Downloaded 07/13/22 to 219.142.99.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. MATH. ANAL. © 2022 Society for Industrial and Applied Mathematics
Vol. 54, No. 4, pp. 4043-4103

GLOBAL REGULARITY OF NONDIFFUSIVE TEMPERATURE
FRONTS FOR THE TWO-DIMENSIONAL VISCOUS BOUSSINESQ
SYSTEM*
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Abstract. In this paper we address the temperature patch problem of the two-dimensional
viscous Boussinesq system without heat diffusion term. The temperature satisfies the transport
equation and the initial data of temperature is given in the form of nonconstant patch, usually
called the temperature front initial data. Introducing a good unknown and applying the method
of striated estimates, we prove that the partially viscous Boussinesq system admits a unique global
regular solution and the initial C**7 and W2 regularity of the temperature front boundary with
kezZt ={1,2,---} and v € (0,1) will be preserved for all the time. In particular, this naturally
extends the previous work by Danchin and Zhang [Comm. Partial Differential Equations, 42 (2017),
pp. 68-99] and Gancedo and Garcia-Judrez [Ann. PDE, 3 (2017), 14]. In the proof of the persistence
result of higher boundary regularity, we introduce the striated type Besov space B;:fiiw(R‘i) and
establish a series of refined striated estimates in such a function space, which may have its own
interest.
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1. Introduction. We consider the two-dimensional (2D) Boussinesq system with-
out heat diffusion

00 +u-Vo=0,

Owu+u-Vu —vAu+ Vp = ey,
(1.1) i

divu =0,

(0, u)|t=0(z) = (00, u0)(z),

where (z,t) € R? x Rt, e5 = (0,1), v > 0 is the kinematic viscosity, and u =
(u1,usz) is the velocity vector field, while the scalars 6, p denote the temperature
and the pressure of the fluid, respectively. The Boussinesq system is widely used
to model the natural convection phenomena in the ocean and atmospheric dynamics
[50, 53], and it also plays an important role in studying the Rayleigh-Bénard problem
[17]. It arises from the density-dependent fluid equations by applying the so-called
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Boussinesq approximation which neglects the density dependence in all the terms but
the buoyancy force due to gravity. One can refer to [29] for a rigorous justification of
the approximation from the complete Navier—Stokes—Fourier system.

From the mathematical viewpoint, Boussinesq systems contain the incompressible
Navier—Stokes and Euler equations as special cases, and the 2D inviscid Boussinesq
system is essentially identical to the 3D axisymmetric swirling Euler equations away
from the axis [51]. Furthermore, the important vortex-stretching mechanism is present
in both 2D and 3D Boussinesq systems. As pointed out in [52, 59|, the global well-
posedness issue of (inviscid) Boussinesq systems is a major open problem in the theory
of mathematical fluid dynamics.

Due to the physical relevance and mathematical importance, Boussinesq systems
have recently attracted a lot of attention and have been intensely studied. For the
2D viscous Boussinesq system (1.1) (i.e., v > 0), Chae [11] and Hou and Li [39]
independently proved the global well-posedness for regular initial data. Later, Abidi
and Hmidi [1] considered less regular initial data 6y € B3, and ug € L* N B(;ljl and
showed the global existence and uniqueness. Hmidi and Keraani [36] established the
global existence of weak solution to system (1.1) with initial data 6y € L2, ug € H®,
s € [0,2), and furthermore Danchin and Paicu [22] resolved the uniqueness issue
by using para-differential calculus. Hu, Kukavica, and Ziane [40] also obtained the
persistence of regularity result in various Sobolev spaces.

For the 2D inviscid Boussinesq system (i.e., v = 0 in (1.1)), so far the global
regularity issue still remains an outstanding unsolved problem. Numerical simulations
once suggested global regularity for this system in a periodic domain [25], but recent
numerical studies [49] proposed an important potential scenario of finite-time blowup
in the bounded domain with smooth boundary. Motivated by this singularity scenario,
several 1D Boussinesq models [15, 16] and the modified 2D Boussinesq system [43]
admitting incompressibility were developed, and the finite-time blowup of smooth
solutions for these models has been rigorously justified. Recently, concerning the
original 2D inviscid Boussinesq system on a spatial domain with an acute corner,
[26] constructed the finite-time blowup in Lipschitz norm for some locally well-posed
solution with finite energy. One can also see [6, 27] for the interesting global stability
results for the 2D inviscid Boussinesq system.

In modeling the large scale atmospheric and oceanic flows, the viscosity and dif-
fusion coefficients of the Boussinesq system are usually different in the horizontal and
vertical directions. For these scenarios, there are some global well-posedness results
for the Boussinesq system with various anisotropic and partial dissipation (one can
refer to [5, 44, 45] and the references therein).

Recently, there has also been much attention on the so-called Boussinesq temper-
ature patch problem for the viscous Boussinesq system (1.1), which is a free boundary
problem of the system (1.1) with singular initial data 8y = 1p,, i.e., the characteristic
function of a simply connected bounded domain Dy. In view of (1.1); and the particle
trajectory X;(x) given by

90X, (x)
ot

one can see that the patch structure of the temperature will be preserved so that
0(x,t) = 1p) with D(t) = X¢(Do). Thus a natural problem arises: whether the
initial regularity of the patch boundary persists globally in time, e.g.,

(1.2)

= u(Xt(x)vt)7 Xt(x)|t=0 =,

(1.3) suppose Dy € C*7 k€ ZT, 4 € (0,1), whether dD(t) € C*” for all time?
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In the above, we denote dD(t) € C*7 provided that there is a parametrization of the
patch boundary D(t) = {z(a,t) € R?,a € S' =[0,1]} with z(-,t) € C*".

Such patch problems were initiated in 1980s by studying the famous vorticity
patch problem of the 2D Euler equations. Although numerical simulations once sug-
gested the possibility of finite-time singularity for this problem, the global persistence
result of initial C*7-boundary regularity was proved by Chemin [13, 14] using the
paradifferential calculus and the striated regularity method. A different proof of the
same result was obtained by Bertozzi and Constantin [2] applying a geometric lemma
and the harmonic analysis techniques. For the related density patch problem of the
nonhomogeneous Navier—Stokes system, one can also see [24, 31, 46, 47, 48] for the
global regularity persistence results.

Concerning the temperature patch problem, Danchin and Zhang [23] first proved
the global well-posedness of the viscous Boussinesq system (1.1) with rough initial
data 0y € Bz’/lq_l, q € (1,2), which admits the C'7-temperature patch, and then
by using the striated estimates method, they showed that the C'*V-regularity of the
patch boundary is globally preserved in the 2D case as well as in the 3D case under an
additional smallness condition. Later, Gancedo and Garéia-Judrez [30] in the 2D case
gave a different proof of the C'!7-regularity persistence result, and furthermore proved
the global persistence of W?2>°- and C?7-regularity of the temperature patch bound-
ary. Meanwhile, the curvature of the temperature patch remained bounded for all
the time, by taking advantage of new cancellations in the time-dependent Calderén—
Zygmund operators. The authors in [32] extended the same global regularity results
to the 3D Boussinesq temperature patch problem under a scaling-invariant smallness
assumption of initial data, and they also treated the temperature front initial data
which is the temperature patch of nonconstant values.

For more general patch-type solutions and related contour interface dynamics,
they can be used to model many important physical phenomena arising from water
waves, porous media, or frontogenesis, and so on, and have been intensively studied
in recent decades, and one can see [7, 8, 9, 10, 18, 19, 20, 28, 34, 42] and references
therein for recent progress. In particular, the finite-time singularities were rigorously
proved for Muskat system [7, 10], free-surface Euler equations [8, 19], free-surface
Navier—Stokes equations [9, 20], and a modified surface quasi-geostrophic equation
[42, 33].

In this paper we focus on the problem (1.3) of the 2D viscous Boussinesq sytem
(1.1) with initial temperature patch of nonconstant values. This setting describes the
evolution of the temperature front governed by the fluid flow, which is an important
physical scenario in geophysics [35, 50]. Our main purpose is to show the C*7-
regularity propagation result of the temperature front boundary with any k € Z* =
{1,2,---}, which also naturally generalizes the results of [23, 30].

Assume 6y(z) = 0y (x)1p,(2) to be an initial temperature front, where Dy C R?
is a bounded simply connected domain with boundary 0D, € C*7(R?), k € Z*,
~v € (0,1). We consider the level-set characterization of the domain Dy: there exists
a function ¢y € C*7(R?) such that

(1.4) 0Dg = {z € R?: po(z) =0}, Do = {x € R?: pp(z) > 0}, Vg # 0 on dDy.
Then the boundary 0Dy can be parameterized as
(1.5) 20:S' = 0Dy with 9420(a) = VEpo(20(a)) =: Wo(z0(a)),

with V+ = (=02,0;)T. In what follows we also set the viscosity v = 1 for brevity.
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Our main results read as follows.

THEOREM 1.1. Let Dy C R? be a bounded simply connected domain with boundary
0Dy € CY(R?), and let 0(z) = Oy(x)1p,(z) be the temperature front initial data
with Oy € L>(Dy). Let ug € HY(R?) be a divergence-free vector field. Then, there
exists a unique global solution (6,u) to the 2D Boussinesq system (1.1) such that for
any T > 0,

(1.6)  we€C0,T; H (R*) N L*(0,T; H*(R?*)) N L* (0, T; C*7(R?)) Vv € (0,1)
and
(L7) 0(z,t) = Oo(X; () Lpwy(x), with OD(t) = X,(0Dg) € L>(0,T;C7(R?)),

where Xy is the particle trajectory generated by the velocity u (see (1.2) above) and
X1 is its inverse.
Moreover, the boundary of the temperature front has the following regularity per-
sistence properties.
(1) If additionally, 0Dy € W>>=(R?), 6y € C*(Dy), u € (0,1), and ug € H' N
WLP(R?) with some p > 2, we get

(1.8) dD(t) € L*™(0,T; W% (R?)),

and uw € LP(0,T; W2°°(R?)) with 1 < p < %.

(2) If additionally, 0Dy € C*Y(R?), k € NN [2,00), v € (0,1), 6y € CF=27(Dy),
and ug € H' N WLP(R?), (Ow, o, - - - ,8’;{01%) € WHP(R?) with some p > 2, we

obtain
(1.9) dD(t) € L>=(0,T; C*7(R?)).
In the above Ow,ug := Wy - Vug = div (W up) denotes the directional derivative

of ug along the vector field W.

Remark 1.2 (regularity persistence result of 9D(t) on Sobolev space Wk (R?)).
By arguing as in [46], one can similarly obtain the global regularity persistence result
of the 2D Boussinesq temperature front problem in Sobolev space W% (R?) with
k >3 and 2 < r < 4. Here with the help of the good unknown I given by (1.11),
we in fact can show the global W*"-persistence result of front boundary dD(t) with
k>3 and 2 < r < co. We present the proof for the global W3 -persistence result
of dD(t) in Appendix B (the endpoint case » = 2 also holds). The general W7 -
persistence result can be proved in a similar manner and by using the higher-order
striated estimates in Lemma 2.4 (the condition (2.12) can be guaranteed due to the
embedding W27 (R?) Bg;%r(Rz), r > 2), and we omit the details.

Remark 1.3. Note that the explicit growth (in time) estimates of various norms
of the velocity u are obtained in the proof of Theorem 1.1, for example, the norms
L (HY) N LA (H?) and L (Lip) of u are of polynomial growth in 7' (see (3.9) and
(3.15) below). It is an interesting problem to ask whether or not the growth rates of
the basic energy estimate and L1.(Lip)-estimate of u are optimal (one can see [4] for
a related work on the 3D Boussinesq system with full dissipation).

Remark 1.4. With slight modification, one can also deal with the more general
temperature front initial data 0o(x) = 01(z)1p,(v) + O2(x)1pg(x), where 61 and 0,
are the functions defined on Dy and D78, respectively.
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In the proof of the C17-, W2 and C?7-regularity persistence result of the tem-
perature front boundary, noting that the domain D(t) = X;(Dy) can be determined
by the level-set function o(z,t) = @o(X; *(x)) which solves

(1.10) dhp+u-Ve=0, ¢0,2)=po(z),

one needs only to prove the uniform boundedness of ¢(¢) in the norms of C17, W?2:%°,
and C?7, respectively. Compared with [23, 30], a new ingredient is the introduction
of a good unknown!

(1.11) FN=w—-R_16

with w := dyuy — Gauy the vorticity of the fluid and R_; := 9;(—A)~!. The equation
of T reads as 0" + u - VI' — AT' = [R_1,u - V], and the term [R_j,u - V] can
be better controlled (e.g., see Lemma 2.7) than the corresponding term 916 in the
the vorticity equation (see (3.1) below). The quantity ' usually has good regularity
estimates stemming from the smoothing effect of the heat equation, thus thanks to
the relation

(1.12) Vu = VVH(—A)"lw = VVH(=A)IT + VVH(—A) TR _46,

the restriction of the regularity of Vu mainly comes from the f-term. Since 6 belongs
to L? N L* uniformly in time and VV+(—A)~'R_; is a pseudodifferential operator
of —1-order, we can directly prove that VV+(—A)~"1R_;6 and Vu belong to L.(C7)
for every v € (0, 1), which ensures the global uniform C*7-boundedness of o(t).

In order to prove that u belongs to L% (W?2°), which implies the uniform W?2°°-
boundedness of ¢(t), we mainly need to show that V2V+(—A)"'R_160 belongs to
LP(L*>). The situation is quite analogous to that in the vorticity patch problem of
2D Euler equations, where one needs to control the L>-norm of VV+(—A)~lw with
w of patch structure, and by using the additional cancellation property of the singular
integral operator with even kernel (see the geometric lemma in [2]), we can derive the
desired uniform boundedness estimate.

To obtain the global uniform C?7-estimate of ¢(t), we consider the quantity
W = V4o (similarly as [30]), and by estimating the C7-norm of VW (¢), it mainly
needs to control the striated term dy Vu in L.(C7), with 9y := W -V the directional
derivative. In view of (1.12) and the patch structure of 6, we deal with the estimates
of OwT and Oy 0, respectively, and through using the striated estimate (2.18), we
finally can bound the LL(C7)-norm of dw Vu in terms of |[VW ()|~ and a suitable
norm of dy I, so that the Gronwall inequality ensures the wanted global uniform
estimate. We remark that the proof of the above results presented here is relatively
simpler than that in the work [30].

In the proof of the propagation of even higher C**7-boundary regularity, motivated
by [14], it indeed suffices to show the striated estimate 9f, ‘W in the norm L (C7)
(see (4.8) below). The method of high-order striated estimates (or conormal estimates)
initiated by Chemin [13, 14] plays an important role in the whole process. We would
like to emphasize, however, that there exists a crucial difference compared with the
application to the vorticity patch problem of Euler equations well studied in [13, 14]
(see also [46]). The regularity of the vector field W and its striated counterpart

ISuch a technique may be called Alinhac’s good unknown. One can see [37, 38, 12, 58, 41] and
reference therein for the application of this method to the 2D Boussinesq system with various partial
fractional dissipation.
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8€VW in the vorticity patch problem are of C7-Hoélder type with 0 < v < 1, while
in our situation they all belong to C''»7 uniformly in time. As a consequence, it will
yield a lot of substantial difference in the analysis. The foremost one can be seen
from the estimation of the operator R, given by (5.1): there is a factor 24e(t=luh)
in [14, Lemma A.2] or [46, Equation (7.3)], while in our case such a factor vanishes
in the corresponding inequality (5.3) below.? The factor 27¢~I1D) usually leads to
the various striated estimates in [13, 14, 46] with essential e-regularity loss, but here
the striated estimates have no regularity loss. In order to be able to develop such
fine-scale striated estimates, we introduce the striated type Besov space B;:f’W(Rd)
(see Definition 2.1 below). By adopting this function space and using the tedious
paradifferential calculus, we establish a series of refined striated estimates in Lemmas
2.4 and 2.5. These striated estimates are a natural generalization of some classical
product and commutator estimates in the usual Besov space with negative regularity
index, which might be interesting on its own.

In order to show that 8{;7 w belongs to L$F(C7), or more precisely, to build
the stronger estimate (4.9), we use the induction method. Suppose that we already
have good control on the quantities W, Vu, and I' in the appropriate B;{T’W—norms
as in (4.10) with ¢ € {1,...,k — 2}; we intend to show the corresponding estimates
with ¢ + 1. The procedure is as in the proof of the C?7-persistence result, and
the above refined striated estimates will be intensively used. In order to get the
L?(Bzoféf)—estimate of W, from the equation of 9, V2W and the striated estimate

(2.13), we need to consider the quantity V2u in LlT(BZOj;I}€+1). In light of (1.12),
we treat the [-term and the 8-term separately: by applying the smoothing estimate
of the transport-diffusion equation and the induction assumption, we obtain a good
striated regularity estimate of I in terms of I" itself and W in suitable B;’f’hw—norms,

which can be used to control the term V2V+(—A)~!T", while by using the patch

structure of § and striated estimate (2.14), we can bound the LlT(Bzgé{,Hl)—norm of

V2V4(—=A)"'R_160. Gathering all these estimates and using Gronwall’s inequality
yield the desired uniform estimates with £ 4+ 1, so that the induction scheme can be
continued to fulfill the final target.

The paper is organized as follows. In section 2, we introduce the striated type
Besov space B;:f,W(Rd) and establish several related estimates, and also compile some
auxiliary lemmas. We prove the C*7-, W2°°- and C?7-regularity persistence results
in the section 3, and then in section 4 we deal with the C*7-regularity persistence
result with & € NN[3,00). Section 5 and Appendix A are both concerned with the key
striated estimates, and we respectively present the detailed proof of Lemmas 2.4, 2.5,
and 5.1-5.3. Finally, we prove the global W3"-persistence result of the temperature
front boundary in Appendix B.

The following notations will be used throughout this paper.

e C stands for a constant which may be different from line to line (sometimes C
depends on the norms of initial data), and C'(A1, Aa,...,\,) denotes a constant C
depending on coefficients A1, Az, ..., A,. The notation X < Y means that there is a
harmless constant C such that X < CY, and sometimes we use X <, Y to indicate
the dependence on the coefficient A in the hidden constant C'.

e Denote by S(R?) the Schwartz class of rapidly decreasing C>°-smooth functions and
by S’(R?) the space of tempered distributions which is the dual space of S(R9).

2We mention that J.-Y. Chemin had already clarified this key difference in [13, p. 446] at the
special case p = oco.
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e For the Banach space X = X(R%) and p € [1,00], L”(0,T; X) denotes the usual
space-time space LP([0,T]; X ), which is also abbreviated as Lf.(X). We also use the
usual abbreviation that ||(f1,..., fo)llx = fillx + -+ || fullx-
e For two operators X and ), the notation [X, Y] := XY — VX denotes the commu-
tator operator. For two d x d matrixes A = (a;;) and B = (b;;), denote A : B =
0o aigbii

2. Preliminaries and auxiliary lemmas.

2.1. Striated type Besov spaces and related estimates. One can choose
two nonnegative radial functions y, ¢ € C°(R?) be supported respectively in the ball
{€ € R4 : €] < 4/3} and the annulus {¢ € R? : 3/4 < |¢| < 8/3} such that (see [3])

(2.1) x(€) + Zap(27j§) =1 for every £ € R%
Jj=0
For every tempered distribution f, the dyadic block operators A; and S; are defined
by
Af=xD)f =hxf, Ajf =277 D)f =2h(2)«f VjeN,
(2:2) Sif=x@7D)f= > Af=2N(2)xf VjeN,
—1<I<j—1

with h = F~ 1o, i/ = F~'x and F~! the Fourier inverse transform.
For every f,g € 8'(R%), we have the following Bony’s decomposition:

(2.3) fg=Trg+Tyf + R(f,9),

with

(24) Trg=>_ Sq1fDgg. R(f.9)= Y AgfAgg. Agi=Ap 1+ Ag+ Mgy
qeN q>-1

In what follows, for a vector field W : R? — R%, we also use the notation Ty.v to
denote the operator 3 Sq—1W - VA,.

Now we introduce the Besov space B;’T(Rd) and its striated type.
DEFINITION 2.1. Lets € R, (p,r) € [1,00]?. Denote by B, = Bj .(R?) the space
of tempered distributions f € S'(RY) such that
Hf| By .(R4) = H{QqS”Aqf”LP(]Rd)}qZ_lH@r < 00.

For every £ € N, N € Z* and a set of reqular vector fields W = {W,h1<i<n with
W; : RT — R?, denote by B;:ﬁ,w = B;f’w(Rd) the space of tempered distributions
f € Bj (R) such that

0 0
A A
st = I, =3 >0l ok |
o A=0

A=0 X EN A1+ A=A

(2:5) |/l

Bz, < 003

we also denote by g;:f’w = gz:?W(Rd) the set of tempered distributions f € B;,T(Rd)
such that

/]

s
BZ’,T'

L
By = 2 I(TBv) ]
(2.6) e
- 3 (T, )™+ (T w) ™ f]

A=0 N, EN; A+ +AN=A

stm“ < 00.
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In particular, when p = co, we always use the following abbreviations:
s, . st ns,t . sl
(27) BTW _BOOTW7 BTW _BOOTW7
. Bsf BS@ Bsé BSé Bsé BS@
W T RPIw T Poo i, 1LW = Poo,1,W-

J4

Besides, if W contains only one regular vector field W, i.e., W = {W}, we also denote

, < oo},
14

si = 3 I(Tw9) fllsy, <o,
=0

(28)  Byrw®) = {feB;,®|/

5,0
BPVT',W

(29 Bylw®):={feB;,(

>

and similar abbreviations (2.7) hold with W in place of W.

In the above, the notations 9y, = W-V and Tyy.v respectively denote the vector-

valued operators {W; - V}i<;<n and {Tw, V}1<1<N7 and 81% = {85‘1}1 8{,\‘}jV A+
AN =M\ E N} and TWV = { Tw, v A "(TWN‘V)AN At Ay =
)\,A € N} for every A € N.

Remark 2.2. We note that only the p = oo, r € {1,00}, and W = {W} case
of the space B;:ﬁ,w (and B;:f’w) is used in this paper to show the C*7-persistence
result of 2D Boussinesq temperature front boundary. The general (p,7) € [1,00]? and
W = {W, }1<i<n case of the space B;iﬁ,w (and B;:f,w) and related striated estimates
below are presented for the later potential application.

Some basic properties of the space BS oy are presented as follows.
LEMMA 2.3. Let ,5€ R, (,{ €N, r,7 € [1,], p € [1,00], and W = {W; }1<i<n

be composed of reqular vector fields W; : R* — R%. The function space B 5,6 o Satisfies
that

(2.10) BSTWCBSTWfors>s BSTWCBSTWf0r€>€
‘ BSTWDBSZWforr>r
1) [l = 106 g, + sz Wl = Bowfllpee

The following striated estimates in the framework of B ~w Play an important
role in the main proof, and we place the detailed proof in subsectlon 5.1.

LEMMA 24. Let k € N, 0 € (0,1), N € Z*, and W = {W;}1<i<n be a set of
reqular divergence-free vector fields Wi : R — R? satisfying that

(2.12)

A A
Wilszops = Z Bz =5 X 10 O Wlases, <

A=0A1+-+AN=A

Let m(D) be a zero-order pseudodifferential operator with m(£) € C=(R?\ {0}).
Assume that u is a smooth divergence-free vector field of R, and ¢ : R — R is a
smooth function. Then for every e € (0,1) and (p,r) € [1,00]?, there exists a constant
C > 0 depending only on d, k,e, and HW”Bg(‘T/{}k—l (when k = 0 this norm plays no

role) such that the following statements hold.
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(1) We have
(2.13)
k k
- Vol s, < Cmin{ S fulsgo 1 V6ll o oo D Ll IVollego
pn=0 pn=0
(2) We have
Im(D)6llg e
(2.14) "
< Cllgllg-ensr +C(1+ Wilgye ) (1911, + 1A-1m(D)]1zr )
(3) We have
(2.15) lim(D), - VIl < C(IVull gy + ull e ) 6] -

If W contains only one divergence-free vector field W, the inequalities (2.13)—(2.15)
hold with W in place of W.

In particular, for the special case k = 0,1, the dependence of lower-order term
W]l gi+sr-1 in the constant C' of Lemma 2.4 can be calculated explicitly, and the
oo, W

correspdnding striated estimates are stated as follows (whose proof is placed in the
subsection 5.2).

LEMMA 2.5. Assume that u is a smooth divergence-free vector field of R? and
W = {Wih<i<ny (N € Z%) is a set of smooth divergence-free vector fields. Let
¢ : RY — R be a smooth function. Let m(D) be a zero-order pseudodifferential
operator with m(€) € C=(R\ {0}). Then the following statements hold true.
(1) For every e € (0,1) and (p,r) € [1,00]?, there exists a constant C' = C(d,€) > 0
such that

(216)  fu- Vol < Cmin{fully: [V6lom el V6] 5.
and
(2.17) [Ow(u- V)| p=c + [[Tw.v(u- V)| p-c < Cmin{A, Ay, A3},
with

Ay i= lull gy 10056l + (Jowalsys + Wl sy ) IV6llas. .

A 1= lull o, 10wV Sl e + (Iowullpy, + Wils sy, ) I96ll
Ay = |l gy, (10wl e + Wl 19615 )

+ (Iowull s + Wl el g ) IV @l 50,

(2) For every e € (—1,1) and (p,r) € [1,00]2, there exists a constant C = C(d,€) > 0
so that

(2.18) [ow(m(D)§)| g« < Cllowdllgc + ClIVIwre |9l e -
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(3) For every e € (—1,1) and (p,r) € [1,00]?, there exists a constant C = C(d,€) > 0
so that

(2.19) [[m(D), u-V]§| g-« < Cllullwr<lldllpe-
The lemma below is concerned with the striated estimate of the patch-type initial
data.

LEMMA 2.6. Let k € NN [2,00) and 0 < v < 1. Assume that Dy C R? is a
bounded simply connected domain with boundary 0Dg characterized by the level-set
function py € CFV(R?) (see (1.4)), and 0y(z) = 0p(z)1p,(x) with 8y € C*=27(Dy).
Let Wy = Vﬂoo. Then we have
(2.20) Oy 0o (x) € C~H(R?).

Proof of Lemma 2.6. We argue as [57, Proposition 3.1]. First note that Rychkov’s
extension theorem [55] guarantees that there exists a function f € C*~27(R2) with
the restriction §0| Do = 00 = 0p.

Then it suffices to prove that 8’;{01 (60-1p, ) belongs to C~17(R2). Since the vector

field Wy is tangential to the front boundary dDg, the operator 85{0 ! communicates
with the characteristic function 1p,. Note also that (e.g., see [54, Chapter 4.6.3])

(2.21) 1p,(x) is the pointwise multiplier in the space C~'7(R?).
Hence it needs only to show that 85{,_0150 € C~17(R?). Due to that 6, € C*~27(R?)

and W, € C*~17(R?), this indeed can be justified from repeatedly using the product
estimate (2.16):

k—17 Py
HBWOloOHC*I’W SHWOHLOO |‘V8W0290”071n
k—37 k—37
SiWollwroe IV 200l 010 + V2057200l o1+
SiWollyk—2.00 [VOollc-14 + V260l c-1v + -+ -+ [|[VF 20 || c-1.4

(2'22) SHWﬂuwk—Q,oo ||90||C’k*2ﬁ- 0

2.2. Some auxiliary lemmas. We have the following useful commutator esti-
mate.

LEMMA 2.7. Assume p € [2,00], R_1 := m(D)A™!, A = (=A)'2 and m(D) is a
zero-order pseudodifferential operator with m(€) € C=(RI\{0}). Letu = (uy, ..., uq)
be a smooth divergence-free vector field and ¢ be a smooth scalar function. Then we
have

(2.23) [R-1,u-Vglps _(ray < C(IVullLo@a) 9l e, _ma) + lullze@a) 6]l L2 ma))
with C > 0 a constant depending on p and d.
Proof of Lemma 2.7. Thanks to Bony’s decomposition, we have
[R—lau : V](b
=D [Ro1, Sq1u-V]Agd+ Y [Rot, Aqu-VIS,_16+ Y[Ry, Agu- VA0

qeN qeN g>—1
=14+ 1T + II1.

For I, from the spectral property there exists a bump function zz € CX(RY)
supported on an annulus of R such that I = > genIR-19(279D), Sq—1u-V]Ay¢, and
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due to the fact that R_;1(277D) = 24D} (2%.)x with 7 € S(RY), we find that for
every j > —1,

DAy $20 Y [[Rotb(279D), Sqmru - VAP 1o

q€N,|q—j|<4
s2 Y 20| [ RS, (e - y) - S, u@) - VA - p)d]
lg—j]<4 ke ke
S2Y 0 27 yh() e [ VSeull o IVA] e < C|IVulo ¢l g, -
lg—jl<4
The second term II can be estimated in a similar way:
DA $27 Y [Rad(279D), Agu- V]S 16| e
q€N,|q—j|<4
Y3 MWl IVAule (Y 2lAwlis) SIVulllélsy -
lg—jl<4 —1<i<q—2
For j = —1, a direct computation shows that

AT e < [JALR-_div (ud)|ze + |A—i(u- VR-_19)||Ls
SHA 1 (uwo)llp + A1 (v VR 19| S |lullzz 9l z2-

In view of divu = 0, we further split IIT as follows:
A= Y AR div(Agudgg) — > Aj(Agu- VR_1A,9)
q=j—3 q=j—3
= AJIIIl + A]IIIQ

Since Aj;R_1div is uniformly bounded in LP for every j € N, we use Bernstein’s
inequality to derive that for every j € N,

V(AL S22 Y IAuAglle +2 > |AguAggp
q>j—3,9>2 q>7—3,q<2

S D PTUANVUllL [ Bgdlre + D0 [Agullzz A e

q>j5—3 —1<qg<2
S IVullzelllpe, o+ llullzzll¢ll e

Similarly, one also gets 27| A;IIy| e < ||Vl Lo ||l so. _ + lullp2 ¢l 2. Hence, gath-
ering the above estimates leads to the commutator estimate (2.23). O

We recall the following regularity estimates of the transport/transport-diffusion
equation (one can see [3, Chapter 3] for the detailed proof).

LEMMA 2.8. Let (p,p,r) € [1,00]® and —1 < s < 1. Assume that u is a smooth
divergence-free vector field, and ¢ is a smooth function solving the transport/transport-
diffusion equation

(2.24) Op+u-Vo—vAp=f,  ¢li—o(zx) = ¢o(z), z¢cR™L

We have the following statements.
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(1) If v =0, then there exists a constant C = C(d, s) so that for every t > 0,

By .. dT) ’

t
(2.25) llzz(ss ) sc(|¢0|B;,,.+f||z%(3517,>+ / IVa(m) o=l 6(r)]

and
t
(2.26) H¢||L?°(B§,r) < CeClo HVUHLOOdT<||¢O||B;,T + ||f||i%(3;,r))~

(2) Ifv > 0, then there exists a constant C = C(d, s) so that for every t > 0,

1 t
< C(1+ut)r V= (gl sy 7y ) )-

ve gl

Bt

(2.27) 1
< ) (Ioulsg, + 15y, )+/ 19 o 16 13

and

(2.28) w7 (L —

2

pr’)

In the above ||g]| 7, (Bs ) = {27 ([ Aqgll L2, (Lr) b= —1ller denotes the norm of the Chemin—
T p,T -

Lerner spacetime Besov space L°(0,T; B .(R%)) (see [3, Chapter 2]).

We also use the following smoothing estimate for the transport-diffusion equation.

LEMMA 2.9. Assume p € [2,00), p € [1,00]. Let u be a smooth divergence-free
vector field and ¢ be a smooth function solving (2.24) with v > 0. Then for any t > 0,
we have
(2.29)

29 t
sup 27 [[Ago|pp(zey < C(Sup [ AqollLr +/ [Vullre |9l 5o, _dT + ||f||Lg(Lp))~
qeN qeN 0 '

Besides, (2.29) also holds with, |[ully1.» (||(Id = A_1)@|| g0+ [[VA_1¢||L~) in place
of [Vullrrll¢l sy, .

Proof of Lemma 2.9. For every ¢ € N, applying the operator A, to (2.24) yields

(2.30) O(Agd) +u-V(Ag9) —vA(Ag9) = —[Ag,u-V]p + Ay f.

Multiplying both sides of (2.30) with |A,¢|P~?A,¢ and using the estimate (see [21])

/ CA(D) [AgSP A b > 22| AL,

with ¢ > 0 independent of g, we obtain
1d P 2q P p—1
1 R2aPOlLe +er2Agd(O)Lr < A0l (II[Aq,u-V] P() e+ Ag f(t Hm)

Integrating on time interval [0, ¢] leads to

t
18g6®)l1zr < e™ 2| Aqollzr+ / e (A, w10l o+ 18, S () |10 ) dr
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Young’s inequality ensures that
_2q
[Aq@llLe(rey < C277% (HAq%HLp +I[Ag u- Vol L ey + ||Aqf||Lg(Lp))-

Recall the estimate sup,s_; [[Aq,u - V]@|r < C||Vulro|l¢llpo.
6.10]); then the desired estimate (2.29) follows from combining the above two inequal-
ities.

Furthermore, as for the replacement in Lemma 2.9, it suffices to notice that

(see [37, Lemma

sup [[[Ag,u- V]gllLr < sup [[[Ag,u-V](Id = A_1)@|zr + sup [[Ag(u- VA_19)][Lr
q>-1 q>-1 q>-1
+ sup |lu- VAGA_10| L
qg=>—1

< ClVullre[[(1d = A1)dl| By, , + Clluf|r[VA1ollL=. O

We list some basic properties of the particle-trajectory map X; as follows (one
can refer to [3, Proposition 3.10] for the proof).

LEMMA 2.10. Assume u(z,t) € LY(0,T; W1 (R%)) is a divergence-free velocity
field. Let Xi(x) be the particle-trajectory generated by velocity u which solves (1.2),
that is,

(2.31) Xi(z) ==z +/0 w(X,(x),7)dr.

Then the system (1.2) or (2.31) has a unique solution X,(-) : R +— R® on [0, T] which
is a measure-preserving bi-Lipschitzian homeomorphism satisfying that VX, and its
inverse VX, ' belong to L>=([0,T] x R?) with

(2.32) IV XE | oo ety < o IVullzdr,

Besides, the following statements hold true.

(1) If additionally uw € L*(0,T; CY7(R%)), then X € L=(0,T; CY7(R%)) with
t
(2.33) VX or < el |V“”L°"dT(1+ / ||Vu(7)cwd7'>.
0
(2) If additionally v € L*(0,T; W*>®(R%)), then X+ € L>(0,T; W?>(R%)) with
t
(2:34) VX e I [ e
0

The operator V2V-+39;(—A)~2 has the following explicit repression formula (one
can refer to [56] for the proof; especially see section III.3 for the calculation of the
coefficients a;j; and o).

1

LEMMA 2.11. Let V = (81,82)T, AVAE (6%,8§)T = (—62,81)T, A= (—A)§.
Then the family of operators V2V +0;A=% is composed of zero-order pesudodifferential
operators satisfying that for each i,j,k = 1,2,

(235) 818J8,§81A’4f(x) = p.V./ Mf(y)dy + aijkf(:r) Vf S S(Rz),

Rz T —y[?
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Tijk(y)
[y[?
the coefficient a;;, and the zero-mean function o, (y) are given by

where a;j; € R and is the standard Calderén—Zygmund kernel; more precisely,

2y3ys — 6y1Y3

0111(11) = —0212(21) = —0122(y) = -7 , G111 = G212 = a122 = 0,

lyl*
4 2,2 4 2
_ Y1 +6yiyz — 3y, _ 3n”
onz(y) =7 PE , aii2 = 5
4 2,2 4 2
—Yi +6yiys —y T
o121(y) = 0211(y) = 0202(y) =7 ! |y|14 : 2, 121 = agn1 = agy = o
6 3 ) 3
o1 () = W%, .

3. Persistence of C1'7-, W2, and C?%7-boundary regularities. In this
section we are dedicated to the proof of the C1:7-, W2~ and C?7-regularity persis-
tence result for the temperature front boundary.

As mentioned in the introduction section, a good unknown I is introduced and
plays a crucial role in the proof. Note that the equation of vorticity w := curlu =
O1us — Doy reads as

(3.1) 0w +1u - Vw — Aw = 010, Wlt=0 = wo.

Denote by R_1 := 01(=A)"' = A 2 and I := w — R_10. We see that d;w + u -
Vw— AT =0, and

(32) OR_10+u-VR_10 = —[Rfl,’LrV]@,
which immediately leads to
(33) 8tF+UVF—AP = [R,hU'V]Q, P|t:0 = Fo.

3.1. Persistence of C'"7-boundary regularity. The main result of this sub-
section is the following global well-posedness result of the 2D Boussinesq system (1.1).

PROPOSITION 3.1. Let 6y € L?> N L*°(R?), and uy € H*(R?) be a divergence-free
vector field. Then, for any given T > 0, there exists a unique global solution (6,u) to
the 2D wviscous Boussinesq system (1.1) with
(3.4)

0 € L=(0,T; L*NL>®), weC0,T; H)YNL*0,T; H*)NL*'(0,T;C*7) Vy € (0,1).

In light of Proposition 3.1, we go back to the temperature front problem of 2D
Boussinesq system 1.1 and show the persistence of C'7-boundary regularity. Indeed,
recalling that X; is the particle trajectory given by (1.2), the level-set function (of
OD(t)) ¢(x,t) = po(X; *(z)) and Lemma 2.10 guarantee the desired result ¢ €
L>(0,T; C17) with

(35)  [Ve)llcr S 1Veoller VXML + Vol VX e < Ce“UHT,

where we have used estimates (3.14)—(3.15) below.

Proof of Proposition 3.1. The existence part is standard: we first regularize the
initial data as (0o, uo.c) = pe * (6o, up) with p. = e’2p(é), € > 0; then the previous
work (e.g., [11]) implies there exists a unique global smooth solution (0, u.) to the
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system (1.1) associated with (6 e, uo,e). Moreover, the a priori estimates below guar-
antee that (6, uc) satisfies (3.4) uniformly in € and also the particle-trajectory X; .
associated with u, belongs to L>(0,7T; C17) uniformly in ; thus combined with the
standard compactness procedure (e.g., [51, Chapter 8]), one can pass e — 0 (up to a
subsequence) to show that there exist functions (0, u) satisfying (3.4) to solve the 2D
Boussinesq system (1.1) in the distributional sense.

The uniqueness part can be proved exactly as in [30, Theorem 2.1].

In the following we only focus on the a priori estimates. From the equation of 6,
we directly have

(3.6) 10| 2nre=(®2) < |00l L2nree®2) VE > 0.
Then the classical energy estimate of system (1.1) gives that
(3.7) lullZse (p2y + 1Vl 72 12y < Co(l+T)*(luollz2 + 160]1Z2)-

Now we consider the energy estimate of vorticity w. By taking the inner product
of (3.1) with w itself, and using the integration by parts, we see that
1d

1 1
5 il + 19wl < | [ 0on(e.tide] < 510001 + 519w(0)

Integrating in the time variable leads to
(3.8) ol Zee 22y + IVll7z (12 < ColllwollZ> + (1 + T)[16ol1Z2),

which in combination with (3.7) and the interpolation ensures that for every p €
[2, 0],

> < CL+T)(luollz + [190l17)-

2 2 2
(39) b + IVl oy + 2,

Next based on estimates (3.6) and (3.9), we intend to obtain the Ly (B, ,)-
estimate of w. We use the high-low frequency decomposition, and due to the in-
fluence of forcing term 0160 in (3.1), it seems better to consider the estimation of
T" and then use the relation w = I' + R_10 in the high-frequency part. Apply-
ing Lemma 2.9 to (3.3), and using Lemma 2.7, we get that for every ¢ € N and
p € [1,00],

AT | Le (2 52_5(18115 [AqTollrz +27 2 ||[[R-1,u- VIOl 11 (12
qe

_2
273l e ey (11 = AT g gy + VAT g (1))
_2
<277 (llwo, 602 + Tllull e iy 10l p2nn) )
_2
+ 277l gy (lwll Ly se, ) + 10121 22))

_2 2
(3.10) <C2 pq((1+T )+ (1+T)IIWIIL1T<BgQ,m>)’
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with C' > 0 depending only on the initial data. Then let N € N be an integer chosen
later, and by virtue of Bernstein’s inequality we find that

lwllrse p < Do N1Awloywe) + D 1Al )

—1<q<N ¢>N
S Y 2awlny e + 3 2UAL o) + 3 1ROy 1)
—1<g¢<N q>N q>N
S2Vwlogan T+ (1 +T) D27 (1 + T+ il sy, ) + D 270l )
q>N q>N

<C2N1+T)+C27N1+T)(1+ T+ ||W|‘L1T<Bgo11>)-
By choosing N € N large enough so that C27"(1 + T) ~ 1, we conclude that
(3.11) lellzg o, < C(L+T)?
with C' = C(||uol| g1, [|0o]l L2 ). Moreover, it also yields that for every v € (0, 1),

HWHL}(B;’CJ) SAwlLy ey + ZQW(HAqFHLlT(Lm) + ||AqR—19||L1T(Loo))
qeN

S Tlwllnge 2y + Y270 V(L +T)° + (1 + D)llwlze e,y + 100Ls o))
q€eN
(3.12) < C(14T)>.

On the other hand, we use (3.10) and (3.11) to deduce that for every p € [1,2),

”W”Lé’-(Bgc,l) < [[Asiwllpe ey + Z AT e (py + Z [AgR-10][1e (o)

qeN geN
_2
S llwllzez2y + Z 20 (L4 T) + (1+ T)HWHL}(B(;OYI))
qeN
+22_q||9||L§(L°°)
qeN
(3.13) STe(14+T)+(1+T)° < C(1+T)>

As a direct consequence of estimates (3.12)—(3.13) and (3.7), we have that for
every v € (0,1),

(3.14) HUHLlT(Bi:;) S ”A*IUHUT(L“’) + ”W”LlT(BzO‘l) <C+T)°,
and

(315) lullpy =y S llullze sy, ) S 1A-vullpy @) + lwllzs s, ) < CA +T)%,

and [[ullLe wr) < Cllullpe 1 ) < C(1 +T)? with ¢ € [1,2). 0

3.2. Control of curvature: Persistence of W2 *°-boundary regularity.
In this subsection, under the assumptions that ug € H' N WYP(R2?), p > 2 and
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0o = bo(x)

1p 1), we claim that for
every p € [1, -

o,
below)

( ) with 9D € WQ’OO(R2), é() S CH(D()) €
2 )

5) (the restriction of p is mainly from (3. 5

(3.16) IV2ul| o ooy < CeCOFT,

With (3.16) at our disposal, we can immediately show the global W?2:*°-persistence
result of the temperature front boundary 9D(t). Indeed, according to Lemma 2.10 and
(3.16), the particle-trajectory X, and its inverse X, ! satisfy Xi=' € L (0, T; W),
thus the level-set characterization o(z,t) = po(X; *(z)) of dD(t) fulfills the desired
property ¢ € L>(0,T; W?°°) with

V2@l g () S IV200llLe= IV X 1 20 (poey + V00l Lo V2 X7 | g (1)
< CeC’(l+T)2.

(3.17)

In the rest of this subsection we prove the assertion (3.16). By virtue of the Biot—

Savart law and relation w = T + R_10 (recallng R_; = 0A2), we
see that
(3.18) Vi = V2VHEA 20 = VEVEAT2T + V2VHo,A740.

Next we divide the proof of (3.16) into two steps.
Step 1: LT.(L°)-estimation of the I'-term in (3.18). By multiplying both sides of
(3.3) with |T|P72T" and integrating on the space variable, we get

pdtl\ Ol + (-1 /R VLT3 (2, t)de < [[Rov, - VIO | o IDO)]17"

It follows that

Tl Lge ey < ITollze + [I[R—1,u- V10l y ey < C+ [[Ro1,u- VIOl Ly (1r),
where we have used the fact that
(3.19) ITollze < llwollze + [IR-100ll s < llwollze + Cplloll 2o < C.
Observe that Lemma 2.7 and estimates (3.6), (3.9) guarantee that
[[R-1,u-V10llee By ) S lwllnge @2y 10l nse (poe) + llullnse 2y 10l 5o (z2) < C(1+T).
Thus the embedding B%,OO C LP implies
(3.20) 1Tl zge ey < C(A+T),
which combined with (3.19) leads to that

wllzee ey < TN Lge(zry + 1R =101l Lse (Lr)

(3.21)
S Ilege ey + Golloll | 2o < C(L+T).

We also have

(3.22) ullse wiry S 1A-1ull oo wiwy + [[wWllLge ey < C(A+T).
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Now applying (2.29) in Lemma 2.9 yields that for every ¢ € N and p > 1,
1ALl a2y £ 277 (ITolle + IVull g (2o It gmo, _y + I1R-1,u - V1O s (1)
S 272 (Il + Nollage oy (Illzg ca_y + IR0y (2. )
+ 27 PR, u - VO sy
(3.23) S+ T? + (L+D)l|wll s po, _y) < C2729(1+T)°,

where in the last line we have used (3.11). As a result of the above inequality and
(3.20), we deduce that for every p € [1, x],

2
320 0l sz, < CNAT Ny on) + Csup 27 1A, 1) < O 4 T)"

By virtue of the Calderon Zygmund theorem, (3.24), and the embedding B,Q,/opO —

OO | forevery 1 < p < we find that for every p € [1

+2’ ’p+2)

IV2VEAT?T g (noey < IVEVHEAT2 AT g (1) + Ol g 5L )

(3.25) < C||F||L%(B§(;) <CO+T)3.

B Step 2: LP(L>®)-estimation of the O-term in (3.18). Recalling that 6(z,t) =
00(X; (%)) Lp( (2) for every t € [0,T] and D(t) = X;(Dy) satisfies D(t) = {z € R?:
o(x, ) >0} (wi th ¢ given by (1.10)), we shall prove that

(3.26) IV2VL A0 o (o) < CeCOFT,

Indeed, the proof of (3.26) is quite analogous to the proof of the L>-estimate of Vu =
VVLiA~2w = VVLA_Q]ID(,&) in the vorticity patch problem of 2D Euler equations
(see, e.g., [2, 14]), and below we mainly argue as [2, Proposition 1]. Thanks to
Lemma, 2.11, we have that for every zo € R? and 4, j,k = 1,2,

(3.27)  9;0;0L 1A~ *0(x0,t) = p.v. / MOQ)HO( Y(y))dy + aiji 0(x0, ).
D(t) |0 — yl

where V+ = (0{,08)T = (=05,01)T. We need only to estimate the integral part.
Denote by

[V (1)l lms ) 1”}
Vel e
with [[V(t) lint := infreap() |Ve(a, t)|. Notice that ¢(x,t) belongs to L>(0,T; C*7)

according to (3.5), and it also satisfies that ||V (¢)|int = [|Veolinte™ Jo IVullocdr
(e.g., see [2, equation (2.26)]); thus we deduce that for every ¢ € [0, T,

(3.28) d(zo,t) :== inf {|lz—=xol}, () := min{l, (

2€0D(t)

1 1 _1 rT 2
(S(t)_l < |‘V90||£g:>(m)||v@0||m? e Jo IVullpeedr < Cec(1+T) .

Now we split the integral term in (3.27) as

Uz]k(xo )
Tukt0 =00 Go(X; L (y))dy
~/D(t)f‘|{|x0—y25(t)} |3;‘0 - y|2 0

(3.29)
+p.v./ M%(Xfl(y))dy: I (zo,t) + I2(xo, t).
D(&)n{lzo—yl<(t)}

|0 — y/?
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Since the area of patch domain D(t) = X;(Dyp) remains constant in time, we directly
obtain

(330)  I1i(w0,0)| < Colfoll e () |DWIS(0) 2 < CIDol6(2) 2 < CeCIHT,

For the estimation of Iy, if g € D(t), we decompose I3 as

Oiik\To — = _ = _
B(eost) =pv. [ k(20 = V) (531 (4)) — Go(X; (20))) dy
D)N{|zo—yl<s(®)}  |1To — Yl

- oo —
- O0(X; 1(300))(1)-"- / ’“(y)dy)
D) {|zo—yl<s(®)} |To — Yl
=:I1(x0,t) + I2a (o, t);

on the other hand, if o ¢ D(t), denoting by Z; € dD(t) a point so that |xg — T¢| =
d(xo,t), we have

Oi5k\To — = _ = 1/~
In(zo,t) =p.v. / f’“(f f’) (Bo (X1 (y)) — Bo (X1 (30)))dy
DN {|zo—yl<s(t)} 1 To =Y
- il —
+ 60 (X; 1(wt))(p~V-/ ]k(ozy)dy>
DN {|zo—yl<s(t)}  1To — Yl

= IQg(LEQ, t) + 124(170’ t)

Because 6y € C*(Dy), 0 < p1 < 1, one directly gets

(331) (0.0 < Clolln oI VX7 i [ dy < OO,

Bi(zo) |To — y[>#

and

) - 1
Fzs(z0,1)] < €00l ey 19 [

—
R e

(3.32) SC”§0||CM(D70)6#IOT HVuHLoodt/ dy < CeCOHTY |

Bl(I(]) |:,U0 - y|27u

where in the last line we have used the fact |Z; — y| < |Z: — xo| + |z0 — y| < 2|0 — ¥
On the other hand, due to the zero-mean of oy, the principal-value integral in
Iso(xo,t) and Ing(xo,t) vanishes if d(zg,t) > d(t), so it suffices to consider the case
d(zo,t) < 6(t). We then define

S(wo,t) = {2|[2| = 1, Vaop(@s,t) - 2 > 0},
and for every p satisfying p > d(xq,t), define
Sp(0,t) i= {21 2] = 1,0 + p= € D)},
(3.33) Ry(z0,t) == (Sp(z0,t) \ S(z0,t)) U (S(20,t) \ Sp(o,t)).
In terms of polar coordinates, and using the fact that fz(xo,t) oijk(2)dH () = 0, we

find

- 5O HY R, (w0, t
(3.34) | as (0, D), | Taa (w0, )] < Collfoll 1 (1) /( (o/an))
d(zo,t)

dp

with #! the Hausdorff measure on the unit circle. Concerning H'(R,), we recall the
following ingenious result (see [2, Geometric Lemmal]).
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LEMMA 3.2. Let R,(zo,t) be the symmetric difference defined in (3.33); then for
all p > d(xo,t), v € (0,1) and zo € R? so that d(xo,t) < §(t), we have

d(xo,t) P\
. ! t) <2m( (1427 27( =) ).
(3.35) HY (R (0,1)) < w<( +2)TE 42 ()
Thus inserting (3.35) into (3.34) leads to

_ 27
(336)  IEaa(o, )] aalro, ] < 20Co ol e oy (1427 + ).

Hence, gathering (3.27), (3.30)—(3.32), and (3.36) ensures the assertion (3.26).
Finally, by combining (3.25) with (3.26) we get the desired estimate (3.16) and
finish the proof for the global W?2>-persistence result of dD(t).

3.3. Persistence of C?7-boundary regularity. In this subsection we are ded-
icated to proving the persistence of C%Y-regularity of the temperature front boundary
0D(t).

Observing that W = V1 satisfies

(3.37) OW +u-VW =W -Vu =0wu, W(0,z)=Wy(x),
we have
(3.38) HVW +u-V(VW) = 0w Vu+ VW - Vu — Vu - VIV.

Owing to (2.25) and the product estimate in BY, . (R?), we obtain

oco,00 MY

t t

VW)l < <|vwo|3;,,w+ [ 1owvulse ar+ [ 19ule 19W 5
0 0

(3.30) 4 ||VW||Lgo<Lw>||Vu||Lg(Bgo,w)).

Below we focus on estimating dy Vu. From the Biot—Savart law and relation
w=T+R_10 =T+ 0;A20, it follows that

(3.40) OwVu = 0w VVHA2w = dw VVATZT + 0y VV0,A~40.

We first consider the estimation of Oy T' = W - VI'. Note that from (3.3) and the fact
that [Ow, 0 +u - V] =0, OwT solves the following equation:

(3.41)
8,(0wT) +u- V(OwTD) — A@wT) = —[A, w]l + dw ([R_1,u - V]0)

= AW - VI —2VW : VT + 0w ([R_1,u - V]9).

According to the smoothing estimate (2.27), we find that for every 0 < +' <
min{% 1- %}7

HOW TN e 1y NOW Ty iy

- Ly HIVIV: VAT

< C(l+t>(aWOFO||Blyl + ||AW - VT LEBZ Y

t

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/22 to 219.142.99.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TEMPERATURE FRONTS FOR 2D BOUSSINESQ SYSTEM 4063

In view of Ty = wo + R_10y = wo + 01A"260y and the embedding WP C B;’;,l with
0<’y’<1—%,weget
10wo Lol gyr<r < 110w Vutoll g1 + 110w R—-100]l gy
< Clowyuoll g+ ClIVWol| e [[Vuo |l g -1 + ClIWol Lo [[VR—160 | 571
o1 o1 o1
(343) < Clowyuollwre + Clleollwzeluollwre + Clleollwre<|foll L2nre < oo
Notice that by virtue of (3.23),

(3.44) Ir) < Ol s, < COH T,

Ly(BL R
thus (2.16) and (3.17) ensure that

VW VT rry < CUVW e (1o VT ey < CeC0F07,

’ ’
vy'—1 v =
B(x),l Boo,l

t
AW 9Ty oty < € [ JAW )y 97 e

Taking advantage of (2.23), (3.22) and the embedding B, , C B;’;’l for every 0 <
v <1-— %7 we deduce that

IR-1,u- V10l L2 sr _y < CUIVull o0l Lo ooy + tllull oo 2y 0]l Lo (22))
(3.45) ”’
<C(1+1)?
and

10w (R0 D10y gy S CUIW el Ry VIOl gy < CeO0H0

ey 18
Gathering the above estimates yields

18w L (@) o1 + 0w Ll

: LHBLY
t
(3.46) gcec<1+t>2+0(1+t)/o (|\vuum|\awr||3;,ll+||W\|B:;+11HVFIILOO)dT.

Thanks to estimates (2.18), (3.17), (3.44), and (3.46), we also infer that
10w (VVHA72T) |y (52 )
< CllowT LBz ) + ClIW lLee wroo) [IT]| 1 (B2 )

0,00

t
(3.47) SCeC(1+t)2+C(1+t)/O (IVull e 10w Tl g1 + W] g2 [ VT ) dr.

BLL
For the estimation of the f-term in (3.40), by using the high-low frequency de-
composition and (2.16), (2.18), we get

18w (VA0 |1 s )
S 1410w (VVERAT0) |13 ) + IVOW (VI HAT D)y
S Wl oy 16 2ty + I W e (1) IV2V A6y
+ (10w (V2 V=01 A7) |y o
S AW e w100z anz) + 10w Ol g o,

2
(3.48) S U 110w Ly oy

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/22 to 219.142.99.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4064 DONGHO CHAE, QIANYUN MIAO, AND LIUTANG XUE

Since the operator 9y = W - V commutates with 9; + u - V, we see that

(3.49) 00wl +u - Vowé =0, OwO|i=0 = Ow,bo,

and then the regularity preservation estimate (2.26) and (3.15) imply that
(3.50)  [|OwO(t) | o1 < €I IVl ATy 6o s < (O Bl 1.2 OO,

In the above dyw,0p € C~17(R?) is guaranteed by Lemma 2.6.
Therefore, by collecting the above estimates (3.39), (3.46)—(3.48), (3.50), and

using (3.14), (3.17) and the embedding BI}] C B;’;ﬁl (for every 0 < 4" < min{~,1—
%}), we find

WOl gz, + ||3WF(t)HB;:—11 + H5WF||L%(B;:+11) + 1ow Vul Ly B2 )
t
< CePU L o1+ f)/ (Wl garr + ||6WFHB“1'*11) (IVullee 4 [IT][w1.00 ) dT.
0 ' o,

Gronwall’s inequality and (3.14), (3.20), (3.44) guarantee that

W Lo Bz + IOwT ) HowT]| ) H1ow Va2 )

r_q 41
Li(BL 4 Ly (BLY

(3.51) < CeCOFD?

which directly implies ¢ € L>(0,T; C?7(R?)), as desired.
In terms of the notations (2.5)-(2.7), the estimates (3.14), (3.20), (3.44), (3.51)
lead to that

IW e sy + 192l gty + I gy Iy oy
= Wl e sy + 1070, 0w V) g ) + 0 O

(3.52) + (T, Oy T) | < CeCUAT)?,

”LHB;’#

4. Persistence of Ck"’-boundz}ry regularity with k& € NN [3,00). In
this section, assuming that fo(z) = 6o(x)1p,(z) with 0Dy € C*7(R?) and 6y €
Ck=27(Dy) for every k € NN [3,00) and v € (0,1), we intend to prove that

(4.1) dD(t) € C*7 vt e [0,T].

In order to study the higher regularity of front boundary dD(t), we first establish
its deep connection with the striated regularity of W = V<o (see, e.g., [14, 46]).
Recalling that 0Dy has the parameterization (1.5), dD(t) can thus be expressed as
X;(20()) with @ € S* and X, the particle trajectory given by (1.2), then

(4.2) 9o (Xt (20(a))) = Wo(20(e)) - Vi Xi(20(e)) = (9w, Xi)(20())-

On the other hand, noting that W = V1 solves (3.37), Lemma 1.4 of [51] ensures
(4.3) W(X(2),t) = Wo(z) - VXi(2) = (9w, Xo) ().

Combining the above two formulas leads to

(4.4) o (Xt (20())) = W(Xi(20()), 1) = (0w, Xt ) (20(c))-
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Moreover, by iteration, it follows that for any k € Z*,
(45) 9 (Xu(z0(e)) = 9 ((Owe Xo)(20(@))) = -+ - = (943, X ) (20(@)).
From (4.3), we get

(O, Xe) (2) = 0w, Xe (@) - (VW) (Xe(2),1) = W(Xe(2), 1) - (VW)(Xe(), )
= (OwW)(Xi(2),1),

and by induction,
(4.6) (04, Xt) (z) = (05 ' W) (Xy(z),t) VkeZT.

Hence in light of (4.5) and (4.6), in order to prove the persistence result (4.1),
that is, 9% (X¢(20(cx))) € C7, it suffices to show that

(4.7) (94, X1) (x) € L>(0,T; C7(R?)),
which in turn remains to verify that (thanks to Lemma 2.10)

(4.8) (05 W) (-, t) € L*=(0,T;C7(R*)) Vk € NN [3,00),7 € (0,1).

In the following we mainly will prove that

Wil asyages) FIVelny gty + I g g2y 0y iy

9 < Hy—1(T)

with Hy_1(T) depending on k — 1 and T. A direct consequence of (4.9) is that

105 W llLge (omy < W - VO Wl (o) S IW g 103 Wl oo (i
S Hi—1(T),
which corresponds to the wanted result (4.8) with £ € NN [3,00).
In order to show the target estimate (4.9), we apply the induction method. As-
sume that for some ¢ € {1,... k — 2}, we have
W ez semny + I90y gsey + I e gy + I

W0 ),

we intend to prove that it also holds for ¢ replaced by £ + 1, that is,

Wz + IVl gy + I e g, + Iy ooy
< Hppa (T).

Note that estimate (3.52) corresponds to (4.10) with £ = 1. Notice also that
under (4.10), Lemma 2.4 can be applied with the k-index replaced by .

We start with the estimation of the L3°(B2; L )-norm of 9, VZW. From (3.38)
and the fact that [Ow, 0, + v - V] = 0, we see that

(4.11)

010y VW) 4+ u - V(8fy, VW) = 055 V2 + 200, (VW - V2u) 4 0 (VW - V)
(4.12) — 0%, (V2u - VW) — 205, (Vu - V2W).
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Thanks to Lemma 2.8, we find that for every v € (0, 1),
100 VAW ()] o1, < CllOw, VWoll gooz + C/Ot IV ul| oo |0y V2 W || gy 7
+C /Ot ||8€V+1v2u||330730d7 + C/Ot | (05 (VW - V2u), 04y (V2u - VW)l g2 dr
(4.13) +C /Ot | (05 (V2W - V), 84y (Vu - VEW)) I gy dr.

From ¢ € C*7(R?), and by arguing as in (2.22), we get

(4.14) (|03, V2Woll g Sjwa

00,00

lweroe IV Wollgeziir S llwoll gerzsn S llpoll e -

Taking advantage of Lemma 2.4 and (5.6), (5.14), (5.16), the last two integrals on the
right-hand side of (4.13) can be treated as follows:

t
1@ oW 720, 3 (70 W)
t
S / (VW - Vu, Vu - VW)“BW‘},;,@dT
0 oo,
t t
(415 S/o HVW||B3&Z||VQU||BZ;5&“1T S/0 ”W”Bé’fHVUHBZdeT
and
t
Q/ | (9 (V*W - Vu), 8y (V- V2 W) | g1 dr
0 o
t
S [ U T T W)y
0 oo,
t t
(4.16) 5/ ||V2W‘|B»y—1,zHVU”Bo,edT,S/ HW”B'HLZHVUHBWJ dr.
0 oo, W w 0 oo, W o, W

For the third term on the right-hand side of (4.13), it follows from equality (3.18)
that

||6€J1V2U||Lg(3goj;o) < ||3€;1V2VLA_2F||L3(B;j;o) + ||3$1V2VL81A_49HQ(B;;;C)
(417) < ||VVLA_2(VF)”L}(B;’;;/Jrl) + ||V2VL81A_40HL%(BZJ‘1}‘,/Z+1).
By virtue of (2.14), we get

||V2vJ'81A749||L}(B«ﬁa}z+1)
t
< 10l qmgon + [ W g + 1) (Blagey + 16052}

Since 94,0 for every i € {1,...,¢+ 1} satisfies 9;(9,0) + u - V(94,0) = 0, we use
(2.26) and Lemma 2.6 to infer that for every i € {1,...,0+ 1},

ClIvall, s

(418) [0l (myn) < Ce #0jy, foll oy, < CeCH
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and

vl

3
H9||L,‘?°(BZ;‘£‘}€+1) S Ce (=% ||00||Bzoié"/z+1 S Cec(1+t) .

Collecting the above estimates leads to
t
(4.19)  [IV?VEATH 0y g1y < CeCUHD° | 0eC0+1)° / W ()] . el
t oo, 0

For the first term of the right-hand side of (4.17), we use (2.14) to deduce that

||VVLA72(VF)”L}(B;’;éf"’l)
t
S IVl (g gy + 0 IW g (9Tl + )

t
@20) Sy gy + [ WO g0y, + 17+ 1

where in the last line we have used the following estimate (in light of Lemma 5.2 and
(4.25) below):

IVl g-se0s = VT gy 4 195 VT e

S I0lge,, + 100 Tllsz . + 1V, 05 0]
é .
STl gz ess + Z VW - VO Tl g -
ZjO
(421) S Tllgpe + Z; VW g, 10w Tl S ATl + W e IT e, -

In the following we consider the smoothing estimate of 94f'T. From (3.3) and
(055, 0; +u - V] = 0, we see that

OO +u- V(O 'T) — AG'T) = (A0 + 9 (R, u - V0)

4.22
( ) = FE+1,
with
e .
[A, 05T = [A, 0w )05 T + 0w ([A, 0 0) = > diy ([A, 0w oy, 'T)
=0
V4 _ Vi '
(4.23) =30 (AW - VO + > 0y (2VW 1 V20, T).
=0 i=0

According to Lemma 2.8, we infer that for every 7/ € (0, min{~y,1 — %}),

(4.24)
10Ty ) + 1065 T(0)

!
H vl
Boc,l

t
<O+ ) (105 ol -1 + 1 Fesall 1, + / IVull= [0 Tl yy—sdir ).
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By virtue of the relation I') = wy — R_16p and the equality
[V, 051 f = [V, 0wl | + 0w[V, 0w]oy, ' f + 05y [V, 0wy 2 f

4.25 ‘L ,
(4.25) = 0y (VW -V 'f),

i=0
and using Lemma 2.4, we deduce that

HBEHFOHBv i1 < ||3ZHVU0||B¢71 + |03 R 100 |

BY !
e .
< Hva“luoqu/_l +> Vg - Vi, ol gy A [1Wo - VR-100]| g0
i=0 0 0
14
< 05 uollwrr + IVWollgg, [\ uOHm Y
1=0

+ Wollgoye [IVR—-180]l 570 1.0
S 110% wollwre + [Woll 51 ¢ luoll g0

+ [ Woll o, (1+ IIVVoHBMfl) (1160

41
(426) < (14 [Wally) (Z ool + 3 19k oleso + 100llz2) S 1.

1=0

HBw’fl,e + 160l 22)

For the term [A, 85;}1]1" given by (4.23), taking advantage of Lemmas 2.4 and 5.2, we
find
¢ 4 ¢ 4
1A, 855 Il <N law VO Tllgyr-r.e + Svw V205 Tl g1
i=0 i=0

(g

VOl Tl + S IV g (V20 Ty )
§=0

)
- 1M-
o

[ )
leWHBw renaICllge + D0 D IIW g l105 Tl gy

=0 1=0 j=0
(427) < CIW | grinelIPlgyror.e

where in the last inequality we have used the estimate

0 i
> IWlig1s ||81€(7T||g3‘;+1,i—j
i=0 j=0
L i
0—i —i
p 2;20 19 lgss (108 Tlgyrsvms + 106 Tl Wl )
=Y

~

S S IW s (Tl g1, + I s 1l e )
=0

J
< I e I 0.0l W0+ I s (I e+ DT e 17 g r0)
< CIW gy sr.e T g
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and in the above C' > 0 depends on H,(T) that is the upper bound of [|[W|| 57 41,e-1.
w

For the second term in Fyy 1, by using the formula V([R_1,u-V]0) = [VR_1,u-V]§—
(Vu) - VR_10, we see

105 ([R-1,u - V]6)
S AW pee ooy IV Oy ([R—-1,u - V]6)
S0 (VR V1) g -,
+IV, 0] ([R-1,u - V]0)
(128) =Ny 4 No i Ny

)
s
+ 108 (Vu - VRO 1 1)

HL%(BZQ,?)

For N7 and Na, according to Lemma 2.4 and (4.18), it follows that
N < NIVR-1su- VIOl Ly -1y S IVl sy + Ml i o)) 101 oo 1.0

¢
(4.29) S (HVUHLg(B‘;f) +1) (Z ”aéVeHL?"(C*l’”) ¢
A=0

and

Ny < |[Vu-VR_10] . LS IVl oy VR4

G LBy
SAIVullzy o 101 e sy -2

(430) [ Vul ey (04 Il gty (100 e g nees, + 10l a) < €.

where C' > 0 depends on Hy(T) with Hy(T) > eCo0+T)°  For N3, we use formula

(4.25), Lemma 2.4, and estimates (4.29)—(4.30) to obtain that

-1
Ny < 303 (VW - VOl R 1w V10 |y o,
=0 ’
-1 ‘
5 Z ||VW . Vaf;lﬂ[R,l,u . V]QHL%(BVW/*L")
=0
-1
S IVl V08 R, V16 1y g1
=0
-1
S Wl e qarye1y D 1905 Ry - VIO g1,
i=0

SIVIR-1 - VIO g 161 +ZH v, 00 J(R—1, - VI0) 3 711

0—240—2—1

<CH+C0> Y ||a§v(vw-vaﬁ;Z—"—j([R_l,u-vw))HL%(BJV/,I,i)
i=0 ;=0

<c+C > va.vaﬁ;?—i—j(m_l,u-V]e)nLl(m,,l,iH)
0<itj<f—2 e

< C+C Z \|V8€;2_i_j([7%_1,u-V]G)HL%(BWW/AJH

0<itj<e—2

)7
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where C' > 0 depends on Hy(t) with Hy(T) > Hy_1(T) > %D Tteratively
repeating the above process yields that

(4.31) Ny <C+CIV(Ro,u- VO, 1, < C.

Ly(BL 1)
Thus it follows from the above estimates (4.27) and (4.29)—(4.31) that
t
43 1Bl gy < C [ WO g D0 g +C.
In combination with (4.24) and (4.26) we obtain
D) gy -s.1 + Iy i

4 4
= 15 TN gy + 10 Tl gy + 1T ggrns + Iy g

t
(4.33) < C/o (Tl gy 1.0 + IVlzoe) (IW gy, + [T gy -.000)dr + .

Hence inserting (4.33) into (4.20), and gathermg (4.13)—(4.17) and (4.19)—(4.20)
lead to that for every 0 < 4/ < min{~,1 }7

984 VW (8) s+ 106 ull
t
@34) < C [ (IPlggore + 1l + D (W gy + IPlgggorcon)dr +C,

where C' > 0 depends on Hy(T).
By using (4.23), (4.25) and Lemmas 2.4 and 5.2, we also infer that

||[V2 aéV]W(t)HBz;;C

-1 -1
104 (VW - VO W) | g, +2) |ofy (VIV - V2ot W)l g
1=0 1=0
-1 -1
S IVW Vot W 1L+Z||VW V2941 1W||Bw L
1=0 1=0
6 1

—1—i —1—i
0 (HVQWHBz;éynvawl Wlgos + ||VW||83,VL-HV28W1 ZW||B;W)
< _ 1 <
S IWlgrsie-Wligrer < C

K2

and

4
IV, 0 1V ull 1 sy < D 10 (YW - VO V) || a1
=0

4
<) VW - vy, W Vull 1 - 1)

1=0
/ VW 0,19

14

Vo, 1Vu\|87 1zd’7' / |W(r HBMHVU( )”B” dr.
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Consequently, in view of the estimates
W llgene < 100 Wil gor, + 1IW g1
< V200 Wil s + D100 Wil +C
<106 W gy + IV O IW s+ W e [0 Wz + C
(4.35) S 0w VW] g +C
and
HVUHLg(BZf‘}l) < ||a€;—1VU||L}(B;’cm) + ”VUHLi(B;’wa)
¢ ‘
< Hvav;rlquL%(B;g;c) + ||A716VJIVU||L§(L°°) +C
‘ ‘
S H8VI—/HV2UHL,{(BTZ;;C) + ||[Va6v1jl]vu||L,}(Bg;;)
Wl (oo 0%Vl Ly (1) + C

t
@36 S0 Vulyy + [ IOy V() sy, dr 4 C.

we collect estimates (4.33)—(4.36) to yield that for every 0 < ' < min{~,1 — %},

IW Ol + IVl gy ety + 1T gy + Iy e,

t
(437) < C/o (Tl g+ + 1V ullge,, + 1) (IW lgye + [Tl gyr1.000 ) + €,

where C' > 0 depends on Hy(T). Gronwall’s inequality and assumption (4.10) guar-
antee that

W Lo sy + VUl e sy + 1T e g0y + 1Ty e
(438) < Cexp{ClIVully oo, + CITl 1y syrney + CT | Sy 1
which corresponds to (4.11), as desired. Hence, the target estimate (4.9) is fulfilled
and the proof is completed.
5. Striated estimates: Proof of Lemmas 2.4 and 2.5.

5.1. Proof of Lemma 2.4. Similar to [13, section 2.2] or [47, Lemma 7.1],
denote by R, as

= A (7)27¢ - .
(5.1) Ry(a1,...,am): /[071]7” /Rdil:[lal(x-i—fz( )27 %) (T, y)dydT,

where ¢ € N, h € C([0,1]™; S(R?)), f; € L>=([0,1]™), f:(7) # 0 for every 7 € (0,1)™.
Note that when f; = 0 and [, h(7,y)dy =1, one has R (a1, ..., am) = T2, as(x).
We first have the following crucial result, and its detailed proof is postponed to sub-
section A.1.
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LEMMA 5.1. Let k € Z*, 0 € (0,1), N € Z", and W = {W;}1<i<n be a set of
regular divergence-free vector fields of R? satisfying that

k—1
W llgrzge—r = > I @wv) Wl grse,
A=0

(5.2) =
=5 Y @)™ T e) W g, < oo

A=0 A1+ AN=A

Leto; (i =1,...,m) be such that supp &; C B(0,C;2%), and let ¢ be a smooth function
with compact support in a ball. Then we have that for every s € R, (p,r) € [1,00]?
and £ € {0,1,...,k},

||(Tw.v)2Rq(a1, ey am)HLP
63 g min (3 @) el [ 10w al).
T |ue 1<j<m,j#i

with = (1, ..., ) and |p| = p1 + <+ + tim, and

£
(5-4) I(Tw-9) @71 D)glle S D I(Twv) ¢l o,

A=0
and
{27 0T 9) A llar} sy
<l

- o+ {2 @) VABl i} o e

-
B;.T,W’
and

(5.6) IVl

Bet S Illgztne .

In the above all the hidden constants depend on |W| gi+ox-1.
oo, W
Based on Lemma 5.1, we get the following useful striated estimates, whose proof

is given in subsection A.2.

LEMMA 5.2. Let W = {W;}1<i<n (N € ZT) be a set of reqular divergence-free
vector fields of RY satisfying (5.2) with k € Z*, o € (0,1). Let m(D) be a zero-
order pseudodifferential operator with m(¢) € C*°(R?\ {0}). Then there exist positive
constants depending on ||W||B~i:}r;y/\,}k—1 such that the following statements hold true for

every £ € {0,1,...,k}.
(1) We have that for every q > —1,

L
(5.7) 1A(Tw.9) Vm(D)¢lle S 2°1(Tw.-v) 8 o,
A=0

and for every q € N,

l
(5.8) 24||(Tw.w) Ayl e S > > I(Twv)*Ag, Vo L,

q1€N,|q1 —q|<Ny A=0

with Ny € N depending only on £.
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(2) We have that for every s < 0,

V4 ¥4
69 Iy, Snind 3 Il ol g 3 ol ol |
pn=0 pn=0
and
£
(5.10) I Towllgoe 5 z% 1Vl oy 1wl go-es
2

and for every s <1,

¢
g, SO vl

(5.11) | o] 2 B 1l
and for every s € R,
14
(5.12) ITowvllgee S D IVwlgolivlzs-
1=0

(3) Assume that v is a divergence-free vector field of R?; then we have that for every
s> —1,

(5.13)
IR (o Veo)lge

L
Suin{ Y- lollgy V0

14 J4
e 2 ol IVl 3 ol ol |
n=0 n=0

u=0

(4) We have that for every s € (—1,1),

(5.14) 0llges S Iblsne S Nollsr
and

< e <
(5.15) 6llsse S lolane < ol
and for every s > —1,
(5.16) Wigee < Wit

and for every s > 1,

(5.17) 1]

g, S I0llse o+ 19lgr W]

5,0
BPJ”,W

Now we turn to the proof of Lemma 2.4.
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Proof of Lemma 2.4. (1) By using Bony’s decomposition and (5.14), (5.9), (5.13),
we get
. e <lu- .
o Vlgzes,  lu Vo,

ST Vollgcr +ITvo ullg-cx, + | RGw, Vo)l

A—e.k
P, W

k k
Smin { 37 lullgyy IVlg-ca i 3 lullgen IV6llgpe |
pn=0 pn=0
k k
Smin { 37 full g 1Vl cns 3 Iullen 1V9llggsn }-
pn=0 n=0

(2) We are devoted to proving (2.14) by induction on the index k. For k = 0,
(2.14) is explicitly estimated by (2.18) where C' > 0 is a universal constant (the norm
W] gi+71-1 plays no role).

oo, W

Assume that (2.14) holds for ¢ € {0,1,...,k — 1} (when k = 0 for £ = 0) with ¢
in place of the k-index; we intend to show that it also holds for £+ 1. By using (2.11)
and (5.14), we see that
Im(D)gllge.e2 = 10w (m(D)@)l 5 ctrr + [m(D)¢l| 5
(5.18) <IW - VD))l z1 + 18] 5 + 1A (D)ol

Noting that there exists a bump function zz € C°(R%) supported on an annulus so
that S;_1W - A;f = (27ID)(S;_1W - A, f) for every j € N, we have

(Tw.v)m(D)f =Y 8; W -VA;m(D)f
jen

(5.19) = = [m(D)$(277 D), S; A WVA,; f +m(D)(Tw.v)/,

JEN
then Bony’s decomposition yields that

W - V(m(D)$) = Tympyg - W+ ROV, V(D)) + (Tw.v)(m(D)¢)
= Tym)¢ - W+ RW-,Vm(D)¢) — Z[m(D){E(TjD), S AW VA

JEN
+m(D)(Tw.v )¢
(520) =21+ 22+ =3+ =4.

In view of (5.11), (5.13), and the induction assumption, we find

15103 csr + IZ2llgocesr S Im(D)Gllg-ceor Wil
< 1Dl —c.cor W gy e

< (I9llg=cz1 + (1+ IWVllgye) (190l + 1A 1m(D)llzs) ) W gy o
(521) S (I8llg-ccon + 1A 1m(D)] o) W] g1,
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where in the last line we have used the fact that HWHB% < HW”B;‘*}“* < 1. Noticing
that m(D)y(279D) = 294k (21.)x with h = F~1(my) € S(RY), we infer that
m(D)$(277 D), S; AWV A; ()
/ h(y Si—aW(z +277y) — S;_iW(x)) - VAj(z + 277 y)dy

(5.22) =277 / / h(y)y - VS;—iW(z + 7279y) - VA (z + 277 y)dydr,
0 Jre

and by applying Lemmas 5.1 and 5.2 we obtain that for every A € {0,1,...,£+ 1},
274 Ay (Tw.v ) Es]| 1o
<27 ) [1Ag(Two) (Im(D)$(277 D), S, WIVA;6) |l
JeN,j~q

S27 Y Y 27 (Bww) VS W e [(Tw.w ) 2V A 1
JENI~a MR <A
S Y Y (X @) VAW )2

jGN]Nq)\1+>\2<)\ 7'<j—1
N(Tw-w)*2 A,V e

l+1 l+1—X\1

S 30 IVWlgo (D2 1Twe) Vo o)
A1=0 M2=0
£+1

Scr Y IVWlglI98l5 e
)\1:0
£+1

62 Sen 3 Wl sopeon Sl Wiy lol

—

with {cq}q>—1 satisfying ||cy||¢ = 1. It immediately leads to
= R—€ < —e€ .
(5.21) [Esl-cen S Wlggeos ol s

For the remaining term =4, Lemma 5.2 together with the induction assumption ensures
that

1Zallg-ccer S Im(D)(Tow-9)6l s
S M)l g=oz1 + (14 W) (ITw-9)6 s, + [A-1m(D)o] 1)
S Nowdls e + 1 Teo - Wlig—ccer + [ROV, VO)llg—cs1 + A 1m(D)g] s
S Nl cz2 + [ Tvo - Wlig-cen + [ROV- VO)llg—csr + |A-1m(D)o] s
S N6l cz2 + 100 cor Wl geor + 1A 1m(D)] s
S Uolscso + IWlgs s 19l -ccsr + 1A 1m(D)8| 1.
(5.25)
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Inserting estimates (5.20)—(5.25) into (5.18) yields (2.14) in the (£ 4+ 1)-case, and thus
the induction method guarantees the desired inequality (2.14).

(3) We prove (2.15) also by induction on the index k. Note that for k =0, (2.15)
follows from (2.19) with C' > 0 a universal constant (the norm ||W||Bl:r%k—1 plays no

role).

Now suppose that (2.15) is satisfied for every ¢ € {0,1,...,k — 1} (when k =0,
for ¢ = 0) with ¢ in place of k-index; we intend to show that it also holds for £ + 1.
Using the decomposition (5.54) and (5.59) below, we have

(D), u-V]p = [m(D),S;—1u-V]A;jp+ Y [m(D),Aju-V]S,;_1¢
JjEN JEN
+ > m(D)div(Ajul ;o) — Y div(Ajum(D)A;¢)
j>3 j>3
+ > [m(D),Aju-V]A;¢
—1<5<2
(5.26) =T+ 17T + 11T, + 11T, + I11s.

It follows from (5.14) that

(527) H[m(D),u . v]¢||3,7,€,’%1 ,S H(I,II,IIIl,IIIQ,III;;)”g—e%1

The estimation of Z is quite similar to that of 23 in (5.23)-(5.24) (where u plays a
role as W), and one gets

41
629 Wl £ 3 IVullagp ol sgpion S 190l
-

Noting that [m(D),Aju - V]S;_1¢ has the expression formula (5.56) below, and by
arguing as in (5.23), we find that for every A € {0,1,..., £+ 1},

279 Ag(Tw.v) IZ |
27 N A(Tww) (D) (277 D), Aju- V1S 16)| 1o

JEN,j~q
S27 Y Y 27 [(Tww) M VA ul| L [[(To.w) 2 VS; 16| o
JEN, g A1 +A2<A

S Y Y 2 (B, VullLoe( > ||(TW»V)A2VAJ"¢||LP)

JGNJNqA1+)\2<>\ J'<j—1

> (i | (T )" Vg, )-

A1+ <A p1=0

H Z 2(j'*j)(1+6)27j/(1+6)||(Tw.v))‘QVAj/¢||LP ,

Jj'<j—1
A
chnquEovb"""l Z ||V¢)||g;i—vc>\2
A2=0

< IVl oo I8l5-ccn S call Vall en 16sc o

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/22 to 219.142.99.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TEMPERATURE FRONTS FOR 2D BOUSSINESQ SYSTEM 4077

with {cg}q>—1 satisfying ||cq|le- = 1. Then it directly leads to
R—e€ < —e€ .
(529) 7215, g0 S IVl gy 6] 5
For ZZ7,, by applying Lemmas 5.1 and 5.2, we deduce that for every A € {0,1,...,¢+
1},
2_qe||Aq(Tw.v))\IIIl ||Lp
S YT AT Vim(D)(Au ;6|

jZmax{3,g—Nx}

A
SN (Y @) (Aud o))

A1=0 j>max{3,g—Nr}

A
AR DD S I@wee) 2 Agull | (T ) A6 1o
A1=0j>max{3,g— Ny} Aa+A3<A;

S S 2D (Ty0) e Ajul| e 277 (Ti9) Y B 6 10
A24+A3<l+1 j>max{3,q—Nx}
41 A2

S Z Z 2(q_3)(1_6)( Z Z ||(va)”zAJ‘IVuHLoo)|\<;5||g;;o,{t6
A2=0j>max{3,g— Ny} Ji~g p2=0

< ~ e < .
< ol Vullgyen Il5cen S cqll Vel goor I 9lls-ccon,
which guarantees that

(5.30) IZZZ1015-cc0 S IVull g 0l

For Z77,, noting that ﬁjSl = 0 for every j > 3 (with S; defined by (2.2)), similarly
as above we infer that for each A € {0,1,...,¢+ 1},

279 Ay (Tw.v ) T ZLs || v

<27 ST A Tww) div(Aju Aym(D)é)|
j>max{3,g—Nx}

A
S20°9 %" 3 @) (AjuAm(D)e)

A1=0 j>max{3,g—Nx}

A
21079 % > Y @ww) 2 Ajulle | (Twv ) Ajm(D)g | v

A1=0 jZmax{&q—NA} Ao+A3<A
£+1

S > Y 20T Al

A2+A3=0j>max{3,q— Ny}

279 (T )N Aym(D) b | v

441 A2
<y 3 2(qu>(175>( Sy ||(TW'V)#2AJ,1VUHLOO>.
A2=0 j>max{3,g— Ny} Jir~j p2=0

Im(D)(Ad = $1)6 || g-c.en
S ¢l Vul gy [Im(D)(Ad = 1)l gceor S ¢l Vull goess [m(D)(Id = S1)¢l|ge.e1,
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and by using (2.14) and the fact that A_;(Id — S1) =0,

Im(D)(1d = $1)6 -c.cor S [1(1d = $1)0 50

5 H(b”zg;‘r‘(/tl + ”SlﬁbHE;:"'/‘\*;l
Ny {¢+1

S lllgcess + DD 1A Tww) gl

1=—1,0 g=—1 A=0
+1

N,
<llgne + Whe 3 S0 30 S 180 (T At

1=—1,0g=—1q1~g A\=1

630 S0l + 3 18l S Mol
=-1,0

thus the above two estimates yield that
PEPIRELS : T
(5.32) 122 2ol 5w < IVl g 6] e
Arguing as in (5.31) and using the fact (see, e.g., Proposition 3.1 of [38]) that
(5.33) VA_1m(D) is bounded on L? for every p € [1, o0],

the term Z7Z73 can be directly estimated as follows:

Ny (+1 2
ITTTslg e S 2 D2 (||AQ(TW.V)’\m(D) div(AjuA;6)|| e

qg=—1A=0j=-1

+ 184 (Tw-) (B5u - Vm(D)A;) |1 )

2
< > (Im(D) div(d;ud;o) s + A5 Vim(D)A 010 )

j=—1

(5.3 e (X 18500160 ) < Nullsoe N1

—1<j<2

Hence, gathering the above estimates (5.26)—(5.34) leads to the desired inequality
(2.15). 0

5.2. Proof of Lemma 2.5. In the £ = 1 case of Lemmas 5.1 and 5.2, we can
show the explicit dependence of constant C' on ||W|| g1 . as follows, and one can see

subsection A.3 for the proof.

LEMMA 5.3. Let W = {W;}i<i<n (N € ZT) be a set of reqular divergence-free
vector fields of R%. Let (p,r) € [1,00]%. The following statements are satisfied.
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(1) Let a; (i =1,...,m) be a function satisfying that supp &; C B(0,C;29), g € N.
Then we have

H(Tw.v)Rq(al,...,Ozm)HLp
< &3 win {(Twe)aill [T sl
i=1 i
Tow.o)aillpe mi ( A oo)
It _pin (loslles T feallo) |
1#14,j
(5.35) +CWIs, min (llodzo 1 losllz )-
j#i

(2) We have that for every s € R,

1291 (Tw-v) A8l Lr bz -1, + {297V (Tiv.v) VAGSl|Lr } gz -1
< Cl(Tw-v)éls;, + ClIWIwr= ¢l

(5.36) e

B3 s
and for every s < 0,
(5.37)

{27 (Tw-v)Sg-10lr }gen
and for every q > —1,

1A(Tw.v)Vol e

(6:38) <Ay (Tww)dllr + C2Wwe (3 1180l ),
q1€N,|q1—q|<5

o < CUITwe)olzs + Wlwrel9lls: ),

and for every q € N,

27 (Tw-v) Ayt o
639 <o 3 (10w AL Tl + IVl A, T8l 10 )-

a1€N,|g1—q|<5
(3) We have that for every s <0,
(5.40) [[(Tw-v)Tvs - ulls;, + [(Bw-v)Tu. Vol 5y, < C(Bi(s) + Ba(s) + Bs(s))
with
(541 Bus) i=min {Jullpe  I(Tw-v)Vollss , lulls; [(Tw-)Vollos ),

(5.42)  Ba(s) :=min {|(Tw-v)ull g 1V6l5s, . I(Tws)ull sy, IVl 50},
(5.43)  By(s) =Wl min {lulp  IV6ls;,. luls;, IV6lm ).

(4) Assume that u is a divergence-free vector field of R?; then we have that for every
s> —1,

(5.44) 1(Tw.w)R(u-, Vo) ps . < C(Bi(s) + Ba(s) + Bs(s)).
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(5) For every s € (—1,1), we have
(5.45) [Oowe — (Tw.v)9|

Now relying on Lemma 5.3, we present the proof of Lemma 2.5.

Proof of Lemma 2.5. (1) Bony’s decomposition gives u- V¢ =T, Vo + Tyy - u +
R(u-,V¢). For the paraproduct terms, by using the spectrum support property and
the inequality that for every € > 0, ||[{277¢||S;_1 f||rr }j>—1ler < C|lfll pe, we have

By, < ClIWiwi9]

s .
B; .

271 Ag(T - VO)llze <277 D7 [[Ag(Sjmru- VA;@)|s

JEN,|j—q|<4

S ) 27 min {18 aulle VA 8l |19 aull L= [ VAl e }
JEN.j—q|<4

(5.46) S cqmin {|lul 5.

Voo, fullo= Vol 5y )
and

27 A (T - u)llz= <279 Y |1Ag(Aju- VS 19)||1
jEN|j—ql<4

Vol lullo= V855 )

where {cg}q>—1 is such that ||¢q|l¢» = 1. For the reminder term, thanks to the
divergence-free property of u, we get that for every e < 1,

277 AgR(u, V@) || v = 279 Ag div R(u, ¢)]| v
$21079 N (A (Audid) e 27 Y | Ag(Aju- VA$)| e

< cqmin {|lul ..

7>2,5>2q-3 j<2,5>q-3
S Y 2990927 min (|| A ull e [ VAl | Agul Lo VA 6 0 }
7>q-3,j>2
+ > 27 min {|Aul e VA e, [ Ajull = | VA, ¢l e }
>q-3,<2

(5.47) < cqmin {Jull o VoIl [l V1] . }-

Hence gathering the above estimates yields (2.16).
(2) Owing to (5.40), (5.44), and Bony’s decomposition, we see that

[(Tw.v)(u- V¢)||B;;.
< NTw-v) (T Vo)l g e + 1(Tw-v)(Tve - W)l ;o + [(Tw-v) R(u, Vo)l <
§ C(Bl(fﬁ) + BQ(*E) + Bg(*({))

< Cmin {|lull gy, (10wl e + Wi, 19615 ).
lull gy (10w Vollme,, + IWlisr, IV6lne ) }
+ Cmin { (|owallze,, + Wlse lullse, )1Vl

Volsy,, }

(lowedl s + W51, el <)
(548) § Cmin{Al, AQ, Ag},
where By, By, By are given by (5.41)—(5.43) and A;, Ay, A3 are defined after (2.17).
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By using (2.16), (5.48), and (5.45), we directly deduce that
[ow (- Vo)l ge < [(Tw.v)(u- Vo)l o +10w(u-Ve) = (Tw.v)(u- Vo) p
S Cmin{Al, AQ, Ag} + CBg(—E) S Cmin{Al, AQ, Ag}
(3) Arguing as the proof of (5.45) and using the fact (5.33), we see that
1w (m(D)6) 5«
< [ Te) (D)l e + [ TomimpoWl s + [ ROV-, (D)) |
(5.49) < [(Tw.v)m(D)él o + ClWlwr=lll -

Note that there exists a bump function 1; € O (R?) supported on an annulus so
that (5.19) holds; thus we have that for every ¢ > —1,

279 Ag (Tw.v)m(D) ¢ v
<27 > [|A([m(D)p(277D), S W VIA;¢) | e

JEN,|j—ql<4
(5.50) + 279 Agm(D)(Tw.x)@|| 1, =t J1.q + J2,q-

Thanks to (5.22), we immediately get

(5:51) Jig 527 Y 27| VSm W= lIVAdlle S el Wl 4]l
JEN,|j—q|<4

with {cg}q>—1 satisfying |lcqller = 1. For Js 4, by virtue of (5.33) and (5.45) again,
we find

| J2,qller (q>-1) S ||m(D)(TW~V)¢HB,;2
< Y A m(D)div (S, A;0) e + [(Tw-v)éll 5.

0<5<3
(6552 S IWlhwrel@lp: + 10wl o
Combining (5.51) and (5.52) leads to
(5.53) | Te) (D)l s S Wil Il =s + Ol s

which together with (5.49) guarantees the desired estimate (2.18).
(4) Bony’s decomposition gives that

[m(D),u- V¢ = [m(D), S; 1u-V]A;j¢p+ Y [m(D),Aju-V]S; 16
JEN JEN
+ Z [m(D), Aju - V]A;¢

(5.54) = T+717 +I17.

Similarly as (5.19), (5.22), there exists h € S(R?) so that

[m(D), Sj—1u-V]A;¢

(5.55) N : ]
— 9 / / h(y)y - VSj_1u(z +6277y) - VA;d(x + 277 y)dydd
0 R4
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and
[m(D), Aju . V]ijl(ﬁ

5.56 o , .
(559 =277 / h(y)y - VAju(z +6277y) - VS 1¢(x + 277 y)dydd;
0 R4

thus we directly get
AT S27 Y [1Ag[m(D), S 1u- VA
JEN,|g—jl<4
(5.57) S el Vaul HQS”B;;»
and for every € > —1,
27UYAZTle S279 Y [ Ag[m(D), Aju- V]S 19|
JEN,|q—j|<4
SIVul=279 Y 277V 16 e
JEN,|g—j|<4
(5:58) SIVulee >0 277030 A0l ) S ol Vullis 1] 5,
JEN,|j—q|<4 J'<i—1
where {cg}4>—1 is such that ||cq|l¢» = 1. We further decompose the term ZZ7 as
IIT = m(D)div(Ajul;¢) — > div(Aum(D)A;¢)
§>2 §>2
(5.59) + Y [m(D),Aju-VIA;¢ = ITT, + I1T, + I1T;.
—-1<5<1
For TZ7, and IZ7Z,, thanks to (5.33) and the discrete Young’s inequality, we infer
that for every € < 1,

27 UYATIT e $279° Y [|Agm(D) div(Ajuld;é) e

~

j>q—3,j>2
(5.60) <2007 N~ 20O A 1 27 Ay e S el Vil ool -
7j>q—3,j>2
and
27N AT S 29079 DT (| Aull < m(D)A 8| o
j>q—3,j>2
561) <Y 20N VA |27 A bl e S | Vullzo 6]l 5

J=2q—3,522

For term 7775, we do not use the commutator structure, and by virtue of (5.33) we

find
{279 A ZT T S Y Y (lamD)divaule)
—1<q<o—1<7<1

+ 184(Aju- Vm(D)A;9)]|1»)
(5.62) S Y Agullee 1858l S fullz 1] ;s

—1<5<1

Gathering the above estimates (5.57)—(5.62) leads to the desired estimate (2.19). 0O
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Appendix A. Proof of Lemmas 5.1-5.3.

A.1. Proof of Lemma 5.1. The proof is via the induction method. It is clear
that (5.3)—(5.6) are satisfied for ¢ = 0. Assume that (5.3)—(5.6) hold for all ¢’ €
{0,1,...,¢} with £ € {0,1,...,k — 1}. Next we will prove that (5.3)—(5.6) hold for
¢+ 1 (replacing the ¢-index in (5.3)—(5.6)). Observe that

(Tw.w)Rg(on,..oom) = > Sq aW-VAg Ry(ar,...,am)
—1<q1<g+No
= > (SqaW=SaW) VA, Ry(as, ..., )
—1<q1<q+No
+ > (S W= SpaW) D Rylan, ... VA a4, o)
—1<q1<g+No i=1
+ Z Sq1_1W~ZRq(al,...,VAqlai,...,ozm)
—1<q1<g+No i=1
(A1) = R,+R:+R.
Note that

Sqp—1W(x) = Sg, 1W(z +27f;(7)y)

1
_ / 279 f,(r)y - VS, - W + 627 f(7)y)ds,
0

we can further decompose R} as
ZR (a1, (Twow)y - oy Qi)

+ > ZRSI“(VSql_lW,al, VA a)

~1<q1<q+Np i=1
_. p4 5
(A.2) = R+ R

RO(VSy, W, a1,...,VAgai, ... aum)
/ / / VS aW(x +6279f;(1)y) - VA, iz +270f;(7)y)
[0,1]m JRd

< ]z +2794;(7)y) - 279y fi(7)h(7,y) dydrdd.
Jj#i

We first consider (TW.V)KR;. Denoting VA, = iDp(271 D) =: {291 (2-1 D)
for every ¢; € N, we infer that

I(Tw.v) Ryl Lo
< ¥ H(TW.V)Z((Sql_IW—Sq_lw).VAquq(al,...,am))HLp

—1<q1<g+No
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S0 > I Tww) (S -1 W = SgoaW) |

—1<q1<q+No £1+£2<t
N(Tw.w)2 VAL Rylan, ... )|z

S > 1(Tw.w)"* Sq-a Wl o< | (Tw-v) 2 VA 1 Ry(au, ..., )| Lo
q=—1,01+£2<4

o> > Y @) AW

0<q1<q—141+L2<L q2=q1

29 (Tw.v) 21 (27 D) Ry(an, - -, am)| 1o
qa1—1

- SN @) AW~

q+1<q1<q+No £1+£2<L q2=¢q
29 [(Tyy.w)201(27 1 D) Ry(eu, - - .y o) 1o
= R'+R>+ R}’
For Rél, by using the induction assumptions (5.3)—(5.5), it follows that

q—1

(Tw.v)* Sq-a Wl < D I1(Tw.v) Ay, W=
g2=-1
(A.3) o
< Y 27 et (20 Ty, )AL W) S Wllgie < o0
g2=—1
and
Lo
I(Tw-v)? VA1 Ry(on, . om) e £ > 1(Tw.w) Ry(en, .. o) || o
/\2 0
(Z > @) il T 1@we) oo~
= A2=0 |p|< Ao 1<j#i<m
H’L Hj X o |
lgygn( > Ty el TT @) aslic=);
|| <l2 1<j#i<m
thus we get
B min (30 3 I@ws) el T I1Tws)ayli-)
L1022 <L |pu| <Ly 1<j#i<m
Hip: 7 oo
< min (3 1w el [T 1@ws) ol ).
lul<e 1<j#i<m
For R,?, observe that for every ¢; € N,
g—1
27 ) [(Tw.w) " Ag, Wl
q2=q1
g—1
S 30 2 (sup 292049 |(Thy.g) 1 Ay, W1 )
q2=q1 22€N
(A4) S22 Wlgien < oo
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and
123
|(Tww) 2120 D) Ry(an, ) lr S S (Toww)™ Ry (e, .
/\2:0
Lo
S (32 3 I@wey i TT (Tww) o)
A2=0 |p|<A2 1<j#i<m
thus we find

m s (XXX e g

0<q1<q—1 £ +L <L || <t

NTCES TIPS | (Tw-v)”jajllmc>

1<j#i<m

4085

s 0m )| Le

< min (Z I To) il ] ||(TW_V)ujaj|\Loo).

~1<i<m oy
lul<e 1<j#i<m

The estimation of Ré?’ is almost identical to that of RéQ, and one also gets

IR < min (3 1Ty ailler [T 1Twv)=aslic=).

ul<e 1<j#i<m

The term Ri can be estimated in an analogous manner, and we infer that

1(Tw.w) R v

S Y @) (SuW =S W) - Ry(en, . VA

—1<q1<q+Np i=1

m

S > 1(Tw.9) " (Sgy -1 W = Sga W) || 1o

i=1 —1<q1 <q+No,£1+£2<¢
. H(TW'V)&R(](OQ; ey VAqloti, e ,Oém)”LP

gz > 1(Tw.w)" ' Sg_ W Lo |(Tw.v)2 Ry(as, ..., VA 1, ...

3 S @) (S W = Sy W) =27

=1 0<q1 <g+No £1+l2 <t

. H(Tw.v)e?Rq(al, cey @1(2_(11D)O@, S ,Oém)HLp
= Ry + R
For R2', noting that

D I(Tw-w)? Ryl ..., VA 10, ..., o) || o
1

szmin{ S 1(Tww) VA el T @)1
=1

[l <tz J#i

)

Lpr

 oom)|| L

min (7 I(Bww) o | (Twe)* VA sl [] ||(Tw-v)“loél||L°°)}

1<j#i<m -
[n|<L2 l#1,7
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Hi

< Zmin{ Z Z I(Tyw.v) sl e H I(Tw.v)* aj|| o,
i=1

il <b2 Xi=0 J#i

min (30 3 1@l Twor) el I ||<TwAv>“laz||Loc)}

IRt Ao i,
m ~ ~
< Souin{ 3 It/ ol [LIGws) 05l
i=1 |l <ts i
~ i gy i
i (3 @)l [T 1T el |
| <Lz I#]
slggm( > @) sl TTITw-9)" arll o )
|a| <tz l#j

where in the above third inequality we have denoted fi = (fi1,..., ftm) € N™ as
fi; = p; for every j # 4 and fi; = A;. Then by using (A.3) and the induction
assumptions, we obtain

r S min (30 I@ws)yosle T] ITws) o~ ).
[pul<e 1<i#j<m

For RgQ, similarly as treating Rgl above, we see that for every 0 < ¢; < g+ No,

TW V) 2R (Ckl,...,(pl(Q “D)al,.‘.,am)HLp

S in{ D @) 12 D)ail| e [ [ II(Tw-9)" o 1=,
i=1 |ul<t2 i#i

min (3 1(Twe) o127 D)aill e | (Tww) ag e T] |(Tw-v)’”alm>}

N < i
(A.5)
5 oy fu
< min (32 1@we) oyl [T 1Tws) ez~ ).
|2 <tz I#j

and thus by using (A.4), we deduce that

B2 min (3 1Twe)ayle [T 1@ww)"alli )
=IETN u<e 1<i£j<m

Next we consider (TW.V)ZRE7 and by applying (5.3), one gets

(Tw-9) Rillir < S H(Tw.v)qu(al, o (Tww)a, .. .,am)‘
i=1

Lr
m
S Zmin{ T el [T I1(Twv) e,
i=1 < i
1 M. pwi+l "
i (S itwer el ey adie T 1@werals)]
|| <L 1<I<m,li,j
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5Zmin{ S [ Twee) sl [T a1,
1=1

| <e+1 j#i

min (Y 1@Bver ol ] (Tw-v)’“albx>}

1<j#i<m :
ul<e+1 1<I<m, 1]

< min (3 I@es) ol T 1@ws) arllex).

[ <l+1 1<l#j<m
For the last term (TW.V)ZRg, notice that for every 0 < 41 < ¥,

q1—1
(T )#m41V g, aW||poe <) 27%7 (22 [|[(Tyow )™+ Agy VWV | o)
qga=—1
< P < Ao ;
(A.6) ~ ||VWHBD;,‘}3+1 ~ ”W”Bfﬁw‘ my1 < 003

then by applying the induction assumptions and arguing as in (A.5), we have

m q+No

I(Tw-v) Bl S5 H(TW.V)ZRéi)(VSql,lVV,al,...,VAqlai,...,am)‘

i=1 q1=0

q+No
=)D IETTE (D DI R [T SR

i=1 q1=0 p1t A pmg1 <L

Lp

29 |[(Tw.w) 01 (24 D)ei oo [T 1(Twv)™ i o,
i

: —q Hm41
min (30 2 (D) VS W
Pt 1 <O

29 |(Ty.w) " 01 (279 D) i oo [| (T w) a5l [ (Tw-v)’“alm>}

I#i,5
m q+No i
s Qq”mm{ S S @) Ml [T 1 @ww ) gl
i=1 ¢1=0 || <€ A =0 j#i
Hi
i Al 7 oo B oy s Iz -
i (505 s el [Tweysas o T 1wy ali-) |
[n|<€A:i=0 I#35,
< min (S I@Gwor ol I 10wy ol-).
lul<e 1<i#j<m

Collecting the above estimates concludes estimate (5.3) at the (¢4 1)-case.
Now we prove (5.4)—(5.6) at the (¢ + 1)-case. We see that

[(Tw-v) 9 (279D) )|
< [(Tw.9) (27 D)(Tw.vd)lr + (Tw-9) [¥(27D), Tw.v ]| s
The induction assumption guarantees that

14 2+1
(A7) [(Tw.9) w27 D)Twv e S Y N Twe)*6llee S D 1(Twv) dll o
A=1

A=0
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Noting that

(A8) [(277D), Tw.vld = D> [¥(27D), Sy W - V]Ay ¢
q1€N,q1 ¢
= Z / F- 1¢ (11 1W(£17 + 27qy) - Sq1_1W(I)) ! VAfhd)(m + 27qy)dy
a1€N,q1<q

= Y 2 Q/ Rd (F Y (y))y - VSq 1 W (@ + 627 %) - VA, ¢z + 27 %)dyds,

71€N,q1 g
where ¢; < g means that ¢; < g+ Ny with some Ny € N, we then use (5.3) and (A.6)
to get
||(T V) [¥(277D), Tw.v]¢ll s
S270 ) D (M) VS W e [(Tww)*2 VA, 8| o

q1EN,q1 Sq p1tpe <t

S Y gy

q1€N,q1 Sq p1tp2 <t

A9 < X Zu va%ann Ty.v) |l 1.

0<p2<f A2=0
Combining (A.7) with (A.9) leads to the desired estimate (5.4) in the (¢ + 1)-case.
Concerning (5.5), note that for ¢ = —1,
I(Tw-v) A1 8lle + [(Twv) T VA_1¢]| o

S D 180 aW - VA, (Tw.v) A 16| v

q1 <N,

+ ) 1801 - VA, (Tw.v) VA 18| 1s
q1<Ng

(A.10) S IWllze ((Tww) A1l e + [(Tw.v) VA_1¢]r) S l16llz

A

(Tw.v)"? 127" D)¢|| Lo

5,0 5

and for every g € N|
29°|[(Tw.w) T Al e + 27V [(Tw.v) T VA 1o
< 29)(Tw.v) Ay (Tw-v0) [ v + 277V (T 9) VAT v 9)| o
(A.11) + 27 (Tw.v) [Ag, Tw- w18l v + 277V (T.v) [VAg, Tw-v]¢ll o
The induction assumption implies that
29| (T0) Ay (Ty-w9) 127 + 2707 | (Do) VA (g )|
< el Tw)dllgr | < el

where {c,}qen is such that |lc4|l;- = 1. For every ¢ € N, according to the formulas
(analogous to (A.8))

s, 0+1 ,
Bp,r,w

(A.12) [Ag Twwle= D [p(279D),Sg 1 W] VA, ¢
q1€N,q1~q
= Z 2” ‘1/ Rd .7-" Loy ))y VSg—1W(x + §27%) - VA, ¢(z + 27 y)dydd
q1€N,q1~q
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and
(Alg) [VAq, Tw. v]¢ = 2q[g01(27qD) Tw. v]ng

" / o)y VS, W +6270) - VA, 6(a +27y)dydd,

q1€N,q1~q

we can apply (5.3) and (A.6) to get

2°(|(Tw-v) [Ag, Tw-v]@ll e + 277V [(Tw.w) VA, T-v]¢l| o
ST 3T Y (@) VS oW [(Tw9) 2V Ag, 6l

q1EN,q1~q p1+p2 <l

SO0 X IWlgg 22V [(Tww) 2V A 6 1

q1EN,q1~q p1+p2 <t

£
Seq Y I9ll5

p2=0

vz, S Calldllge

Gathering the above estimates implies (5.5) in the (¢ + 1)-case.
We then consider (5.6). In view of the induction assumption and (5.5), (A.6), we
have

29|80 (T.v) 'V Lo
S 278y (Tw.w) V(Twvd)llee + 27 D [Ay(Tw.w) (VS;-1W - VA;¢) e
jeNj~q
S ¢l V(Tw-v o)l 5
+21 Z (T2 (VS5 W)= (T 9 )2 (V) 10

JEN,j~q p1tp2<t

S ql (Tw-v)dllgre + >y 2”'SHW||g;3W1II(Tw.v)“(AjW)IILp
. JEN,j~vg p1+pa<l ’

S callgllgeeser +cqlWilgee [Vl
S cqll9l

25,4
BPﬂ‘vW

gy T eqlldllgerne S cqlldllgarnen

with {cg}4>-1 satisfying [lcyller = 1, and it clearly leads to H(TW-VVHV(bHB;T <
H¢||gs+1,e+1. Hence, we find
p,mW

(A.14) IVl

_ — 41 _ _
oty = [(Tw.v)" " Vllss, e Sliel Bty
which corresponds to (5.6) in the (¢4 1)-case.

Finally, based on the above deduction, the induction method completes the proof

of (5.3)(5.6).

A.2. Proof of Lemma 5.2. (1) We prove estimates (5.7)—(5.8) by the induction
method. Tt is obvious that (5.7)—(5.8) are correct for £ = 0. Assuming they hold for
every ¢ € {0,...,¢} with some ¢ € {0,1,...,k— 1}, we show that (5.7)—(5.8) are also
satisfied for the (E + 1)-case.
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Concerning (5.7) in the (¢ + 1)-case, noticing that (similar to (5.19) and (5.22))

(Tw.o)m(D)Vf = > Sg W - Vm(D) (2~ D)VA, f

g1 €N

(A.15) =— > (D)) (2 " D)V, S 1 W - VA, f + m(D)V(Tiy.v) f

q1EN

and

[m(D)(2~ 1" D)V, Sy, _1W - V]| Ay, f

=20 [ Vh(y) (S 1W(x +27Ty) — Sy 1 W(2)) - VA, f(z + 27 y)dy
Rd

1
(A.16) = / Vh(y)y - VS, 1 W(x + 027 %y) - VA, f(x + 27" y)dydd,
0 Jra

and by using the induction assumption, Lemma 5.1, and (A.6), we see that for every
q 2 _17

1Ag(Ty.v) ' Vm(D)¢| v
<A (Tw.v) ' Vm(D)(Tw.v8)l e + |18 (Tw.v) ([m(D)V, Ty.v]8)|| e
l

S29) 1 Twy) M el e

A=0

Y > T S VWl [(Twow)2 VA, 6 o

q1EN,q1~q p1+p2<L

£+1 £+1
<D 2(Tww) ¢l e +ZZ‘JII (Tw) élle 270 (Tw.v) ¢l v,
A=1 A=0 A=0

as desired. Hence the induction method guarantees (5.7).
For (5.8) in the (¢ + 1)-case, the induction assumption ensures that for every
q €N,

29||(Tw . v)”lAqéHLP < 2[(Tw.v) Ag(Tiw.v ) || v + 29| (Tiw-v) [Ag, Tw.v] ¢ v

S > ZH Tw.v)*Ag, (Tow.v9)||Lr

q1€N,|q1—¢q|<Ng A=0

4
+ > D I Tww) Ay, Vo 1o

Q1€N7\Q1—Q|SN(>\—O
FY Y IO (B Bl + 271 () (8 Tl

q1€N,|q1 —q| <Ny A=0
.7l 2 3 4
=T 4 T2 T4 T
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By virtue of (5.3)-(5.4), we treat Z; as follows:

ns Y, > Znva D, (Sgu—1VW - VAL ®)| L

q1€N,|q1—q|<Ng q2€N,|g2—q1|<4 A=0

A

l
> D I(Tw-9) M (Squ1 VW - VA, 8) | o

q2€N,|g2—q|<Ny+4 A=0

A

> Z Y I Bwe)M St V= [(Tw-9) 2 VA, 6l

q2€N,|g2—q|<Ng+4 A=0 A1 +A2 <A

l
S ST A Vel e

q2€N,|g2—q|<N,+4 A=0

A

The estimation of Ig and I;‘ is relatively easy:

141

25 Y S @) A Ve,

q1€N,|q1 —q|<Ng A=1

sy > I Tww) VS, W1 | (Tw.v)"*2 VAg, 6| o
q1EN,|q1 —q|<4 p1+p2<L

L
S S @) AL V1.

q1€N,|q1—¢q|<4 p2=0

A

For I3, noting that for every ¢ € N, Ay, = Ay, @(272D) and V@(272D) =
iDP(272 D) =: 2923, (272D) with ¢ € S(RY) supported in an annulus, and us-
ing (5.4), (A.6), (A.12), we get

UESS > > 27 (Tw-v) M S 1 VWl (T v) 2 VAL, V| 1
q2€N,|g2—q|<Ne+4 A1 +Aa <AL

4
> > 27%||(T.v) VAL V| Lo

q2€N,[g2—g|<N,+4 A=0

A

A

4
> Y I(Tw-9) 31272 D) AL, Vo 1r

q2€N,|g2—q|<Np+4 A=0

L
S ST A Ve e

q2€N,|g2—q|<Ng+4 A=0

A

Collecting the above estimates yields (5.8) in the (¢ 4+ 1)-case and thus finishes the
proof of (5.8).

(2) We first consider (5.9) with s < 0. In light of the Fourier support property,
for every A € N, there exists a positive integer Ny € N such that

A (T ) Tyw = > Ay (T )M (Sqy — 190, w).

q1€N,|q1—¢q|<Nx
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By virtue of (5.3), and using the estimates that for ¢; € N,

(A.17) I(Tw.9) gy 10l < D I1(Tww)" Agvflr= S lvll o

¢ <q1—1

I(Tw.w)" Sqi1vllie < Y I1(Tww) Ayl o

q'<q1—1

< D0 TTETITwe) Agullee) 27 ollge

a'<q1—1
we get that for every A € {0,1,...,¢},
2qs||Aq(Tw.v))\Tv’w||Lp

S D min{ > 298 (Tw-v)" Sgy 10l < | (Tw-9 )2 Agy wl] o,

lg1 —q|<Nx p1+p2 <A
) 2‘“||<Tw-v>“lsq1-w||m||<Tw.v>mq1w||m}
p1tp2 <X
! B2
Semin{ 355 Wl (3 1w ulls, ).
p1=0 p2=0 A2=0
¢ bt 2
A
Z Z H“”E;:ﬁ}w( Z I(Tw.v) 2wHBgm)}
p1=0 p2=0 A2=0
£ ¢
Seqnin{ 37 ol ollayrgor 3 el lolgyom }
#1=0 n1=0

where {cg}q>—1 is such that ||cq||e- = 1. By taking the £"-norm and summing A from
0 to ¢, we finish the proof of (5.9) with s < 0.

The estimation of (5.10) is quite similar, and from (5.3) and (A.17), we easily see
that

£ L—py 2 ¢
A
llge 530S Iollgops ( 3 18w ullag,) S 3 ol lulgue s
#1=0 p2=0 A2=0 n1=0

We then consider (5.11) for every s < 1. Note that

Ay (Tw.v) Towv = > Ay (T )M (Sq, -1 Vw Ay, v),

q1€N,|q1—q|<Nx

with Ny € N an integer, and using the estimate (thanks to (5.7) and (5.5))

H(Tw-v)" Sgr—1Vwlize < > [(Tw.v)" Ay Vel Lo

¢ <q1—1
H1

S D0 D2 (M) Al

q'<q1—1X1=0

M1
$ 200 Y By )M wlsy, S 270 fwllgen

00,00 N
A1=0
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we deduce that for every A € {0, ..., ¢},

29| A (Tyy.v)* Tewvl| e

S22 S S (Twe) Sy Verll e | (Tww)"2 Agy vl 1
lq1—q|<Nx pr4p2<A

S 2 (Te) Al el

A

BIML,
m1+p2<fq1€N,|q1—q|<N, 1
L L—pa M2 L
S0 3 (3 1w oy, Yol S e S ol lwlger
p1=0p2=0 X2=0 ! #1=0 P '

where {c,}4>_1 is such that ||c4||¢~ = 1. Then it directly implies the desired estimate
(5.11).
For the estimation of (5.12), noticing that

(A18)  [[(Twv)" Spy-1Vwlle < D7 [(Tw.9)" Ay Vuol| o < [ Vwllgo

¢'<q1—1
we obtain that for every s € R and A € {0,1,...,¢},

29| Ay (Tw.v ) * Ty e

Y Do 29 (Tw-w) 2 Ag, 0| o | (T ) Sgy -1 Vool =
p1+p2<p q1€N,q1~q
L L= M2 L
S X2 30 (X I @ww vl )IVulagyn Seo 3 IVwlayn ol
#1=0p2=0 A2=0 p1=0

then taking the ¢"-norm on {¢ > —1} and summing over A lead to the estimate (5.12).
(3) For every A € N, there exists an integer N§ > 0 such that

A,(Tyy.y ) R(v-, Vo) Yo ABww)NAg v VA, W)

q1>max{q—N},—1}

= Z Aq(TW'V))\V ) (AQIUAQI/LU)
q1>max{q—NJ,3}

+ ) Lgen 43 Ag(Tww) (Agv - VA, w)
q1<3
(A19) =T+ 710,

By applying (5.7) and Lemma 5.1, we find that for every A € {0,1,...,¢},

29| Ty aller < 27 > 18¢(Tw. )V - (Agyv Ay w)]| o
q1 Zmax{qu)’\,B}

A
S Y S 2O (T (A v A w) e

q1 >max{q—Nj,3} p=0
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< Z 9(a—aq1)(1+s)
q1>max{q—N},3}

wind 35 B A | B Byl

p1t+pe <t
> 2q1(1+5)||(TW‘V)“1Aq1UL°°|(Tw~v)“2£q1w||u'}
p1tp2<t
sfsqmin{ S 2 (T Aol [ (Te Ve Bl |
r({q1>3})
p1tp2 <t
20 Ty Aol T By ] }
r({q1>3})
p1tpe <t

where {c,}4>—1 is such that ||¢,|ler = 1. Thanks to estimates (5.5) and (5.8), we
deduce that

H2q1|| M2A
S 27 (Tw.v )2 A

0l [ (g9

q1w||L°° ||Z°°({Q122})

SH 3 i||(TW~V)A2A‘12V“’”L°°Heoc({q122})

q2€N,q2~q1 A2=0

M2 M2
S Z H”(TW-V)/\ZA@V’WHLWHfzoo({qzeN}) S Z ||(TW'V)/\2VZ”||B&;€;“1”2’

A2=0 A2=0
and
- H2
129 (T Bgywolliollyr g, 5 S D 121 (Tww)** gy Veollioly 1, e
A2=0
H2
<Y @)Vl s
A2=0

and
127 1(Tw- 9 )" Ag, v Lo ||eoo({q123}) S ”””5;"%’

which immediately leads to that

O—pq H2
2% alle < cqmm{ Z > ooy, (X 1Tws) Vs, ).

H1_0M2 0 A2=0

£—p1
>y ol (32 1) Tulng ).
11=0 p2=0 A2=0

O—pq w2
3 S Il (35 Wl )
p1=0 p2=0 A2=0
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V4 4
Scqin{ 3 Iollg IV0llgcg00 Y Mol 90lgepr
#1=0 p1=0

L
(A.20) > oz, ol e }

p#1=0

On the other hand, we argue as in (5.31) to infer that for every A € {0,1,...,¢},

12912\ dazall S 20 M) (Agyv - VA, w)] 10

—1<q1<3
S Y min {1800l 1By Vel 1800l e 1B Vel oo }
—1<q1<3
(a21)  smin{llellny _IVels;, . lollsy, IVolsy o lolsy lwls;, }-

Hence, collecting the above estimates (A.19)—(A.21) yields the desired inequality
(5.13).

(4) We prove (5.14) by the induction method. Suppose that (5.14) holds for ¢ €
{0,1,...,k—1}; we next prove that it holds for the (¢4 1)-case. Bony’s decomposition
gives

(Tw.v)™ ¢ = (Tw.v) (Tw.v — O0w)d + (Tw.v) Owe
(A.22) = —(Tw.v) (Tys - W) — (Tyw.v) ROV-, Vo) + (Tw.v) One.

According to (5.11), (5.13), and the induction assumption, we get

I(Tww)(Tog Wllny, < [Too Wiigee S I8lge IWlian

<l < .
(A'23) ~ ||¢| Bp:f‘,W ~ ||¢| Bp:f‘.,W
and
I(TBw.0) ROV Vo)l 5, S IRV VO)llgee S IWllgrellolize
< = <
~ Hd)| B;"f.,w ~ ||¢| Bp;ﬁ,W7

where in the above we have used the fact |W|/z1.c < [[W| g1 x-1 < oo. The induction
w w
assumption also guarantees that

[(Tw.v) Owe|

B;, S 1owel

pyr

4 £+1

A+1 A
gor L, S 10 el < Z 183,91

A=0

By, S lI9llgsesn -

Gathering the above estimates leads to

Byt S I 2llsesy

(A2 [9lgesy = Tww) ol + 6
For the second part of (5.14), note that

Ot d = 04y (Twy - W) + 05 ROW-, V) + 03y (Ty.v) -
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Thanks to (5.11), (5.13), and the induction assumption, we find

¢
10w (Tve - Wlls; , < [Tog - Wllgse S Tws Wlgee
< e 1. < _
SUlg e, Wiz S I6llgee
and
|OW ROV V)55, S IRV V) ee S IRV V)| gee
< _ . < .
< Wiy l9llze < Il s
and
¢
0w (Tw.v)9llBs . < I(Tw.v)9| B S 1(Tw.v)ol Bt S ] BoitL s
Collecting the above estimates yields
_ (+1
(A.25) 191l e = 10 By, + 1l S 1Dl gaesr

Hence (A.24), (A.25) and the induction method ensure the desired estimate (5.14).
By using (5.10) in place of (5.11), the estimation of (5.15) is almost identical to
the proof of (5.14) with (s, p,r) replaced by (1,00, 1), and thus we omit the details.
Now we consider (5.16). By using (5.12), the estimate (A.23) with ¢ = W can be
improved to hold for every s > —1:

[(Tw.w) (Tow - W)

By, S Tow - W

pr

o, S IVWIgeWilgse S IWllgse | s
thus along the same lines as proving (A.24), we can easily verify (5.16).

We then prove (5.17) by the induction method. Clearly it holds for £ = 0. Suppose
that (5.17) holds for ¢ € {0,1,...,k — 1}; we intend to prove it for the (¢4 1)-case.
In view of (A.22), and by applying (5.12), (5.13), (5.15)—(5.16), and the induction

assumption, we infer that for every s > 1,

l _ _ _
[Tow0)(Tog Wy, < IToaWliger S 16l Wlge | < 19yl Wl
and
¢
|(Tww) ROV Vo) l;., S IRV Vo)lgre S IWlgseldllger

< P < s , s
S lsee S 10lse  +18lsrg W lger

and

|(Tws) owolls;, < lowollge | S IOwdllgee .+ I0wdlgg Wilas e

S |9l

poeen + 0l gren W)

Byl w’
Gathering the above estimates gives

_ _ £+1 N . <
300 = ITwo)* dlag, +dlzc <19

gotny TSl gyer W lgeens

which corresponds to (5.17) at the (£ + 1)-case, and thus the desired estimate (5.17)
is proved.
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A.3. Proof of Lemma 5.3. (1) Recalling that the quantities Rfl (i=1,2,4,5)
are given by (A.1)—(A.2), and noting that

> 278y AW = Sy WL

—1<q1<g+No
q—1 q—1 q+No q1—1
<2TM|Sgm Wz + D> 2% Y AW+ D 27 Y [[A W]l
q1=0 q2=q1 q1=q+1 q2=q
q—1 q2
(A.26) < ColWlwioe + 3 (D027 ) 1AWl < W,
q2=0 ¢1=0

it is obvious to see that

(A27) IRy ler + 120 + [ R3lr < CUWIps, min (lailr T llaglles):

oot 1sism 1<j#i<
7'] sm

m
RY| < czmin{nw.v)am TT sl

i=1 J#i

It i (lagles TT lorles) |

1<5#:1<
siFi=m I#i,j

Combining (A.27) with (A.28) leads to the desired estimate (5.35).
(2) Thanks to (A.8) and (A.13), we get that for every s € R,

{27 11[Ag, Tw-910ll Lo Yo -1 |, + {27 VIIVAG, Tw 9@l Lr Yo 1
<cllz= 3 1YWl A bl

q1€N,q1~q

(A.28)

e
= ClIWllwr= ¢l z; ..

r({g=—-1}
and for every s < 0 we find

€291 [Sg-1, Tw- w18l v }gen

ZTSCHQqs( > liAg Twlélr )

q1<qg—1

<cf| X 20 (2070 + 2" (8, Tovevll e )

q1<q—1

< C[]22#|[[Aq,, Tw-v]8l| e |

£7({qeN})

£r({qeN})

({1 >-1}) < CIWlwr.=<|¢] Bs .

thus the desired estimates (5.36)—(5.37) follow from a direct computation.
Similarly, observing that

184V, Twwldll= S Y. Ag(VSyaW - VA, 8)||~

q1€N,|q1—q|<5

SIWlwrs Y 298¢z~

q1€N,|q1—¢|<5

and

2180 Twwldler S2° D 27U [ Wwrs VAL 1

q1€N,|q1—q|<5

SIWlwes D IVAG e,

q1€N,|q1—¢q|<5

we can obtain (5.38)—(5.39) as desired.
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(3) By using (5.35)—(5.37) we deduce that

2% ||Aq (TW-V)(Tu-V¢) ||L”
<c2” > 1A¢(Tw-v) (Sqy—1ulg; V) || e

q1€N,|q1 —q|<Ny

<ot S wmin {I(Tw)Su-1ull o Ay VO o,

q1€N,|q1 —q|<Ny

I(T-9)Sas -1l = 1| Aq, Volln |

+c2 3 min{1Sp-1ulle (Twv)Ag, Vol 1=,

q1€N,|q1 —q|<Ny

St -1ull [[(Tw-9) A, Vel 2o }

+C2% 3T Wilsy min {I1Se,—1ulle |80 Vel o, [1Se -1ulli [Ag Vel o }

q1€N,|q1 —q|<Ny

< Ceqmin < |27 | (Tw.w) Sgy —1tll Lo || o, oy IVOllLoo, sup [[(Tw.v)Sq, —1ul|Lee [Vl s
£7(q1 €N) a1EN P,

+ Ceqmin {[Jullg, S 1(Twv) A0, Vol lullmo 12 1(T0-9) B V2 | (g1 oy
q1€EN

+ Ceg[Wiss_ , min{|lullsg, Vel s . llullse , 1¥6]5;, }

P

< Ceq(Bi(s) + Ba(s) + Bs(s)),

where {c,}q>—1 is such that ||¢c,|ler = 1 and B, Bs, B3 are given by (5.41)—(5.43).
Similarly, we can get the same estimate about 2%°||A,(Tw.v)(Tve - w)| e
(4) Notice that

29| Ay (Ty.v ) R(u, Vo) [Lr < C27° N | A(Tw)V - (A uly,6)]| e

q1>max{3,q—5}

+ CQqsl{qS';} Z HA(](TWV) (Aqlu . qu V(b) ||LP =: Il,q + 127(1.

—1<q1<2

For I 4, thanks to (5.38) and (5.39) we infer that for every s > —1,

Il,q 5 2q(s+1) Z ||Aq(TW-V)(Aq1UAq1¢)”L”
g1 >max{3,q—5}
+ W10 27CFY > [AgyuAg, ¢|Lr

q1>max{3,q—5}

<200+ > min{||(TW»V)Aq1UHLP||5q1¢||L°°7 H(TWV)AqluHLwqul(bHLP}

q1>max{3,q—5}
+2000 S min A ulloa | (Twv)Bay ol | gy ull o [(Tw-v) Ao, 2o }

q1>max{3,q—5}

+IWlsy 2 3T min {1l | Bl 1 Ag ull 1B, ¢l |

g1 >max{3,q—5}

< S gl

q1>max{3,q—5}

min {29° (T ) Bg, ull 2 |1 B, Vol o | (T-0) gy ] 27| By VS 0 |
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Py 2(‘77‘11)<5+1)2q15min{HAqluHLP( > ITwv) A0 Voll ),

g1 >max{3,q—5} laz—q1|<7

18 ulli= (3 ||(Tw,v)Aq2V¢HLp)}

laz—aq1|<7

(¢—q1)(s+1)
W S 2

q1>max{3,q—5}

i {2 Al (3 18090l ) IAg =2 (X JauTel) |

laz—q1|<7 la2—q1|<7

S cqmin {[|277)(Tw.v) Ag, ulle || [V Sllso, 1+ D I1(Tw-v)Agyull= |Vl 55,
oco,1

a>-1

+ cqmin {Jull o (12| (Tw-9) B Vool s lull s D 1(Tww)Ag VoIl }
q2>—1

+ cqlWlgy, , min {lullz; , 1Vellse . lullse IV6l5;, }

< Ceq(Bi(s) + Bz(s) + Bs(s)),

where {c;}4>—1 is such that ||c,
one gets

¢~ = 1. For I 4, by applying Bernstein’s inequality,

[12,qller < ClIWIB1 | 1s<up<22‘“smin{I\AmUIILpHAqlWSHLw, IIAqluHLwIIAqlWﬁIILP}
-l s

< CIWilp, , min{llulls;, V65

00,1

Nullsg,  IV6llz;, }-

Hence, gathering the above estimates on I; 4 and I5 4 leads to the desired estimate

(5.44).
(5) By arguing as (5.46) and (5.47), we easily find that for every s € (—1,1),
(A.29) [Owe —Tw.vdlBs . <|Tve - Wlss, + ROV, V)| B:,
' < ClWllwr= ¢l s; -

Appendix B. Proof of the global W3"-persistence result. We indeed
shall prove that for 6y = 6y 1p, (x) with 9Dy € W2*NW3" and fy € C*NW T (Dy),
€ (0,1), up € Hr N WP p > 2, we have that for any T > 0, dD(t) € L (W3")
with the level-set function ¢ satisfying ||| Lee (ws.r) < CeCU+T)?,

In view of (3.37), we get
(VW) +u-V(V2W) = 0w VZu+2VW - V2u+ VW - Vu—Viu- VW — 2Vu- VW,

The L"-estimate of (3.37) and the above transport equation give that

t t
VW) < ||V2W0||Lr+/ ||5WV2U||erT+C/ IV2W ()l [IVu(r) ]| e dr
0 0

(B.1) + C”WHL;?C(lem)”VQUHL,}(LT)
and
t
(B.2) WL < [[Wollzr +/0 W () - [[Vu(T) | e dr.

We first consider the L} (L")-estimate of V?u with 7 > 2. For r > 2, from (3.24),
we know that I' € Ly(B2 ) for every 2 < 7 < p with Tl Bz ) < C(1 +1T)3,
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which together with the embedding BE’OO — BZ) /1“ and Bfwo — Bz;jl implies that
T'e LIT(BZ/{"I) forevery 2<r<ooand 0 <~ <1— % with

(B.3) I , SCA+T)%

Ly (B
thus from relation (3.18) and the Calderén-Zygmund theorem, we deduce that
(B.4) IV2ull iy < CIIVTl iy + ClOl Ly < C(1+1)°.
For r = 2, we still have (B.4) from the energy estimate (3.9), and although (B.3) with
7 = 2 is not available, by using (3.9)-(3.11), we will instead have [[VI'[| , By <
T 2,1

C(1+T)? with 0 < 4/ < 1, which is sufficient for our purpose.

Next we tackle the L} (L")-estimate of 93, V2u. By virtue of (3.18) again, we have

(B.5) 10w V2ul| 3 (1ry < |\8Wv2vLA*2r||L%(m + 10w VPV AT 0| Ly 1y

For the #-term of the above inequality, thanks to (2.19) and the Calder6n—Zygmund
theorem, we find

10w V2O AT0] Ly (1
< VAVEOAT 0w O 1y oy + I[VPV LA™ W - V10 1y 1)
S Clowblzywry + CIVWlLge o) 10l 1 (B2 ,)-
As for the considered temperature front initial data, we infer that dyw,0y € L"(R?)

(arguing as Lemma 2.6) and 6, € BY;(R?); thus in combination with (2.26) and
(3.17), we get

(B.6) 10w V2V AT0]| 1 (1) < CeCOFV7,
For the I-term of inequality (B.5), by using (2.19) and (B.3) we see that
10w VAVEATET | 1oy < IVVEAT20w (VD) |11 oy + I[VVEAT2, W - VIV 2 1
S Clow VT y iy + CIVW g () IVT |2y (mo,)
< CJlOwT | g1 wrry + CeCOHD7,
Now we use (3.41) to estimate Oy T'. According to (2.27), we obtain that for every
0<y <1-— 12;,

low | )t llow Tl

’_ ’
LBl Ly(BYL™)

t
<cn +t)(|8WDFQBZ:11 +/0 9l |90 T ()7 + AW - FT 1y sy
+ ||VW : VQFHL%(B;Yffl) + ||8W([R*17u : V]Q)HL}(B;Y’ll))

From Ty = wy + R_10p = wo + &1A20 and the embedding W'» C BY. | with
0<7’<1—%,Weget

18wo Lol g1 < [|0wo Vol g1 + [|Ow R—-160]l 71

’
~ =
Br,l

< Clidwouoll g + ClIIVWoll = [Vl gy + C[Wol[ L= [[VR -160]|

’
~ =
Br,l
’
~' =1
B’I“l

< Cllow,yuo|lzrawre + Cllgollwz.e [uoll m1awrr + Clloollw . |00l L2nn < o0
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Estimates (2.16), (3.17), and (B.3) guarantee that

2
[VW 5 V2T oy < CIVW e oy [T ) < O,

/71 !
LY(B]; Li(B,

t t
|AW VT, ) < o/ AW .y [IVT]| e dr < c/ W [[sro || VT oo i
T 0 0

’
~!—
Br,l

In a similar estimation as deriving (3.45), we deduce that [[[R_1,u - V]0|/L1p1_) <
C(1+t)? for every 7 € [2,p], and thus

0w ([R—1,u-V]0) ) S ClW e (zoo)[R—1,u - V]GHL%(

P B}

2
S CIWlizew)llR-1,u- VIOl sy _npr ) < Ce@UFt",
Gathering the above estimates yields

oW T @) g1+ 1OW Ty sy

(B.7) ) t
< CeCl+1) +C’(1+t)/o (HVuHLooHGWFHB:/I,I+||WHW2,THV1“||LOO)dT.

Moreover, collecting (B.1)-(B.2) and (B.4)-(B.7) we infer that

IW@)llwae + 10w DO -+ 10wl 3 vy + 10w V2ully e
5 t
< €W 0 t) [ (10wTl gy + W lhwar ) (IVullm + |97 = )dr.
0 ™

Gronwall’s inequality and (3.15), (3.44) ensure that for » > 2 and for any 7 > 0,

[WllLse w2y + ”aWFHLlT(BZ,'fl) + ||8WFHL1T(B:1’1+1) + 0w V2ul Ly (1)

< CeC(1+T)3

which clearly implies the global W37 -persistence result of the temperature front
boundary 0D(t).

Acknowledgment. The authors would like to express their deep gratitude to
the anonymous referees for the valuable suggestions and comments.

REFERENCES

[1] H. ABIDI AND T. HMIDI, On the global well-posedness for Boussinesq system, J. Differential
Equations, 233 (2007), pp. 199-220.

[2] A. L. BERTOZZI AND P. CONSTANTIN, Global regularity for vortex patches, Comm. Math. Phys.,
152 (1993), pp. 19-28.

[3] J.-Y. CHEMIN, H. BAHOURI, AND R. DANCHIN, Fourier Analysis and Nonlinear Partial Differ-
ential Equations, Grundlehren Math. Wiss. 343, Springer-Verlag, Berlin, 2011.

[4] L. BRANDOLESE AND M. E. SCHONBEK, Large time decay and growth for solutions of a viscous
Boussinesq system, Trans. Amer. Math. Soc., 364 (2012), pp. 5057-5090.

[5] C. Cao AND J. WU, Global regularity for the two-dimensional anisotropic Boussinesq equations
with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), pp. 985-1004.

[6] A. CasTRO, D. CORDOBA, AND D. LEAR, On the asymptotic stability of stratified solutions for
the 2D Boussinesq equations with a velocity damping term, Math. Models Methods Appl.
Sci., 29 (2019), pp. 1227-1277.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/22 to 219.142.99.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4102 DONGHO CHAE, QIANYUN MIAO, AND LIUTANG XUE

A. CasTRO, D. CO6rpOBA, C. FEFFERMAN, AND F. GANCEDO, Breakdown of smoothness for
the Muskat problem, Arch. Ration. Mech. Anal., 208 (2013), pp. 805-909.

A. CasSTRO, D. COrRDOBA, C. FEFFERMAN, F. GANCEDO, AND J. GOMEZ-SERRANO, Finite time
singularities for the free boundary incompressible Fuler equations, Ann. of Math., 178
(2013), pp. 1061-1134.

A. CasTrO, D. COrDOBA, C. FEFFERMAN, F. GANCEDO, AND J. GOMEZ-SERRANO, Splash
singularities for the free boundary Navier-Stokes equations, Ann. PDE, 5 (2019), 12.

A. CasTRO, D. COrRDOBA, C. FEFFERMAN, AND F. GANCEDO, Splash singularities for the one-
phase Muskat problem in stable regimes. Arch. Ration. Mech. Anal., 222 (2016), pp. 213—
243.

D. CHAE, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv.
Math., 203 (2006), pp. 497-513.

D. CHAE AND J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities,
Adv. Math., 230 (2012), pp. 1618-1645.

J.-Y. CHEMIN, Calcul paradifférentiel précisé et applications d des équations aux dérivées par-
tielles non semilinaires, Duke Math. J., 56 (1988), pp. 431-469.

J.-Y. CHEMIN, Sur le mouvement des particules d’un fluide parfait incompressible bidimen-
stonnel, Invent. Math., 103 (1991), pp. 599-629.

K. CHo1, A. KISELEV, AND Y. YAO, Finite time blow up for a 1D model of 2D Boussinesq
system, Comm. Math. Phys., 334 (2015), pp. 1667-1679.

K. Cuor, T. Y. Hou, A. KiseLEv, G. Luo, V. SVERAK, AND Y. YAO, On the finite time
blowup of a one-dimensional model for the three-dimensional axisymmetric Euler equa-
tions, Comm. Pure Appl. Math., 70 (2017), pp. 2218-2243.

P. CoNsTANTIN AND C. R. DOERING, Infinite Prandtl number convection. J. Stat. Phys., 94
(1999), pp. 159-172.

D. COrpOBA, M. A. FONTELOS, A. M. MANCHO, AND J. L. RODRIGO, Evidence of singulari-
ties for a family of contour dynamics equations, Proc. Natl. Acad. Sci. USA, 102 (2005),
pp. 5949-5952.

D. COUTAND AND S. SHKOLLER, On the finite-time splash and splat singularities for the 3-D
free-surface Euler equations, Comm. Math. Phys., 325 (2014), pp. 143-183.

D. COUTAND AND S. SHKOLLER, On the splash singularity for the free-surface of a Navier-Stokes
fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), pp. 475-503.

R. DANCHIN, Poches de tourbillon visqueuses, J. Math. Pures Appl., 76 (1997), pp. 609-647.
R. DANCHIN AND M. Paicu, Les théorémes de Leray et de Fugita-Kato pour le systme de
Boussinesq partiellement visqueuz, Bull. Soc. Math. France, 136 (2008), pp. 261-309.

R. DANCHIN AND X. ZHANG, Global persistence of geometrical structures for the Boussinesq
equation with no diffusion, Comm. Partial Differential Equations, 42 (2017), pp. 68-99.

R. DANCHIN AND X. ZHANG, On the persistence of Holder reqular patches of density for the
inhomogeneous Navier-Stokes equations, J. Ec. polytech. Math., 4 (2017), pp. 781-811.

W. E AND C.-W. SHU, Small-scale structures in Boussinesq convection, Phys. Fluids, 6 (1994),
pp. 49-58.

T. M. ELGINDI AND 1.-J. JEONG, Finite-time singularity formation for strong solutions to the
Boussinesq system, Ann. PDE, 6 (2020), 5.

T. M. ELGINDI AND K. WIDMAYER, Sharp decay estimates for an anisotropic linear semigroup
and applications to the SQG and inviscid Boussinesq systems, SIAM J. Math. Anal., 47
(2016), pp. 4672-4684.

. FEFFERMAN, A. D. IONEScU, AND V. LIE, On the absence of splash singularities in the case
of two-fluid interfaces. Duke Math. J., 165 (2016), pp. 417-462.

. FEIREISL AND A. NOVOTNY, The Oberbeck-Boussinesq approximation as a singular limit of
the full Navier-Stokes-Fourier system, J. Math. Fluid Mech., 11 (2009), pp. 274-302.

F. GANCEDO AND E. GARCIA-JUAREZ, Global regularity for 2D Boussinesq temperature patches

with no diffusion. Ann. PDE, 3 (2017), 14.

F. GANCEDO AND E. GARCiA-JUAREZ, Global regularity of 2D density patches for inhomoge-
neous Navier-Stokes, Arch. Ration. Mech. Anal., 229 (2018), pp. 339-360.

F. GANCEDO AND E. GARCIA-JUAREZ, Regularity results for viscous 3D Boussinesq temperature
fronts, Comm. Math. Phys., 376 (2020), pp. 1705-1736.

F. GANCEDO AND P. NEEL, On the local existence and blow-up for generalized SQG patches,
Ann. PDE, 7 (2021), 4.

F. GANCEDO AND R. STRAIN, Absence of splash singularities for surface quasi-geostrophic sharp

fronts and the Muskat problem, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 635-639.

. GILL, Atmosphere-Ocean Dynamics, Internat. Geophys. Ser. 30, Academic Press, New York,

1982.

Q

o]

>

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/22 to 219.142.99.20 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

T.

T.

T

T

TEMPERATURE FRONTS FOR 2D BOUSSINESQ SYSTEM 4103

Hwmipr AND S. KERAANI, On the global well-posedness of the two-dimensional Boussinesq
system with a zero diffusivity, Adv. Differential Equations, 12 (2007), pp. 461-480.

Hwmipi, S. KERAANI, AND F. ROUSSET, Global well-posedness for a Boussinesq-Navier-Stokes
system with critical dissipation, J. Differential Equations, 249 (2010), pp. 2147-2174.

. HMmip1, S. KERAANI, AND F. ROUSSET, Global well-posedness for Euler-Boussinesq system

with critical dissipation, Comm. Partial Differential Equations, 36 (2011), pp. 420-445.

. Hou AND C. L1, Global well-posedness of the viscous Boussinesq equations, Discrete Contin.

Dyn. Syst., 12 (2005), pp. 1-12.

W. Hu, I. KUKAVICA, AND M. ZIANE, Persistence of regularity for the wviscous Boussinesq

C.

A
A.
A

= > » 0

equations with zero diffusivity, Asymptot. Anal., 91 (2015), pp. 111-124.
KHOR AND X. XU, Temperature patches for the subcritical Boussinesq-Navier-Stokes system
with no diffusion, J. Funct. Anal., 283 (2022), 109501.

. KiseLEV, L. RYZHIK, Y. YAO, AND A. ZLATOS, Finite time singularity for the modified SQG

patch equation, Ann. of Math., 184 (2016), pp. 909-948.
Ki1seLEV AND C. TAN, Finite time blow up in the hyperbolic Boussinesq system, Adv. Math.,
325 (2018), pp. 34-55.

. LArIos, T. LUNASIN, AND E. TiTI, Global well-posedness for the 2D Boussinesq system

with anistropic viscosity and without heat diffusion, J. Differential Equations, 255 (2013),
pPP. 2636-2654.

. L1 AND E. TrT1, Global well-posedness of the 2D Boussinesq equations with vertical dissipa-

tion, Arch. Ration. Mech. Anal., 220 (2016), pp. 983-1001.

. L1Ao AND P. ZHANG, On the global regularity of the two-dimensional density patch for in-

homogeneous incompressible viscous flow, Arch. Ration. Mech. Anal., 220 (2016), pp. 937—
981.

LiAo AND P. ZHANG, Global regularity of 2D density patches for viscous inhomogeneous
tncompressible flow with general density: Low regularity case, Comm. Pure Appl. Math.,
72 (2019), pp. 835-884.

Liao AND P. ZHANG, Global regularity of 2-D density patches for viscous inhomogeneous
incompressible flow with general density: High regularity case. Anal. Theory Appl., 35
(2019), pp. 163-191.

Luo anND T. Y. Hou, Toward the finite-time blowup of the 3D axisymmetric Euler equations:
A numerical investigation, Multiscale Model. Simul., 12 (2014), pp. 1722-1776.

J. MAJDA, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect.
Notes Math. 9, Courant Institute, New York, 2003.

J. MAJDA AND A. L. BERTOZZ1, Vorticity and incompressible flow, Cambridge Texts in Appl.
Math. 27, Cambridge University Press, Cambridge, UK, 2002.

K. MOFFATT, Some remarks on topological fluid mechanics, in An Introduction to the
Geometry and Topology of Fluid Flows, R. L. Ricca, ed., Kluwer Academic, Dordrecht,
2001, pp. 3-10.

. PEDLOSKY, Geophysical Fluid Dynamics, Springer, New York, 1987.

T. RuNsT AND W. SICKEL, Sobolev spaces of fractional order, Nemytskij operator, and nonlinear

R

partial differential equations, De Gruyter Ser. Nonlinear Anal. Appl. 3, De Gruyter, Berlin,
1996.

. S. RycHkoOv, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with
respect to Lipschitz domains, J. Lond. Math. Soc., 60 (1999), pp. 237-257.

. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Land-

marks in Math., Princeton University Press, Princeton, NJ, 1970.
SUEUR, Viscous profiles of vortex patches, J. Inst. Math. Jussieu, 14, (2015), pp. 1-68.
Wu AND L. XUE, Global well-posedness for the 2D inviscid Bénard system with fractional
diffusivity and Yudovich’s type data, J. Differential Equations, 253 (2012), pp. 100-125.
. I. YupovicH, Eleven great problems of mathematical hydrodynamics, Moscow Math. J., 3
(2003), pp. 711-737.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Preliminaries and auxiliary lemmas
	Striated type Besov spaces and related estimates
	Some auxiliary lemmas

	Persistence of C1,-, W2,-, and C2,-boundary regularities
	Persistence of C1,-boundary regularity
	Control of curvature: Persistence of W2,-boundary regularity
	Persistence of C2,-boundary regularity

	Persistence of Ck,-boundary regularity with kN[3,)
	Striated estimates: Proof of Lemmas 2.4 and 2.5
	Proof of Lemma 2.4
	Proof of Lemma 2.5

	Appendix A. Proof of Lemmas 5.1–5.3
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of Lemma 5.3

	Appendix B. Proof of the global W3,r-persistence result
	Acknowledgment
	References

