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1. Introduction

1.1. The Euler-alignment system
We consider the following Cauchy problem of the compressible Euler system in R x R,

Op +div (pu) =0,
O (pu) +div(pu @ u) + VP (p) =D (u,p), (1.1
(p;u) li=0 = (po, uo)

where p is the density, u = (uy,...,uy) is the velocity field, and P(p) stands for the pressure,
which is given by the power law
P(p)=rp", £>0,73>1. (12)

The term D(u, p) represents the nonlocal velocity alignment which is given as follows

D(u,p) (1,x) = —p(1,x) . ¢ (x =) (u(t,x) —u(t,y)) p (t,y) dy.

Here ¢ is called the communication weight, measuring the strength of the alignment interac-
tions. It is naturally assumed to be a non-negative and radially decreasing function.

The system (1.1) is known as the Euler-alignment system. It is the macroscopic represent-
ation of the celebrated Cucker—Smale model [9]

Xi(l‘):Vi(l‘), 1<i<M,
'vfm=—@,ab(xi(r)—wo)(mn—vj(r)), (1.3)

an M-agent interacting system that describes the collective motions in animal flocks. Ha and
Tadmor [19] formally derive (1.1) from (1.3) through a kinetic equation

Of+v-Vf+div, Q[f,f] =0,
QLA (6xv) = —f(1.x,v) / & (x— ) (v — w)f (1,3, w) dydw. (14)
RN JRN

Hydrodynamic limiting systems (1.1) with different type of pressures (1.2) can be rigorous
derived from (1.4), including the pressure-less dynamics (x = 0) [18], isothermal pressure (x >
0,7 = 1) [23], and others [17, 35].

The global well-posedness theory for the pressureless Euler-alignment system (1.1) with
P = 0 has been established in [42] for the case when the communication weight is bounded
and Lipschitz. A critical threshold phenomenon was discovered: global regularity depends on
initial data. A sharp threshold condition is obtained in [3] for the system in 1D with the help
of an auxiliary quantity G = 0,u + ¢ * p that satisfies the continuity equation. The theory has
been extended to the case when the communication weight is weakly singular: unbounded
but integrable [44]. For higher dimensions, sharp results are only available for radial [45] and
uni-directional [26] data, due to the lack of the auxiliary quantity, see also [21].

Another interesting type of communication weights are strongly singular near the origin,
with a prototype taking the following form
)

2 (1.5)

2T
_’/T

R
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It is evident that for « € (0,2), the singular alignment D(u, p) with such a weight ¢, can be
expressed as a commutator form related to the fractional Laplace operator A® := (—A)? (see
definition 2.4):

D (u,p) = —p (A% (pu) —ul®p) = —p([A%,u] p). (1.6)

This nonlocal dissipation has an intriguing regularization effect to the solutions. Global regu-
larity is obtained for any non-viscous smooth initial data for the system in the one-dimensional
torus by Shvydkoy and Tadmor [38] for 1 < a < 2, and by Do et al [16] for 0 < v < 1 (see also
[40]). The results are then applied to general singular alignment interactions [24], as well as
taking into account the misalignment effect [32]. For the multi-dimensional case, global well-
posedness are only known for small initial data around an equilibrium state. See the work of
Shvydkoy [37] for smooth initial data (pg,up) € H¥T4(TV) x HNT3+2(TV), and Danchin et al
[14] for small initial data that lie in critical Besov space (po, uo) € By (RY) x By, (RY), sub-
ject to additional regularity assumptions (one more derivative is required on the data). Global
regularity for general large initial data remains a challenging open problem.

The global well-posedness theory for the Euler-alignment system (1.1) with pressure is
much less understood compared with the pressureless system. When the communication
weight ¢ is bounded and Lipschitz, Choi [7] proved global regularity of the system with iso-
thermal pressure, for small smooth initial data in the periodic domain T". A similar result was
obtained in [47] for the system with isentropic pressures (x > 0,y > 1).

The main focus of this paper is on the Euler-alignment system (1.1) with pressure (1.2) and
with a strongly singular communication weight (1.5). The goal is to understand the interplay
between the pressure and the nonlocal regularization from the alignment (1.6).

In 1D periodic domain T, Constantin et al [8] proved the global existence of smooth solu-
tions for the system with an additional local dissipation term of the form (1.7). They make
use of the auxiliary quantity to build a hierarchy of entropies. The result does not require a
smallness assumption, but is limited to one dimension.

For the system in TV, Chen et al [5] established the global well-posedness for smooth initial
data with a smallness assumption. The result is partially extended to the whole space R".
However, an additional linear damping term is required to obtain the desired result.

We would like to comment that most global well-posedness results in the literature on the
Euler-alignment system (1.1) with strongly singular alignment (1.6) are on the periodic domain
TV. One important reason is that solutions can lose regularity when vacuum arises [1, 43]. It
is easier to obtain a priori positive lower bound on the density under periodic setup, as mass
cannot diffuse to infinity. Additional analytical treatments are required to guarantee no vacuum
formations for the system in the whole space RY.

1.2. The barotropic compressible Navier—Stokes system

To study the Euler-alignment system (1.1) and (1.2) in R", we shall mention a very related
system. If we replace the dissipation term D(u, p) by

Dioc (1) = pAu+ (p1 + p2) Vdivu, g > 0,201 + Npp > 0, (1.7)

the system (1.1) and (1.2) becomes the classical barotropic compressible Navier—Stokes sys-
tem, which has been intensely studied in the recent decades.

Serrin [36] and Nash [33] established the local existence and uniqueness of smooth non-
vacuous solutions. One can also see Solonnikov [41] and Valli [48] for the local well-poseness
of strong solutions with Sobolev regularities. Matsumura and Nishida [30, 31] proved the
global existence and uniqueness of strong solutions provided that initial data (pg, uo) is a small

3
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perturbation of constant non-vacuous state (7,0) in three dimension, and under an additional
L'-smallness of the initial perturbation, they showed the following optimal decay estimate

e S(L+07F, V>0, (1.8)

(o= p,u) (1)

Later, noting that the barotropic compressible Navier—Stokes system is invariant under the
transformation

p(t,x)—p ()\21‘, )\x) , u(t,x)— du (/\zt, )\x) , A>0,

with a modification of the pressure P+ A\?P, Danchin [10] proved the global existence and
uniqueness of strong solution in the framework of critical L?>-based Besov space with initial
data close to a stable equilibrium. More precisely, under the following smallness condition in
critical Besov spaces (see definition 2.1)
o0 = Plyy-1 + ol <=

the barotropic compressible Navier—Stokes system has a global unique solution.

Furthermore, for small perturbation of non-vacuous equilibrium (p,0) in L-type Besov
norms, Charve and Danchin [4] and Chen et al [6] independently constructed the global
unique strong solution in the framework of critical I”-based Besov spaces. One can also
see [20] for a simpler proof of the same result by using a good unknown called the effective
velocity. Concerning the large-time behaviour of the above obtained global strong solutions,
Okita [34] considered the N > 3 dimension and established the optimal time-decay estimate
of global solutions in the critical L>-framework with an additional smallness condition on
llpo — Pl w Tt [uo | j _- Danchin [13] gave an another description of the time-decay estim-

ate as above with N > 2. Danchin and Xu [15] showed that under an additional smallness
condition of low frequencies (see (2.2) for the definition of norm || - l‘; )
p,r

I —poo) - <2 so=N(2-1), (19)

the L7 norm of the global critical solutions constructed in [4, 6, 20] decays like N G=9) for
t — 400 (exactly as (1.8) with p = 2, N = 3). One can see Xu [50] for a different low-frequency
smallness assumption to get the same time-decay estimate. Recently, Xin and Xu [49] replaced
the smallness condition (1.9) with a mild assumption like || (pg — p, uo) || f; _y < oo and obtained

the optimal time-decay estimate in the general critical ”-framework.

1.3. Main result: global well-posedness

In this paper, we consider the Euler-alignment system (1.1) in R, with power-law type pres-
sure (1.2) and strongly singular alignment interactions (1.6) with 1 < oo < 2. We mainly study
the global well-posedness of the system with initial data (po, up) around the non-vacuous equi-
librium (p = 1,u = 0), with minimal regularity assumptions on the initial data.

Analogous to the study of the barotropic compressible Navier—Stokes system, we observe
that the system (1.1) is invariant under the transformation

p(6,x) = p(AL,Ax),  u(t,x) = X Tu(A\, ), A>0, (1.10)

with a modification of the pressure P +—> A22=2p Therefore, we shall aim to solve the Euler-
alignment system (1.1) in the critical function space which is invariant with respect to the
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. N LNy
transform (1.10). Obviously, the homogeneous Besov space B;; x Bzz;rl “ of initial data
(po — 1,up) is a suitable space that is scaling critical. However, spectral analysis of the lin-

N
earized equation of system (1.1) (see (3.4) below) indicates that the regularity p € 82271 is not
enough to control the pressure term, as it is not invariant under the scaling (1.10). Instead, we

~ . N _ . N
work on a hybrid Besov space B>+~ % = Bzz,l+1 “n Bj; | (see definition 2.1). This approach
is pioneered by Danchin [10] on the barotropic compressible Navier—Stokes system. More
precisely, our first main result reads as follows.

Theorem 1.1 (global well-posedness). Let N > 2. Consider the Euler-alignment system (1.1)
with pressure (1.2), alignment interaction (1.6) with 1 < « <2, and initial data py—1 €

= Ny . .
B2t1=25(RY) and uy € Bz’;r “(RN). There exists a small constant € > 0, such that if

190 = igarcey + ol yorme <2, (1)

2.1

then the Euler-alignment system (1.1) has a global unique solution (p,u) such that
p>0, in RT xRY, (1.12)
and

~ Nl LN
p—1€Cy([0,400);B3H170) ue ([0, +00): B ) NLIRTB; ). (1.13)

Moreover, if additionally (po — 1,ug) € Bt~ 1(RVN) x B;,l (RN) withs > 5 + 1 — o, then
the above constructed solution also belongs to the corresponding space, i.e.

p—1eL™ (Rﬂfewa—l), we I°(RY; By ) NLY RT3 BS ). (114)
See definitions 2.1 and 2.2 for the spaces involved.

Let us sketch the main ideas of proving theorem 1.1. By introducing a new quantity o
given by (3.1), we consider the more convenient system (3.3) of (o,u) which is equival-
ent with the original system (1.1) and (1.2). Via analysing the linear structures of the coup-
ling system (3.3), we find that the quantities (o,u) enjoy a parabolic damping effect for the
low-frequency part and a fractional-order parabolic behaviour for the high-frequency part.
Accordingly, we manage to establish proposition 3.1 concerning a priori estimates for the
paralinearized system (3.4) by separately considering the low and high frequencies. In this
process, the paraproduct estimates and the Kato—Ponce type inequality in section 2 will play
an important role. Moreover, we show the wanted a priori estimates for the nonlinear sys-
tem (3.3). Finally, based on the a priori estimates, we build an approximate system of (3.3)
and then use the compactness argument to pass in the limit to show the existence. The unique-
ness and propagation of smoothness follows from applying proposition 3.1 in suitable Besov
spaces.

A few remarks are listed in order.

Remark 1.1. The critical spaces we work on contain very rough initial data. In particular, ug
is not necessarily Lipschitz. Therefore, even local well-posedness can not be obtained dir-
ectly from the classical Cauchy—Lipschitz theory. We include a local well-posedness result in
theorem 4.2. The smallness condition (1.11) can be relaxed for local-in-time solutions.

Let us compare theorem 1.1 with the result presented in [14]. In their work, they considered
the pressureless Euler-alignment system, i.e. (1.1) with P =0, and established global well-
posedness for small initial data (pg, uo) belonging to the critical Besov space BIIV,I X Blz\,fla. To
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ensure uniqueness, an additional subcritical regularity assumption (pg, ug) € Blz\,,l X BZ,_I"‘ was
required. One significant highlight of our result is that it does not demand any extra regularity
assumption. We are able to achieve a smoothing effect for the density (as evidenced by propos-
ition 3.1 below) through the strong coupling of the two equations facilitated by the pressure.
This is sometimes referred to as the hypocoercivity property.

Remark 1.2. Our result works on dimensions N > 2. When N = 1, we are able to establish
a priori estimates of the Euler-alignment system as in section 3. However, some technical
estimates fail when constructing the solution: e.g. (4.6) and (4.8), as well as the uniqueness
argument. This is due to the roughness of initial data that we consider. If we further assume

~ .34
dupo €BX " (R) and Qo € B} " (R),

Theorem 1.1 can be easily extended to N = 1.

Remark 1.3. Partially due to that the space 312v /12“70‘ (RM) is not a Banach space for 0 < o < 1
and there is some technical difficulty arising from the endpoint-type product estimates for
a =1, the extension of theorem 1.1 to the singular communication weight with 0 < oo < 1 is
not straightforward, and will be left for future investigation.

1.4. Asymptotic behaviour

Next, we turn our attention to the asymptotic behaviour of the Euler-alignment system (1.1).
The system inherits a remarkable flocking phenomenon from the Cucker—Smale model (1.3).
It has been shown in [28, 39, 42] that the solution to (1.1) converges (in appropriate sense) to
a traveling wave profile

p(t,X) = poo (x — it), u(t,x) — . (1.15)

There are two ingredients of flocking. First, the support of density p stays bounded in all time,
i.e. if pg is compactly supported, then p, is compactly supported as well. Another ingredient
is the velocity alignment. Here, u represents the average velocity. It is determined by initial
data, thanks to the conservation of momentum. Without loss of generality, we assume u# =0
throughout the paper. Additional geometric structures of the limiting profile p is investigated
in [25, 27] for the pressureless system.

When pressure is presented, the asymptotic density profile is known to be a constant
Poo(x) = p. For simplicity, we set p = 1. The asymptotic flocking behaviour is proved in [46]
for bounded alignment interactions, and [5] for strongly singular alignment interactions. Both
results considered the periodic domain T,

To our best knowledge, most existing results on asymptotic behaviours for the Euler-
alignment system with singular alignment interactions are on the periodic domains. The decay
rates in (1.15) are exponentially in time. For the system in R", we do not expect the decay rate
to be exponential. Rather, analogous to the heat equation, the diffusion leads to a polynomial
rate of decay in time.

Our next result is concerned with the asymptotic behaviour of the Euler-alignment
system (1.1) and (1.2) in R,

Theorem 1.2 (asymptotic behaviour). Let N > 2 and 1 < o < 2. Assume (p,u) is a global
solution of the Euler-alignment system (1.1) and (1.2) that satisfies (1.12) and

~ ~ ~ L Nil_q N
p—1el™ (R*;B%“rl—av%), wel® (R+;B§f‘ )mL‘ (RﬂB;j‘). (1.16)

6
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Then for every 0 <s <1 — é we have

1(p—1,u) (1))

oo HP O =1Ly + W O] yora <CO+07, (1.17)
By, By, B

2,1

where the constant C > 0 depends on the norms of (p — 1,u) in (1.16). Besides, we have

tim (100~ gy + @10 ) =0

2,1

If we assume, in addition, (py — 1,up)* € BZZ‘;(RN) with sy € (a — 5 —1,%), then for all s, €
[—s0, g +1—a]

_51+:0

1) = Uy g + )y g0 <CO+DT" (1.18)

See definitions 2.1, 2.2 and equation (2.2) for the notations involved.
We list some remarks as follows.

Remark 1.4. The decay rate obtained in (1.18) is optimal. It agrees with the rate of decay for
the solutions to the fractional heat equation, that is a linearized equation of (1.1). It is worth
noting that when the system is posed in the periodic domain T”, the convergence of solutions
will be exponential in time. This property has been demonstrated in e.g. [5, theorem 2.3] for
smooth solutions.

Remark 1.5. For small initial data (pg,uo) satisfying (1.11), condition (1.16) is guaranteed
by theorem 1.1. Hence the decay estimates follow directly from theorem 1.2. On the other
hand, theorem 1.2 only assumes that the solution (p — 1,u) is bounded as in (1.16). In the
existing literature on the barotropic compressible Navier—Stokes system [15, 34, 50] and so
on, smallness assumptions on the solution (p — 1,u) are required to obtain the decay estim-
ates. We adopt a different approach that greatly relaxes the assumptions compared with the
aforementioned work.

Let us point out that our decay estimate (1.18) requires sy < % . The endpoint sy = % is not

captured by our approach on a basic lack of paraproduct in endpoint B;, 11\1/ ?. Under additional
smallness conditions on initial data, the decay estimate can be proved in an alternative way,
analogous to [15, 34, 50].

1.5. Outline of the paper

The paper is organized as follows. In section 2, we introduce the definition of hybrid Besov
space and fractional Laplace operator, and present some useful auxiliary lemmas. In section 3,
we reformulate our system into the more convenient equivalent system (3.3), and establish the a
priori estimates for the paralinearized system (3.4) and the nonlinear system (3.3). Section 4 is
devoted to the proof of theorem 1.1 for our system (1.1) and (1.2). By building the approximate
system and using the compactness argument, we construct the local solutions in section 4.1.
In the following sections 4.2-4.4, we respectively tackle with uniqueness, global existence
under smoothness condition, and propagation of smoothness. Finally, in section 5, we give the
detailed proof of large time behaviour stated in theorem 1.2. Through introducing some time-
weighted hybrid Besov spaces and separately treating the low-frequency and high-frequency
parts, we show the time decay estimates for the constructed solutions.

7
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2. Preliminary

This section includes some basic analytical tools needed in this paper. We first introduce
the concept of Besov spaces and some properties. Then we recall the definition of fractional
Laplacian and the Kato—Ponce type commutator estimates, particularly in Besov spaces.

2.1 Besov spaces and some related estimates

We first introduce the Littlewood—Paley decomposition. One can choose a nonnegative radial
function ¢ € C2°(RY) be supported in the annulus {£ € RV : 3 < [¢] < 3} such that (e.g. see
(2D

D w9 =1, VEeRY\{0}, 2.1)

J€L
where ;(£) = p(277¢). We define the localization operator:

Aju= ¢ (D)u, Su—ZAku
kS~

Now we present the definition of (homogeneous) Besov space and its hybrid type.

Definition 2.1 (Besov sapce and hybrid Besov sapce). Let s,sl,sz €R, (p,r) € [1,00]%
Denote by P(RY) the set of all polynomials and by Si(RY) := S'(RY) /P(RY) the quotient
space. We define the homogeneous Besov space B, . = BS L(RY) as

B;,r (RN) = {M S S/,:( ) ||uHBY L(RY) = H {2}‘”A MHU(RN } (2) < OO} .

Let jy € Z, and we define the hybrid Besov space B> = B**?(R¥) as the set of all u € S} (R")
such that

Jo - ] +o0 . )
[l = D 2 Al + D 22| Ajul 2 < oo
j=— Jj=jo+1

By restricting the norm of Bj’,’, to the low or high frequency parts of tempered distributions,
we also get that, for some jy € Z,

14 is || A
= || 2| A }
b= {208l }

2.2)

oo and [ully = {2 1Al |,
0

Definition 2.2. Lets,s1,s2 € R, (p,q,r) € [1,00]*, T > 0. The Chemin-Lerner space Z‘%(Bf”)
is defined by

el g, —H{ZJ‘YHAJ“”L‘%(m}jeZ r@y

and L%(B**) is defined by that for ji, € Z,

Jo +oo
||”||Zq(§ﬂr1‘vz) = Z 2jS]HAj”||L‘;(L2)‘|' Z 2ISZ||AJ'”||L‘;(L2)'
j=—00 Jj=jo+1
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The following Bony’s paraproduct decomposition is very useful in the proof.
Definition 2.3. For any u,v € S/(R"), uv has the Bony’s paraproduct decomposition:
w=T,w+Tu+R(u,v), (2.3)
where
TuV: ZSj_luAjV, and R(u,v) = ZAjuAjV, A]’ = Aj_l +Aj+Aj+1.
J J

We have the following product estimates in the hybrid Besov space B2,

Lemma 2.1. (1) Forany s; < s{ < %’ and s, € R, there exists a constant C = C(sl,sl’,N) such
that

< Cllu

HTVuV| VHB:2+1 . (24)
2,1

~¢ N 74 N ~ /
B.\l +s57— 745 +s50— 2 B»Vl 51

(2) For any (s1,s]{,52) € R® satisfying s{ > s1 and sy + s > 0, there exists a constant C =
C(s1,s{,52,N) such that

R (u,Vv) 2.5)

|§\'l+»\2f¥p\'{+x27% < CVHMHBZZIJrl ||V| E‘vl”\ll .

(3) For any (s1,s1,52) € (*%, %3 satisfying s1 +s2 > 0 and s{ > s1, there exists a constant

C = C(s1,s],52,N) such that

HMVHEslef%:{Jr:z—% < C”M” ||V

iz, (2.6)

~ /
B

(4) For any (s1,s,) € R? satisfying —g < 81— 82 <0, there exists a constant C = C(sy,s,,N)
such that

Huv |§»‘1»“2 <C HMHE“'NZ V||L°° + ||u||~¥+x1—xz,% HVHBSZ ) 2.7
B 2,1

and

Tl + IR G, V9) s < Cll gt [V 28)

2

Proof of lemma 2.1. (1) For the proof of (2.4), noting that B*'»*/ (R¥) = B!, DBZ‘II (RY) for
every s; < sl’ , it suffices to show that for every s; < g and s, € R,

y < Cllu

Lsp sy —

51
By, BZ’]

HTVuV |VH R+l (29)
By,

with C = C(sy,N) > 0. While concerning (2.9), using Bernstein’s inequality we have

9
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sz(er‘z*%) ||Aj (Twuv) HL2 < sz(erSz*%) Z ||AJ (Sj/,1VuAjlv) ||L2

JEZ i’ —il<4

< CZ 2j/(s1+s2—%) ||Sj/71uHLoo2j/||Aj/VHL2

JEZL
J'EL
<o) (207D 37 2 A | 27
JIGZ kgllil
<Cllu B‘;{l||V B

as desired.
(2) The proof of (2.5) is quite analogous with that of (2.4) and [2, theorem 2.52], and we omit

the details.
—4,%], we indeed have (see [2, corollary 2.55] for
N
Y or

(3) When s; =s{ € (—%,%] and s € (
€ (—%,%)* and [2, remark 2.48] for a slight modification for the case 5; = J

2 .
By,

|v

|‘MVHB§I,1+527N/2 < CHu 1.3;]’1

Thus (2.6) directly follows from the above inequality.
(4) When s; = s, > 0, (2.7) is guaranteed by the classical inequality in [2, corollary 2.54]. For

the general case 0 < s1 < 52, we use Bony’s decomposition (2.3), and noting that for every

JEZ,
1A T < S0 1A (Srwdim) e <€ 30 15l |4y,

i’ —jl<4 i’ —jl<4
JAR@Y) 1 < € Y7 24 (Awdw) 1 <€ Y 2¥ | Awliz | Aev]l
k=j—3 k=j—3
we have
1Tl €Y1 D0 27Ol 27 Aoy 2
J<jo i’ —jl<4
+C Y D ISl 2 A il < Cllullgye, -y VIl
JZjo+1]j"—jl<4
(2.10)
and
IR (1, ) ||, < CZ Z z(j—k)(%“m—xz)zk(§+s1—x2)”Aku”Lzzksz”Akv”Lz

J<joj—3<k<jo
20052k || Agut]| 2222 | Agv | 12

+Cy >
J<jo kzmax{j—3,o}

O30 2 A 2 A

Jrkejo k< jo
+C>, )
JZjo+1kzmax{j—3o}

< C”“”E%-H] —52,% HV

20705285 || Aar| 1228 || Ay | 2
(2.11)

B2 -
By,

10
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Via a direct computation we also get ||T,ul|z, .., < C|[v||zo ||u]/3,..,- Hence, collecting the

above estimates leads to (2.7).
While for (2.8), it can be easily obtained by arguing as the deduction in (2.10) and (2.11).
O

In the analysis of asymptotic behaviour, the following weighted paraproduct and reminder
estimates play an important role.

Lemma2.2. Letjo € Z, r € R, f,g € S} (RY) and {1);};cz be a positive sequence.

(1) For every r; <0, we have
Sou?IA T e <C | Y 2 A M= | D0 D0 2T A gl (212)
<o J' <jo+4 J<o [ji—j’|<4

(2) Forevery ry € R, we have
S w21 (Tig) 2 < € ( sup 2 <”2>||A_wg|y> SO 2 Aty (213)
J<io J o4 J<ioj' <j+4

(3) Ifr>-Y rneRand0< B <r+ 5, we have

S w2 AR (f8) |1z <c(su% o't mnA,/guz)
Jj'€

<o (2.14)
x> 0 2T A
J<ioj’ >j—4
Proof of lemma 2.2. (1) By virtue of the spectral support property, we see that
ST IA TRl < €Y ST w2 A (S Avg) e
J<Jo Jo li—j'|<4 (2.15)

<O Y S sl Ay gl

J<o lj—j'|<4

Plugging the definition of S i —1fto (2.15), we deduce that for every r; <0,

> U2 IA (Ty) [l < C(( sup 2/ ””Sj’LﬂlL‘X’) > D w2 Al
j/

i<io J<o li—j'|<4

<jot+4
<Cl 20 MMl | D0 >0 A gl

J o4 J<oli—j'|<4

(2) The inequality (2.13) for every r, € R can be deduced in the same manner.
(3) By using the spectral property of the dyadic operators, we get

S0 I AR(fe) e <> ST w2 )AL

J<io J<Jjoj'>j—3

2l Ay gl

where we have used the fact that 2% < C for every j < jo. Consequently, the desired

inequality (2.14) directly follows.
O

1
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Let us state a continuity result for the composition in Besov space (for the proof one can
see proposition 1.5.13, corollary 1.4.9 of [11] and proposition A.3 of [15]).

Lemma 2.3. Let s € R and (p,r) € [1,00]* be such that
N N
O<s<—, or s=—andr=1.
p p

Let I be an open interval of R, and let f: 1 — R satisfy f(0) =0 and f',f" € whltheo (L R).
Assume that u,v € BIS,JﬂLOO(]RN) has values in J C 1. Then the function f(u) belongs to
BIS,’,(RN), and there exists a constant C = C(s,1,J,N) such that

s]+1
o) gy, < €U utleo) T Nt ooyl (2.16)

and
LA £ 1, <CO+ o) I i

'(Iv—ullg~ sup |u+7 (v —u) oo +[|v —ullree sup |lutT7(v—u)|s )
" relo1) ] nr

TE
2.17)
where [s] denotes the integer part of s.
. N
In the case s > —% then u € B, \(\B, | implies that
o <C<1+|M||Bg> ol @18)
P,

Remark 2.1. After some trivial modification, the above composition inequalities can be adap-
ted to the hybrid Besov space B*"*> with 0 < 51,5, < %

The result below is useful in the existence part.

Lemma 2.4 ([2, proposition 2.93]). Lets >0, (p,7) € [1, oc)? and K be a compact set of RY.
Assume that u € B;,’,(]RN ) is a tempered distribution with the support included in K. Then

ue B;,V,(RN ) (the usual nonhomogeneous Besov space) and there exists a universal constant
C > 0 such that

lull ey < €1+ KD lullg, s,

The following three lemmas are concerned with the commutator estimates.
Lemma 2.5. Let o > 1. Then the following inequality holds true:
A 52w V] Aol 2 < 27V Vv| < | Ajo | 2. (2.19)
Proof of lemma 2.5. Taking advantage of the spectrum support property, we see that

[Aailasj—l\/' VJ AjU = Z [AailAj/,Sj_1v~ Vi| AjO’
li—j’|<4

=Y 2j/(’v+a")/ Z(2j/y) (S (x—y) =81 (x)) - VAjo (x—y)dy,

= RV
' =jl<4
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where A~ 1A = 2" WHa=D (2 ) x and h = F~1([€]* 1 p(€)) € S(RY). Hence, combined
with Holder’s and Bernstein’s inequalities, the desired inequality (2.19) easily follows. 0

Lemma 2.6 ([2, lemma 2.100 and remark 2.103]). Let —5 < s < 5. There exists a constant
C such that

| (2181 VA= 8509 112) |, < Iy I,
s Il

jHZ‘

Lemma 2.7 ([2, lemma 10.25]). Let m € R, and let A(D) be a smooth homogeneous multiplier
of degree m. There exists a constant C = C(m,A,N) such that for all p € [1,00] the following
inequality holds true:
. . . /+4 . . .
I1S;_1aAA (D) b — A (D) AT.b||p < c2"Y > (IVAalls +[1VSi-1alle=) | A bl
j/J//:j_4

2.2. Fractional Laplacian and Kato—Ponce type inequality

Definition 2.4 (fractional Laplacian). For every u belonging to the Schwartz class S(R"), the
fractional Laplacian operator A® with 0 < « < 2 is defined as

dy, (2.20)

2°T(N/24/2)

with CaqN = m

We first recall the following Kato—Ponce inequality associated with the fractional Laplacian
operator A“, of which proof can be found in Li’s paper [29, theorem 1.2].

Lemma 2.8. Let >0, oy, = 0 be with a; + iy = o, and let 1 < p,py,ps> < 00 be satisfy-
ing p% + p% = %. Then for every u,v € S(RY), we have

HAO‘ (uv) — Z %8kuA°"kv— Z %8’"\11\0""%

|, Soanannw A% ulr [A%vlsyo, (2.01)

lkl<ai I
and
1 1
A% @) = > A= 3T A | Saann i Al A2, (2.22)
[kl <o ™ [m|<ar

where k= (ky,....ky), m= (my,...,my), Akv(¢) = i_|k|8’€‘(\§|°‘)?(£) and the BMO semi-
2)3 |

A consequence of lemma 2.8 is the following commutator estimate.

norm is given by ||lulsmo = || (3_;cz |Aju

Lemma 2.9. Ler 1 <a <2, 1 <p<ooand p;,p; € [p,o0| be satisfying pil + p% = /% Then
we have

|AY (uv) — uA“V||p San |Vl IA ] 2 4 | Au]| 1 ||| - (2.23)

Proof of lemma 2.9. For every p < p, < 00, by taking oy = 1 and a; = av — 1, the inequalit-
ies (2.21) and (2.22) become

A (uv) — uA®y —vA%ul|p San ||Au A9 San [IVul| ||A“_lv|\m,

y2g!
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thus the desired estimate (2.23) follows from the triangle inequality and Holder’s inequal-
ity. Similarly, by taking oy =a — 1 and a, = 1 and switching «,v in (2.21), and using the
Calderén-Zygmund theorem of singular integral operator, we obtain

[IA (uv) — vA®u — uAv — 8uAa7lv| 0 San ||Au||BMOHAO‘_1v||U; San ||Vl ||Aa_lvHU,,

which leads to (2.23) in the case p, = p. ]

Now, we present a useful commutator estimate in Besov space as follows.

Lemma2.10. Letl <a <2, s> —%’ and s1,57 > 0. Then we have

||Aa (MV) - MAQV”B;J §a7N,x7s1,s2 Hu||32%f]+l—xl VHB;TI*“*‘ + ||M B:r]:fro‘ |‘v||321%”1—»?2 . (224)
Proof of lemma 2.10. We here apply lemma 2.9 to show (2.24). Using Bony’s decomposi-

tion (2.3) leads to

3
A® (wv) —ul®v = (AT — Tu (A“V)) + (A“Tyu — Taovu) + (AR (u,v) — R (u, A®v)) =: ZHj.
j=1

In light of lemma 2.9 and the spectrum support property of dyadic operators, we get

10y, S 3028 IA (- qudw) = § 1w A Ag],a
JEZ
S 22 (IASullo [ Apllze + (V8- oo 1A Ag] 2
~ j—1 L VL j—1 L jYVIIL
JEZ

<Y (2 3 G A | 2O A
JEZ -1

%

Slall

2,1

Lss)Fa—1.
BZ,]

Similarly, we have

M|z < ZZWA“ (Sj,lvAju) — A (S-1v) Ajul 2
T ez
<322 (1A Al - vl + 19 Al 4718y 1vli )
JEZ

(2.25)

S g ova o

2,1

For the term II3, we do not need to use the commutator structure, and we infer that for every
N

§> =3
2 9’
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I, S 22" (AR () iz + AR (0, A) 1)
T jez
N o A LT . . e
<30S o) (2, I1A; (AkuAkv) o+ 1A (AkuA (Akv)) ||L1)
JEZ k>j—3
S0 20 Bl Kt || A2 25 3 ) A
JEZ k>j—3
< ||u Bzﬁ 2+ VHBZ%?Z (2.26)
Combining these inequalities (2.25) and (2.26) completes the proof of this lemma. O

As a direct consequence of lemma 2.10 with s = % +1—r,sy=ri—«ands, =r—ry, we
have the following commutator estimate.

Corollary 2.11. Let | <a <2 and o < ry < r <N+ 1. Then the following inequality holds
true:

« «
A% (uv) — ul V||Bzf%fl+1—r Sa,rn N ||”|‘B2%fl+l+afr1 V”Bz%flwlfr'
Remark 2.2. It is worth mentioning that Danchin et al [14, lemma 3.1] established a related
commutator estimate (with different Besov index), and they mainly use the intrinsic definition

of Besov space.

3. A priori estimates

This section is devoted to establishing a priori estimates for the Euler-alignment system (1.1),
with isothermal or isentropic pressure (1.2), and strongly singular alignment interactions (1.6).

Let us begin with rewriting the system into a more treatable form by introducing a new
quantity

VEY (y—1
B G AR 3.1)
VEInp, ~y=1.
It is easy to see that p = 1+ k(o) with
1
(L—lo—+1)”"—1 N> 1
ho):={ Ve ’ ’ (3.2)

e?/VE 1, v=1.
Consequently, (o,u) satisfies the following coupled system

0o +u-Vo+(y—1)odivu+ Adivu =0,
Ou—+u-Vu+ pA“u+AVo = —p (A% (uh(o)) —ul®h (o)), (3.3)

(Ja I/t) ‘t:O = (0’07140) )

where A 1=\ /ky and p 1= CQIN.

In the following, we first Sfudy paralinearized equations of (3.3), and obtain a priori estim-
ates in a hybrid Besov space. The analysis is inspired by the work of Danchin [10] (see also
[4, 6]). We then calculate some nonlinear estimates and obtain a priori local/global uniform

estimates for the system (3.3).
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3.1. A priori estimates for the paralinearized equations

In this subsection we study the following paralinearized system
0io+T,-Vo+ Adivu =F,
ou+T, Vu+ puA*u+ A\Vo =G, (3.4)
(o,u) [i=0 = (00, u0) ,

where v is a given vector field of RY, and F, G are given source terms. We denote

N N
T,-Vg:= ZTVIOXI.g = ZZSj_lvi Ajf)x,.g.

i=1 i=1jez

The system (3.4) contains the major linear structures of (3.3). A priori energy-type estimates
of (3.4) are stated as follows.

Proposition 3.1. Forevery s € R, the smooth solution (o,u) of the paralinearized system (3.4)
satisfies that

t t
||O—||Zloo(Ev,r+a—1) + ||MHZIOO(B;,I) +/0 HO—(T) §3+“»J+ldT+A ||u(7_) ||B;ﬁad7-

t
o+ [ 1FG)
o Jo
with V(1) == [, ||V(T)|‘B%1+ld7' and C = C(a,N) > 0.
5.1

3.5)

t
< CeCV(t) (||00 Bssta—1 + Huo EV,.v+a—ldT+/ HG(T)
0

B;’]dT),

Proof. Denote by P :=Id — VA~!div the projection operator onto the divergence-free field
and

d:=A""divu.
We decompose u into two parts
u=—-VA'd+Pu.

Then (3.4) becomes

0io+T,-Vo+A\d=F,
Od+ A" div (T, - Vu) + pA®d — Mo = A~ divG, (3.6)
OPu+P (T, Vu) + pA*Pu =PG.

From (3.6), we see that (Aja, Aju) satisfy that

00 +85-1v- VAo + AAd =,
OAd+ 8- 1v- VAd+ pA*Ajd — M Ao = gj, 3.7)
&Aj]P’u +8 v VAj]P” + MAaAjP” =8

where

fii=NF+S8_v-VAjo—Aj(T,- Vo), 3.8)
g :=A"divAG+ S v-VA;d— A" div A (T, - Vu), 3.9)

16
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g =PAG+S8;_1v-VPAju—PA;(T,-Vu). (3.10)

Now we estimate the compressible part (Ajo, A;d) and the incompressible part PAu
respectively. For the sake of simplicity, we denote (f|g) = [p.f(x) - g(x)dx in the sequel.

Step 1: the compressible part. Taking the L? inner product of the first two equations
of (3.7) respectively and using the integration by parts give that

1d. . . . . 1 SN2
**”AJU”I%Z-F)\/ AJCTAAJddX:/ fJ"AjO'dX-f‘*/ (AjO’) diVSj_l\/dX, (311)
2dl RN RN 2 RN

and

1

1d, a . . .
EE”A]dHiZ —|—,LL||A 2 Ajd”iz — )\/ AjcrAAjddx = / ngjddx—F 2
RN RN

. 2 .
/ (Ad) divs v (3.12)
RN

In order to get the smoothing effect of o, we consider the cross term (A®~! A ;| A ;d). Applying
the operator A%~ to the first equation of (3.7) yields

A Ay + A1 (§-1v- VAo + A Agd = A (3.13)

Together with the second equation of (3.7), we get

d (A" Ao ) — N|AZ Ajo s + AT Al +M/ A®Ad- A% Ajodx
dt X RN
= A“_‘]j--Ajddx—k/ gi-A*TAjodx
RN RN

7/ (§-1v- VAd) - A Aodr— | A ($1v- VAo ) - A (3.14)
-

RN

To proceed, we work with low frequencies and high frequencies separately. Define

1 4 ) 4\
jo:=——1log, —, ie. 20le"l =2 (3.15)
a—1 Iz 2
For low frequencies j < jj, namely
; 4
sita—1) < 4 (3.16)
“

we set

. . N . a— . . .
v = &0l + 1Al — 5% (Aaiac" A ), j< o

1

where ¢ > 0 is a suitable small constant, e.g. § = 555

. It is easy to check that

Y= || Ajollz + | Ay 2. (3.17)
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Gathering the equations (3.11), (3.12) and (3.14), we see that Y; satisfies

24t 2N

_ A 6M a—1 6/1’ a—1
/RNJ;<AJU A Ad)dx+/ (Ad A A
1 . CoN2) .
—2/RN((AJ~U) + (44) )dlejlvdx
op

+2)\/(j - VAd) AT lAjodx—l—g)\/ AY™ 1(, - VAJJ).Ajddx.

1d ) . ou? . .
ot (125 )l f s AT Aol = 5 [ he Ay ne Ao

(3.18)

For the terms on the right-hand side of equality (3.18), using Holder’s inequality, we get
. ) . )
[ 5 (8- Feacaa) dx+/ o (8- Zamdyo ) ar< gl + gl
RN

’/ < J(T Ad) )leSj 1vdx‘ C||IVS;— lvHLoo
RN

and thanks to the integration by parts and lemma 2.5, we find
/ (Sj_l\/'VAjd)'AailAjde—I—/ A*™ 1( 1V VA O')A]ddx
RN RN

:—/RN (divS;_iv) Ajd-A“_lAjadx—i—/RN (A8 v V] Ajo - Ajddx

< 2D | | Asd] 2| Ajo || 2 (3.19)

For the terms on the left-hand side of (3.18), by virtue of Holder’s and Young’s inequalities,
we have that for all j < jo,

ou*

o 5
o) A“Ad A Ajodr < 265 a SIAT A + ”||A T Ao

511 8 2(a—1) ) o 5 o
< A—’é <3> 29D A% A, + 1A T Ao 3

Choosing ¢ small enough (e.g. § = ﬁ) and using (3.16), we obtain

g ou’ (8 Homh 2jo(a—1) M
Thus the equation (3.18) can be rewritten as
d
gy + 129 < C(Ifillee + llgille + IVVlle=Y5) (3.20)

where [i := %’L and we have used the following estimate

S (3N Lo (1
DA% A+ 2at Aol > 2 (3) 2% (14

Lo IAelR) = 2o,
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Now we consider the high frequency case j > jj, namely

. 4
pila—1) o AA (3.21)
o

We define another energy, still denoted by Y}, as follows
a—1 A A a—1 A . .
— A Ao+ 25 114, jdlf ~27 (Al Bo), o
From (3.13) we can gain the following L?-estimate
2dl||Aa "Ajo \|Lz+/ A (5o VAe) A Ajod
+A/]1§NAaAjd~Aa71Aj0dx= /RNA“’Iﬁ-AO"IAjde.

Noting that 22 (A;d|A*' Ajo) < %A—ZIIAjdH%z+§||A°‘“A,-0Hiz,weﬁndthat

Y~ A Ajol| + HA || 2 (3.22)

and Y; satisfies

1d e 203

3o+ SIAS A + At Aoy, -

/ AUAAddx

/ Aa lf (Aa IA g — AAjd> dx—I— iz/ g,‘ (2/\Ajd—MAailAj0') dx
RN M Jry

A C A a—1 A A a—1 A
+;/RN (§-1v- VAQ) -2 A,adx—i—;/RNA (§-1v-VA0) - Ajdax

/RNA“ (8w VA, a)~Aa1Aia&+§AN (Ajd)zdivsj_lvdx.

For the left-hand side of the above equality, applying (3.21) we have

. 3\2*? . A2 .
IAfaal > (5) 20 A Al > 214 Al
and
2/\* e
AUAAddx<—HA2AJH,_2+ HA F Al
<INt Aol + @\\A%A_fﬂﬁz,
and

Az [ 2 (e 2 )\2 l
2 (148 Aol + 0% Aidi) > 2 (142 Aol + 82510 Al
)\ i(2—a a—1 A 8)‘2 A
> 2300 lAja|iz+lﬂA.,-dniz).

19
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On the other hand, for the terms on the right-hand side, owing to Holder’s and Bernstein’s
inequalities, we infer that

. )
/ A (AQIA;‘U - Ajd) dx < CA* 2y,
RV H
A . o1 i
) (22 4jd— pre~" ) dr < Cllgi 12
and

A2 N2, . .
. (Ajd) divS;_yvdx < | div8_ vz 1A%,

and using the integration by parts and corollary 2.5,

/RNALH (§-1v-VAjo) - A Aodx= | (§1v- VAT Ar) A2 Ajordx

RN
+/ ([AG_I,SJ;IV'V} AjO‘) Aa_lAjadx
RN
N @i ) (A0 TAG) a1 & V] Ag) ACTA,
= (dle],lv) AT Ajo ) dx+ [A ,Si—1v V]A]U AT Ajodx
2 RN RN
< CY VNV i< AT Ajo|| 2| Ajo | -
Similarly as obtaining inequality (3.19), we also see that
é/ (S~_1v-VA-d)-Aa*1A~odx+é/ A (51 Vo) - Addx
i gy J J J i gy J J J

< YOIV v | Asd| 2| Ajo

2.

Hence, by letting v := % and gathering the above estimates, we have the following inequality

d i i(a—
SY 72, < CHOD| 3 + Cllgi iz + CI Pl Y (3.23)
Combining the estimates on both low and high frequencies (3.20) and (3.23), we obtain

d [ e (o
EYJ-—I—mm{,uZJO‘,VZ’(Z “)}Yj<Cmax{1,ZJ(a 1>}\|];-||L2+c||gj\|Lz+c|\vv|\ng-.

Integrating this with respect to the time variable and using (3.17), (3.22), we obtain

1 t
)/j(t)+min{;]2ja,172j}/ ||Aia||deT+min{nzfa,pzf<2*°‘>}/ |Ad||2dT
0 0 (3.24)

t
<0+ [ (max {120} gl + gl + Vvl ) dr.
0

In the above estimate, the smoothing effect of d in the high frequencies can be improved.
Indeed, taking the L?-inner product with d in the second equation of (3.7), we deduce that

d, . 3\ el 8 ... )
1A+ (3) w2l bl < 32180l + gl + 19l Nl

20
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and integrating on the time variable leads to

t t t
e / |Ad(r) [ 2dr — A2 / |0 (7) [l2dr < CY;(0) + € / (gl + |V vl %) dr.

Inserting the above inequality into (3.24) yields

t t
Yj+min{ﬁ2ja,z72j}/ ||Aja||deT+2f'a/ | Ajd|| 2d7
0 0 (3.25)
<CY(0)+C / (max {1,260 iz + ligllz + I 9v]l ¥5) d.
0

Step 2: the incompressible part. By taking the L2-estimate of equation (3.7)3, the incom-
pressible part satisfies

1d

S SIAPuE: + plIA% APul: < ClAPul (11divS;- vl APl + 13 )

which implies that

d. . 3\ ¢ ol A o . N
GNP+ (5) 20l < C(JavSovlu IR+ Fl) . G20

Integrating with respect to the time variable, we have
. 4 . . t ~ .
1ABu(0) 2+ 2 [ 1A Puldr <20 APl +€ [ (Gl + 19slioe | ABuliz) ar. (3,27
0 0
Step 3: the a priori estimate for (o,u). We need to combine the compressible and

incompressible estimates to show the a priori estimate of (o,u). Multiplying 2/* on both
sides of (3.25) and (3.27), taking the ¢'-norm with regard to j, and noting that ||u|| B, <

||dHB;l + ||PMHBJ“, we obtain

1
||U||z?o(§.;,A+a71) + HMHZF"(BE,I) +/0 (HU(T) l[+asr + [u(7) HB‘ZT) dr

t
< N0l + llollz;, + / 199 ()l (1007 s + () g, )47 50

1
+ [ Smax {28,200 s+ Y2 gl + B ) | o
0 \Jez JEZ

Recalling that f;, g; and g; are given by (3.8)—(3.10), and by virtue of lemma 2.6, we see that

> max {zfﬁzf“*“*”} 1lle2 < CIF lvams + CUVYILy llollgrans (3.29)
JEZ 2,1

and

sz‘v (Ilgill2 + lIgll2) < CHGHB; T CHVVHBg (| B, (3.30)
’ 2,1 ’

JEZ

21



Nonlinearity 37 (2024) 025007 X Bai et al

Inserting (3.29) and (3.30) into (3.28) yields

15
||0-||Zroo(§.r,s+afl) + ||M|\ztoo(35)1) +/o (HU(T) [Beastr + [l (7) ||B~‘2‘fq“> dr

f (3.31)
S ll0lzcsacs + luollss + / 199 1Ly (Il () st + () lgg, Jar - &
: Z, ‘
+ HF||L}(§x,s+a—1) + ||G||L}(B;J)'
With the help of Gronwall’s inequality, we conclude the proof of (3.5).
O

3.2. A priori estimates for the nonlinear system

Let us turn our discussion to the nonlinear system (3.3). It can be viewed as (3.4) with v=u
and

F:=—(y—1)odivu— Ty, -u—R(u,Vo),

3.32
G :=—pA® (uh (o)) + pul®h (o) — Ty, -u—R(u,Vu). (332
Define
X(T) .= ~ e -
(D=l ety Wl 00y 1y ey I oy
and
Xo:= ||UO||E§+I—n,§ + ||”0HB%’+l—a' (3.33)

2,1
We state the following a priori estimate on X(7'), assuming X is sufficiently small. The

uniform bound on X(7") will play an important role in the global well-posedness theory for the
system (3.3).

Proposition 3.2. Assume that (o,u) is a smooth solution for the system (3.3) with oo €

~ LNy
BXH1=23% and uy € BZZT “. Then there exist constants £y = eo(a,N) >0 and C,=
C.(a,N) > 0 such that, if Xy < g¢ then

X(T) < Cy Xo, vT>0. (3.34)
Proof of proposition 3.2. Apply proposition 3.1 with s = g + 1 — o and get

X(T) < €™ (Xo Iy ooy + ”G”u.(,;%a)) :

2,1
Now, we estimate the source terms F and G. It follows from lemma 2.1 that

||adiquL,T<§g+1_a,g) +|Tvo - uHL,T(EgJ,]_ag) +||R(u, Vo) ||L1T(§%/+1_a,u)

2

2
< U0l oy el oy <OFD
and

Bz', 2,1

2
IITwMHLIT( ¥1+1w> + \IR(M»VM)IILIT<Bg+m> < Cllullz?o (iaff‘*“) “”M(Bﬁ'ﬁ‘) <X (D).
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Taking advantage of corollary 2.11 and lemma 2.3, we obtain

A () — A -y < €I gy I 1

2,1

<Cllull /oy lloll_ /oy <CX(T). (3.35)

(i) 1 ()
Note that when applying (2.16) in lemma 2.3, the constant C depends on ||o || . Moreover,
when > 1, h is defined in I = [— ﬁ,—#oo), and it is not necessarily smooth at the end-
point 0 = ,@ (The endpoint corresponds to vacuum p =0, which needs to be avoided).

Therefore, we may assume e.g.
el
o720 1oy < 55y (3.36)

to make sure C is a universal constant. (3.36) can be enforced by an appropriately chosen
smallness condition.
Combining the above estimates with Holder’s inequality yields

(s XD

Hence, collecting the above estimates we deduce that
X(T) < Ce™ M (X0 +X*(T)), (3.37)

where the constant C = C(a, N). Pick C,, = max{4C,1} and g9 = C,>. We now show (3.34)
by contradiction. Suppose (3.34) is false. By continuity of X, there exists a 7 > 0 such that
X(T) = C..Xp. Then (3.37) implies

1Pl -ty 1

X(T) < Ce““* (Xo + C2X3) < Ce'/*-2X, < C.Xo.

This leads to a contradiction.
__ We can further choose a smaller ¢ to get a smaller X(7') when needed. In particular, since
Bat!=e% <y 1% we can choose ¢ small enough to guarantee (3.36).

O

Next, we present an improved a priori estimate on X(7T') for some positive time 7, without
a smallness assumption on 1. This allows us to obtain a stronger local well-posedness result
(see theorem 4.2). This method has been used on the barotropic compressible Navier—Stokes
system, see e.g. [2, corollary 10.4].

~ LNy
Proposition 3.3. Ler 1 < a <2, og € B T'=*7 and uy € BZZT . Assume that (o,u) is a
smooth solution for the system (3.3). Then there exist a positive time T and a small enough
constant 1) > 0, such that, under the assumption

||UOH§§+17Q,§ < 7,

we have
”‘7”2;0 (§§+1—a,§) + HUHL‘,(E%“’g“"’) < CHUOHE%H—a,%a

and
X(T) < CXo, (3.38)
with C = C(«,N) > 0.
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Proof of proposition 3.3. We split u into u; + u, with u; satisfying
Oy, + uAO‘uL =0, uL|t:0 = Uop.

Itis obvious that u, = e~ #"A" ug, where e #A" = F~1(e~#I€1" )« is the fractional heat semig-
roup operator. By using Bernstein’s inequality and [22, proposition 2.2], we have

t ) ]
:/ e () g < €322 (12072 A, (3.39)
0 2,1 =
and
< . 3.40
||uL||~ (R‘*’BZH cv) HuOH 2"’1+1 ( )

Observe that (o, %) satisfies

00 +T,-Vo+ A divi=—-Xdivu, — (y—1)odivu — Ty, -u—R(u,Vo) =
Ou~+T, - Vu+pA“u+AVo =

—u-Vup — p(A* (uh(0)) —ul®h (o)) — Tyz-u—R(u,Vu) =
(Uaﬁ)t:o = (00,0),

with u = u; + u. Denote by

2,1

X(T):= ”U”Z, (330 4) +lull, <Bg+lfa> + ||U||L;(§g+l.g+zfa) + Hu”u,(sff‘)'
According to (3.31) of proposition 3.1 with s = g + 1 — «, we infer that

1
X(1) < n M v X F - vy ) A1
(t)NllaoHBﬁlfa,ﬁ/o IIVu(T)Hgf (r)dr+|| IIL}<§§ >+|IGII ( w) (3.41)

2
2,1 2,

Holder’s inequality implies

/Hw Ly X(r)dr SUL()X (1) + X2 (1) S UL (1) +2X° (1)

2

Now we calculate the terms involving Fand G. By virtue of Holder’s inequality and the inter-
polation, we get

”divuLHLt](’g%’Mfa, ) H LH (BN+2 a> +HMLH <32+1)

2,1 2,1

<

< HMLHL} (Bzgflfamz’] ) + HMLHL (BZ%;LI)

St”MLHZOC(B%’ _ >+2||uL|| ( N+|> < ||uo|| farn L H2UL(D).
a 21

It follows from lemma 2.1 that

IIUdiVMHL,<BZ+1 « 2)+||Tw ull, G g)+||R(M7VU)IIL}(§g+I_a,g)

<CHUHZPQ(E )H ul| (B

24
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and

2 Y2
el -y < el (e Iy ey <€ (O +70).

2,1 2,1
and

T -ull (B?l“‘“) + (1R (u, V) HLrl <3g+1-a>

T 2,1

~ 2 2
< Ol (- Il g3y < c(vi+2 ).

2,1 2,1

From (3.35) we get

A7 h() ARy 1m0 <l gl 0 < (i) +X ).

B2
2,1 o\ B2y

S

Plugging the estimates above into (3.41), we have

X0 <1 (ool +linl oo+ U0+ G 0) + R0,
with Cy,C, > 0. Since lim,_,o U, (¢) = 0, by letting 7 > 0 small enough, we infer that for every
t€1[0,7],

X(1) <2C, 0/l 1y + CX2 (1)

Letn= ﬁ and C = 4(1, a similar continuity argument as in proposition 3.2 yields

X(1) < Clloolly iy, Vi€ [0.7].

Finally, combined with (3.39) and (3.40), we conclude the proof of (3.38).

4. Proof of theorem 1.1

This section is devoted to the proof of theorem 1.1. As a byproduct, we also include the local
well-posedness result.
We will mainly prove the following global well-posedess result to the system (3.3).

Theorem 4.1. Let 1 < o < 2. Consider the system (3.3) with initial data oy € B> t1—% (RN)
N
and uy € BZZ’IH “(RN). There exists a small constant €' > 0, such that if

”UOHE%M—Q,% + HMOHB?IJFFQ < 6/7 4.1

then the system (3.3) has a global unique solution (o,u) satisfying

N N N, N Ny N < /, .
ol (e 3+t +lloll, (#3340 Hlull_ (sl ) +llull , (57) Ce', (4.2)
with C = C(«,N) > 0.
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Based on theorem 4.1, we can immediately present the proof of theorem 1.1. Indeed, noti-
cing that p— 1 =h(o) and 0 = h~!(p— 1) with h~! the inverse function of &, the assump-
tion (1.11) and lemma 2.3 ensure the condition (4.1), and thus according to (4.2) in theorem
4.1 and lemma 2.3, we can conclude (1.12) and (1.13) by letting £ small enough. Similarly, the
higher regularity (1.14) of (p,u) can be obtained from the corresponding estimates on (o, u),
presented in proposition 4.3.

4.1. Local existence
Let us start with the statement of the following local well-posedness result.

Theorem 4.2 (local well-posedness). Let 1 < o < 2. Consider the system (3.3) with initial
- LNy
data 0y € B2t~ (RY) and uy € BZZ’EH “(RN). There exists a constant 1) > 0 such that if
looll iy <, (43)
then there exists a positive time T such that system (3.3) has a unique solution (o,u) on

[0, T[xRN which satisfy for every T' < T,

ueC ([O,T’] ;ij““) nL! ([0, 7] ;Bfl“) . and

”U”Z;o (g%—l—a,%) + ||0||L1T<§%’+1,%+2—a) < C||00H§%’+l—a,§~

The local solution is constructed through a standard approximation by the paralinearized
equations (3.4) and applying a priori estimates to pass to the limit. We sketch the proof in
below, with special attention to the nonlocal alignment term that needs a careful treatment.

The assumption (4.3) only requires smallness on o, thanks to proposition 3.3. It is possible
to obtain local well-posedness without such condition (see [12] on the compressible Navier—
Stokes system). Since our global well-posedness result requires a stronger smallness assump-
tion (4.1), we do not make an effort to remove this smallness condition.

Proof of theorem 4.2: existence. We first construct the following approximate system:

" F, (o™, u" " O
% <u> - (Gn((a”,u”))> ’ <u> o (f} 0) ’ @9
where 7, is the Friedrichs projector defined by
Tf(€) =1¢,()F(€), with C,:={¢eRY; n~ <[¢|<n},
and u" = u" 4 u} with uj satisfying
O] + pAu} =0,  uf|—o = Tuo,
and

Fy(o"u") = = AJydiva" — AT, divu] — T, (u"-Vo") — (v —1) Ty (o™ divu"),
Gu(0",u") = =ATn (V") = pJu N0 — T (u" - V") = pJo (A" ("R (0")) — " A* (R ("))

In addition, we define the set
L= {fe L* (RY); suppf C Cn} .
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Itis easy to see that the map (o, u") — (F,(0",u"),G,(c",u")) is locally Lipschitz continuous
and also continuous with respect to ¢ in (L,%)N +1. Via the Cauchy-Lipschitz theorem, there is
a unique local solution (0", @") € C'([0,T;); (L2)¥+1) to (4.4).

Since J, is uniformly bounded from L? to L?, from (3.39) and (3.40), we see that u} is
bounded uniformly in n, and satisfies

I ) + 190y oy < Clholgyrr-o

Arguing as obtaining the a priori estimate in proposition 3.3, under the assumption (4.3) with
small ) > 0, we infer that (¢, u") is uniformly-in-n bounded and satisfies that for some T > 0,

”Un”Z?o (g%—l—a,%) + ||0n||L|T(§§+1,§+2—a) < C”UO”§§+1—a,§v (4.5)

2,1

||‘7n||z;o CEagaty + ||“"HZ$O (sﬁ,*‘*"‘) + ||U"||L;(§g+n.gx+zfa) + H”n||ur<ﬁ*‘> < CXo,

where X is given by (3.33). As a result, we have

oreLF (Bt ) nLh (B Ee) and we I (ByT) Nk (85,
(r—Da

~ . N —
uniformly in n. The interpolation also implies that u" € L’T(Bzzjrl ~ ) forevery r € [1,00].
Let (6",u") be the solution of the following linear system

00" + Adivi" =0,
o + pAu" + \Vé" =0,
(&n’ﬁn) = (‘110-070) .

According to proposition 3.1 with (v, F,G) = (0,0,0), we deduce

T T\ P21

~n ~n ~ 1 ~n
1 e gty I iy +10 nmay FI y < Cllolynoy

Due to the fact that {(6",#")},en is a Cauchy sequence in the considered space, there
exists functions (&,i) such that 6" — & in L°(B2 1= 2) N LL(BY+1:312-2) and " — it
Lo~ LNy . N
in (B3 ) NLY(B; ).

Now denote by ¢" := 0" —¢" for every n € N. In order to gain more time-continuity
information, we consider (0,6",9,i#"). Note that

00" = AT, divu" — Adivi" — T, (u" - V") — (y—1) T, (6" divu"),

and by virtue of the above uniform estimates and lemma (2.1), we have

07" || o, n <|u"|| o , » W'l o, " e, ow " N
llo.c HL;H (Bﬂ]) S llu HLT“‘" (BZI> + | HL;H (321) + lu HLTQ,, <BZI)”U HL?Q (Bzi,]) < oo
(4.6)
Thus, " is uniformly bounded in
. N 1 .N_q
C([O,T};B22J>0Ca ([O,T];Bz{l ) 4.7)
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Meanwhile, recalling the equation of #" in (4.4), and with the help of lemma 2.1 and corollary
2.11, we obtain

—n n
19871 g -0y 1970,

~—
=L
&
R
1R
7~
-
W
Na

(4.8)
Il g (|o"|L$o (58) "1 <>> <oo.

So, u" is uniformly bounded in
C([O,T] ;ijl’a) fec: ([o, 7] ;E%I%*Q) . (4.9)

Let { ¢y }ren € C°(RY) be a sequence of bump functions which are supported in B(0,k + 1)

and equal to 1 on B(0,k). According to (4.7)—(4.9) and lemma 2.4, we have that {¢;d"},>
N N_
is uniformly bounded in C([0,7];B; ) N Ci([O,T];Bil 1) for all k€N, and {¢yu"},>1 is
N1 g N_,
uniformly bounded in C([0, T];B;)Tl )ync=([o, T];B5, ) for all k € N. Note that the map
N N__ N — N_

[+ ¢ifis compact from Bj | to B; !, and also from Bzzjl “to Bj, “. Thanks to Ascoli’s the-
orem and the diagonal process, we can find a subsequence of {(¢x7", ¢xit") },>1 (still uses this
notation) satisfying that for all k € N and as n — oo, ¢&" converges to o in C([0,T]; B; 1_1 )s
and ¢u" converges to u in C([0, T];Bg;a). Define (7,u) := (G, ) for x € B(0,k). Since
Grdrs1 = Px, we infer that (7,u) is well-defined. Hence, for all ¢ € C°(RY), we have

(90", 0") = (po,0m), in C([0,7):8;," x B ").

Via Fatou’s property for Besov space (see [2, theorem 2.25]) and the uniform estimates of
(¢pa", pu"), we moreover get

N

- e ~ s ~ LN N
c=0+5€Ly (B%“*a’?)mL%(Bi“%“*“), u=i+u €LF (B;’]+1 a) mL'T(B;’TI). (4.10)

Now, we pass to the limit in the approximate system (4.4). We here only deal with the term
Tn(A* (u"h(c™)) — u"A*(h(c™))), since the remaining terms can be treated by the standard
process. Let ¢ € C>°(RY) be any fixed function with supp¢ C B(0, R). Recalling that ¢ is the
function introduced in (2.1), there exists a bump function y € C>°(RY) supported in the ball
B(0,%) such that x(x) + > s0pi(x) =1foreveryx € RV (see [2]). Clearly, y = 1 in B(0, 3),
and we can choose k € N large enough so that xi(-) = x(27%-) = 1 in B(0,2R) and it also
holds that x(x) + 3,5, j(x) = 1 for every x € R". We write

(Tu (A ("R (0") —u" A% (R (0"))) — (A% (uh () — ul® (h(0))) &)
= (A (" (0") —u" A% (h(0")),(Tn —1d) §)
+ (A" Q" h(0")) = u" A% (e (07))) = (A (xaaeh (o)) — uh™ (xih()) ), 6)
+ (A" (g h(0")) —u"A (jh(0"))) — (A% (puh(o)) —uh™(pih(a)). ¢ )
=k

=N+L+1
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Similarly as (3.35), we know that A*(u"h(c™")) — u" A*(h(c")) has a uniformly-in-n bound in
. N —Q .
LIT(BZ2 1“ ). Then by virtue of the dual property and the smoothness of ¢, we can show that

lim I = 0.

n—o0o

Note that h(c) given by (3.2) has the same spatial support with o. Hence xh(c") =
Xih(Xk+20"), and we can write 3 as

= ([A% xap2 (" — )] (xh (xas20™)) 1 @) 4+ (IA% Xaq2u] Ok (h (Xks20") — B (X0420))) , D).

2-',—1 5

N
Since Yjaou" — Xkaou in LT(B ) and g120" = X420 in LY° (Bz2 E) with any ¢ >0

1
small, and taking advantage of corollary 2.11 (with r= % +1and r; = %’ + 3) and lemma
2.3, we get

nl<c " — ay ||h " La_
< Clhesa (0 =)y ey PO 0 01

B2

+ C||xxa2u ahXU h(Xk420 vea |62
[ Xae2u| T( " >|| (Xi+20") — B (Xis2 )||L7O‘Q<2,+2 1>|| P2

<C g C _
a2 =0l sy + A=)

ﬂ+g,1) —0, as n—oo.
2 2
2,1

Next we consider [5. Noting that @;a(c") = @;h(xj+20") for every j € N, and by using the
integral formula of AO‘ given in (2.20) and the support property, we infer that

oL

=~

[(A® (gud"h (™)) — A° (pjuh (o)), 0)]

<A (9 (" = u) h(xj420") ¢>|+Z|Aa ot (h(Xj+20") = h(Xj120))) . ¢)|

j*k

. Z ‘ / /X<2‘ /)|~27 u |xu)—(;)|)N}<lF(an+20 ) (y) ¢ (x) ddedl‘

j=k

@i ) uy) (h(xj+20") — h(Xj+20)) () ‘
dydxdr
+Z‘/ /x<2k /y|~2/ | — y[NVter Py
oo 4 .
S ZZ_MH) oo (" = )| 3 2y 1A (X 20" | e (1)
j=k

—jla+¥ n
+ > 27D h(x420™) = h(xj420) 2o 12) ol g 1.y
j=k

o0
—i N n n
<Y 27 (g w)llyzy + gra(0” = Dl an) )

where in the last line we have used the uniform (in j and n) estimates
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1 (Xj+20") lzse ooy SIX420" |L5e (2oey S ||U"||Lw(,ﬂ ) <C,
T

1
HSOJ‘”HL'T(LOO) ST MHLTQ% (ﬁ) <C

2,1

For any € > 0, lemma 2.4 and (4.5), (4.10) ensure that

-1

n (14 1
Iy (0" = ) lliyizy <CPEF T — ] i (sr=ey S

i1
IXj+2 (0" = 0) |Lge(12) KC22||0" —a|| /. »
Ly (Bil

)<C2j77

with C > 0 independent of j and n, then there exists a large number J € N so that

sz—j(a+7) (||%(u — 1) [l az) + 42 (0" = 0) || e Lz) CZZ" at+isl <3
=7 j=J

On the other hand, the above established convergence result guarantees that there exists ny =
no(a,N,J,€) € N so that for any n > ny,

i+ X n n
C 3 270 (g = ) iy + D42 (0" = ) ey ) <
k<<I

E )

Thus for any € > 0, there exists ny € N so that for any n > no,

>~ (A (o (o) = A” (g (0)),0)| < 5. @1
j=k
Similarly, for the remaining term in I5 we have
DA (g (0") — uh® (pih (0)) 6]
j=k
Z| 0 =) A (1 (0")). )]+ 3 [kt (5 (1 (xy520") = h (200))-6)

j=k

. Z ’ / /x|<2k /|\|~2/ . Ix)hy(INi)a(y) Xk (%) (" — ) (x) ¢ (x) dydxdt’
-I-Z ‘/ /X|<2A /|y|~2i o () ( Xj-i-;i"i|;+ha(>(i+20)) () e (%) M(X)¢(x)dydxdt‘

< Clxe(u” — M)HL.},(LZ) szjaﬂh(f"n)HL?‘D(L“)
j=k

0o I
+CY 27D h(x420™) — h(xj120) |l ge 2y X0t 3 1 -
j=k
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Arguing as above, we can deduce that there exists a constant n; € N so that for any n > ny,

4.12)

NS e

ST A (gih (o)) — uA® (gih (o), 6)] <
j=k

Hence, combining (4.11) with (4.12), for any €>0 we have that |I}| < e for every n >
max{nog,n; }, which implies lim 7§ = 0. Therefore, gathering the above convergence result
n— 00

of I-I"3, we conclude the convergence of the term .7, (A® (u"h(c™)) — u" A (h(c™))).
Finally, we show the time continuity property of (c,u). Note that o € L3°(B2+1-72)

andu € Z;‘—O(nglfa), and using the fact that 9,0 € Lﬁ (B%fl) and Ju € Lﬁ (B2=12-a)

(similarly as obtaining (4.6) and (4.8)), we can apply a simple argument of high-low fre%uency

decomposition (e.g. see [11, theorem 3.3.1]) to conclude that o € C([0, T];§¥+l—a,5) and

LN
we (0,78,

O
4.2. Uniqueness

We continue with a uniqueness argument for our constructed solution.

Proof of theorem 4.2: uniqueness. Assume that (oy,u;) and (o2, u;) satisfying
N
w € L\ (B;l“) . ol overowy <Oy, with >0 small enough,  (4.13)
; (B2t D)
are two regular solutions of system (3.3) associated with the same initial data (o, ug). Denote

(60,0u) := (01 — 02,u1 — up), then

0,60 +T,, - Vo + Adivou = JF,
Oou+T,, - Vou+ A%u+ AVio =IG,
(b0,6u) =0 = (0,0),

where

OF := —6u-Vop, — (y—1)(dodivuy + ordivou) — Tvse - uy — R (w1, Vo),

0G :=—0u-Vuy — p (A (0uh(oy)) — dur (h(oy))) — (A (up0h) — up A® (6h))
—Tysu-ur — R (w1, Viu),

with 6h = h(oy) — k(o). Applying (3.31) in proposition 3.1 leads to that

t
ol 5oy 19 5y (G IS

2,1

2 2
2,1 B 2,1

t
<cf ol (|\5o—||§u,a,g,l + Héunﬁ,a) R AT

Applying (2.17) in lemma 2.3, we get

2,1 2,1 2,1 2,1

[5+1]
Al y s =Nk (o1) —=h(o2) | y—1 S <1 + [ (o1,02) || <g >> 6ol x < Clidall x -
B2 B Lo (B2, B B2
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Taking advantage of lemma 2.1, corollary 2.11 and the above inequality, we infer that

191 (381 <cf 1501107+ Ul oy Wl 5y

2,1

1561, -0y < € [ (1w ol + BBl G0+ Dl 1581 )dT

t
<0 [ () gl o+l 5, )+l (12)17 e

2,1 2]

By setting 7 > 0 in (4.13) be small enough so that C(||oy||  x + ||02||L?o(§§+,_ag)) < 20

L7 (B3,)

we gather the above estimates to get

2

||60'|| ( Nfa,%fl) + ||§MHZ’OQ <B%]70‘>

<€ [N @)y (100 0 gy g+ 10 ) o

2 1

Gronwall’s inequality guarantees that H(SO’HLDO o

[0,7]. In other words, oy = 05 and u; = uy on [0, 7] x RY. a

vy +oull.  w_, =0foreveryte
) LB )

2,1

4.3. Global existence

Now we are ready to prove theorem 4.1. Under the smallness assumption on Xy in (4.1), pro-
position 3.2 ensures the smallness of X(7'). Hence, we can extend the solution using the local
existence result in theorem 4.2, viewing 7T as the initial time. Repeating the process, we obtain
a global solution.

Proof of theorem 4.1. Take ¢’ = min{e¢,n/C.}, where (g9, C,) are the constants in propos-
ition 3.2 and 7 is the constant in theorem 4.2. Let T, be the maximal existence time of the
solution (o,u) to (3.3), namely

T, =sup{T > 0:Jasolution (o,u) on [0,7] x R"}.

We will show T, = oo by contradiction.
Suppose T, is finite. A direct application of proposition 3.2 yields

X(T)<CXo<n, VT<T,.

The continuity of X then implies X(7.) < 7. We then apply theorem 4.2 to the system (3.3)
initiated at time T\.. There exists a time 7 > 0 such that (o, u) exists in [T, T, + T]. This con-
tradicts the definition of 7.

O

4.4. Propagation of smoothness

In this subsection, we show that if the initial data is smoother (also known as subcritical), the
solution will inherit the initial regularity.
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Proposition 4.3. Under the assumption of theorem 4.1, and additionally assuming
N
lo0l7sta-1 + lluolly | < Ho00, for s> = +1-a,

The solution (o,u) to (3.3) satisfies

T T
e sty Wl 17 () st + [ (o)
forall T> 0.

rradT < 400, (4.14)
2,1

Proof of proposition 4.3. Let F and G be defined as in (3.32). The system (3.3) can be seen
as in the form of (3.4) with v replaced by u. Then according to proposition 3.1, we have

T T
Iz ooy + Wil i) + [ 10 emanadr + [ (o)
Lge (Brsto—t) Lo (Bs)) o Brtostl o

< CeCU(T) (HUO

ps+ o dT
By

vt 0l + 1 F iy ooy 16y s,,))

with U(T) := fOTHu(T)HBN/HIdT. Owing to lemmas 2.1 and 2.10, and using (2.18) and (4.2),
2,1

we infer that

||FHL1T(§A,.\-+a—1) S ||U||L;c(§s,x+a71)H”HLI <B¥+1> + HUHL?o (§§+1—a,§) H”‘HL‘T(B;*l”)
2,1 ’

,
< C' (7l e oy + Nl ey )
and

HGHLIT(B;’I) S HMHL‘

T 2,1

<Bz%,|+l> H“HLgo(j;;,l) + ||“||L;(B;ﬁ“) ”UHL‘TX’ <B% ) + ||”HL,T<B§I+I> HUHL?o (o)
< Ce’ (Nullge (i) + 0l iy + 11 g vy ) -

Since ¢’ is small enough, we obtain the desired estimate (4.14). O

5. Asymptotic behaviour: proof of theorem 1.2

This section aims at proving theorem 1.2. We shall mainly prove the following asymptotic
behaviour of the global solution (o, u) for system (3.3).

Proposition 5.1. Let 1 < o < 2. Assume that (o,u) is a global solution of system (3.3) such
that
-~ ~ ~ LN . N
ocel= (RSB Y) wele (RYB ) 0Lt (RYET). 6
1
Then we have for every 0 <s <1— —,

J4 _
1) )]y + " O Ly + 1 O]y CA+0T . (52)
2,1

2,1 2,1

where C depends on the norms of (o,u) in (5.1). Besides, we have

2,1

i (o @)l + @), ) =0 53

—o0
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If we assume, in addition, (oo,up)* € B;&(RN) with so € (o — % -1, %) then for all s, €
[=s0, 5 +1—al,

[l (1)

With proposition 5.1 at our disposal, we can finish the proof of theorem 1.2. Indeed, under
condition (1.12), the Euler-alignment system (1.1) is equivalent to (3.3). Recall p — 1 = h(o).
Since both & and ~A~! are smooth, proposition 2.3 implies that the regularity on p and o are
equivalent. Hence, the uniform bound (1.16) implies (5.1), and the estimates (5.2)—(5.4) lead
to (1.17)—(1.18).

Our task remains to prove proposition 5.1. Let us denote

51450

<C(l+n =

o+ (o)

(5.4)

’B’,\'l,¥+]—a

X(0):= 1)+ |1APu(0) 12 ~ {'Az;‘i?? I+ |18 O Prisie sy
AT Ajor (1) [|2 + | Ajue (@) |2, for j > o
Recalling the estimates (3.20), (3.23) and (3.26), we have
%Xj +02°X; < C (Il + ligillez + 113 ll2 + 1V Sj-1ull=X;) forj < jo, 56
S5 1%y < € (POl + gl + @l + IVl X;), forj> o

where fi := %“, fn 2= min(z20C2=) 200%) and f;, g;, g; are defined by (3.8)~(3.10) with v =u,
and

F=—(y—1)odivu—Ty, -u—R(u,Vo),

G=—ulA* (uh (o)) + pul®h(c) — Tvy-u—R(u,Vu).

Note that X; for low-frequency part j < jo has a dissipation effect analogous to the fractional
heat operator, while for high-frequency partj > jj it has a damping effect. Thus one may expect
that (o,u) altogether will have a polynomial decay by developing the dissipation/damping
effect. In the sequel we will treat the low-frequency part and high-frequency part separately to
show the desired decay estimates.

Before proceeding forward, we introduce the following notations: for —sp < 5 < g +1—«
and s > 0,

(5.7)

7t (1) =1 (o,u)" (1)

e =0 D2 (A M) () 2 = Y2, ),
J<Jo J<o

(5.8)

AU (nah O]y + " () ||Bg+]_a) =Y (2140 e + 2 A )

2,1

J>jo
(5.9)
and
Zos (1) :=ZL () + 20 (). (5.10)
Remark 5.1. Notice that for s + sa < %’
£ A A2+ 0325 | Ajoll2 < CZys (1) (5.11)

JEZ J€Z
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and for 5 + s < +1
fZ2’<”m>\|A,-u||Lz+f‘22"(%“*“>| y

Jjez JEZ

1 < CZs (1), (5.12)

5.1 Low-frequency estimates

From (5.6), it is reasonable to expect that (o, u’) present the polynomial decay estimate in
suitable functional spaces.

Lemma 5.2. Under the assumption of proposition 5.1, if —so <5 < % +1—aandsel0,1)
satisfy s + s < % then we have

13
ij (1) < C|| (o0,up) % +C/ O (1,7)Zs5(T)dr, (5.13)
51 0
where
=y 2 D) Apu () [l129 (1,7)
J<joj’' <j+4 . (5.14)
+>0 30 UG D Ay (7) oy (1 7),
J<joj’'>j—4
with
Y (t,7) = e B2 (1=T) s =
and
1 if s+sa< —|— 1—aq,
0:= 5.15
{N/ZSLO‘H, 1fs+sa>2—|—1—a. (>.15)

Proof of lemma 5.2. By multiplying the first inequality of (5.6) with "1 and integrating
over the time interval [0,], we infer that

t ‘
X;(1) < e 271, (0) + C / e P2 UTIRy (7) dr,
0
with
R (1) = 1 () 12+ 1185 () 2 + 118 (0 1z + IV (0) 1= (). (5.16)

Using the fact that sup > 20spse 2% < 4 o0, we have that for every s € [0,1),
>0 j€Z

t
FX; (1) < C27°X, (0) + € / 4 (6,7) 7R, (7) dr.
0

Multiplying both sides of the above equation with 2/05+5%) and taking the ¢'-norm with respect
toj < jo lead to

t
Zf,s (1< (Uﬁ,ufﬁ) HB§,1 + C/o TSZ%‘ (t,7) 21(S+SQ)R]‘ ()dr, (5.17)
J<jo

where we have abbreviated v;(¢,7) as ;.
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Next we treat the integral term of the inequality (5.17). For the last term in R; given by (5.16),
by Holder’s inequality and (5.8), we see that

7Y 2OV (7) |1 X (7) < CZs (7) <sup IVSj-1u(r) wa,) : (5.18)

. i<J
i<jo JXJo

We turn to the estimation of terms in (5.16) containing f;, g; and g;. Noting that f; is given by
fi=(y—1)A;(odiva) +8_u-VAjo—Aj(u-Vo), (5.19)

and using Bony’s decomposition, we have the following splitting f; = 2221 ka with

fi = (=D A(Todivu),  f7 == D) A;(Tavuo), f; = (y— 14 (R(divu,0)),

J

f; =0j—1u- VA]'O' —Aj (Tu 'VO')7 fJS = —Aj (TVU -u)7 f]6 = —AjR<M'7V0').

Thanks to inequalities (2.12) and (5.11), we have that for every s + sa < y

7Y G2 (e + 1 z)

i<o

s(“ sup 2"’“+W>|IAMIL2> S 2 EA ey

i< jo+4 —  “
Jsgot J<o li—j"|<4

$Zs(M)Y Y 2| A

J<o li—j'I<4

Using (2.13) and (5.11), we deduce that

7_xZ¢j2j(E+sa)”ﬁHL25 -5 Z 2 (E—HOL)HA]"U”LZ Z Z 2 HAj’uHL‘”'(/)j

J<jo J'<jo+4 J<joj' <j+4
SZs(M)Y D VAl
J<joj' <j+4

By virtue of (2.14) and (5.11), we see that for every 71\51 <s+sa< g,

37 g2 (2 + [1£5]12)

i<o

< ( Sup2”<‘+-va>||Ajfo||Lz> S ST 2l )l ) Ay oy
j' €L

J J<joj’>j—4

<73 Y 26 (st () A ooy
J<joj'>j—4
Applying lemma 2.7 to the term f;‘ yields
. J+4 . . .
Il <2 3 (IVAy s + 195 i) 145 Vo,

Jt =4
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and in combination with inequality (5.11), we obtain

7y 2| f e

J<o

<SZo(m (Y S 2 E A e+ 30 Y A Ul

J<o li—j'|<4 JSoj! <j+4

For the terms g; and g; given by (3.9)—(3.10) and (5.7), note that they both can be expressed
as

—uPA; (A (uh (o)) —uhh(0)) +Sj_1u- VPAu—PA;(u-Vu), (5.20)

where P is composed of smooth zero-order pseudo-differential operators, then g; and g; both
have the following decomposition 2221 g]’.‘, with

g = —HPAA (Th(0)), & = —uPAA (Tyoyu), & = —uPAAR(R(0),u),
g = uPA (TA(0)), & = pPATranoyu, 8 = WPAR(AR(0) 1),
gj7 =8 1u-VAPu—PA/(T,-Vu), g]f.g :=PA; (Ty,-u), gjg :=PAR (u,Vu).

For the terms g} + ¢/ and g¥, taking advantage of inequalities (2.23), (5.11) and lemma 2.3,
we obtain

73 G2 lgh e 7S A (A (Tuh(0)) — TAR(0)) [ 2

J<Jo J<Jo

ST 2Ty |IA (Sj’fluAjh(U)) =8 1uAAyh (o) |2
J<o li’—jl<4

SN U2 N (198l |47 Ay (0) 1z + A< 1Ay () 12
J<o i’ —jl<4

So (T“ sup 2"/“+”)||Aj'h(0)llm> Yo > YA Uy

JIShts J<io] <j+4

SZs(MY] Y YA =y,

J<oJ' j+4

and

— i< et
<o JISJot4 J<io)’ <i+4

7y 2TV g e < (T‘ sup 2"/(”"“)||Aj'u||m> o> YAy
z

SZs (M) 2 Ay ullery.

J<joj' Sj+4
For the terms g7 and g7, using (2.12), (5.11) and lemma 2.3, we deduce that
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7Y 20T g e S 72T A (Tyoyu) |12

i<io i<io

5(“ sup 2| A, h (o |le> S YA ey

i< jo+4
Sot J<o lji—j'1<4

N> ST 2G| A,

J<o li—j'I<4

and

) 2R g

J<jo
s( sup 2 (=54 |4, A% o Hw) OID DIE A o
J'<jo+4 J<io li—j’|<4
< <p 2 CH) Ayh (o ||Lz> PR DREACRI Y
<jo+4 j<10l] —J ‘<4
MY > 2 ED A ey
J<holi—j’|<4

For the terms g; and gf, thanks to inequality (2.14), (5.11) and lemma 2.3 again, we infer that

Y 2R g ) S 7Y ST AR (h () u) ||

J<Jo J<jo
S ( sup 21| Ay (o ||Lz> >o 3 Ay G Ay o
J'eL J<joj’>j—4
S Zos() Y > 20T A oy,
J<joj’' >j—4
and
Y 2 g
J<Jjo
< (T sup 2/ C71Ft B A b (o |u> > Z (3+5+850) " (G A 21l
j'ez J<joj!>j—4
S0 Zos (1) Y 3 20N G Aoy,
J<hoj! >j—4

where ¢ is given by (5.15) so that 5 — 1 + a + dsa < g (to fit the norm Z, 5(7)). For the term
g;, with the help of lemma 2.7, we find
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DI Al [P P

J<o
af— . ]+4 . . .
STSZ,(MQI(H—SQ) 27/ Z (”VAj//l,tH[pc + HVSJ;U,{HLoo) HAj/VuHLz
i<io Pl =j—4
S D0 2N A ) DD S o' (3+1) ||A'M||Lﬂ/fj+z S 2 Al
J'<jo+4 J<Jo li—j’|<4 J<joj! <j+4
<z 3 2 G A
J<oj’'<j+4

For the last term g?, thanks to the spectral support property of dyadic operators and (5.12), we
see that

I Al 7

i<o

ST [N 2 Ay 22| Agu 2

J<Jo j'>j—3
5 " Sup2,/(§+§sa+(176)sal{jzgm}) ||Aj/M||L2 %

J'EZ

> 2(”"')(%*”M*“*‘”ml{w«o})zf’@“)HA,quszj

J<joj' >j—4

<Zs(r )(5+5+50) o (54D | A ]| o, (5.21)
] J
J<joj >j—4

where in the above we have used the fact that 271 =910">i} < C for every j < jj.
Inserting (5.18)—(5.21) into (5.17), we thus conclude the inequality (5.13).
O

Lemma 5.3. Under the assumpnon 0fpr0p0s1t10n 5.1, ifs=—sp € (— g g +1—a)ands e
[n,n+ 1) (n € N) satisfy —5 < —so+sa<¥ 5 +1—a, we have

t
Zi ()< CZi_ 1 5(+C / Z,5(T) W (t,7)dT, (5.22)
0
where

=505 DA u(r) [ pe D

J<joj’' <j+4

+> > 2GR A (r) e 7).

J<ioj'>j—4

(5.23)

Proof of lemma 5.3. From the inequality (5.6), we have that for every j < jo,
d i _
5 X () + 2°0X; (1) < COR; (1) + 57 X (1),

39



Nonlinearity 37 (2024) 025007 X Bai et al

where R; is given by (5.16). Multiplying the above inequality with 2" and integrating over
[0, 1], we obtain

1 , ' .
r'X; (1) < / e_mm(t_T)TS_lXj (r)dr + C/ e_mja(’_T)Tst (T)dr.
0 0

Multiplying the above equation with 2/5+5%) and taking the ¢'-norm with respect to j < jo, we
find

t ) ‘
2 (1) <Z_y5(1) 2ja/ e P dr 4 C/ s 3T 2i6HsAR, (1) A2 =Ty
’ J<Jo
(5.24)
<G / NP EHAR, (1) e P ",
J<Jo

Similarly as (5.17)—(5.21), we can estimate the last term of the above inequality as follows

) t
/ ZZJ(S+SG)R e~ (=T gr < C/ Zss (7)) W (t,7)d7. (5.25)
J<io 0
Inserting (5.25) into (5.24), we obtain the desired inequality (5.22). O

5.2. High-frequency estimates

Since X; exhibits a damping effect in the second inequality of (5.6), one can generally expect
to derive an exponential decay for X;. But in order to be coincident with the low-frequency
case, we instead will prove a polynomial decay estimate.

Lemma 5.4. Under the assumption of proposition 5.1, for every —sy <5 < % +1—a« and
—% <SH+sa< % we have

20 <€ (lonly oo+l ) € [ )y Zs (e 620
2
Proof of lemma 5.4. Starting from (5.6) and letting 7y = sph_ , we have that for every ¢ > 1,

EX(0) 457X, () < CR (),
with
Ry (1) 1= 2 Dl5.0) 12+ gy (0 + 3 () iz + 910 (0) 1, (0. .27)

Thus, we deduce that
t
r'X; (1) < 1pX; (t0) +C/ T°R; (T)dr, Vt=>1.
0

Recalling notations (5.5) and (5.9), we multiply the above inequality by 2/ (3+1-2) and take
the ¢'-norm over J > Jo to get that for every ¢ > 1y,

Z?(t)<C<||a|Lm(Eg+,a,g>+|lul|Lm(Bg+,a)>+szj e / #Ri(r)dr.  (5.28)

21 7>
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The above inequality also holds when ¢ < 7y:
Zrey=r(|o" b (r <1 .
0= (I Oy + 10 lyrm. ) <55 (Tl (str-=2) Wl (3

Note that in view of (5.1), the above right-hand term is under control. _
Next, we deal with the term in (5.28) containing R; (given by (5.27)). The last term in R;
can be estimated as

> rYCH U8 (r) X (7) < €2 (D)l () [y

J>Jo

Recalling that f; is given by (5.19), and by virtue of lemmas 2.1 and 2.6, we infer that

2 f(7) |2

J>Jjo
<cr Y 2% (1A (o diva) | + 110 VAo = A (u- Vo) 2 + IR (Vo) [12)
J>Jo
<Cllu(@) Ly llo (L y < Cllu(m) ]y Zss ().
BZ,I Bz,l BZ,I

Noting that g; and ’g,- have the same expression formula (5.20), and thanks to lemmas 2.1, 2.3
and 2.7, we find

32 (g (1) [z + 118 (7) 1)

7>Jjo
<or Y YEHTA (A (uh (0)) — uhh (o) 12
J>Jo
+or Y 2G5 1w VAPu—PA (T, Vi) |
J>Jo
+ 0 Y PEH) I PA (Tou) + PAR (u, Vi) || 2
J>Jo
<C S|k c *|u <C ¥ Zss (7).
il U @ .+l ™ e < ) 20 (7)
Hence collecting the above estimates yields (5.26), as desired. O

5.3. Proof of proposition 5.1

Firstly, we prove a sketchy version of the decay estimate:

Zs(t)=Z; () + Z) () < C, (5.29)
where (Zf,E,Z?,ZX,g) is given by (5.8)—(5.10), and (s,s) satisfies that
0,1-1 if s=%41—
selo.1-3), . ps=pima (5.30)
§20,5+sa<5+1l-a, ifs=-s9€(-5,5+1—a).
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We first consider the proof of (5.29) with an additional condition O < s < 1. Through com-
bining (5.13) with (5.26), we have

Zs,s(t)gC—i-C/O[ <<b(t,r)+||u( ). N+]>Zs’s<7')d7',

2 1

= —5p, the additional assump-

tion (o§,uf) € B o is needed) Gronwall S 1nequa11ty guarantees that

Z,5 (1) < Cexp {c/ot (cp (6,7) + || (7) ”sﬁ,*‘) dr} .

Recalling the definition of @ in (5.14) and using Holder’s inequality, we infer that for every
%_S<r<ooand%+rl—,:1,

/0t<1>(t77)d7'

S 2= (=052 (5H1=2) | Ajru

JSjoj! j+4

P 2l )y (H1-2) A,

J<joj! >j—4

Ly(L?)

1

1
t r’
Li(L2) SUP/ lfff/ (t,7)2%dr
JEZ JO

=C(L+h) (sup/ w’ (¢, 1 2’ad7'> . (5.31)

je€Z

In order to treat the integral term on the right-hand of (5.31), we recall the following ele-
mentary result (it can be easily deduced by respectively considering the contribution from
[0,#/2] and [#/2,1], e.g. see [51, lemma 3.4]).

Lemma 5.5. Let a € (0,2), ¢ >0 and j € Z. Then for every 0 < s < 1 we have

t )
/ e~ prsdr < C27
0

Thanks to lemma 5.5, we have that for every r’ € (1, %),

t t ‘ ) /
sup / Y7 (1,7)2%dT = sup2® / o B =) ! s g <
JEZ JO jez 0

On the other hand ifs=%+1—aandse (0,1 - 1), wehave =0 (recalling that 4 is given
by (5.15)) and ¥ +s+5sa—sa>N+2(l—a) >0;ifs=—-so€ (-5, 5+1—a)andse
(0,1) satisfy §+sa <Y+1-aitis evident that §=1and § +5+ dsa —sa = N+§>0.
Moreover, due to 71, € (s,1), we can let - be sufficiently close to s so that § 45+ dsa — & >
0. Consequently, the discrete Young’s 1nequa11ty implies that

I+ 1L < Cllul|. ,(B%H*M%) < CHMHZIoc (Bz%fi»lfa) + CHMHZ} (Bz%‘,fl) (5.32)

2,1
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Hence gathering the above estimates with (5.1) we deduce that for every (s,5) satisfying (5.30)
and s € (0,1),

Zy5 (1) < CGXP{C”WL (54) +Cllull, B (i) } <cC.

Then we prove (5. 29) for general s € [n,n+ 1) with n € Z*. We only need to treat the case
s=—spand 5+ sa < —|— 1 — . Combining (5.22) with (5.26) leads to

'
Zys (H<C+ CZ_ 15 (1) + C/ (qj (t,7) + [lu(r) ”BQ’-H) Zss (7)dr.
0

2.1
Gronwall’s inequality gives that
t
Zs() <K C(1+Zo_1 5 (t))exp{C/ (\I/ (t,7) + ||u(7) |Bzzv+,> d’T} .
0 2,1

Recalling that W(z,7) is given by (5.23), and by using Holder’s inequality, lemma 5.5
and (5.32), we see that for every r’ € (1,+00),

t
/\IJ(I,T)dT

0

t ) ) o\
<C<Sup/ o UT)zjadT) <Z > 2UF DA ully )
jez Jo J<ioj! <it4
+Z Z +S+Sa7ﬁ)2]( +1- 7)HA U L'(L2)>
J<joj" >j—4

(ng<~ﬁﬁ+um@ﬁ))

where in the last line we have used the fact % + 5+ sa — a > 0. Thus the above two inequalities
guarantee that for every 5 = —so, s € [n,n+ 1) and 5+ sa < ¥ + 1 -«

Zs(1) SCH+CZi_15(1).

Hence, after an iteration of finite times and using the above 0 < s < 1 result, we conclude the
proof of (5.29) for every (s,s) satisfying (5.30).

Next, we prove inequalities (5.2) and (5.4) from (5.29). When ¢ < 1, noticing that (1 + 1)* <
2% and 25 < 205 for every j < jo, we thus have

s 4 h
(417" (10 O gy + 10O+ O
2,1 2,1 (5.33)

<cwa%n@gnww%gwwm.%w)<c

2,1 2,1

The last inequality of (5.33) is provided by (5.29) with s =0. When ¢ > 1, it is clear that (z +
1)*r= < 2%, and consequently,

(r+1) (II(U u)" (1) lgghem + llo" (1) st + [l ()IlBg+la> <2°Zs (1) < C. (5.34)
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o If (0o,u0) € Bit1—ay « B5F1-a e take 5 = J4+1—a and s€[0,1— é), thus the
desired inequality (5.2) follows from (5.33) and (5.34).

e If the additional condition (o, u$) € B, % with so € (v — ¥ — 1,47 is assumed, we have

(00,uo) €BSY x BS>+1-2 with 5= —s0, and by letting s; =5+ sa, we see that s; €
[—s50, % + 1 — a), and (5.33)—(5.34) yield the decay estimate (5.4).

Besides, we prove the asymptotic behaviour (5.3). For any € > 0, in view of (5.1), there
exists an integer Ny > |jo| (recalling jo is given by (3.15)) such that

i(Y4+1—a A A 15

>0 .
120 J<—No

In addition, according to the decay estimate (5.2), we infer that for 0 < s < 1 — é,
N . .
S 25 (Ao (1) 2 + A 1) 12
—No<j<io
<ot S ) (Ao () + [Au () ) <CL4+0)
—No<j<jo

and

S (24180 () + 2= Au () 1) <40
J>Jo
Then there exists a positive real number Ty such that for every ¢ > Ty,

> 204 (140 (1) + 14 0) 1) < 5

J>—No

Hence for any ¢ > 0, we have that for every ¢ > Ty,

lo (@) g5 1oy +lu@ x40 <e

2.1

In other words, the inequality (5.3) holds. We thus finish the proof of proposition 5.1.
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