™) - Vit + (R0, - Vi = F(n,0,), 5.2)
n*li=o = (Id — Z,. r)fo. '

with the forcing term

F(n*.05) & —(R*0) - VO, — (R*n™) - V. (5.3)

Note that for brevity, we have omitted the dependence of r, R in the notation of n* and éfl

5.1. A priori estimates

In this subsection, we mainly focus on the a priori estimates. The main result is the following
claim: for any smooth solution 7 to (5.2) and for every ¢ > 0 small enough, there exist three
positive absolute constants rg, Ry and Ag such that for every A > Ag, we have

Ay ()2 v
312110) ||77 (t)||H270<(R2) + 5 J]R+ ”77 ( )||H2 a/2(R2) < €. (54)

For every ¢ € N, applying A, to equation (5.2) and denoting 77{14 E AN, Fy 2 AF, we
obtain

At + v|D|Pnt + A(Rin2) + (RTn?) - Vi + (RH02) - Vil = Fy(n™,0),
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with
F‘Z(nA’ 51131) £ _[A%RLUA] : VWA - [AQaRLé;?’L] ' VTIA + Fq(TIA’ é?})
Since n? is real-valued, we know that nq is also real-valued, thus taking L? inner product of

the upper equation with nq , and from the Bernstein inequality and the integration by parts,
we obtain

5 I O + VDI Ol = | Byt B e, da
R2
2-

WD Ey (6 (8)]12227 g (1) 2

<
< Co2 1D Ey(n™, 07) (0) 121 DI* 03} ()] -

From Young’s inequality, we have

v e CO —q(a I N
Sl 3 + SNDI Ol < @yt G4 0)]12)2

Integrating in time leads to
Co " ova = ~
Ing @1 Zz + vIIDI* 20z 2 < lIng Q)17 + =2 L 279 Fy (™, 0) ()17 .

By multiplying both sides of the upper inequality by 229(2=%) and summing over all ¢ € N, we
obtain

> 22t @)]|72 + v Y 229C D272
geN qeN

- C i A
<D 22 (0)]72 + *OJ > 228 E (A, 620) (7)) 72 | dr. (5.5)
qeN 0 q€eN

Using Lemma A.1 with s =2 — a and § = «/2 yields that

> 229C= G2 IA L Rt +67)] - Vit |72 Sa (In? sz a/z+ll9 H2z a/z)lln IIBz o
q€eN

So (D120 30
+ D120 ) I 1z e

where in the second line we used the embedding B 5 = 322’50‘. From Lemma A.2-(1), we infer
that

D 22C=BR A (REpA V0L (I72 S RO In? 122110117~ + ||77A||QB§—2a|||D|a/29 ¥
geN '

B2a

and

> 22CCRO A R, - VO [T2 S RO [721100 17 -
qeN
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Inserting the upper estimates to (5.5), we obtain

D2t ()7 + vy 22D 20 2a

qeN qeN
—« CCY ! [e%
<)zt >||n:;‘<o>||i2+7j<mD| P )l
qeN
DI 2GA M ) () e
Co s [T )
+Cepes L(He)mniz+||nA<T>||%2>||e$<T>||%w dr. (5:6)

Now we consider the low-frequency part. Applying A_; to equation (5.2), we have
O (A1) + v[D[*(A_1in™) + AR (A _ip?) = AL G(nt,6))),
where
G, 00) 2 —(RMn™ - Vi) = (R0, - Vi) — (R - V0,,) — (R0, - V0;,).
By using the L? energy method, we obtain

2 dt“ ot @72 + vIIDI A ()17 < NALGO™, 02) (Ol a2 I DI*2A_1 (0] 2.

By virtue of the Young inequality, we have

v o C 5
S A A Ol + TIDIA A O < S IA Gl TR

Integrating in time yields that
1A ()72 + vl DA 177A||igm

Co
<A O)7 + = J 1A G, ) (7)1 - 2 d (5.7)
From Lemma A.2-(2), we deduce that

AR V% e S D). 279 AR Y V)12

—00<g<0

S Y 2D It 2

—00<q<0
S D232 013,
and
1AL (R0, - V)% + 1AL (R - VORI -5 S IIDI*205 172 01172

It is also obvious to see that

1A (REG7 - VORIZ 5 S IA-L(RE07) 05 —are S 161721001~
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Inserting the upper estimates into (5.7), we obtain

1A D22 + v 1D 2 A7 e

Co [* .
<A Ol + = J0(|||D|a/277A(T)||2L2 + D120, (D122 I ()22 d

Co [t~ .
+— L 16 (D172 167 (7)1 7 - (5.8)

Combining this estimate with (5.6) leads to

I Ol + NP1 20 g2

C @ a/2p
< [n*(0 a2 e +*J (DI 20 () + WDI205, (7 52, ) (r 52,0

Cor 6o [F 102 )
+ R L(II%(T)IIiz+\|?7A(T)H%2)H92(T)H2Loo dr.

From the fact that |[n?]|pecp2 < (|02 || 1o 2 + |04 1o r2 < 2/|60]| 12, We moreover find that

A A
|77 ||i§°B§T‘,D‘ + V|||D|a/2 ||L2B2 a

< I Oz + [ NPTyl o e
Co . a 2 A Co " GA 2
+ = e e D120 g e + = RO 3”\\90HL2J 107 (D)2 dr. (5.9)
Set
732 sup {0 05 [ s 20}
due to |[n?(0 )||Bz o = |I(Id = Z, R)90HB2 «» and by the Lebesgue theorem, we can choose some

small number r and large number R such that ||n(0 )||B2 « <12/4C,, thus T% > 0 follows

from that n“ is a (continuous in time) smooth solution. Then, through the Strichartz-type
estimate (3.3), we obtain that for every ¢ € [0,T5%],

Co 6 _
117 e 2o +*|||D|“/277AHL232 o <[t O3z + =2 ROPC R ATVE 0 12

Cy
+fj DI 2 2 e

Gronwall’s inequality yields that for every ¢ € [0, T%]
D a/2 A COC 0 2
”77 HLooB2 a +7H| | ||L2'B2 o S exp ﬁ” OHHZ*“

Cr, A
< (IO + 2475 ] ).

where we have used the following fact that
nA «
167, (8) |52~ + vIIIDI*265, mllzepzge <100l < CollfollFra-o-

For every € > 0, we can further choose some small number r and large number R such that

€

C
2 «a 2
”(Id - IT,R)HOHB;—ZO exp {1/2||90||H2—a} < TCO’
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where Cp is the absolute constant from the relation (1/Cp)
Vs € R. For fixed r and R, we can choose A large enough so that

2. < Ifl% < Co

— Cr,R,a Ca €
AR g e { T2 ol | < 567

Hence for every ¢ > 0 and for the appropriate r, R, A (that is, 7o, Rg, A > Ag), we have
o .
sup [ 03+ | NP OIS de < &
te(0,T%] By 0 B, Co

Furthermore, for every € < Cov?/4C,,, we have T = oo and

o0
A2 v /2, A2 < &
sup I Ol + 5 | IIDIn 0l < 5

Therefore (5.4) follows.

5.2.  Uniqueness
For every T > 0, let 67 and 65 belonging to
L=([0, T); H*~*(R?)) N L2([0, T]; H*~*/*(R?))
be two solutions to (1.1) with the same initial data 6y € H>~*/2(R?). Thus set 664 £ 0 — 5!,
and then the difference equation writes
01002 4 (RE607Y) - V504 + v|D|*60" + A(R1607) = —(R+604) - Vo3,
664 |1—0 = 0651 (= 0).

We use the L? energy argument to obtain

1% o o
2dtHfW"‘( Iz + 511D 2604 (1)1 72 < [(RH604) - V03 ()]l -a2 || DI/ 2667 (8)]] -

From the following classical product estimate that for every divergence-free vector field
f € H'(R?) and g € H*2(R?) with s1,s0 < 1 and s; + s > —1,

1 -Vl fseas iy Sonvsn 1 lLes oy 1V 02 e,
we know that

I(R+664) - V603 ()|l g0z Sau 1604122V 02' || -5 -

Thanks to the Young inequality, we further find
d
00 Z2 + w1662 52 S V05 (DIFys-s2 100 (D72 (5.10)

Gronwall’s inequality yields

C
1064 (0) 13> < 156613 ex0 { 0212 gy sro-aqay § < 15601132 exp {Vgneon%pa}.

Hence the uniqueness is guaranteed.

5.3. Global existence

From the Friedrich method, we consider the following approximate system:

Ot + v|DI* it + AR + Je(RMt - Vi) + Ju(RA65, - Vi) (5.11)
= JkF(n,02), nitli=o = Ji(Id = T, r)bo,
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where Jy : L? — J,L?, k € N is the projection operator such that J,f £ .7-'_1(13(0,;6) (f)f(f))

and 64 solving (5.1) is the main part of §4. Indeed system (5.11) becomes an ordinary

differential equation on the space JiL? £ {f € L? : supp f C B(0,k)} with the L? norm. Since
[Tk (REmi - V) |2 S KIR i L2 V0 e < K nidll72

and
1Tk R0y - Vit + REmit - V)2 < k2[00 2 [0l 2,

and || J,(RE04 - VOA) |2 < k2|60 |3 2, we have that for every r, R > 0 and k € N, there exists
a unique solution 7t € C*°([0, Ty[; Ji.L?) to system (5.11), with T} > 0 the maximal existence
time. Moreover, from the L? energy method and in a similar way as obtaining (5.10), we obtain

d, A A
2 i 172 + w0 1 So 0172100320 e + 107122 100 1o
Gronwall’s inequality and the energy-type estimate of the linear equation (1.7) yield that

It (0)1172 < exp{Cullfml L2 sr2-ar YIni ()2 + 101200 L2 101172 172 2)
< exp{Cy |6l r2-= } (100> + 1001122 100ll72-)-

Hence the classical continuation criterion ensures that Tj = oo and 7t € C*°(R*; J,L?) is a
global solution to the system (5.11). This further guarantees the a priori estimate in Section 5.1,
that is, we obtain that there exist positive absolute constants €q, r9, Rg and Ag independent of
k such that for every 0 < € < ¢y and A > Ay,

sup [ (1) 2 + j IO dt < c.
teR+ R+

On the basis of this uniform estimate, it is not hard to show that (77,?) ren 1s a Cauchy sequence
in C(RT; L?(R?)), and thus it converges strongly to a function 7 € C(R*; L?(R?)). By a
standard process, one can prove that n? solves system (5.2) and n? € L>(R*; H2~*(R?)) N
L2(R*; H?>~/2(R?)). Moreover, from the proof in Section 5.1 and by replacing ||77A||L?OB§_2Q
with HUAHLtoonga in (5.9), one indeed can prove that n* € L>°(R*; BSEQ(RZ)), and this implies
that n? € C(R*;Hzfa(Rz)). Finally, let 64 =7 + 02, then for A large enough #4 is the
unique solution to the dispersive dissipative QG equation (1.1), and as A — oo, r — 0, R — o0
and € — 0 one-by-one, we obtain the expected convergence (1.8).

Appendix

We first consider some commutator estimates.

LEMMA A.1. Let v = (v1,...,v,) be a smooth divergence-free vector field over R™ and
f be a smooth scalar function of R™. Then, for every q € N, 5 €]0,1+n/2[ and s €]5 — 1 —
n/2,1 4 n/2[, there exists a positive absolute constant C' depending only on (3, s and n such
that

8 0] - ey < Ceglloll gy s g 11135 o)
2,2

where (cy)qen satisfies 3 (cq)* < 1. Especially, if n = 2 and v = R f, we also have that for
every f>0and s> 03 —1—n/2,

298y, 0] - 9l < Ceallfl -0 g 1l oy

(R™)

with (cq)qen satisfying 35 y(cq)? < 1.
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Proof of Lemma A.1. From Bony’s decomposition, we have

Ay 0] V= > [AgSeo1v] - VA + Y [Ag, Apv] - Vi1 f

[k—ql<4 [k—q|<4

+ Z [Aq,Ak’U] . Vﬁkf

k>q—3
£ 1, + 0, + 111,.

For I, thanks to the expression A, = h,(-)* = 29"h(2%-)x with h £ F~1()) € S(R™), we obtain

210Nl S Y lehgllp 29DV S 0]l 1= IV ALS | 12

~Y
[k—q|<4

< Z 94(s=F—1)9k(1-s) Z ok1Bok1(+n/2=B) | Ap || 12 (28| Ak £l £2)

|[k—q|<4 hishe
S S B2 A ool ]| s,
—oco<k;<q+2

S cqllvll grensa—sl fll B ..
with (¢q)4en satisfying quN(cq)2 < 1. For II,,, we directly obtain that for every s < 1+ n/2

200Nl S D 27 Ak 2|V Skt f

k—q|<4;keN
S 2 A| | YD 2k ks AL f|e)
|k—q|<4;kEN k1 <k—2

5 ||v||3214;”/275 Z 2(k1—Q)(1+n/2—8) (2k1sHAklfHL2)
’ k1 <q+2
S cqllvll grenre—s | fll s , -

In particular, when n = 2 and v = R+ f, using the Calderén-Zygmund theorem we obtain

20, 2 S Y 277 Aol 2 [ VSkoi fll e

|[k—q|<4;kEN
S Y 2 Af a2 > 2P AL £l
|k—q|<4;kEN —co<ky <k—2

S CquHB;;n/z—ﬂ Hf”B;’Q.
From the divergence-free property of v, we further decompose III, as follows:

M= > [0 Apvi]Apf +[Ag, A_yv] - VA f £ 111} + 1L,
k>q—3;keN;i
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For III}], from direct computation we find that

206~ A|[TII} | 2

$ 20679 Yoo aAAwide )+ DY A VAALS |1

k>q—3;keN;i |k—q|<2;kEN
52(1(8—5) Z 2q(1+n/2)HAkUHL2HAkaL?+ Z Qk(n/z)||Akv||L22q||AquL2
k>2q—3;keN |k—q|<2;keN
Z 9(q—Fk)(s—B+1+4n/2)gk(1+n/2— B)HAWHH‘FHUHBHTM 529 Ay f | L2
k>q—3;keN

< 0q|\v||31+n/2—6||f||B§,2~
For III , due to that III2 =0 for all ¢ > 3, and similarly as estimating I, we obtain

206N 12 S Lgeqoolehylloa VA 10 o [Ai f] 12

S lyefo1,2) Z 2RO N 2=B) | Ay || | £1] 2

—o00<k1<0

S Leeqoa2ylvll gygnra-sll fllss .-

Gathering the upper estimates leads to the expected results. ]

We also treat some product estimates.

LEMMA A.2. Let v be a smooth divergence-free vector field over R™ and f be a smooth
scalar function of R"™. Then we have the following.

(1) If f satisfies supp f C {€ : || < R}, a positive absolute constant C' can be found such
that for every ¢ € N, § €]0,n/2[ and s > f —1—n/2,

210N A (v - V)2 < CR™ Pegflv]rall fll e + Ceqllv

Bj., \f||3;’+2n/2—ﬁ, (A1)
with (¢q)qen satisfying quN(cq)2 < 1. Especially, if n = 2 and v = R* £, for all 3, s satisfying
s+ 1— >0 we also have

217D Ay (v- V)2 < CR™Peg | fll |l flloe- (A.2)

(2) For every q € Z= U{0}, B €]0,n/2[, there exists a positive absolute constant C' such
that

1A (v- V)2 < C220H 20| D] 12 | ] 2 (A.3)

and
[Ag (- V)llz2 < C290F 2P| jy|| 12 ||| DIP £ 2 (A.4)

Proof of Lemma A.2. (1) We first prove (A.1). Thanks to Bony’s decomposition, we have
Ag0-V) = D AgSko1v-VALL) + D> AyApv-VSiaf)+ > V- AyArwALf)
[k—q| <4 [k—q| <4 k>q—3
£ 1, + 1, + I11,.
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For I, from the support property of f , we have

217l S Y. 297Gy 28| Ak fllee S R Peq vl e | £l oo
|[k—q|<4;2F <R

with (cq)qen satisfying 3 (cq)* < 1. For the other two terms, in a similar and simpler way
as the treatment of II, and III;, we obtain that

2061, + 11, [ 2 < cqllvllBs,

S14n/2—8 .
2,2

Next we treat (A.2). Since supp o - Vf C {¢: €] < 2R}, we find
280V )lliz S Vg 20my 2778 (0 ) |12
< Yooy Bl 21 1l 2o,

and it clearly implies (A.2).
(2) We then prove (A.3). We also have the decomposition

Agw-VE) = Y AySirv VAH+ D> AjApo-VSaf)+ > V-A JAwALf)
|k—q|<4 |k—q|<4 k>q—3
20, + 11, + 111,

For iq, we directly have

Mgllzz S D ISk-10llo=2"Agfll 2

|[k—q|<4
> S 2Rk B Ap w228 A £l 2
|k—q|<4 —oo<ki <k—2
< 200220 Do 2| £ 2

For I.Iq7 from Bernstein’s inequality we similarly obtain

Malle S D 25072 Agol|222¥|Sk-1 fll e S 27042 D0 2| £ -
[k—q|<4

We treat Iin as follows:

Tyl S Y 290D Apo| g | Ag £
k>q—3

< gu(14n/2) Z 27 kBRB | Ayl 2 || £l 22
k>q—3

< 2004220 D)ol |z | ] -

Collecting the upper estimates yields (A.3). The proof of (A.4) is almost identical to the above
process, and we omit it. |
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