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1. Introduction

1.1. The Euler-alignment system

We consider the following Cauchy problem of the compressible Euler system in R+ ×RN,
∂tρ+ div(ρu) = 0,

∂t (ρu)+ div(ρu⊗ u)+∇P(ρ) =D (u,ρ) ,

(ρ,u) |t=0 = (ρ0,u0) ,

(1.1)

where ρ is the density, u= (u1, . . . ,uN) is the velocity field, and P(ρ) stands for the pressure,
which is given by the power law

P(ρ) = κργ , κ > 0, γ ⩾ 1. (1.2)

The term D(u,ρ) represents the nonlocal velocity alignment which is given as follows

D (u,ρ)(t,x) =−ρ(t,x)
ˆ
RN

φ(x− y)(u(t,x)− u(t,y))ρ(t,y)dy.

Here φ is called the communication weight, measuring the strength of the alignment interac-
tions. It is naturally assumed to be a non-negative and radially decreasing function.

The system (1.1) is known as the Euler-alignment system. It is the macroscopic represent-
ation of the celebrated Cucker–Smale model [9]Ẋi (t) = Vi (t) , 1⩽ i⩽M,

V̇i (t) =− 1
M

∑
j ̸=i
φ(Xi (t)−Xj (t))(Vi (t)−Vj (t)) , (1.3)

an M-agent interacting system that describes the collective motions in animal flocks. Ha and
Tadmor [19] formally derive (1.1) from (1.3) through a kinetic equation

∂t f+ v ·∇xf+ divvQ [ f, f ] = 0,

Q [ f, f ] (t,x,v) =−f(t,x,v)
ˆ
RN

ˆ
RN

φ(x− y)(v−w) f(t,y,w)dydw. (1.4)

Hydrodynamic limiting systems (1.1) with different type of pressures (1.2) can be rigorous
derived from (1.4), including the pressure-less dynamics (κ= 0) [18], isothermal pressure (κ >
0,γ = 1) [23], and others [17, 35].

The global well-posedness theory for the pressureless Euler-alignment system (1.1) with
P≡ 0 has been established in [42] for the case when the communication weight is bounded
and Lipschitz. A critical threshold phenomenon was discovered: global regularity depends on
initial data. A sharp threshold condition is obtained in [3] for the system in 1D with the help
of an auxiliary quantity G= ∂xu+φ ∗ ρ that satisfies the continuity equation. The theory has
been extended to the case when the communication weight is weakly singular: unbounded
but integrable [44]. For higher dimensions, sharp results are only available for radial [45] and
uni-directional [26] data, due to the lack of the auxiliary quantity, see also [21].

Another interesting type of communication weights are strongly singular near the origin,
with a prototype taking the following form

φ(x) = φα (x) =
cα,N
|x|N+α

, cα,N =
2αΓ

(
α+N
2

)
πN/2Γ

(
−α

2

) . (1.5)
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It is evident that for α ∈ (0,2), the singular alignment D(u,ρ) with such a weight φα can be
expressed as a commutator form related to the fractional Laplace operator Λα := (−∆)

α
2 (see

definition 2.4):

D (u,ρ) =−ρ(Λα (ρu)− uΛαρ) =−ρ([Λα,u]ρ) . (1.6)

This nonlocal dissipation has an intriguing regularization effect to the solutions. Global regu-
larity is obtained for any non-viscous smooth initial data for the system in the one-dimensional
torus by Shvydkoy and Tadmor [38] for 1⩽ α < 2, and by Do et al [16] for 0< α < 1 (see also
[40]). The results are then applied to general singular alignment interactions [24], as well as
taking into account the misalignment effect [32]. For the multi-dimensional case, global well-
posedness are only known for small initial data around an equilibrium state. See the work of
Shvydkoy [37] for smooth initial data (ρ0,u0) ∈ HN+4(TN)×HN+3+α(TN), and Danchin et al
[14] for small initial data that lie in critical Besov space (ρ0,u0) ∈ Ḃ1

N,1(RN)× Ḃ2−α
N,1 (RN), sub-

ject to additional regularity assumptions (one more derivative is required on the data). Global
regularity for general large initial data remains a challenging open problem.

The global well-posedness theory for the Euler-alignment system (1.1) with pressure is
much less understood compared with the pressureless system. When the communication
weight φ is bounded and Lipschitz, Choi [7] proved global regularity of the system with iso-
thermal pressure, for small smooth initial data in the periodic domain TN. A similar result was
obtained in [47] for the system with isentropic pressures (κ > 0,γ > 1).

The main focus of this paper is on the Euler-alignment system (1.1) with pressure (1.2) and
with a strongly singular communication weight (1.5). The goal is to understand the interplay
between the pressure and the nonlocal regularization from the alignment (1.6).

In 1D periodic domain T, Constantin et al [8] proved the global existence of smooth solu-
tions for the system with an additional local dissipation term of the form (1.7). They make
use of the auxiliary quantity to build a hierarchy of entropies. The result does not require a
smallness assumption, but is limited to one dimension.

For the system inTN, Chen et al [5] established the global well-posedness for smooth initial
data with a smallness assumption. The result is partially extended to the whole space RN.
However, an additional linear damping term is required to obtain the desired result.

We would like to comment that most global well-posedness results in the literature on the
Euler-alignment system (1.1) with strongly singular alignment (1.6) are on the periodic domain
TN. One important reason is that solutions can lose regularity when vacuum arises [1, 43]. It
is easier to obtain a priori positive lower bound on the density under periodic setup, as mass
cannot diffuse to infinity. Additional analytical treatments are required to guarantee no vacuum
formations for the system in the whole space RN.

1.2. The barotropic compressible Navier–Stokes system

To study the Euler-alignment system (1.1) and (1.2) in RN, we shall mention a very related
system. If we replace the dissipation term D(u,ρ) by

Dloc (u) = µ1∆u+(µ1 +µ2)∇divu, µ1 > 0, 2µ1 +Nµ2 > 0, (1.7)

the system (1.1) and (1.2) becomes the classical barotropic compressible Navier–Stokes sys-
tem, which has been intensely studied in the recent decades.

Serrin [36] and Nash [33] established the local existence and uniqueness of smooth non-
vacuous solutions. One can also see Solonnikov [41] and Valli [48] for the local well-poseness
of strong solutions with Sobolev regularities. Matsumura and Nishida [30, 31] proved the
global existence and uniqueness of strong solutions provided that initial data (ρ0,u0) is a small
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perturbation of constant non-vacuous state (ρ̄,0) in three dimension, and under an additional
L1-smallness of the initial perturbation, they showed the following optimal decay estimate

‖(ρ− ρ̄,u)(t)‖L2 ≲ (1+ t)−
3
4 , ∀ t> 0. (1.8)

Later, noting that the barotropic compressible Navier–Stokes system is invariant under the
transformation

ρ(t,x) 7→ ρ
(
λ2t,λx

)
, u(t,x) 7→ λu

(
λ2t,λx

)
, λ > 0,

with a modification of the pressure P 7→ λ2P, Danchin [10] proved the global existence and
uniqueness of strong solution in the framework of critical L2-based Besov space with initial
data close to a stable equilibrium. More precisely, under the following smallness condition in
critical Besov spaces (see definition 2.1)

‖ρ0 − ρ̄‖
B̃
N
2 −1, N2

+ ‖u‖
Ḃ
N
2 −1

2,1

< ε,

the barotropic compressible Navier–Stokes system has a global unique solution.
Furthermore, for small perturbation of non-vacuous equilibrium (ρ̄,0) in Lp-type Besov

norms, Charve and Danchin [4] and Chen et al [6] independently constructed the global
unique strong solution in the framework of critical Lp-based Besov spaces. One can also
see [20] for a simpler proof of the same result by using a good unknown called the effective
velocity. Concerning the large-time behaviour of the above obtained global strong solutions,
Okita [34] considered the N⩾ 3 dimension and established the optimal time-decay estimate
of global solutions in the critical L2-framework with an additional smallness condition on
‖ρ0 − ρ̄‖Ḃ0

1,∞
+ ‖u0‖Ḃ0

1,∞
. Danchin [13] gave an another description of the time-decay estim-

ate as above with N⩾ 2. Danchin and Xu [15] showed that under an additional smallness
condition of low frequencies (see (2.2) for the definition of norm ‖ · ‖ℓ

Ḃsp,r
)

‖(ρ0 − ρ̄,u0)‖ℓḂ−s0
2,∞

< ε, s0 = N
(

2
p −

1
2

)
, (1.9)

the Lp norm of the global critical solutions constructed in [4, 6, 20] decays like t−N( 1
p−

1
4 ) for

t→+∞ (exactly as (1.8) with p= 2,N= 3). One can seeXu [50] for a different low-frequency
smallness assumption to get the same time-decay estimate. Recently, Xin and Xu [49] replaced
the smallness condition (1.9) with amild assumption like ‖(ρ0 − ρ̄,u0)‖ℓ

Ḃ
−s0
2,∞

<∞ and obtained

the optimal time-decay estimate in the general critical Lp-framework.

1.3. Main result: global well-posedness

In this paper, we consider the Euler-alignment system (1.1) in RN, with power-law type pres-
sure (1.2) and strongly singular alignment interactions (1.6) with 1< α < 2. We mainly study
the global well-posedness of the system with initial data (ρ0,u0) around the non-vacuous equi-
librium (ρ≡ 1,u≡ 0), with minimal regularity assumptions on the initial data.

Analogous to the study of the barotropic compressible Navier–Stokes system, we observe
that the system (1.1) is invariant under the transformation

ρ(t,x) 7→ ρ(λαt,λx) , u(t,x) 7→ λα−1u(λαt,λx) , λ > 0, (1.10)

with a modification of the pressure P 7→ λ2α−2P. Therefore, we shall aim to solve the Euler-
alignment system (1.1) in the critical function space which is invariant with respect to the
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transform (1.10). Obviously, the homogeneous Besov space Ḃ
N
2
2,1 × Ḃ

N
2 +1−α

2,1 of initial data
(ρ0 − 1,u0) is a suitable space that is scaling critical. However, spectral analysis of the lin-

earized equation of system (1.1) (see (3.4) below) indicates that the regularity ρ ∈ Ḃ
N
2
2,1 is not

enough to control the pressure term, as it is not invariant under the scaling (1.10). Instead, we

work on a hybrid Besov space B̃
N
2 +1−α, N2 = Ḃ

N
2 +1−α

2,1 ∩ Ḃ
N
2
2,1 (see definition 2.1). This approach

is pioneered by Danchin [10] on the barotropic compressible Navier–Stokes system. More
precisely, our first main result reads as follows.

Theorem 1.1 (global well-posedness). Let N⩾ 2. Consider the Euler-alignment system (1.1)
with pressure (1.2), alignment interaction (1.6) with 1< α < 2, and initial data ρ0 − 1 ∈
B̃

N
2 +1−α, N2 (RN) and u0 ∈ Ḃ

N
2 +1−α

2,1 (RN). There exists a small constant ε> 0, such that if

‖ρ0 − 1‖
B̃
N
2 +1−α, N2

+ ‖u0‖
Ḃ
N
2 +1−α

2,1

< ε, (1.11)

then the Euler-alignment system (1.1) has a global unique solution (ρ,u) such that

ρ > 0, in R+ ×RN, (1.12)

and

ρ− 1 ∈ Cb([0,+∞); B̃
N
2 +1−α, N2 ), u ∈ Cb([0,+∞); Ḃ

N
2 +1−α

2,1 )∩L1(R+; Ḃ
N
2 +1
2,1 ). (1.13)

Moreover, if additionally (ρ0 − 1,u0) ∈ B̃s,s+α−1(RN)× Ḃs2,1(RN)with s> N
2 + 1−α, then

the above constructed solution also belongs to the corresponding space, i.e.

ρ− 1 ∈ L̃∞
(
R+; B̃s,s+α−1

)
, u ∈ L̃∞(R+; Ḃs2,1)∩L1(R+; Ḃs+α

2,1 t). (1.14)

See definitions 2.1 and 2.2 for the spaces involved.

Let us sketch the main ideas of proving theorem 1.1. By introducing a new quantity σ
given by (3.1), we consider the more convenient system (3.3) of (σ,u) which is equival-
ent with the original system (1.1) and (1.2). Via analysing the linear structures of the coup-
ling system (3.3), we find that the quantities (σ,u) enjoy a parabolic damping effect for the
low-frequency part and a fractional-order parabolic behaviour for the high-frequency part.
Accordingly, we manage to establish proposition 3.1 concerning a priori estimates for the
paralinearized system (3.4) by separately considering the low and high frequencies. In this
process, the paraproduct estimates and the Kato–Ponce type inequality in section 2 will play
an important role. Moreover, we show the wanted a priori estimates for the nonlinear sys-
tem (3.3). Finally, based on the a priori estimates, we build an approximate system of (3.3)
and then use the compactness argument to pass in the limit to show the existence. The unique-
ness and propagation of smoothness follows from applying proposition 3.1 in suitable Besov
spaces.

A few remarks are listed in order.

Remark 1.1. The critical spaces we work on contain very rough initial data. In particular, u0
is not necessarily Lipschitz. Therefore, even local well-posedness can not be obtained dir-
ectly from the classical Cauchy–Lipschitz theory. We include a local well-posedness result in
theorem 4.2. The smallness condition (1.11) can be relaxed for local-in-time solutions.

Let us compare theorem 1.1 with the result presented in [14]. In their work, they considered
the pressureless Euler-alignment system, i.e. (1.1) with P≡ 0, and established global well-
posedness for small initial data (ρ0,u0) belonging to the critical Besov space Ḃ1

N,1 × Ḃ2−α
N,1 . To

5
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ensure uniqueness, an additional subcritical regularity assumption (ρ0,u0) ∈ Ḃ2
N,1 × Ḃ3−α

N,1 was
required. One significant highlight of our result is that it does not demand any extra regularity
assumption. We are able to achieve a smoothing effect for the density (as evidenced by propos-
ition 3.1 below) through the strong coupling of the two equations facilitated by the pressure.
This is sometimes referred to as the hypocoercivity property.

Remark 1.2. Our result works on dimensions N⩾ 2. When N= 1, we are able to establish
a priori estimates of the Euler-alignment system as in section 3. However, some technical
estimates fail when constructing the solution: e.g. (4.6) and (4.8), as well as the uniqueness
argument. This is due to the roughness of initial data that we consider. If we further assume

∂xρ0 ∈ B̃
3
2−α, 12 (R) and ∂xu0 ∈ Ḃ

3
2−α

2,1 (R) ,

Theorem 1.1 can be easily extended to N= 1.

Remark 1.3. Partially due to that the space ḂN/2+1−α
2,1 (RN) is not a Banach space for 0< α < 1

and there is some technical difficulty arising from the endpoint-type product estimates for
α= 1, the extension of theorem 1.1 to the singular communication weight with 0< α⩽ 1 is
not straightforward, and will be left for future investigation.

1.4. Asymptotic behaviour

Next, we turn our attention to the asymptotic behaviour of the Euler-alignment system (1.1).
The system inherits a remarkable flocking phenomenon from the Cucker–Smale model (1.3).
It has been shown in [28, 39, 42] that the solution to (1.1) converges (in appropriate sense) to
a traveling wave profile

ρ(t,x)→ ρ∞ (x− ūt) , u(t,x)→ ū. (1.15)

There are two ingredients of flocking. First, the support of density ρ stays bounded in all time,
i.e. if ρ0 is compactly supported, then ρ∞ is compactly supported as well. Another ingredient
is the velocity alignment. Here, ū represents the average velocity. It is determined by initial
data, thanks to the conservation of momentum. Without loss of generality, we assume ū= 0
throughout the paper. Additional geometric structures of the limiting profile ρ∞ is investigated
in [25, 27] for the pressureless system.

When pressure is presented, the asymptotic density profile is known to be a constant
ρ∞(x)≡ ρ̄. For simplicity, we set ρ̄= 1. The asymptotic flocking behaviour is proved in [46]
for bounded alignment interactions, and [5] for strongly singular alignment interactions. Both
results considered the periodic domain TN.

To our best knowledge, most existing results on asymptotic behaviours for the Euler-
alignment system with singular alignment interactions are on the periodic domains. The decay
rates in (1.15) are exponentially in time. For the system in RN, we do not expect the decay rate
to be exponential. Rather, analogous to the heat equation, the diffusion leads to a polynomial
rate of decay in time.

Our next result is concerned with the asymptotic behaviour of the Euler-alignment
system (1.1) and (1.2) in RN.

Theorem 1.2 (asymptotic behaviour). Let N⩾ 2 and 1< α < 2. Assume (ρ,u) is a global
solution of the Euler-alignment system (1.1) and (1.2) that satisfies (1.12) and

ρ− 1 ∈ L̃∞
(
R+; B̃

N
2 +1−α, N2

)
, u ∈ L̃∞

(
R+; Ḃ

N
2 +1−α

2,1

)
∩L1

(
R+; Ḃ

N
2 +1
2,1

)
. (1.16)

6
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Then for every 0< s< 1− 1
α we have

‖(ρ− 1,u)ℓ (t)‖
Ḃ
N
2 +1−α+sα

2,1

+ ‖ρh (t)− 1‖
Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

⩽ C(1+ t)−s
, (1.17)

where the constant C> 0 depends on the norms of (ρ− 1,u) in (1.16). Besides, we have

lim
t→∞

(
‖ρ(t)− 1‖

B̃
N
2 +1−α, N2

+ ‖u(t)‖
Ḃ
N
2 +1−α

2,1

)
= 0.

If we assume, in addition, (ρ0 − 1,u0)ℓ ∈ Ḃ−s0
2,∞(RN) with s0 ∈ (α− N

2 − 1, N2 ), then for all s1 ∈
[−s0, N2 + 1−α],

‖ρ(t)− 1‖
B̃s1,

N
2
+ ‖u(t)‖

B̃s1,
N
2 +1−α ⩽ C(1+ t)−

s1+s0
α . (1.18)

See definitions 2.1, 2.2 and equation (2.2) for the notations involved.

We list some remarks as follows.

Remark 1.4. The decay rate obtained in (1.18) is optimal. It agrees with the rate of decay for
the solutions to the fractional heat equation, that is a linearized equation of (1.1). It is worth
noting that when the system is posed in the periodic domain TN, the convergence of solutions
will be exponential in time. This property has been demonstrated in e.g. [5, theorem 2.3] for
smooth solutions.

Remark 1.5. For small initial data (ρ0,u0) satisfying (1.11), condition (1.16) is guaranteed
by theorem 1.1. Hence the decay estimates follow directly from theorem 1.2. On the other
hand, theorem 1.2 only assumes that the solution (ρ− 1,u) is bounded as in (1.16). In the
existing literature on the barotropic compressible Navier–Stokes system [15, 34, 50] and so
on, smallness assumptions on the solution (ρ− 1,u) are required to obtain the decay estim-
ates. We adopt a different approach that greatly relaxes the assumptions compared with the
aforementioned work.

Let us point out that our decay estimate (1.18) requires s0 < N
2 . The endpoint s0 =

N
2 is not

captured by our approach on a basic lack of paraproduct in endpoint Ḃ−N/2
2,1 . Under additional

smallness conditions on initial data, the decay estimate can be proved in an alternative way,
analogous to [15, 34, 50].

1.5. Outline of the paper

The paper is organized as follows. In section 2, we introduce the definition of hybrid Besov
space and fractional Laplace operator, and present some useful auxiliary lemmas. In section 3,
we reformulate our system into themore convenient equivalent system (3.3), and establish the a
priori estimates for the paralinearized system (3.4) and the nonlinear system (3.3). Section 4 is
devoted to the proof of theorem 1.1 for our system (1.1) and (1.2). By building the approximate
system and using the compactness argument, we construct the local solutions in section 4.1.
In the following sections 4.2–4.4, we respectively tackle with uniqueness, global existence
under smoothness condition, and propagation of smoothness. Finally, in section 5, we give the
detailed proof of large time behaviour stated in theorem 1.2. Through introducing some time-
weighted hybrid Besov spaces and separately treating the low-frequency and high-frequency
parts, we show the time decay estimates for the constructed solutions.

7
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2. Preliminary

This section includes some basic analytical tools needed in this paper. We first introduce
the concept of Besov spaces and some properties. Then we recall the definition of fractional
Laplacian and the Kato–Ponce type commutator estimates, particularly in Besov spaces.

2.1. Besov spaces and some related estimates

We first introduce the Littlewood–Paley decomposition. One can choose a nonnegative radial
function ϕ ∈ C∞

c (RN) be supported in the annulus {ξ ∈ RN : 3
4 ⩽ |ξ|⩽ 8

3} such that (e.g. see
[2]) ∑

j∈Z
ϕj (ξ) = 1, ∀ξ ∈ RN \ {0} , (2.1)

where ϕj(ξ) = ϕ(2−jξ). We define the localization operator:

∆̇ju= ϕj (D)u, Ṡju=
∑
k⩽j−1

∆̇ku.

Now we present the definition of (homogeneous) Besov space and its hybrid type.

Definition 2.1 (Besov sapce and hybrid Besov sapce). Let s,s1,s2 ∈ R, (p,r) ∈ [1,∞]2.
Denote by P(RN) the set of all polynomials and by S ′

h(RN) := S ′(RN)/P(RN) the quotient
space. We define the homogeneous Besov space Ḃsp,r = Ḃsp,r(Rd) as

Ḃsp,r
(
RN
)
:=

{
u ∈ S ′

h

(
RN
)
;‖u‖Ḃsp,r(RN) =

∥∥{2js‖∆̇ju‖Lp(RN)

}
j∈Z

∥∥
ℓr(Z) <∞

}
.

Let j0 ∈ Z, andwe define the hybrid Besov space B̃s1,s2 = B̃s1,s2(RN) as the set of all u ∈ S ′
h(RN)

such that

‖u‖B̃s1,s2 :=
j0∑

j=−∞
2js1‖∆̇ju‖L2 +

+∞∑
j=j0+1

2js2‖∆̇ju‖L2 <∞.

By restricting the norm of Ḃsp,r to the low or high frequency parts of tempered distributions,
we also get that, for some j0 ∈ Z,

‖u‖ℓḂsp,r :=
∥∥{2js‖∆̇ju‖Lp

}
j⩽ j0

∥∥
ℓr
, and ‖u‖hḂsp,r :=

∥∥{2js‖∆̇ju‖Lp
}
j⩾j0

∥∥
ℓr
. (2.2)

Definition 2.2. Let s,s1,s2 ∈ R, (p,q,r) ∈ [1,∞]3, T > 0. The Chemin–Lerner space L̃qT(Ḃ
s
p,r)

is defined by

‖u‖L̃qT(Ḃsp,r) :=
∥∥{2js‖∆̇ju‖LqT(Lp)

}
j∈Z

∥∥
ℓr(Z),

and L̃qT(B̃
s1,s2) is defined by that for j0 ∈ Z,

‖u‖L̃q(B̃s1,s2) :=
j0∑

j=−∞
2js1‖∆̇ju‖LqT(L2) +

+∞∑
j=j0+1

2js2‖∆̇ju‖LqT(L2).

8
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The following Bony’s paraproduct decomposition is very useful in the proof.

Definition 2.3. For any u,v ∈ S ′
h(RN), uv has the Bony’s paraproduct decomposition:

uv= Tuv+Tvu+R(u,v) , (2.3)

where

Tuv=
∑
j

Ṡj−1u∆̇jv, and R(u,v) =
∑
j

∆̇ju
˜̇∆jv,

˜̇∆j := ∆̇j−1 +∆̇j+∆̇j+1.

We have the following product estimates in the hybrid Besov space B̃s1,s2 .

Lemma 2.1. (1) For any s1 ⩽ s ′1 ⩽ N
2 and s2 ∈ R, there exists a constant C= C(s1,s ′1,N) such

that

‖T∇uv‖B̃s1+s2−
N
2 ,s ′1+s2−

N
2
⩽ C‖u‖

B̃s1,s
′
1
‖v‖

Ḃ
s2+1
2,1

. (2.4)

(2) For any (s1,s ′1,s2) ∈ R3 satisfying s ′1 ⩾ s1 and s1 + s2 > 0, there exists a constant C=
C(s1,s ′1,s2,N) such that

‖R(u,∇v)‖
B̃s1+s2−

N
2 ,s ′1+s2−

N
2
⩽ C‖u‖

Ḃ
s2+1
2,1

‖v‖
B̃s1,s

′
1
. (2.5)

(3) For any (s1,s ′1,s2) ∈ (−N
2 ,

N
2 ]

3 satisfying s1 + s2 > 0 and s ′1 ⩾ s1, there exists a constant
C= C(s1,s ′1,s2,N) such that

‖uv‖
B̃s1+s2−

N
2 ,s ′1+s2−

N
2
⩽ C‖u‖

B̃s1,s
′
1
‖v‖Ḃs22,1 . (2.6)

(4) For any (s1,s2) ∈ R2 satisfying −N
2 < s1 − s2 ⩽ 0, there exists a constant C= C(s1,s2,N)

such that

‖uv‖B̃s1,s2 ⩽ C
(
‖u‖B̃s1,s2‖v‖L∞ + ‖u‖

B̃
N
2 +s1−s2,

N
2
‖v‖Ḃs22,1

)
, (2.7)

and

‖T∇vu‖B̃s1,s2 + ‖R(u,∇v)‖B̃s1,s2 ⩽ C‖u‖
Ḃ
s2+1
2,1

‖v‖
B̃
N
2 +s1−s2,

N
2
. (2.8)

Proof of lemma 2.1. (1) For the proof of (2.4), noting that B̃s1,s
′
1 (RN) = Ḃs12,1 ∩ Ḃ

s ′1
2,1(RN) for

every s1 ⩽ s ′1, it suffices to show that for every s1 ⩽ N
2 and s2 ∈ R,

‖T∇uv‖
Ḃ
s1+s2−

N
2

2,1

⩽ C‖u‖Ḃs12,1‖v‖Ḃs2+1
2,1

, (2.9)

with C= C(s1,N)> 0. While concerning (2.9), using Bernstein’s inequality we have

9
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∑
j∈Z

2j(s1+s2−
N
2 )‖∆̇j (T∇uv)‖L2 ⩽

∑
j∈Z

2j(s1+s2−
N
2 )

∑
|j ′−j|⩽4

‖∆̇j

(
Ṡj ′−1∇u∆̇j ′v

)
‖L2

⩽ C
∑
j ′∈Z

2j
′(s1+s2− N

2 )‖Sj ′−1u‖L∞2j
′
‖∆̇j ′v‖L2

⩽ C
∑
j ′∈Z

2j
′(s1− N

2 )
∑

k⩽j ′−1

2k
N
2 ‖∆̇ku‖L2

2j
′(s2+1)‖∆̇j ′v‖L2

⩽ C‖u‖Ḃs12,1‖v‖Ḃs2+1
2,1

,

as desired.
(2) The proof of (2.5) is quite analogous with that of (2.4) and [2, theorem 2.52], and we omit

the details.
(3) When s1 = s ′1 ∈ (−N

2 ,
N
2 ] and s2 ∈ (−N

2 ,
N
2 ], we indeed have (see [2, corollary 2.55] for

(s1,s2) ∈ (−N
2 ,

N
2 )

2 and [2, remark 2.48] for a slight modification for the case s1 = N
2 or

s2 = N
2 )

‖uv‖
Ḃ
s1+s2−N/2
2,1

⩽ C‖u‖Ḃs12,1‖v‖Ḃs22,1 .

Thus (2.6) directly follows from the above inequality.
(4) When s1 = s2 > 0, (2.7) is guaranteed by the classical inequality in [2, corollary 2.54]. For

the general case 0< s1 < s2, we use Bony’s decomposition (2.3), and noting that for every
j ∈ Z,

‖∆̇jTuv‖L2 ⩽
∑

|j ′−j|⩽4

‖∆̇j

(
Ṡj ′−1u∆̇j ′v

)
‖L2 ⩽ C

∑
|j ′−j|⩽4

‖Ṡj ′−1u‖L∞‖∆̇j ′v‖L2 ,

‖∆̇jR(u,v)‖L2 ⩽ C
∑
k⩾j−3

2j
N
2 ‖∆̇j

(
∆̇ku

˜̇∆kv
)
‖L1 ⩽ C

∑
k⩾j−3

2j
N
2 ‖∆̇ku‖L2‖

˜̇∆kv‖L2 ,

we have

‖Tuv‖B̃s1,s2 ⩽ C
∑
j⩽ j0

∑
|j ′−j|⩽4

2j
′(s1−s2)‖Ṡj ′−1u‖L∞2j

′s2‖∆̇j ′v‖L2

+C
∑
j⩾j0+1

∑
|j ′−j|⩽4

‖Ṡj ′−1u‖L∞2j
′s2‖∆̇j ′v‖L2 ⩽ C‖u‖

B̃
N
2 +s1−s2,

N
2
‖v‖Ḃs22,1 ,

(2.10)

and

‖R(u,v)‖B̃s1,s2 ⩽ C
∑
j⩽ j0

∑
j−3⩽k⩽ j0

2( j−k)( N2 +s1−s2)2k(
N
2 +s1−s2)‖∆̇ku‖L22ks2‖

˜̇∆kv‖L2

+C
∑
j⩽ j0

∑
k⩾max{j−3,j0}

2( j−k) N2 2k
N
2 ‖∆̇ku‖L22ks2‖

˜̇∆kv‖L2

+C
∑

j∼k∼j0,k⩽ j0

2k(
N
2 +s1−s2)‖∆̇ku‖L22ks2‖

˜̇∆kv‖L2

+C
∑
j⩾j0+1

∑
k⩾max{j−3,j0}

2( j−k) N2 2k
N
2 ‖∆̇ku‖L22ks2‖

˜̇∆kv‖L2

⩽ C‖u‖
B̃
N
2 +s1−s2,

N
2
‖v‖Ḃs22,1 . (2.11)

10
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Via a direct computation we also get ‖Tvu‖B̃s1,s2 ⩽ C‖v‖L∞‖u‖B̃s1,s2 . Hence, collecting the
above estimates leads to (2.7).
While for (2.8), it can be easily obtained by arguing as the deduction in (2.10) and (2.11).

In the analysis of asymptotic behaviour, the following weighted paraproduct and reminder
estimates play an important role.

Lemma 2.2. Let j0 ∈ Z, r ∈ R, f,g ∈ S ′
h(RN) and {ψj}j∈Z be a positive sequence.

(1) For every r1 ⩽ 0, we have∑
j⩽ j0

ψj2
jr∥∆̇j (Tfg)∥L2 ⩽ C

 ∑
j ′⩽ j0+4

2j
′r1∥∆̇j ′ f∥L∞

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′(r−r1)∥∆̇j ′g∥L2ψj. (2.12)

(2) For every r2 ∈ R, we have∑
j⩽ j0

ψj2
jr∥∆̇j (Tfg)∥L2 ⩽ C

(
sup

j ′⩽ j0+4
2j

′(r−r2)∥∆̇j ′g∥L2

)∑
j⩽ j0

∑
j ′⩽j+4

2jr2∥∆̇j ′ f∥L∞ψj. (2.13)

(3) If r>−N
2 , r3 ∈ R and 0⩽ β ⩽ r+ N

2 , we have

∑
j⩽ j0

ψj2
jr∥∆̇jR( f,g)∥L2 ⩽C

(
sup
j ′∈Z

2j
′(r3+ N

2 −β)∥∆̇j ′g∥L2

)

×
∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)(r+ N
2 −β)2j

′(r−r3)∥∆̇j ′ f∥L2ψj.
(2.14)

Proof of lemma 2.2. (1) By virtue of the spectral support property, we see that∑
j⩽ j0

ψj2
jr‖∆̇j (Tfg)‖L2 ⩽ C

∑
j⩽ j0

∑
|j−j ′|⩽4

ψj2
jr‖∆̇j

(
Ṡj ′−1f ∆̇j ′g

)
‖L2

⩽ C
∑
j⩽ j0

∑
|j−j ′|⩽4

ψj2
jr‖Ṡj ′−1f‖L∞‖∆̇j ′g‖L2 .

(2.15)

Plugging the definition of Ṡj ′−1f to (2.15), we deduce that for every r1 ⩽ 0,∑
j⩽ j0

ψj2
jr‖∆̇j (Tfg)‖L2 ⩽ C

(
sup

j ′⩽ j0+4
2j

′r1‖Ṡj ′−1f‖L∞
)∑

j⩽ j0

∑
|j−j ′|⩽4

ψj2
j ′(r−r1)‖∆̇j ′g‖L2

⩽ C

 ∑
j ′⩽ j0+4

2j
′r1‖∆̇j ′ f‖L∞

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′(r−r1)‖∆̇j ′g‖L2ψj.

(2) The inequality (2.13) for every r2 ∈ R can be deduced in the same manner.
(3) By using the spectral property of the dyadic operators, we get∑

j⩽ j0

ψj2
jr‖∆̇jR( f,g)‖L2 ⩽ C

∑
j⩽ j0

∑
j ′>j−3

ψj2
j(r+ N

2 −β)‖ ˜̇∆j ′ f‖L2‖∆̇j ′g‖L2 ,

where we have used the fact that 2jβ ⩽ C for every j⩽ j0. Consequently, the desired
inequality (2.14) directly follows.

11
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Let us state a continuity result for the composition in Besov space (for the proof one can
see proposition 1.5.13, corollary 1.4.9 of [11] and proposition A.3 of [15]).

Lemma 2.3. Let s ∈ R and (p,r) ∈ [1,∞]2 be such that

0< s<
N
p
, or s=

N
p
and r= 1.

Let I be an open interval of R, and let f : I→ R satisfy f(0) = 0 and f ′, f ′ ′ ∈W[s]+1,∞(I;R).
Assume that u,v ∈ Ḃsp,r ∩L∞(RN) has values in J⊂ I. Then the function f(u) belongs to

Ḃsp,r(RN), and there exists a constant C= C(s, I,J,N) such that

‖f(u)‖Ḃsp,r ⩽ C(1+ ‖u‖L∞)
[s]+1 ‖f ′‖W[s]+1,∞(I)‖u‖Ḃsp,r , (2.16)

and

∥f(v)− f(u)∥Ḃsp,r ⩽C(1+ ∥v∥L∞)[s]+1 ∥f ′ ′∥W[s]+1,∞(I)

·

(
∥v− u∥Ḃsp,r sup

τ∈[0,1]
∥u+ τ (v− u)∥L∞ + ∥v− u∥L∞ sup

τ∈[0,1]
∥u+ τ (v− u)∥Ḃsp,r

)
,

(2.17)

where [s] denotes the integer part of s.

In the case s>−N
p then u ∈ Ḃ

s
p,r ∩ Ḃ

N
p

p,1 implies that

‖f(u)‖Ḃsp,r ⩽ C

(
1+ ‖u‖

Ḃ
N
p
p,1

)
‖u‖Ḃsp,r . (2.18)

Remark 2.1. After some trivial modification, the above composition inequalities can be adap-
ted to the hybrid Besov space B̃s1,s2 with 0< s1,s2 ⩽ N

2 .

The result below is useful in the existence part.

Lemma 2.4 ([2, proposition 2.93]). Let s> 0, (p,r) ∈ [1,∞]2 and K be a compact set of RN.
Assume that u ∈ Ḃsp,r(RN) is a tempered distribution with the support included in K. Then
u ∈ Bsp,r(RN) (the usual nonhomogeneous Besov space) and there exists a universal constant
C> 0 such that

‖u‖Bsp,r(RN) ⩽ C(1+ |K|)
s
N ‖u‖Ḃsp,r(RN).

The following three lemmas are concerned with the commutator estimates.

Lemma 2.5. Let α> 1. Then the following inequality holds true:

‖
[
Λα−1, Ṡj−1v ·∇

]
∆̇jσ‖L2 ⩽ C2j(α−1)‖∇v‖L∞‖∆̇jσ‖L2 . (2.19)

Proof of lemma 2.5. Taking advantage of the spectrum support property, we see that[
Λα−1, Ṡj−1v ·∇

]
∆̇jσ =

∑
|j−j ′|⩽4

[
Λα−1∆̇j ′ , Ṡj−1v ·∇

]
∆̇jσ

=
∑

|j ′−j|⩽4

2j
′(N+α−1)

ˆ
RN

h̃
(
2j

′
y
)(
Ṡj−1v(x− y)− Ṡj−1v(x)

)
·∇∆̇jσ (x− y)dy,

12
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where Λα−1∆̇j ′ = 2j
′(N+α−1)h̃(2j

′
x)∗ and h̃= F−1(|ξ|α−1ϕ(ξ)) ∈ S(RN). Hence, combined

with Hölder’s and Bernstein’s inequalities, the desired inequality (2.19) easily follows.

Lemma 2.6 ([2, lemma 2.100 and remark 2.103]). Let −N
2 < s⩽ N

2 . There exists a constant
C such that ∥∥∥(2js‖Ṡj−1v ·∇∆̇jf− ∆̇j (v ·∇f)‖L2

)
j

∥∥∥
ℓ1
⩽ C‖∇v‖

Ḃ
N
2
2,1

‖ f‖Ḃs2,1 .

Lemma 2.7 ([2, lemma 10.25]). Let m ∈ R, and let A(D) be a smooth homogeneous multiplier
of degree m. There exists a constant C= C(m,A,N) such that for all p ∈ [1,∞] the following
inequality holds true:

∥Ṡj−1a∆̇jA(D)b−A(D)∆̇jTab∥Lp ⩽ C2j(m−1)
j+4∑

j ′,j ′ ′=j−4

(
∥∇∆̇j ′ ′a∥L∞ + ∥∇Ṡj−1a∥L∞

)
∥∆̇j ′b∥Lp .

2.2. Fractional Laplacian and Kato–Ponce type inequality

Definition 2.4 (fractional Laplacian). For every u belonging to the Schwartz class S(RN), the
fractional Laplacian operator Λα with 0< α < 2 is defined as

Λαu(x) = (−∆)
α
2 u(x) = cα,N p.v.

ˆ
RN

u(x)− u(y)
|x− y|N+α

dy, (2.20)

with cα,N = 2αΓ(N/2+α/2)
πN/2Γ(−α/2) .

We first recall the following Kato–Ponce inequality associated with the fractional Laplacian
operator Λα, of which proof can be found in Li’s paper [29, theorem 1.2].

Lemma 2.8. Let α> 0, α1,α2 ⩾ 0 be with α1 +α2 = α, and let 1< p,p1,p2 <∞ be satisfy-
ing 1

p1
+ 1

p2
= 1

p . Then for every u,v ∈ S(RN), we have∥∥∥Λα (uv)−
∑

|k|<α1

1
k!
∂kuΛα,kv−

∑
|m|⩽α2

1
m!
∂mvΛα,mu

∥∥∥
Lp
≲α,α1,α2,p,N ∥Λα1u∥Lp∥Λα2v∥BMO, (2.21)

and∥∥∥Λα (uv)−
∑

|k|⩽α1

1
k!
∂kuΛα,kv−

∑
|m|⩽α2

1
m!
∂mvΛα,mu

∥∥∥
Lp
≲α,α1,α2,p,p1,p2,N ∥Λα1u∥Lp1 ∥Λα2v∥Lp2 , (2.22)

where k= (k1, . . . ,kN), m= (m1, . . . ,mN), Λ̂α,kv(ξ) = i−|k|∂kξ(|ξ|α)v̂(ξ) and the BMO semi-

norm is given by ‖u‖BMO = ‖(
∑

j∈Z |∆̇ju|2)
1
2 ‖L∞ .

A consequence of lemma 2.8 is the following commutator estimate.

Lemma 2.9. Let 1< α < 2, 1< p<∞ and p1,p2 ∈ [p,∞] be satisfying 1
p1
+ 1

p2
= 1

p . Then
we have

‖Λα (uv)− uΛαv‖Lp ≲α,N ‖∇u‖Lp1‖Λα−1v‖Lp2 + ‖Λαu‖Lp1‖v‖Lp2 . (2.23)

Proof of lemma 2.9. For every p< p2 ⩽∞, by taking α1 = 1 and α2 = α− 1, the inequalit-
ies (2.21) and (2.22) become

‖Λα (uv)− uΛαv− vΛαu‖Lp ≲α,N ‖Λu‖Lp1‖Λα−1v‖Lp2 ≲α,N ‖∇u‖Lp1‖Λα−1v‖Lp2 ,

13
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thus the desired estimate (2.23) follows from the triangle inequality and Hölder’s inequal-
ity. Similarly, by taking α1 = α− 1 and α2 = 1 and switching u,v in (2.21), and using the
Calderón-Zygmund theorem of singular integral operator, we obtain

‖Λα (uv)− vΛαu− uΛαv− ∂uΛα,1v‖Lp ≲α,N ‖Λu‖BMO‖Λα−1v‖Lp ≲α,N ‖∇u‖L∞‖Λα−1v‖Lp ,

which leads to (2.23) in the case p2 = p.

Now, we present a useful commutator estimate in Besov space as follows.

Lemma 2.10. Let 1< α < 2, s>−N
2 and s1,s2 ⩾ 0. Then we have

‖Λα (uv)− uΛαv‖Ḃs2,1 ≲α,N,s,s1,s2 ‖u‖
Ḃ
N
2 +1−s1
2,1

‖v‖
Ḃ
s+s1+α−1
2,1

+ ‖u‖
Ḃ
s+s2+α

2,1
‖v‖

Ḃ
N
2 −s2
2,1

. (2.24)

Proof of lemma 2.10. We here apply lemma 2.9 to show (2.24). Using Bony’s decomposi-
tion (2.3) leads to

Λα (uv)− uΛαv= (ΛαTuv− Tu (Λ
αv))+ (ΛαTvu− TΛαvu)+ (ΛαR(u,v)−R(u,Λαv)) =:

3∑
j=1

Πj.

In light of lemma 2.9 and the spectrum support property of dyadic operators, we get

‖Π1‖Ḃs2,1 ≲
∑
j∈Z

2js‖Λα
(
Ṡj−1u∆̇jv

)
− Ṡj−1uΛ

α∆̇jv‖L2

≲
∑
j∈Z

2js
(
‖ΛαṠj−1u‖L∞‖∆̇jv‖L2 + ‖∇Ṡj−1u‖L∞‖Λα−1∆̇jv‖L2

)

≲
∑
j∈Z

2−js1
∑

j ′⩽j−1

2j
′( N2 +1)‖∆̇j ′u‖L2

2j(s+s2+α−1)‖∆̇jv‖L2

≲ ‖u‖
Ḃ
N
2 +1−s1
2,1

‖v‖
Ḃ
s+s1+α−1
2,1

.

Similarly, we have

‖Π2‖Ḃs2,1 ≲
∑
j∈Z

2js‖Λα
(
Ṡj−1v∆̇ju

)
−Λα

(
Ṡj−1v

)
∆̇ju‖L2

≲
∑
j∈Z

2js
(
‖Λα∆̇ju‖L2‖Ṡj−1v‖L∞ + ‖∇∆̇ju‖L2‖Λα−1Ṡj−1v‖L∞

)
≲ ‖u‖

Ḃ
α+s+s2
2,1

‖v‖
Ḃ
N
2 −s2
2,1

. (2.25)

For the term Π3, we do not need to use the commutator structure, and we infer that for every
s>−N

2 ,

14
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‖Π3‖Ḃs2,1 ≲
∑
j∈Z

2js
(
2jα‖∆̇jR(u,v)‖L2 + ‖∆̇jR(u,Λ

αv)‖L2
)

≲
∑
j∈Z

∑
k>j−3

2j(s+
N
2 )
(
2jα‖∆̇j

(
∆̇ku

˜̇∆kv
)
‖L1 + ‖∆̇j

(
∆̇kuΛ

α
( ˜̇∆kv

))
‖L1
)

≲
∑
j∈Z

∑
k>j−3

2( j−k)(s+ N
2 )2k(s+s2+α)‖∆̇ku‖L22k(

N
2 −s2)‖ ˜̇∆kv‖L2

≲ ‖u‖
Ḃ
s+s2+α

2,1
‖v‖

Ḃ
N
2 −s2
2,1

. (2.26)

Combining these inequalities (2.25) and (2.26) completes the proof of this lemma.

As a direct consequence of lemma 2.10 with s= N
2 + 1− r, s1 = r1 −α and s2 = r− r1, we

have the following commutator estimate.

Corollary 2.11. Let 1< α < 2 and α⩽ r1 ⩽ r< N+ 1. Then the following inequality holds
true:

‖Λα (uv)− uΛαv‖
Ḃ
N
2 +1−r

2,1

≲α,r,r1,N ‖u‖
Ḃ
N
2 +1+α−r1
2,1

‖v‖
Ḃ
N
2 +r1−r

2,1

.

Remark 2.2. It is worth mentioning that Danchin et al [14, lemma 3.1] established a related
commutator estimate (with different Besov index), and they mainly use the intrinsic definition
of Besov space.

3. A priori estimates

This section is devoted to establishing a priori estimates for the Euler-alignment system (1.1),
with isothermal or isentropic pressure (1.2), and strongly singular alignment interactions (1.6).

Let us begin with rewriting the system into a more treatable form by introducing a new
quantity

σ :=

{√
κγ

γ−1

(
ργ−1 − 1

)
, γ > 1,

√
κ lnρ, γ = 1.

(3.1)

It is easy to see that ρ= 1+ h(σ) with

h(σ) :=


(

γ−1√
κγσ+ 1

) 1
γ−1 − 1, γ > 1,

eσ/
√
κ − 1, γ = 1.

(3.2)

Consequently, (σ,u) satisfies the following coupled system
∂tσ+ u ·∇σ+(γ− 1)σdivu+λdivu= 0,

∂tu+ u ·∇u+µΛαu+λ∇σ =−µ(Λα (uh(σ))− uΛαh(σ)) ,

(σ,u) |t=0 = (σ0,u0) ,

(3.3)

where λ :=
√
κγ and µ := 1

cα,N
.

In the following, we first study paralinearized equations of (3.3), and obtain a priori estim-
ates in a hybrid Besov space. The analysis is inspired by the work of Danchin [10] (see also
[4, 6]). We then calculate some nonlinear estimates and obtain a priori local/global uniform
estimates for the system (3.3).
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3.1. A priori estimates for the paralinearized equations

In this subsection we study the following paralinearized system
∂tσ+Tv ·∇σ+λdivu= F,

∂tu+Tv ·∇u+µΛαu+λ∇σ = G,

(σ,u) |t=0 = (σ0,u0) ,

(3.4)

where v is a given vector field of RN, and F, G are given source terms. We denote

Tv ·∇g :=
N∑
i=1

Tvi∂xig=
N∑
i=1

∑
j∈Z

Ṡj−1vi ∆̇j∂xig.

The system (3.4) contains the major linear structures of (3.3). A priori energy-type estimates
of (3.4) are stated as follows.

Proposition 3.1. For every s ∈ R, the smooth solution (σ,u) of the paralinearized system (3.4)
satisfies that

‖σ‖L̃∞t (B̃s,s+α−1) + ‖u‖L̃∞t (Ḃs2,1)
+

ˆ t

0
‖σ (τ)‖B̃s+α,s+1dτ +

ˆ t

0
‖u(τ)‖Ḃs+α

2,1
dτ

⩽ CeCV(t)
(
‖σ0‖B̃s,s+α−1 + ‖u0‖Ḃs2,1 +

ˆ t

0
‖F(τ)‖B̃s,s+α−1dτ +

ˆ t

0
‖G(τ)‖Ḃs2,1dτ

)
,

(3.5)

with V(t) :=
´ t
0 ‖v(τ)‖Ḃ

N
2 +1

2,1

dτ and C= C(α,N)> 0.

Proof. Denote by P := Id−∇∆−1 div the projection operator onto the divergence-free field
and

d := Λ−1 divu.

We decompose u into two parts

u=−∇Λ−1d+Pu.

Then (3.4) becomes
∂tσ+Tv ·∇σ+λΛd= F,

∂td+Λ−1 div(Tv ·∇u)+µΛαd−λΛσ = Λ−1 divG,

∂tPu+P(Tv ·∇u)+µΛαPu= PG.
(3.6)

From (3.6), we see that (∆̇jσ,∆̇ju) satisfy that
∂t∆̇jσ+ Ṡj−1v ·∇∆̇jσ+λΛ∆̇jd= fj,

∂t∆̇jd+ Ṡj−1v ·∇∆̇jd+µΛα∆̇jd−λΛ∆̇jσ = gj,

∂t∆̇jPu+ Ṡj−1v ·∇∆̇jPu+µΛα∆̇jPu= g̃j,

(3.7)

where

fj := ∆̇jF+ Ṡj−1v ·∇∆̇jσ− ∆̇j (Tv ·∇σ) , (3.8)

gj := Λ−1 div∆̇jG+ Ṡj−1v ·∇∆̇jd−Λ−1 div∆̇j (Tv ·∇u) , (3.9)

16
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g̃j := P∆̇jG+ Ṡj−1v ·∇P∆̇ju−P∆̇j (Tv ·∇u) . (3.10)

Now we estimate the compressible part (∆̇jσ,∆̇jd) and the incompressible part P∆̇ju
respectively. For the sake of simplicity, we denote ( f|g) =

´
Rd f(x) · g(x)dx in the sequel.

Step 1: the compressible part. Taking the L2 inner product of the first two equations
of (3.7) respectively and using the integration by parts give that

1
2
d
dt
‖∆̇jσ‖2L2 +λ

ˆ
RN

∆̇jσΛ∆̇jddx=
ˆ
RN

fj ∆̇jσdx+
1
2

ˆ
RN

(
∆̇jσ

)2
div Ṡj−1vdx, (3.11)

and

1
2
d
dt
∥∆̇jd∥2L2 +µ∥Λ

α
2 ∆̇jd∥2L2 −λ

ˆ
RN

∆̇jσΛ∆̇jddx=
ˆ
RN

gj∆̇jddx+
1
2

ˆ
RN

(
∆̇jd
)2

div Ṡj−1vdx. (3.12)

In order to get the smoothing effect of σ, we consider the cross term (Λα−1∆̇jσ|∆̇jd). Applying
the operator Λα−1 to the first equation of (3.7) yields

∂tΛ
α−1∆̇jσ+Λα−1

(
Ṡj−1v ·∇∆̇jσ

)
+λΛα∆̇jd= Λα−1fj. (3.13)

Together with the second equation of (3.7), we get

d
dt

(
∆̇jd|Λα−1∆̇jσ

)
−λ‖Λα

2 ∆̇jσ‖2L2 +λ‖Λα
2 ∆̇jd‖2L2 +µ

ˆ
RN

Λα∆̇jd ·Λα−1∆̇jσdx

=

ˆ
RN

Λα−1fj · ∆̇jddx+
ˆ
RN

gj ·Λα−1∆̇jσdx

−
ˆ
RN

(
Ṡj−1v ·∇∆̇jd

)
·Λα−1∆̇jσdx−

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
· ∆̇jddx. (3.14)

To proceed, we work with low frequencies and high frequencies separately. Define

j0 :=
1

α− 1
log2

4λ
µ
, i.e. 2j0(α−1) =

4λ
µ
. (3.15)

For low frequencies j⩽ j0, namely

2j(α−1) ⩽ 4λ
µ
, (3.16)

we set

Y2j = ‖∆̇jσ‖2L2 + ‖∆̇jd‖2L2 − δ
µ

λ

(
∆̇jd|Λα−1∆̇jσ

)
, j⩽ j0,

where δ > 0 is a suitable small constant, e.g. δ = 1
300 . It is easy to check that

Yj ≈ ‖∆̇jσ‖L2 + ‖∆̇jd‖L2 . (3.17)

17
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Gathering the equations (3.11), (3.12) and (3.14), we see that Yj satisfies

1
2
d
dt
Y2j +

(
1− δ

2

)
µ‖Λα

2 ∆̇jd‖2L2 +
δµ

2
‖Λα

2 ∆̇jσ‖2L2 −
δµ2

2λ

ˆ
RN

Λα∆̇jd ·Λα−1∆̇jσdx

=

ˆ
RN

fj

(
∆̇jσ−

δµ

2λ
Λα−1∆̇jd

)
dx+

ˆ
RN

gj

(
∆̇jd−

δµ

2λ
Λα−1∆̇jσ

)
dx

− 1
2

ˆ
RN

((
∆̇jσ

)2
+
(
∆̇jd
)2)

div Ṡj−1vdx

+
δµ

2λ

ˆ (
Ṡj−1v ·∇∆̇jd

)
·Λα−1∆̇jσdx+

δµ

2λ

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
· ∆̇jddx.

(3.18)

For the terms on the right-hand side of equality (3.18), using Hölder’s inequality, we get
ˆ
RN

fj

(
∆̇jσ−

δµ

2λ
Λα−1∆̇jd

)
dx+

ˆ
RN

gj

(
∆̇jd−

δµ

2λ
Λα−1∆̇jσ

)
dx⩽ C(‖ fj‖L2 + ‖gj‖L2)Yj,∣∣∣ˆ

RN

((
∆̇jσ

)2
+
(
∆̇jd
)2)

div Ṡj−1vdx
∣∣∣⩽ C‖∇Ṡj−1v‖L∞Y2j ,

and thanks to the integration by parts and lemma 2.5, we find

ˆ
RN

(
Ṡj−1v ·∇∆̇jd

)
·Λα−1∆̇jσdx+

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
· ∆̇jddx

=−
ˆ
RN

(
div Ṡj−1v

)
∆̇jd ·Λα−1∆̇jσdx+

ˆ
RN

[
Λα−1, Ṡj−1v ·∇

]
∆̇jσ · ∆̇jddx

⩽ C2j0(α−1)‖∇Ṡj−1v‖L∞‖∆̇jd‖L2‖∆̇jσ‖L2 . (3.19)

For the terms on the left-hand side of (3.18), by virtue of Hölder’s and Young’s inequalities,
we have that for all j⩽ j0,

δµ2

2λ

ˆ
RN

Λα∆̇jd ·Λα−1∆̇jσdx⩽
δµ3

4λ2
‖Λ 3α

2 −1∆̇jd‖2L2 +
δµ

4
‖Λα

2 ∆̇jσ‖2L2

⩽ δµ3

λ2

(
8
3

)2(α−1)

22j0(α−1)‖Λα
2 ∆̇jd‖2L2 +

δµ

4
‖Λα

2 ∆̇jσ‖2L2 .

Choosing δ small enough (e.g. δ = 1
300 ) and using (3.16), we obtain(

1− δ

2

)
µ− δµ3

λ2

(
8
3

)2(α−1)

22j0(α−1) > (1− 115δ)µ >
µ

2
.

Thus the equation (3.18) can be rewritten as

d
dt
Yj+ µ̄2jαYj ⩽ C(‖ fj‖L2 + ‖gj‖L2 + ‖∇v‖L∞Yj) , (3.20)

where µ̄ := δµ
8 and we have used the following estimate

µ

2
‖Λα

2 ∆̇jd‖2L2 +
δµ

4
‖Λα

2 ∆̇jσ‖2L2 ⩾
δµ

4

(
3
4

)α

2jα
(
‖∆̇jd‖2L2 + ‖∆̇jσ‖2L2

)
⩾ µ̄2jαY2j .
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Now we consider the high frequency case j> j0, namely

2j(α−1) >
4λ
µ
. (3.21)

We define another energy, still denoted by Yj, as follows

Y2j = ‖Λα−1∆̇jσ‖2L2 + 2
λ2

µ2
‖∆̇jd‖2L2 − 2

λ

µ

(
∆̇jd|Λα−1∆̇jσ

)
, j> j0.

From (3.13) we can gain the following L2-estimate

1
2
d
dt
‖Λα−1∆̇jσ‖2L2 +

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
·Λα−1∆̇jσdx

+λ

ˆ
RN

Λα∆̇jd ·Λα−1∆̇jσdx=
ˆ
RN

Λα−1fj ·Λα−1∆̇jσdx.

Noting that 2λ
µ (∆̇jd|Λα−1∆̇jσ)⩽ 3

2
λ2

µ2 ‖∆̇jd‖2L2 +
2
3‖Λ

α−1∆̇jσ‖2L2 , we find that

Yj ≈ ‖Λα−1∆̇jσ‖L2 +
λ2

µ2
‖∆̇jd‖L2 (3.22)

and Yj satisfies

1
2
d
dt
Y2j +

λ2

µ
‖Λα

2 ∆̇jd‖2L2 +
λ2

µ
‖Λα

2 ∆̇jσ‖2L2 −
2λ3

µ2

ˆ
RN

∆̇jσΛ∆̇jddx

=

ˆ
RN

Λα−1fj

(
Λα−1∆̇jσ−

λ

µ
∆̇jd

)
dx+

λ

µ2

ˆ
RN

gj
(
2λ∆̇jd−µΛα−1∆̇jσ

)
dx

+
λ

µ

ˆ
RN

(
Ṡj−1v ·∇∆̇jd

)
·Λα−1∆̇jσdx+

λ

µ

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
· ∆̇jddx

−
ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
·Λα−1∆̇jσdx+

λ2

µ2

ˆ
RN

(
∆̇jd
)2

div Ṡj−1vdx.

For the left-hand side of the above equality, applying (3.21) we have

‖Λα
2 ∆̇jd‖2L2 ⩾

(
3
4

)2α−2

2j(2α−2)‖Λ1−α
2 ∆̇jd‖2L2 ⩾ 8

λ2

µ2
‖Λ1−α

2 ∆̇jd‖2L2 ,

and

2λ3

µ2

ˆ
∆̇jσΛ∆̇jddx⩽

λ2

2µ
‖Λα

2 ∆̇jσ‖2L2 +
2λ4

µ3
‖Λ1−α

2 ∆̇jd‖2L2

⩽ λ2

2µ
‖Λα

2 ∆̇jσ‖2L2 +
λ2

2µ
‖Λα

2 ∆̇jd‖2L2 ,

and

λ2

2µ

(
‖Λα

2 ∆̇jσ‖2L2 + ‖Λα
2 ∆̇jd‖2L2

)
⩾ λ2

2µ

(
‖Λα

2 ∆̇jσ‖2L2 + 8
λ2

µ2
‖Λ1−α

2 ∆̇jd‖2L2
)

⩾ λ2

4µ
2j(2−α)

(
‖Λα−1∆̇jσ‖2L2 +

8λ2

µ2
‖∆̇jd‖2L2

)
.
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On the other hand, for the terms on the right-hand side, owing to Hölder’s and Bernstein’s
inequalities, we infer that

ˆ
RN

Λα−1fj

(
Λα−1∆̇jσ−

λ

µ
∆̇jd

)
dx⩽ C‖Λα−1fj‖L2Yj,

λ

µ2

ˆ
RN

gj
(
2λ∆̇jd−µΛα−1∆̇jσ

)
dx⩽ C‖gj‖L2Yj,

and

λ2

µ2

ˆ
RN

(
∆̇jd
)2

div Ṡj−1vdx⩽ C‖div Ṡj−1v‖L∞‖∆̇jd‖2L2 ,

and using the integration by parts and corollary 2.5,

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
·Λα−1∆̇jσdx=

ˆ
RN

(
Ṡj−1v ·∇Λα−1∆̇jσ

)
Λα−1∆̇jσdx

+

ˆ
RN

([
Λα−1, Ṡj−1v ·∇

]
∆̇jσ

)
Λα−1∆̇jσdx

=−1
2

ˆ
RN

(
div Ṡj−1v

)
·
(
Λα−1∆̇jσ

)2
dx+

ˆ
RN

([
Λα−1, Ṡj−1v ·∇

]
∆̇jσ

)
Λα−1∆̇jσdx

⩽ C2j(α−1)‖∇Ṡj−1v‖L∞‖Λα−1∆̇jσ‖L2‖∆̇jσ‖L2 .

Similarly as obtaining inequality (3.19), we also see that

λ

µ

ˆ
RN

(
Ṡj−1v ·∇∆̇jd

)
·Λα−1∆̇jσdx+

λ

µ

ˆ
RN

Λα−1
(
Ṡj−1v ·∇∆̇jσ

)
· ∆̇jddx

⩽ C2j(α−1)‖∇Ṡj−1v‖L∞‖∆̇jd‖L2‖∆̇jσ‖L2 .

Hence, by letting ν̄ := λ2

4µ and gathering the above estimates, we have the following inequality

d
dt
Yj+ ν̄2j(2−α)Yj ⩽ C2j(α−1)‖ fj‖L2 +C‖gj‖L2 +C‖∇v‖L∞Yj. (3.23)

Combining the estimates on both low and high frequencies (3.20) and (3.23), we obtain

d
dt
Yj+min

{
µ̄2jα, ν̄2j(2−α)

}
Yj ⩽ Cmax

{
1,2j(α−1)

}
‖ fj‖L2 +C‖gj‖L2 +C‖∇v‖L∞Yj.

Integrating this with respect to the time variable and using (3.17), (3.22), we obtain

Yj (t)+min
{
µ̄2jα, ν̄2j

}ˆ t

0
‖∆̇jσ‖L2dτ +min

{
µ̄2jα, ν̄2j(2−α)

}ˆ t

0
‖∆̇jd‖L2dτ

⩽ Yj (0)+C
ˆ t

0

(
max

{
1,2j(α−1)

}
‖ fj‖L2 + ‖gj‖L2 + ‖∇v‖L∞Yj

)
dτ.

(3.24)

In the above estimate, the smoothing effect of d in the high frequencies can be improved.
Indeed, taking the L2-inner product with d in the second equation of (3.7), we deduce that

d
dt
‖∆̇jd‖L2 +

(
3
4

)α

µ2jα‖∆̇jd‖L2 ⩽
8
3
λ2j‖∆̇jσ‖L2 + ‖gj‖L2 + ‖∇v‖L∞‖∆̇jd‖L2 ,
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and integrating on the time variable leads to

µ2jα
ˆ t

0
‖∆̇jd(τ)‖L2dτ −λ2j

ˆ t

0
‖∆̇jσ (τ)‖L2dτ ⩽ CYj (0)+C

ˆ t

0
(‖gj‖L2 + ‖∇v‖L∞Yj)dτ.

Inserting the above inequality into (3.24) yields

Yj+min
{
µ̄2jα, ν̄2j

}ˆ t

0
‖∆̇jσ‖L2dτ + 2jα

ˆ t

0
‖∆̇jd‖L2dτ

⩽ CYj (0)+C
ˆ t

0

(
max

{
1,2j(α−1)

}
‖ fj‖L2 + ‖gj‖L2 + ‖∇v‖L∞Yj

)
dτ.

(3.25)

Step 2: the incompressible part. By taking the L2-estimate of equation (3.7)3, the incom-
pressible part satisfies

1
2
d
dt
‖∆̇jPu‖2L2 +µ‖Λα

2 ∆̇jPu‖2L2 ⩽ C‖∆̇jPu‖L2
(
‖div Ṡj−1v‖L∞‖∆̇jPu‖L2 + ‖g̃j‖L2

)
,

which implies that

d
dt
‖∆̇jPu‖L2 +µ

(
3
4

)α

2jα‖∆̇jPu‖2L2 ⩽ C
(
‖div Ṡj−1v‖L∞‖∆̇jPu‖L2 + ‖g̃j‖L2

)
. (3.26)

Integrating with respect to the time variable, we have

∥∆̇jPu(t)∥L2 +µ2jα
ˆ t

0
∥∆̇jPu∥L2dτ ⩽ 2∥∆̇jPu0∥L2 +C

ˆ t

0

(
∥g̃j∥L2 + ∥∇v∥L∞∥∆̇jPu∥L2

)
dτ. (3.27)

Step 3: the a priori estimate for (σ,u). We need to combine the compressible and
incompressible estimates to show the a priori estimate of (σ,u). Multiplying 2js on both
sides of (3.25) and (3.27), taking the `1-norm with regard to j, and noting that ‖u‖Ḃs2,1 ⩽
‖d‖Ḃs2,1 + ‖Pu‖Ḃs2,1 , we obtain

‖σ‖L̃∞t (B̃s,s+α−1) + ‖u‖L̃∞t (Ḃs2,1)
+

ˆ t

0

(
‖σ (τ)‖B̃s+α,s+1 + ‖u(τ)‖Ḃs+α

2,1

)
dτ

≲ ‖σ0‖B̃s,s+α−1 + ‖u0‖Ḃs2,1 +
ˆ t

0
‖∇v(τ)‖L∞

(
‖σ (τ)‖B̃s,s+α−1 + ‖u(τ)‖Ḃs2,1

)
dτ

+

ˆ t

0

∑
j∈Z

max
{
2js,2j(s+α−1)

}
‖ fj‖L2 +

∑
j∈Z

2js (‖gj‖L2 + ‖g̃j‖L2)

dτ.

(3.28)

Recalling that fj, gj and g̃j are given by (3.8)–(3.10), and by virtue of lemma 2.6, we see that∑
j∈Z

max
{
2js,2j(s+α−1)

}
‖ fj‖L2 ⩽ C‖F‖B̃s,s+α−1 +C‖∇v‖

Ḃ
N
2
2,1

‖σ‖B̃s,s+α−1 , (3.29)

and ∑
j∈Z

2js (‖gj‖L2 + ‖g̃j‖L2)⩽ C‖G‖Ḃs2,1 +C‖∇v‖
Ḃ
N
2
2,1

‖u‖Ḃs2,1 . (3.30)
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Inserting (3.29) and (3.30) into (3.28) yields

‖σ‖L̃∞t (B̃s,s+α−1) + ‖u‖L̃∞t (Ḃs2,1)
+

ˆ t

0

(
‖σ (τ)‖B̃s+α,s+1 + ‖u(τ)‖Ḃs+α

2,1

)
dτ

≲ ‖σ0‖B̃s,s+α−1 + ‖u0‖Ḃs2,1 +
ˆ t

0
‖∇v(τ)‖

Ḃ
N
2
2,1

(
‖σ (τ)‖B̃s,s+α−1 + ‖u(τ)‖Ḃs2,1

)
dτ

+ ‖F‖L1t (B̃s,s+α−1) + ‖G‖L1t (Ḃs2,1).

(3.31)

With the help of Gronwall’s inequality, we conclude the proof of (3.5).

3.2. A priori estimates for the nonlinear system

Let us turn our discussion to the nonlinear system (3.3). It can be viewed as (3.4) with v= u
and

F :=−(γ− 1)σdivu−T∇σ · u−R(u,∇σ) ,
G :=−µΛα (uh(σ))+µuΛαh(σ)−T∇u · u−R(u,∇u) .

(3.32)

Define

X(T) := ‖σ‖
L̃∞T

(
B̃
N
2 +1−α, N2

) + ‖u‖
L̃∞T

(
Ḃ
N
2 +1−α

2,1

) + ‖σ‖
L1T

(
B̃
N
2 +1, N2 +2−α

) + ‖u‖
L1T

(
Ḃ
N
2 +1

2,1

)
and

X0 := ‖σ0‖B̃ N
2 +1−α, N2

+ ‖u0‖
Ḃ
N
2 +1−α

2,1

. (3.33)

We state the following a priori estimate on X(T), assuming X0 is sufficiently small. The
uniform bound on X(T) will play an important role in the global well-posedness theory for the
system (3.3).

Proposition 3.2. Assume that (σ,u) is a smooth solution for the system (3.3) with σ0 ∈
B̃

N
2 +1−α, N2 and u0 ∈ Ḃ

N
2 +1−α

2,1 . Then there exist constants ε0 = ε0(α,N)> 0 and C∗ =
C∗(α,N)> 0 such that, if X0 ⩽ ε0 then

X(T)⩽ C∗X0, ∀ T⩾ 0. (3.34)

Proof of proposition 3.2. Apply proposition 3.1 with s= N
2 + 1−α and get

X(T)⩽ CeCX(T)
(
X0 + ‖F‖

L1T

(
B̃
N
2 +1−α, N2

) + ‖G‖
L1T

(
Ḃ
N
2 +1−α

2,1

)
)
.

Now, we estimate the source terms F and G. It follows from lemma 2.1 that

‖σdivu‖
L1T

(
B̃
N
2 +1−α, N2

) + ‖T∇σ · u‖L1T
(
B̃
N
2 +1−α, N2

) + ‖R(u,∇σ)‖
L1T

(
B̃
N
2 +1−α, N2

)
⩽ C‖σ‖

L̃∞T

(
B̃
N
2 +1−α, N2

)‖u‖
L1T

(
Ḃ
N
2 +1

2,1

) ⩽ CX2 (T)

and

∥T∇u · u∥
L1T

(
Ḃ
N
2
+1−α

2,1

) + ∥R(u,∇u)∥
L1T

(
Ḃ
N
2
+1−α

2,1

) ⩽ C∥u∥
L̃∞T

(
Ḃ
N
2
+1−α

2,1

)∥u∥
L1T

(
Ḃ
N
2
+1

2,1

) ⩽ CX2 (T) .
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Taking advantage of corollary 2.11 and lemma 2.3, we obtain

‖Λα (uh(σ))− uΛαh(σ)‖
L1T

(
Ḃ
N
2 +1−α

2,1

) ⩽ C‖u‖
L1T

(
Ḃ
N
2 +1

2,1

)‖h(σ)‖
L̃∞T

(
Ḃ
N
2
2,1

)
⩽ C‖u‖

L1T

(
Ḃ
N
2 +1

2,1

)‖σ‖
L̃∞T

(
Ḃ
N
2
2,1

) ⩽ CX2 (T) . (3.35)

Note that when applying (2.16) in lemma 2.3, the constant C depends on ‖σ‖L∞ . Moreover,
when γ > 1, h is defined in I= [−

√
κγ

γ−1 ,+∞), and it is not necessarily smooth at the end-

point σ =−
√
κγ

γ−1 (The endpoint corresponds to vacuum ρ= 0, which needs to be avoided).
Therefore, we may assume e.g.

‖σ‖L̃∞T (L∞) ⩽
√
κγ

2(γ−1) (3.36)

to make sure C is a universal constant. (3.36) can be enforced by an appropriately chosen
smallness condition.

Combining the above estimates with Hölder’s inequality yields

‖F‖
L1T

(
B̃
N
2 +1−α, N2

) + ‖G‖
L1T

(
Ḃ
N
2 +1−α

2,1

) ⩽ CX2 (T) .

Hence, collecting the above estimates we deduce that

X(T)⩽ CeCX(T)
(
X0 +X2 (T)

)
, (3.37)

where the constant C= C(α,N). Pick C∗ =max{4C,1} and ε0 = C−2
∗ . We now show (3.34)

by contradiction. Suppose (3.34) is false. By continuity of X, there exists a T > 0 such that
X(T) = C∗X0. Then (3.37) implies

X(T)⩽ CeCC∗X0
(
X0 +C2

∗X
2
0

)
⩽ Ce1/4 · 2X0 < C∗X0.

This leads to a contradiction.
We can further choose a smaller ε0 to get a smaller X(T) when needed. In particular, since

B̃
N
2 +1−α, N2 ↪→ L∞, we can choose ε small enough to guarantee (3.36).

Next, we present an improved a priori estimate on X(T) for some positive time T, without
a smallness assumption on u0. This allows us to obtain a stronger local well-posedness result
(see theorem 4.2). This method has been used on the barotropic compressible Navier–Stokes
system, see e.g. [2, corollary 10.4].

Proposition 3.3. Let 1< α < 2, σ0 ∈ B̃
N
2 +1−α, N2 and u0 ∈ Ḃ

N
2 +1−α

2,1 . Assume that (σ,u) is a
smooth solution for the system (3.3). Then there exist a positive time T and a small enough
constant η > 0, such that, under the assumption

‖σ0‖B̃ N
2 +1−α, N2

⩽ η,

we have

‖σ‖
L̃∞T

(
B̃
N
2 +1−α, N2

) + ‖σ‖
L1T

(
B̃
N
2 +1, N2 +2−α

) ⩽ C‖σ0‖B̃ N
2 +1−α, N2

,

and

X(T)⩽ CX0, (3.38)

with C= C(α,N)> 0.
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Proof of proposition 3.3. We split u into uL+ ũ, with uL satisfying

∂tuL+µΛαuL = 0, uL|t=0 = u0.

It is obvious that uL = e−µtΛα

u0, where e−µtΛα

= F−1(e−µt|ξ|α)∗ is the fractional heat semig-
roup operator. By using Bernstein’s inequality and [22, proposition 2.2], we have

UL (t) :=
ˆ t

0
‖uL (τ)‖

Ḃ
N
2 +1

2,1

dτ ⩽ C
∑
j∈Z

2j(
N
2 +1−α)

(
1− e−µt2jα

)
‖∆̇ju0‖L2 , (3.39)

and

‖uL‖
L̃∞

(
R+;Ḃ

N
2 +1−α

2,1

) ⩽ ‖u0‖
Ḃ
N
2 +1−α

2,1

. (3.40)

Observe that (σ, ũ) satisfies
∂tσ+Tu ·∇σ+λdiv ũ=−λdivuL− (γ− 1)σdivu−T∇σ · u−R(u,∇σ) =: F̃,

∂tũ+Tu ·∇ũ+µΛαũ+λ∇σ =

−u ·∇uL−µ(Λα (uh(σ))− uΛαh(σ))−T∇ũ · u−R(u,∇ũ) =: G̃,

(σ, ũ)t=0 = (σ0,0) ,

with u= uL+ ũ. Denote by

X̃(T) := ‖σ‖
L̃∞T

(
B̃
N
2 +1−α, N2

) + ‖ũ‖
L̃∞T

(
Ḃ
N
2 +1−α

2,1

) + ‖σ‖
L1T

(
B̃
N
2 +1, N2 +2−α

) + ‖ũ‖
L1T

(
Ḃ
N
2 +1

2,1

).
According to (3.31) of proposition 3.1 with s= N

2 + 1−α, we infer that

X̃(t)≲ ∥σ0∥
B̃
N
2
+1−α, N

2
+

ˆ t

0
∥∇u(τ)∥

Ḃ
N
2
2,1

X̃(τ)dτ + ∥F̃∥
L1t

(
B̃
N
2
+1−α, N

2

) + ∥G̃∥
L1t

(
Ḃ
N
2
+1−α

2,1

). (3.41)

Hölder’s inequality implies
ˆ t

0
‖∇u(τ)‖

Ḃ
N
2
2,1

X̃(τ)dτ ⩽ UL (t) X̃(t)+ X̃2 (t)⩽ U2
L (t)+ 2X̃2 (t) .

Now we calculate the terms involving F̃ and G̃. By virtue of Hölder’s inequality and the inter-
polation, we get

‖divuL‖L1t
(
B̃
N
2 +1−α, N2

) ⩽ ‖uL‖
L1t

(
Ḃ
N
2 +2−α

2,1

) + ‖uL‖
L1t

(
Ḃ
N
2 +1

2,1

)
⩽ ‖uL‖

L1t

(
Ḃ
N
2 +1−α

2,1 ∩Ḃ
N
2 +1

2,1

) + ‖uL‖
L1t

(
Ḃ
N
2 +1

2,1

)
⩽ t‖uL‖

L̃∞t

(
Ḃ
N
2 +1−α

2,1

) + 2‖uL‖
L1t

(
Ḃ
N
2 +1

2,1

) ⩽ t‖u0‖
Ḃ
N
2 +1−α

2,1

+ 2UL (t) .

It follows from lemma 2.1 that

‖σdivu‖
L1t
(
B̃
N
2 +1−α, N2

) + ‖T∇σ · u‖L1t
(
B̃
N
2 +1−α, N2

) + ‖R(u,∇σ)‖
L1t
(
B̃
N
2 +1−α, N2

)
⩽ C‖σ‖

L̃∞t
(
B̃
N
2 +1−α, N2

)‖u‖
L1t

(
Ḃ
N
2 +1

2,1

) ⩽ C
(
U2
L (t)+ X̃2 (t)

)
,
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and

‖u ·∇uL‖
L1t

(
Ḃ
N
2 +1−α

2,1

) ⩽ C‖u‖
L̃∞t

(
Ḃ
N
2 +1−α

2,1

)‖uL‖
L1t

(
Ḃ
N
2 +1

2,1

) ⩽ C
(
U2
L (t)+ X̃2 (t)

)
,

and

‖T∇ũ · u‖
L1t

(
Ḃ
N
2 +1−α

2,1

) + ‖R(u,∇ũ)‖
L1t

(
Ḃ
N
2 +1−α

2,1

)
⩽ C‖ũ‖

L̃∞t

(
Ḃ
N
2 +1−α

2,1

)‖u‖
L1t

(
Ḃ
N
2 +1

2,1

) ⩽ C
(
U2
L (t)+ X̃2 (t)

)
.

From (3.35) we get

‖Λα (uh(σ))− uΛαh(σ)‖
L1t

(
Ḃ
N
2 +1−α

2,1

) ⩽ C‖u‖
L1t

(
Ḃ
N
2 +1

2,1

)‖σ‖
L̃∞t

(
Ḃ
N
2
2,1

) ⩽ C
(
U2
L (t)+ X̃2 (t)

)
.

Plugging the estimates above into (3.41), we have

X̃(t)⩽ C1

(
‖σ0‖B̃ N

2 +1−α, N2
+ t‖u0‖

Ḃ
N
2 +1−α

2,1

+UL (t)+U2
L (t)

)
+C2X̃

2 (t) ,

with C1,C2 > 0. Since limt→0UL(t) = 0, by letting T > 0 small enough, we infer that for every
t ∈ [0,T],

X̃(t)⩽ 2C1‖σ0‖B̃ N
2 +1−α, N2

+C2X̃
2 (t) .

Let η = 1
8C1C2

and C= 4C1, a similar continuity argument as in proposition 3.2 yields

X̃(t)< C‖σ0‖B̃ N
2 +1−α, N2

, ∀ t ∈ [0,T] .

Finally, combined with (3.39) and (3.40), we conclude the proof of (3.38).

4. Proof of theorem 1.1

This section is devoted to the proof of theorem 1.1. As a byproduct, we also include the local
well-posedness result.

We will mainly prove the following global well-posedess result to the system (3.3).

Theorem 4.1. Let 1< α < 2. Consider the system (3.3) with initial data σ0 ∈ B̃
N
2 +1−α, N2 (RN)

and u0 ∈ Ḃ
N
2 +1−α

2,1 (RN). There exists a small constant ε ′ > 0, such that if

‖σ0‖B̃ N
2 +1−α, N2

+ ‖u0‖
Ḃ
N
2 +1−α

2,1

⩽ ε ′, (4.1)

then the system (3.3) has a global unique solution (σ,u) satisfying

∥σ∥
L̃∞

(
R+;B̃

N
2
+1−α, N

2

) + ∥σ∥
L1
(
R+;B̃

N
2
+1, N

2
+2−α

) + ∥u∥
L̃∞

(
R+;Ḃ

N
2
+1−α

2,1

) + ∥u∥
L1
(
Ḃ
N
2
+1

2,1

) ⩽ Cε ′, (4.2)

with C= C(α,N)> 0.
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Based on theorem 4.1, we can immediately present the proof of theorem 1.1. Indeed, noti-
cing that ρ− 1= h(σ) and σ = h−1(ρ− 1) with h−1 the inverse function of h, the assump-
tion (1.11) and lemma 2.3 ensure the condition (4.1), and thus according to (4.2) in theorem
4.1 and lemma 2.3, we can conclude (1.12) and (1.13) by letting ε small enough. Similarly, the
higher regularity (1.14) of (ρ,u) can be obtained from the corresponding estimates on (σ,u),
presented in proposition 4.3.

4.1. Local existence

Let us start with the statement of the following local well-posedness result.

Theorem 4.2 (local well-posedness). Let 1< α < 2. Consider the system (3.3) with initial

data σ0 ∈ B̃
N
2 +1−α, N2 (RN) and u0 ∈ Ḃ

N
2 +1−α

2,1 (RN). There exists a constant η > 0 such that if

‖σ0‖B̃ N
2 +1−α, N2

⩽ η, (4.3)

then there exists a positive time T such that system (3.3) has a unique solution (σ,u) on
[0,T[×RN which satisfy for every T ′ < T,

u ∈ Cb
(
[0,T ′] ; Ḃ

N
2 +1−α

2,1

)
∩L1

(
[0,T ′] ; Ḃ

N
2 +1
2,1

)
, and

‖σ‖
L̃∞T

(
B̃
N
2 +1−α, N2

) + ‖σ‖
L1T

(
B̃
N
2 +1, N2 +2−α

) ⩽ C‖σ0‖B̃ N
2 +1−α, N2

.

The local solution is constructed through a standard approximation by the paralinearized
equations (3.4) and applying a priori estimates to pass to the limit. We sketch the proof in
below, with special attention to the nonlocal alignment term that needs a careful treatment.

The assumption (4.3) only requires smallness on σ0, thanks to proposition 3.3. It is possible
to obtain local well-posedness without such condition (see [12] on the compressible Navier–
Stokes system). Since our global well-posedness result requires a stronger smallness assump-
tion (4.1), we do not make an effort to remove this smallness condition.

Proof of theorem 4.2: existence. We first construct the following approximate system:

d
dt

(
σn

ūn

)
=

(
Fn (σ

n, ūn)

Gn (σ
n, ūn)

)
,

(
σn

ūn

)
t=0

=

(
Jnσ0

0

)
, (4.4)

where Jn is the Friedrichs projector defined by

Ĵnf(ξ) := 1Cn (ξ) f̂(ξ) , with Cn :=
{
ξ ∈ RN; n−1 ⩽ |ξ|⩽ n

}
,

and un = ūn+ unL with u
n
L satisfying

∂tu
n
L+µΛαunL = 0, unL|t=0 = Jnu0,

and

Fn (σ
n, ūn) =−λJn div ū

n−λJn divu
n
L−Jn (u

n ·∇σn)− (γ− 1)Jn (σ
n divun) ,

Gn (σ
n, ūn) =−λJn (∇σn)−µJnΛ

αūn−Jn (u
n ·∇un)−µJn (Λ

α (unh(σn))− unΛα (h(σn))) .

In addition, we define the set

L̇2n :=
{
f ∈ L2

(
RN
)
; supp f̂⊂ Cn

}
.
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It is easy to see that themap (σn, ūn) 7→
(
Fn(σn, ūn),Gn(σ

n, ūn)
)
is locally Lipschitz continuous

and also continuous with respect to t in (L̇2n)
N+1. Via the Cauchy–Lipschitz theorem, there is

a unique local solution (σn, ūn) ∈ C1([0,T∗n); (L̇
2
n)
N+1) to (4.4).

Since Jn is uniformly bounded from L2 to L2, from (3.39) and (3.40), we see that unL is
bounded uniformly in n, and satisfies

‖unL‖L̃∞T
(
ḂN/2+1−α
2,1

) + ‖unL‖L1T
(
ḂN/2+1
2,1

) ⩽ C‖u0‖ḂN/2+1−α
2,1

.

Arguing as obtaining the a priori estimate in proposition 3.3, under the assumption (4.3) with
small η > 0, we infer that (σn,un) is uniformly-in-n bounded and satisfies that for some T > 0,

‖σn‖
L̃∞T

(
B̃
N
2 +1−α, N2

) + ‖σn‖
L1T

(
B̃
N
2 +1, N2 +2−α

) ⩽ C‖σ0‖B̃ N
2 +1−α, N2

, (4.5)

‖σn‖
L̃∞T

(
B̃
N
2 +1−α, N2

) + ‖un‖
L̃∞T

(
Ḃ
N
2 +1−α

2,1

) + ‖σn‖
L1T

(
B̃
N
2 +1, N2 +2−α

) + ‖un‖
L1T

(
Ḃ
N
2 +1

2,1

) ⩽ CX0,

where X0 is given by (3.33). As a result, we have

σn ∈ L̃∞T
(
B̃

N
2 +1−α, N2

)
∩L1T

(
B̃

N
2 +1, N2 +2−α

)
and un ∈ L̃∞T

(
Ḃ

N
2 +1−α

2,1

)
∩L1T

(
Ḃ

N
2 +1
2,1

)
,

uniformly in n. The interpolation also implies that un ∈ L̃rT(Ḃ
N
2 +1− (r−1)α

r
2,1 ) for every r ∈ [1,∞].

Let (σ̃n, ũn) be the solution of the following linear system
∂tσ̃

n+λdiv ũn = 0,

∂tũn+µΛαũn+λ∇σ̃n = 0,

(σ̃n, ũn) = (Jnσ0,0) .

According to proposition 3.1 with (v,F,G)≡ (0,0,0), we deduce

∥σ̃n∥
L̃∞T

(
B̃
N
2
+1−α, N

2

) + ∥ũn∥
L̃∞T

(
Ḃ
N
2
+1−α

2,1

) + ∥σ̃n∥
L1T

(
B̃
N
2
+1, N

2
+2−α

) + ∥ũn∥
L1T

(
Ḃ
N
2
+1

2,1

) ⩽ C∥σ0∥
B̃
N
2
+1−α, N

2
.

Due to the fact that {(σ̃n, ũn)}n∈N is a Cauchy sequence in the considered space, there
exists functions (σ̃, ũ) such that σ̃n → σ̃ in L̃∞T (B̃

N
2 +1−α, N2 )∩L1T(B̃

N
2 +1, N2 +2−α) and ũn → ũ

in L̃∞T (Ḃ
N
2 +1−α

2,1 )∩L1T(Ḃ
N
2 +1
2,1 ).

Now denote by σ̄n := σn− σ̃n for every n ∈ N. In order to gain more time-continuity
information, we consider (∂tσ̄n,∂tūn). Note that

∂tσ̄
n =−λJn divu

n−λdiv ũn−Jn (u
n ·∇σn)− (γ− 1)Jn (σ

n divun) ,

and by virtue of the above uniform estimates and lemma (2.1), we have

∥∂tσ̄n∥
L

α
α−1
T

(
Ḃ
N
2
−1

2,1

) ≲ ∥un∥
L

α
α−1
T

(
Ḃ
N
2
2,1

) + ∥ũn∥
L

α
α−1
T

(
Ḃ
N
2
2,1

) + ∥un∥
L

α
α−1
T

(
Ḃ
N
2
2,1

)∥σn∥
L∞T

(
Ḃ
N
2
2,1

) <∞.

(4.6)

Thus, σ̄n is uniformly bounded in

C
(
[0,T] ; Ḃ

N
2
2,1

)
∩C 1

α

(
[0,T] ; Ḃ

N
2 −1
2,1

)
. (4.7)
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Meanwhile, recalling the equation of ūn in (4.4), and with the help of lemma 2.1 and corollary
2.11, we obtain

∥∂tūn∥
L

α
α−1
T

(
B̃
N
2
−1, N

2
−α

) ≲ ∥σn∥
L

α
α−1
T

(
Ḃ
N
2
2,1

) + ∥ūn∥
L

α
α−1
T

(
Ḃ
N
2
2,1

)

+ ∥un∥
L

α
α−1
T

(
Ḃ
N
2
2,1

)
(
∥σn∥

L∞T

(
Ḃ
N
2
2,1

) + ∥un∥
L∞T

(
Ḃ
N
2
+1−α

2,1

)
)
<∞.

(4.8)

So, ūn is uniformly bounded in

C
(
[0,T] ; Ḃ

N
2 +1−α

2,1

)
∩C 1

α

(
[0,T] ; B̃

N
2 −1, N2 −α

)
. (4.9)

Let {φk}k∈N ∈ C∞
c (RN) be a sequence of bump functions which are supported inB(0,k+ 1)

and equal to 1 on B(0,k). According to (4.7)–(4.9) and lemma 2.4, we have that {φkσ̄n}n⩾1

is uniformly bounded in C([0,T];B
N
2
2,1)∩C

1
α ([0,T];B

N
2 −1
2,1 ) for all k ∈ N, and {φkūn}n⩾1 is

uniformly bounded in C([0,T];B
N
2 +1−α

2,1 )∩C 1
α ([0,T];B

N
2 −α

2,1 ) for all k ∈ N. Note that the map

f 7→ φkf is compact from B
N
2
2,1 to B

N
2 −1
2,1 , and also from B

N
2 +1−α

2,1 to B
N
2 −α

2,1 . Thanks to Ascoli’s the-
orem and the diagonal process, we can find a subsequence of {(φkσ̄n,φkūn)}n⩾1 (still uses this

notation) satisfying that for all k ∈ N and as n→∞, φkσ̄n converges to σ̄k in C([0,T];B
N
2 −1
2,1 ),

and φkūn converges to ūk in C([0,T];B
N
2 −α

2,1 ). Define (σ̄, ū) := (σ̄k, ūk) for x ∈ B(0,k). Since
φkφk+1 = φk, we infer that (σ̄, ū) is well-defined. Hence, for all φ ∈ C∞

c (RN), we have

(φσ̄n,φūn)→ (φσ̄,φū) , in C
(
[0,T] ;B

N
2 −1
2,1 ×B

N
2 −α

2,1

)
.

Via Fatou’s property for Besov space (see [2, theorem 2.25]) and the uniform estimates of
(φσ̄n,φūn), we moreover get

σ = σ̄+ σ̃ ∈ L̃∞T
(
B̃

N
2
+1−α, N

2

)
∩L1T

(
B̃

N
2
+1, N

2
+2−α

)
, u= ū+ uL ∈ L̃∞T

(
Ḃ

N
2
+1−α

2,1

)
∩L1T

(
Ḃ

N
2
+1

2,1

)
. (4.10)

Now, we pass to the limit in the approximate system (4.4). We here only deal with the term
Jn
(
Λα
(
unh(σn)

)
− unΛα

(
h(σn)

))
, since the remaining terms can be treated by the standard

process. Let φ ∈ C∞
c (RN) be any fixed function with suppφ ⊂ B(0,R). Recalling that ϕ is the

function introduced in (2.1), there exists a bump function χ ∈ C∞
c (RN) supported in the ball

B(0, 43 ) such that χ(x)+
∑

j⩾0ϕj(x) = 1 for every x ∈ RN (see [2]). Clearly, χ≡ 1 in B(0, 34 ),
and we can choose k ∈ N large enough so that χk(·) = χ(2−k·)≡ 1 in B(0,2R) and it also
holds that χk(x)+

∑
j⩾kϕj(x) = 1 for every x ∈ RN. We write

〈
Jn (Λ

α (unh(σn))− unΛα (h(σn)))− (Λα (uh(σ))− uΛα (h(σ))) ,φ
〉

=
〈
Λα (unh(σn))− unΛα (h(σn)) ,(Jn− Id)φ

〉
+
〈
(Λα (χku

n h(σn))− unΛα (χkh(σ
n)))− (Λα (χkuh(σ))− uΛα (χkh(σ))

)
,φ
〉

+
∞∑
j=k

〈(
Λα(ϕju

n h(σn))− unΛα(ϕjh(σ
n))
)
−
(
Λα(ϕjuh(σ))− uΛα(ϕjh(σ))

)
,φ
〉

=: In1 + In2 + In3.
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Similarly as (3.35), we know that Λα(unh(σn))− unΛα(h(σn)) has a uniformly-in-n bound in

L1T(Ḃ
N
2 +1−α

2,1 ). Then by virtue of the dual property and the smoothness of φ, we can show that

lim
n→∞

In1 = 0.

Note that h(σ) given by (3.2) has the same spatial support with σ. Hence χkh(σn) =
χkh(χk+2σ

n), and we can write In2 as

In2 =
〈
[Λα,χk+2 (u

n− u)] (χkh(χk+2σ
n)) ,ϕ

〉
+
〈
[Λα,χk+2u] (χk (h(χk+2σ

n)− h(χk+2σ))) ,ϕ⟩.

Since χk+2un → χk+2u in L1T(B
N
2 +1−ε

2,1 ) and χk+2σ
n → χk+2σ in L∞T (B

N
2 −ε

2,1 ) with any ε> 0
small, and taking advantage of corollary 2.11 (with r= N

2 + 1 and r1 = N
2 +

α
2 ) and lemma

2.3, we get

|In2|⩽ C‖χk+2 (u
n− u)‖

L1T

(
Ḃ
1+α

2
2,1

)‖h(χk+1σ
n)‖

L∞T

(
Ḃ
N
2 +α

2 −1

2,1

)‖φ‖L2
+C‖χk+2u‖

L1T

(
Ḃ
1+α

2
2,1

)‖h(χk+2σ
n)− h(χk+2σ)‖

L∞T

(
Ḃ
N
2 +α

2 −1

2,1

)‖φ‖L2
⩽ C‖χk+2 (u

n− u)‖
L1T

(
Ḃ
1+α

2
2,1

) +C‖χk+2 (σ
n−σ)‖

L∞T

(
Ḃ
N
2 +α

2 −1

2,1

) → 0, as n→∞.

Next we consider In3. Noting that ϕjh(σn) = ϕjh(χj+2σ
n) for every j ∈ N, and by using the

integral formula of Λα given in (2.20) and the support property, we infer that

∞∑
j=k

∣∣〈Λα (ϕju
nh(σn))−Λα (ϕjuh(σ)) ,φ

〉∣∣
⩽

∞∑
j=k

∣∣〈Λα (ϕj (u
n− u)h(χj+2σ

n)) ,φ
〉∣∣+ ∞∑

j=k

∣∣〈Λα (ϕju(h(χj+2σ
n)− h(χj+2σ))) ,φ

〉∣∣
≲

∞∑
j=k

∣∣∣ˆ T

0

ˆ
|x|≲2k

ˆ
|y|∼2j

ϕj (y)(un− u)(y)h(χj+2σ
n)(y)

|x− y|N+α
φ(x)dydxdt

∣∣∣
+

∞∑
j=k

∣∣∣ˆ T

0

ˆ
|x|≲2k

ˆ
|y|∼2j

ϕj (y)u(y)(h(χj+2σ
n)− h(χj+2σ))(y)

|x− y|N+α
φ(x)dydxdt

∣∣∣
≲

∞∑
j=k

2−j(α+ N
2 )‖ϕj(un− u)‖L1T(L2)‖h(χj+2σ

n)‖L∞T (L∞)

+
∞∑
j=k

2−j(α+ N
2 )‖h(χj+2σ

n)− h(χj+2σ)‖L∞T (L2)‖ϕju‖L1T(L∞)

⩽ C
∞∑
j=k

2−j(α+ N
2 )
(
‖ϕj(un− u)‖L1T(L2) + ‖χj+2(σ

n−σ)‖L∞T (L2)

)
,

where in the last line we have used the uniform (in j and n) estimates
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‖h(χj+2σ
n)‖L∞T (L∞) ≲‖χj+2σ

n‖L∞T (L∞) ≲ ‖σn‖
L∞T

(
Ḃ
N
2
2,1

) ⩽ C,

‖ϕju‖L1T(L∞) ≲T
1
α ‖u‖

L
α

α−1
T

(
Ḃ
N
2
2,1

) ⩽ C.

For any ε> 0, lemma 2.4 and (4.5), (4.10) ensure that

‖ϕj (un− u)‖L1T(L2) ⩽C2
j( 1

2+
1−α
N )T‖un− u‖

L∞T

(
Ḃ
N
2 +1−α

2,1

) ⩽ C2j
1
2 ,

‖χj+2 (σ
n−σ)‖L∞T (L2) ⩽C2j

1
2 ‖σn−σ‖

L∞T

(
Ḃ
N
2
2,1

) ⩽ C2j
1
2 ,

with C> 0 independent of j and n, then there exists a large number J ∈ N so that

C
∑
j⩾J

2−j(α+ N
2 )
(
‖ϕj (un− u)‖L1T(L2) + ‖χj+2 (σ

n−σ)‖L∞T (L2)

)
⩽ C

∑
j⩾J

2−j(α+ N−1
2 ) ⩽ ε

4
.

On the other hand, the above established convergence result guarantees that there exists n0 =
n0(α,N,J, ε) ∈ N so that for any n⩾ n0,

C
∑
k⩽j⩽J

2−j(α+ N
2 )
(
‖ϕj (un− u)‖L1T(L2) + ‖χj+2 (σ

n−σ)‖L∞T (L2)

)
⩽ ε

4
.

Thus for any ε> 0, there exists n0 ∈ N so that for any n⩾ n0,

∞∑
j=k

∣∣〈Λα (ϕju
nh(σn))−Λα (ϕjuh(σ)) ,φ

〉∣∣⩽ ε

2
. (4.11)

Similarly, for the remaining term in In3 we have

∞∑
j=k

∣∣〈unΛα (ϕjh(σ
n))− uΛα (ϕjh(σ)) ,φ

〉∣∣
⩽

∞∑
j=k

∣∣〈χk (un− u) Λα (ϕjh(σ
n)) ,φ

〉∣∣+ ∞∑
j=k

∣∣〈χkuΛα (ϕj (h(χj+2σ
n)− h(χj+2σ))) ,φ

〉∣∣
≲

∞∑
j=k

∣∣∣ˆ T

0

ˆ
|x|≲2k

ˆ
|y|∼2j

ϕj (y)h(σn)(y)
|x− y|N+α

χk (x)(u
n− u)(x)φ(x)dydxdt

∣∣∣
+

∞∑
j=k

∣∣∣ˆ T

0

ˆ
|x|≲2k

ˆ
|y|∼2j

ϕj (y)(h(χj+2σ
n)− h(χj+2σ))(y)

|x− y|N+α
χk (x)u(x)φ(x)dydxdt

∣∣∣
⩽ C‖χk(un− u)‖L1T(L2)

∞∑
j=k

2−jα‖h(σn)‖L∞T (L∞)

+C
∞∑
j=k

2−j(α+ N
2 )‖h(χj+2σ

n)− h(χj+2σ)‖L∞T (L2)‖χku‖L1T(L∞).
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Arguing as above, we can deduce that there exists a constant n1 ∈ N so that for any n⩾ n1,

∞∑
j=k

∣∣〈unΛα (ϕjh(σ
n))− uΛα (ϕjh(σ)) ,φ

〉∣∣⩽ ε

2
. (4.12)

Hence, combining (4.11) with (4.12), for any ε> 0 we have that |In3|⩽ ε for every n⩾
max{n0,n1}, which implies lim

n→∞
In3 = 0. Therefore, gathering the above convergence result

of In1-I
n
3, we conclude the convergence of the term Jn

(
Λα
(
unh(σn)

)
− unΛα

(
h(σn)

))
.

Finally, we show the time continuity property of (σ,u). Note that σ ∈ L̃∞T (B̃
N
2 +1−α, N2 )

and u ∈ L̃∞T (Ḃ
N
2 +1−α

2,1 ), and using the fact that ∂tσ ∈ L
α

α−1

T (Ḃ
N
2 −1
2,1 ) and ∂tu ∈ L

α
α−1

T (B̃
N
2 −1, N2 −α)

(similarly as obtaining (4.6) and (4.8)), we can apply a simple argument of high-low frequency
decomposition (e.g. see [11, theorem 3.3.1]) to conclude that σ ∈ C([0,T]; B̃ N

2 +1−α, N2 ) and

u ∈ C([0,T]; Ḃ
N
2 +1−α

2,1 ).

4.2. Uniqueness

We continue with a uniqueness argument for our constructed solution.

Proof of theorem 4.2: uniqueness. Assume that (σ1,u1) and (σ2,u2) satisfying

ui ∈ L1T
(
Ḃ

N
2 +1
2,1

)
, ‖σi‖L∞T

(
B̃
N
2 +1−α, N2

) ⩽ Cη, with η > 0 small enough, (4.13)

are two regular solutions of system (3.3) associated with the same initial data (σ0,u0). Denote
(δσ,δu) := (σ1 −σ2,u1 − u2), then

∂tδσ+Tu1 ·∇δσ+λdivδu= δF,

∂tδu+Tu1 ·∇δu+Λαδu+λ∇δσ = δG,

(δσ,δu) |t=0 = (0,0) ,

where

δF :=−δu ·∇σ2 − (γ− 1)(δσdivu1 +σ2 divδu)−T∇δσ · u1 −R(u1,∇δσ) ,

δG : =−δu ·∇u2 −µ(Λα (δuh(σ1))− δuΛα (h(σ1)))−µ(Λα (u2δh)− u2Λ
α (δh))

−T∇δu · u1 −R(u1,∇δu) ,

with δh= h(σ1)− h(σ2). Applying (3.31) in proposition 3.1 leads to that

∥δσ∥
L̃∞t

(
B̃
N
2
−α, N

2
−1

) + ∥δu∥
L̃∞t

(
Ḃ
N
2
−α

2,1

) +

ˆ t

0

(
∥δσ (τ)∥

B̃
N
2
, N
2
+1−α + ∥δu(τ)∥

Ḃ
N
2
2,1

)
dτ

⩽ C
ˆ t

0
∥u1∥

Ḃ
N
2
+1

2,1

(
∥δσ∥

B̃
N
2
−α, N

2
−1 + ∥δu∥

Ḃ
N
2
−α

2,1

)
dτ +C∥δF∥

L1t

(
B̃
N
2
−α, N

2
−1

) +C∥δG∥
L1t

(
Ḃ
N
2
−α

2,1

).
Applying (2.17) in lemma 2.3, we get

∥δh∥
Ḃ
N
2
−1

2,1

= ∥h(σ1)− h(σ2)∥
Ḃ
N
2
−1

2,1

≲
(
1+ ∥(σ1,σ2)∥

L∞t

(
Ḃ
N
2
2,1

)
)[ N2 +1]

∥δσ∥
Ḃ
N
2
2,1

⩽ C∥δσ∥
Ḃ
N
2
2,1

.
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Taking advantage of lemma 2.1, corollary 2.11 and the above inequality, we infer that

‖δF‖
L1t
(
B̃
N
2 −α, N2 −1

) ⩽ C
ˆ t

0
‖δσ‖

B̃
N
2 −α, N2 −1‖u1‖

Ḃ
N
2 +1

2,1

dτ +C‖σ2‖L∞t
(
B̃
N
2 +1−α, N2

)‖δu‖
L1t

(
Ḃ
N
2
2,1

),

∥δG∥
L1t

(
Ḃ
N
2
−α

2,1

) ⩽ C
ˆ t

0

(
∥(u1,u2)∥

Ḃ
N
2
+1

2,1

∥δu∥
Ḃ
N
2
−α

2,1

+ ∥δu∥
Ḃ
N
2
2,1

∥h(σ1)∥
Ḃ
N
2
2,1

+ ∥u2∥
Ḃ
N
2
+1

2,1

∥δh∥
Ḃ
N
2
−1

2,1

)
dτ

⩽ C
ˆ t

0

(
∥(u1,u2)∥

Ḃ
N
2
+1

2,1

∥δu∥
Ḃ
N
2
−α

2,1

+ ∥u2∥
Ḃ
N
2
+1

2,1

∥δσ∥
Ḃ
N
2
−1

2,1

)
dτ +C∥δu∥

L1t

(
Ḃ
N
2
2,1

)∥σ1∥
L∞t

(
Ḃ
N
2
2,1

).

By setting η > 0 in (4.13) be small enough so that C
(
‖σ1‖

L∞T (Ḃ
N
2
2,1)

+ ‖σ2‖L∞T (B̃
N
2 +1−α, N2 )

)
⩽ 1

4C ,

we gather the above estimates to get

‖δσ‖
L̃∞t

(
B̃
N
2 −α, N2 −1

) + ‖δu‖
L̃∞t

(
Ḃ
N
2 −α

2,1

)

⩽ C
ˆ t

0
‖(u1,u2)(τ)‖

Ḃ
N
2 +1

2,1

(
‖δσ (τ)‖

B̃
N
2 −α, N2 −1 + ‖δu(τ)‖

Ḃ
N
2 −α

2,1

)
dτ.

Gronwall’s inequality guarantees that ‖δσ‖
L̃∞t (B̃

N
2 −α, N2 −1)

+ ‖δu‖
L̃∞t (Ḃ

N
2 −α

2,1 )
≡ 0 for every t ∈

[0,T]. In other words, σ1 ≡ σ2 and u1 ≡ u2 on [0,T]×RN.

4.3. Global existence

Now we are ready to prove theorem 4.1. Under the smallness assumption on X0 in (4.1), pro-
position 3.2 ensures the smallness of X(T). Hence, we can extend the solution using the local
existence result in theorem 4.2, viewing T as the initial time. Repeating the process, we obtain
a global solution.

Proof of theorem 4.1. Take ε ′ =min{ε0,η/C∗}, where (ε0,C∗) are the constants in propos-
ition 3.2 and η is the constant in theorem 4.2. Let T∗ be the maximal existence time of the
solution (σ,u) to (3.3), namely

T∗ = sup
{
T⩾ 0 : ∃ a solution (σ,u) on [0,T]×RN

}
.

We will show T∗ =∞ by contradiction.
Suppose T∗ is finite. A direct application of proposition 3.2 yields

X(T)⩽ C∗X0 ⩽ η, ∀ T< T∗.

The continuity of X then implies X(T∗)⩽ η. We then apply theorem 4.2 to the system (3.3)
initiated at time T∗. There exists a time T > 0 such that (σ,u) exists in [T∗,T∗ +T]. This con-
tradicts the definition of T∗.

4.4. Propagation of smoothness

In this subsection, we show that if the initial data is smoother (also known as subcritical), the
solution will inherit the initial regularity.
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Proposition 4.3. Under the assumption of theorem 4.1, and additionally assuming

‖σ0‖B̃s,s+α−1 + ‖u0‖Ḃs2,1 <+∞, for s>
N
2
+ 1−α,

The solution (σ,u) to (3.3) satisfies

‖σ‖L̃∞T (B̃s,s+α−1) + ‖u‖L̃∞T (Ḃs2,1)
+

ˆ T

0
‖σ (τ)‖B̃s+α,s+1dτ +

ˆ T

0
‖u(τ)‖Ḃs+α

2,1
dτ <+∞, (4.14)

for all T> 0.

Proof of proposition 4.3. Let F and G be defined as in (3.32). The system (3.3) can be seen
as in the form of (3.4) with v replaced by u. Then according to proposition 3.1, we have

‖σ‖L̃∞T (B̃s,s+α−1) + ‖u‖L̃∞T (Ḃs2,1)
+

ˆ T

0
‖σ (τ)‖B̃s+α,s+1dτ +

ˆ T

0
‖u(τ)‖Ḃs+α

2,1
dτ

⩽ CeCU(T)
(
‖σ0‖B̃s,s+α−1 + ‖u0‖Ḃs2,1 + ‖F‖L1T(B̃s,s+α−1) + ‖G‖L1T(Ḃs2,1)

)
,

with U(T) :=
´ T
0 ‖u(τ)‖

ḂN/2+1
2,1

dτ . Owing to lemmas 2.1 and 2.10, and using (2.18) and (4.2),

we infer that

‖F‖L1T(B̃s,s+α−1) ≲ ‖σ‖L∞T (B̃s,s+α−1)‖u‖L1T
(
Ḃ
N
2 +1

2,1

) + ‖σ‖
L∞T

(
B̃
N
2 +1−α, N2

)‖u‖L1T(Ḃs+α
2,1 )

⩽ Cε ′
(
‖σ‖L∞T (B̃s,s+α−1) + ‖u‖L1T(Ḃs+α

2,1 )

)
,

and

∥G∥L1T(Ḃs2,1) ≲ ∥u∥
L1T

(
Ḃ
N
2
+1

2,1

)∥u∥L∞T (Ḃs2,1)
+ ∥u∥L1T(Ḃs+α

2,1 )∥σ∥L∞T
(
Ḃ
N
2
2,1

) + ∥u∥
L1T

(
Ḃ
N
2
+1

2,1

)∥σ∥L∞T (Ḃs+α−1
2,1 )

⩽ Cε ′
(
∥u∥L∞T (Ḃs2,1)

+ ∥u∥L1T(Ḃs+α
2,1 ) + ∥σ∥L∞T (B̃s,s+α−1)

)
.

Since ε ′ is small enough, we obtain the desired estimate (4.14).

5. Asymptotic behaviour: proof of theorem 1.2

This section aims at proving theorem 1.2. We shall mainly prove the following asymptotic
behaviour of the global solution (σ,u) for system (3.3).

Proposition 5.1. Let 1< α < 2. Assume that (σ,u) is a global solution of system (3.3) such
that

σ ∈ L̃∞
(
R+; B̃

N
2 +1−α, N2

)
, u ∈ L̃∞

(
R+; Ḃ

N
2 +1−α

2,1

)
∩L1

(
R+; Ḃ

N
2 +1
2,1

)
. (5.1)

Then we have for every 0< s< 1− 1
α ,

‖(σ,u)ℓ (t)‖
Ḃ
N
2 +1−α+sα

2,1

+ ‖σh (t)‖
Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

⩽ C(1+ t)−s
. (5.2)

where C depends on the norms of (σ,u) in (5.1). Besides, we have

lim
t→∞

(
‖σ (t)‖

B̃
N
2 +1−α, N2

+ ‖u(t)‖
Ḃ
N
2 +1−α

2,1

)
= 0. (5.3)
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If we assume, in addition, (σ0,u0)ℓ ∈ Ḃ−s0
2,∞(RN) with s0 ∈ (α− N

2 − 1, N2 ), then for all s1 ∈
[−s0, N2 + 1−α],

‖σ (t)‖
B̃s1,

N
2
+ ‖u(t)‖

B̃s1,
N
2 +1−α ⩽ C(1+ t)−

s1+s0
α . (5.4)

With proposition 5.1 at our disposal, we can finish the proof of theorem 1.2. Indeed, under
condition (1.12), the Euler-alignment system (1.1) is equivalent to (3.3). Recall ρ− 1= h(σ).
Since both h and h−1 are smooth, proposition 2.3 implies that the regularity on ρ and σ are
equivalent. Hence, the uniform bound (1.16) implies (5.1), and the estimates (5.2)–(5.4) lead
to (1.17)–(1.18).

Our task remains to prove proposition 5.1. Let us denote

Xj (t) := Yj (t)+ ‖∆̇jPu(t)‖L2 ≈

{
‖∆̇jσ (t)‖L2 + ‖∆̇ju(t)‖L2 , for j⩽ j0,

‖Λα−1∆̇jσ (t)‖L2 + ‖∆̇ju(t)‖L2 , for j> j0.
(5.5)

Recalling the estimates (3.20), (3.23) and (3.26), we have
d
dt
Xj+ µ̄2jαXj ⩽ C

(
‖ fj‖L2 + ‖gj‖L2 + ‖g̃j‖L2 + ‖∇Ṡj−1u‖L∞Xj

)
, for j⩽ j0,

d
dt
Xj+µhXj ⩽ C

(
2j(α−1)‖ fj‖L2 + ‖gj‖L2 + ‖g̃j‖L2 + ‖∇Ṡj−1u‖L∞Xj

)
, for j> j0,

(5.6)

where µ̄ := δµ
8 ,µh :=min(ν̄2j0(2−α),µ2j0α) and fj, gj, g̃j are defined by (3.8)–(3.10) with v= u,

and

F=−(γ− 1)σdivu−T∇σ · u−R(u,∇σ) ,
G=−µΛα (uh(σ))+µuΛαh(σ)−T∇u · u−R(u,∇u) .

(5.7)

Note that Xj for low-frequency part j⩽ j0 has a dissipation effect analogous to the fractional
heat operator, while for high-frequency part j> j0 it has a damping effect. Thus onemay expect
that (σ,u) altogether will have a polynomial decay by developing the dissipation/damping
effect. In the sequel we will treat the low-frequency part and high-frequency part separately to
show the desired decay estimates.

Before proceeding forward, we introduce the following notations: for−s0 ⩽ s̄⩽ N
2 + 1−α

and s⩾ 0,

Zℓs,̄s (t) := ts‖(σ,u)ℓ (t)‖Ḃs̄+sα
2,1

= ts
∑
j⩽ j0

2j(̄s+sα)‖
(
∆̇jσ,∆̇ju

)
(t)‖L2 = ts

∑
j⩽ j0

2j(̄s+sα)Xj (t) ,

(5.8)

Zhs (t) := ts
(
‖σh (t)‖

Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

)
= ts

∑
j>j0

(
2j

N
2 ‖∆̇jσ‖L2 + 2j(

N
2 +1−α)‖∆̇ju‖L2

)
,

(5.9)

and

Zs,̄s (t) := Zℓs,̄s (t)+ Zhs (t) . (5.10)

Remark 5.1. Notice that for s̄+ sα⩽ N
2 ,

ts
∑
j∈Z

2j(̄s+sα)‖∆̇jσ‖L2 + ts
∑
j∈Z

2j
N
2 ‖∆̇jσ‖L2 ⩽ CZs,̄s (t) , (5.11)
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and for s̄+ sα⩽ N
2 + 1−α,

ts
∑
j∈Z

2j(̄s+sα)‖∆̇ju‖L2 + ts
∑
j∈Z

2j(
N
2 +1−α)‖∆̇ju‖L2 ⩽ CZs,̄s (t) . (5.12)

5.1. Low-frequency estimates

From (5.6), it is reasonable to expect that (σℓ,uℓ) present the polynomial decay estimate in
suitable functional spaces.

Lemma 5.2. Under the assumption of proposition 5.1, if −s0 ⩽ s̄⩽ N
2 + 1−α and s ∈ [0,1)

satisfy s̄+ sα < N
2 , then we have

Zℓs,̄s (t)⩽ C‖(σ0,u0)‖ℓḂs̄2,1 +C
ˆ t

0
Φ(t, τ)Zs,̄s (τ)dτ, (5.13)

where

Φ(t, τ) :=
∑
j⩽ j0

∑
j ′⩽j+4

2j
′( N2 +1)‖∆̇j ′u(τ)‖L2ψj (t, τ)

+
∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+δsα)2j
′( N2 +1)‖∆̇j ′u(τ)‖L2ψj (t, τ) ,

(5.14)

with

ψj (t, τ) := e−µ̄2jα(t−τ)tsτ−s

and

δ :=

{
1, if s̄+ sα⩽ N

2 + 1−α,
N/2−s̄−α+1

sα , if s̄+ sα > N
2 + 1−α.

(5.15)

Proof of lemma 5.2. By multiplying the first inequality of (5.6) with eµ̄2
jαt and integrating

over the time interval [0, t], we infer that

Xj (t)⩽ e−µ̄2jαtXj (0)+C
ˆ t

0
e−µ̄2jα(t−τ)Rj (τ)dτ,

with

Rj (t) := ‖ fj (t)‖L2 + ‖gj (t)‖L2 + ‖g̃j (t)‖L2 + ‖∇Ṡj−1u(t)‖L∞Xj (t) . (5.16)

Using the fact that sup
t⩾0

∑
j∈Z

2αjstse−ct2αj
<+∞, we have that for every s ∈ [0,1),

tsXj (t)⩽ C2−jsαXj (0)+C
ˆ t

0
ψj (t, τ)τ

sRj (τ)dτ.

Multiplying both sides of the above equation with 2j(̄s+sα) and taking the `1-norm with respect
to j ⩽ j0 lead to

Zℓs,̄s (t)⩽ C‖
(
σℓ
0,u

ℓ
0

)
‖Ḃs̄2,1 +C

ˆ t

0
τ s
∑
j⩽ j0

ψj (t, τ)2
j(̄s+sα)Rj (τ)dτ, (5.17)

where we have abbreviated ψj(t, τ) as ψj.
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Nextwe treat the integral term of the inequality (5.17). For the last term inRj given by (5.16),
by Hölder’s inequality and (5.8), we see that

τ s
∑
j⩽ j0

2j(̄s+sα)ψj‖∇Ṡj−1u(τ)‖L∞Xj (τ)⩽ CZs,̄s (τ)

(
sup
j⩽ j0

‖∇Ṡj−1u(τ)‖L∞ψj

)
. (5.18)

We turn to the estimation of terms in (5.16) containing fj, gj and g̃j. Noting that fj is given by

fj = (γ− 1)∆̇j (σdivu)+ Ṡj−1u ·∇∆̇jσ− ∆̇j (u ·∇σ) , (5.19)

and using Bony’s decomposition, we have the following splitting f j =
∑6

k=1 f
k
j with

f 1j := (γ− 1)∆̇j (Tσ divu) , f 2j := (γ− 1)∆̇j (Tdivuσ) , f 3j := (γ− 1)∆̇j (R(divu,σ)) ,

f 4j := Sj−1u ·∇∆̇jσ− ∆̇j (Tu ·∇σ) , f 5j :=−∆̇j (T∇σ · u) , f 6j :=−∆̇jR(u·,∇σ) .

Thanks to inequalities (2.12) and (5.11), we have that for every s̄+ sα < N
2 ,

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)

(
‖ f 1j ‖L2 + ‖ f 5j ‖L2

)

≲
(
τ s sup

j ′⩽ j0+4
2j

′ (̄s+sα)‖∆̇j ′σ‖L2
)∑

j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj.

Using (2.13) and (5.11), we deduce that

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖ f 2j ‖L2 ≲

τ s ∑
j ′⩽ j0+4

2j
′ (̄s+sα)‖∆̇j ′σ‖L2

∑
j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆̇j ′u‖L∞ψj

≲ Zs,̄s (τ)
∑
j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆̇j ′u‖L∞ψj.

By virtue of (2.14) and (5.11), we see that for every −N
2 < s̄+ sα < N

2 ,

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)

(
‖ f 3j ‖L2 + ‖ f 6j ‖L2

)

≲
(
τ s sup

j ′∈Z
2j

′ (̄s+sα)‖∆̇j ′σ‖L2
)∑

j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+sα)2j
′( N2 +1)‖∆̇j ′u‖L2ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+sα)2j
′( N2 +1)‖∆̇j ′u‖L2ψj.

Applying lemma 2.7 to the term f 4j yields

‖ f 4j ‖L2 ⩽ C2−j
j+4∑

j ′,j ′ ′=j−4

(
‖∇∆̇j ′ ′u‖L∞ + ‖∇Ṡj−1u‖L∞

)
‖∆̇j ′∇σ‖L2 ,
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and in combination with inequality (5.11), we obtain

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖ f 4j ‖L2

≲ Zs,̄s (τ)

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆j ′u‖L2ψj+

∑
j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆j ′u‖L∞ψj

 .
For the terms gj and g̃j given by (3.9)–(3.10) and (5.7), note that they both can be expressed

as

−µP∆̇j (Λ
α (uh(σ))− uΛαh(σ))+ Sj−1u ·∇P∆̇ju−P∆̇j (u ·∇u) , (5.20)

where P is composed of smooth zero-order pseudo-differential operators, then gj and g̃j both
have the following decomposition

∑9
k=1 g

k
j , with

g1j :=−µP∆̇jΛ
α (Tuh(σ)) , g2j :=−µP∆̇jΛ

α
(
Th(σ)u

)
, g3j :=−µP∆̇jΛ

αR(h(σ) ,u) ,

g4j := µP∆̇j (TuΛ
αh(σ)) , g5j := µP∆̇jTΛαh(σ)u, g6j := µP∆̇jR(Λ

αh(σ) ,u) ,

g7j := Sj−1u ·∇∆̇jPu−P∆̇j (Tu ·∇u) , g8j := P∆̇j (T∇u · u) , g9j := P∆̇jR(u·,∇u) .

For the terms g1j + g4j and g
8
j , taking advantage of inequalities (2.23), (5.11) and lemma 2.3,

we obtain

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖g1j + g4j ‖L2 ≲ τ s

∑
j⩽ j0

ψj2
j(̄s+sα)‖∆̇j (Λ

α (Tuh(σ))−TuΛ
αh(σ))‖L2

≲ τ s
∑
j⩽ j0

ψj2
j(̄s+sα)

∑
|j ′−j|⩽4

‖Λα
(
Ṡj ′−1u∆̇jh(σ)

)
− Ṡj ′−1uΛ

α∆̇j ′h(σ)‖L2

≲ τ s
∑
j⩽ j0

ψj2
j(̄s+sα)

∑
|j ′−j|⩽4

(
‖∇Ṡj ′−1u‖L∞‖Λα−1∆̇j ′h(σ)‖L2 + ‖ΛαṠj−1u‖L∞‖∆̇j ′h(σ)‖L2

)

≲j0

(
τ s sup

j ′⩽ j0+4
2j

′ (̄s+sα)‖∆̇j ′h(σ)‖L2
)∑

j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆̇j ′u‖L∞ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆̇j ′u‖L∞ψj,

and

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖g8j ‖L2 ≲

(
τ s sup

j ′⩽ j0+4
2j

′ (̄s+sα)‖∆̇j ′u‖L2
)∑

j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆̇j ′u‖L∞ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
j ′⩽j+4

2j
′
‖∆̇j ′u‖L∞ψj.

For the terms g2j and g
5
j , using (2.12), (5.11) and lemma 2.3, we deduce that
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τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖g2j ‖L2 ≲j0 τ

s
∑
j⩽ j0

ψj2
j(̄s+1+sα)‖∆̇j

(
Th(σ)u

)
‖L2

≲
(
τ s sup

j ′⩽ j0+4
2j

′ (̄s+sα)‖∆̇j ′h(σ)‖L2
)∑

j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj,

and

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖g5j ‖L2

≲
(
τ s sup

j ′⩽ j0+4
2j

′(̄s− N
2 −1+sα)‖∆̇j ′Λ

αh(σ)‖L∞
)∑

j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj


≲j0

(
τ s sup

j ′⩽ j0+4
2j

′ (̄s+sα)‖∆̇j ′h(σ)‖L2
)∑

j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′( N2 +1)‖∆̇j ′u‖L2ψj.

For the terms g3j and g
6
j , thanks to inequality (2.14), (5.11) and lemma 2.3 again, we infer that

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖g3j ‖L2 ≲j0 τ

s
∑
j⩽ j0

ψj2
j(̄s+1+sα)‖∆̇jR(h(σ) ,u)‖L2

≲
(
τ s sup

j ′∈Z
2j

′ (̄s+sα)‖∆̇j ′h(σ)‖L2
)∑

j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +1+s̄+sα)2j
′( N2 +1)‖∆̇j ′u‖L2ψj


≲j0 Zs,̄s (τ)

∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +1+s̄+sα)2j
′( N2 +1)‖∆̇j ′u‖L2ψj,

and

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)∥g6j ∥L2

≲
(
τ s sup

j ′∈Z
2j

′ (̄s−1+α+δsα)∥∆̇j ′h(σ)∥L2
)∑

j⩽ j0

∑
j ′>j−4

2( j−j ′)( N
2
+s̄+δsα)2j

′( N
2
+1)∥∆̇j ′u∥L2ψj


≲j0 Zs,̄s (τ)

∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N
2
+s̄+δsα)2j

′( N
2
+1)∥∆̇j ′u∥L2ψj,

where δ is given by (5.15) so that s̄− 1+α+ δsα⩽ N
2 (to fit the norm Zs,̄s(τ)). For the term

g7j , with the help of lemma 2.7, we find
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τ s
∑
j⩽ j0

ψj2
j(̄s+sα)∥g7j ∥L2

≲ τ s
∑
j⩽ j0

ψj2
j(̄s+sα)

2−j
j+4∑

j ′,j ′ ′=j−4

(
∥∇∆̇j ′ ′u∥L∞ + ∥∇Ṡj−1u∥L∞

)
∥∆̇j ′∇u∥L2


≲

τ s ∑
j ′⩽ j0+4

2j
′ (̄s+sα)∥∆̇j ′u∥L2

∑
j⩽ j0

∑
|j−j ′|⩽4

2j
′( N

2
+1)∥∆̇j ′u∥L2ψj+

∑
j⩽ j0

∑
j ′⩽j+4

2j
′
∥∆̇j ′u∥L∞ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
j ′⩽j+4

2j
′( N

2
+1)∥∆̇j ′u∥L2ψj.

For the last term g9j , thanks to the spectral support property of dyadic operators and (5.12), we
see that

τ s
∑
j⩽ j0

ψj2
j(̄s+sα)‖g9j ‖L2

≲ τ s
∑
j⩽ j0

ψj2
j(̄s+sα)

 ∑
j ′⩾j−3

2j
N
2 ‖∆̇j ′u‖L22j

′
‖ ˜̇∆ju‖L2


≲
(
τ s sup

j ′∈Z
2
j ′
(
s̄+δsα+(1−δ)sα1{j ′⩽ j0}

)
‖∆̇j ′u‖L2

)
×

×

∑
j⩽ j0

∑
j ′>j−4

2(
j−j ′)

(
N
2 +s̄+δsα+(1−δ)sα1{j ′⩽ j0}

)
2j

′( N2 +1)‖∆̇j ′u‖L2ψj


≲ Zs,̄s (τ)

∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+sα)2j
′( N2 +1)‖∆̇j ′u‖L2ψj, (5.21)

where in the above we have used the fact that 2j(1−δ)1{j ′⩾j0} ⩽ C for every j⩽ j0.
Inserting (5.18)–(5.21) into (5.17), we thus conclude the inequality (5.13).

Lemma 5.3. Under the assumption of proposition 5.1, if s̄=−s0 ∈ (−N
2 ,

N
2 + 1−α) and s ∈

[n,n+ 1) (n ∈ N) satisfy −N
2 <−s0 + sα⩽ N

2 + 1−α, we have

Zℓs,̄s (t)⩽ CZℓs−1,̄s (t)+C
ˆ t

0
Zs,̄s (τ)Ψ(t, τ)dτ, (5.22)

where

Ψ(t, τ) :=
∑
j⩽ j0

∑
j ′⩽j+4

2j
′( N2 +1)‖∆̇j ′u(τ)‖L2e−µ̄2jα(t−τ)

+
∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+sα)2j
′( N2 +1)‖∆̇j ′u(τ)‖L2e−µ̄2jα(t−τ).

(5.23)

Proof of lemma 5.3. From the inequality (5.6), we have that for every j⩽ j0,

d
dt

(tsXj (t))+ µ̄2jαtsXj (t)⩽ CtsRj (t)+ sts−1Xj (t) ,
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where Rj is given by (5.16). Multiplying the above inequality with eµ̄2
jαt and integrating over

[0, t], we obtain

tsXj (t)⩽
ˆ t

0
e−µ̄2jα(t−τ)τ s−1Xj (τ)dτ +C

ˆ t

0
e−µ̄2jα(t−τ)τ sRj (τ)dτ.

Multiplying the above equation with 2j(̄s+sα) and taking the `1-norm with respect to j ⩽ j0, we
find

Zℓs,̄s (t)⩽ Zℓs−1,̄s (t)2
jα
ˆ t

0
e−µ̄2jα(t−τ)dτ +C

ˆ t

0
τ s
∑
j⩽ j0

2j(̄s+sα)Rj (τ)e
−µ̄2jα(t−τ)dτ

⩽ CZℓs−1,̄s (t)+C
ˆ t

0
τ s
∑
j⩽ j0

2j(̄s+sα)Rj (τ)e
−µ̄2jα(t−τ)dτ.

(5.24)

Similarly as (5.17)–(5.21), we can estimate the last term of the above inequality as follows
ˆ t

0
τ s
∑
j⩽ j0

2j(̄s+sα)Rj (τ)e
−µ̄2jα(t−τ)dτ ⩽ C

ˆ t

0
Zs,̄s (τ)Ψ(t, τ)dτ. (5.25)

Inserting (5.25) into (5.24), we obtain the desired inequality (5.22).

5.2. High-frequency estimates

Since Xj exhibits a damping effect in the second inequality of (5.6), one can generally expect
to derive an exponential decay for Xj. But in order to be coincident with the low-frequency
case, we instead will prove a polynomial decay estimate.

Lemma 5.4. Under the assumption of proposition 5.1, for every −s0 ⩽ s̄⩽ N
2 + 1−α and

−N
2 < s̄+ sα < N

2 , we have

Zhs (t)⩽ C

(
‖σ0‖

B̃
N
2 +1−α, N2
2,1

+ ‖u0‖
Ḃ
N
2 +1−α

2,1

)
+C
ˆ t

0
‖u(τ)‖

Ḃ
N
2 +1

2,1

Zs,̄s (τ)dτ. (5.26)

Proof of lemma 5.4. Starting from (5.6) and letting t0 = sµ−1
h , we have that for every t⩾ t0,

d
dt
Xj (t)+ st−1Xj (t)⩽ CR̃j (t) ,

with

R̃j (t) := 2j(α−1)‖ fj (t)‖L2 + ‖gj (t)‖L2 + ‖g̃j (t)‖L2 + ‖∇Ṡj−1u(t)‖L∞Xj (t) . (5.27)

Thus, we deduce that

tsXj (t)⩽ ts0Xj (t0)+C
ˆ t

0
τ sR̃j (τ)dτ, ∀t⩾ t0.

Recalling notations (5.5) and (5.9), we multiply the above inequality by 2j(
N
2 +1−α) and take

the `1-norm over j > j0 to get that for every t⩾ t0,

Zhs (t)⩽ C

(
∥σ∥

L∞t0

(
B̃
N
2
+1−α, N

2
2,1

) + ∥u∥
L∞t0

(
Ḃ
N
2
+1−α

2,1

)
)

+C
∑
j>j0

2j(
N
2 +1−α)

ˆ t

0
τ sR̃j (τ)dτ. (5.28)
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The above inequality also holds when t⩽ t0:

Zhs (t) = ts
(
‖σh (t)‖

Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

)
⩽ ts0

(
‖σ‖

L∞t0

(
B̃
N
2 +1−α, N2
2,1

) + ‖u‖
L∞t0

(
Ḃ
N
2 +1−α

2,1

)
)
.

Note that in view of (5.1), the above right-hand term is under control.
Next, we deal with the term in (5.28) containing R̃j (given by (5.27)). The last term in R̃j

can be estimated as∑
j>j0

τ s2j(
N
2 +1−α)‖∇Ṡj−1u(τ)‖L∞Xj (τ)⩽ CZhs (τ)‖u(τ)‖

Ḃ
N
2 +1

2,1

.

Recalling that fj is given by (5.19), and by virtue of lemmas 2.1 and 2.6, we infer that

τ s
∑
j>j0

2j
N
2 ‖ fj (τ)‖L2

⩽ Cτ s
∑
j>j0

2j
N
2

(
‖∆̇j (σdivu)‖L2 + ‖Sj−1u ·∇∆̇jσ− ∆̇j (u ·∇σ)‖L2 + ‖R(u,∇σ)‖L2

)
⩽ C‖u(τ)‖

Ḃ
N
2 +1

2,1

τ s‖σ (τ)‖
Ḃ
N
2
2,1

⩽ C‖u(τ)‖
Ḃ
N
2 +1

2,1

Zs,̄s (τ) .

Noting that gj and g̃j have the same expression formula (5.20), and thanks to lemmas 2.1, 2.3
and 2.7, we find

τ s
∑
j>j0

2j(
N
2 +1−α) (‖gj (τ)‖L2 + ‖g̃j (τ)‖L2)

⩽ Cτ s
∑
j>j0

2j(
N
2 +1−α)‖∆̇j (Λ

α (uh(σ))− uΛαh(σ))‖L2

+Cτ s
∑
j>j0

2j(
N
2 +1−α)‖Sj−1u ·∇∆̇jPu−P∆̇j (Tu ·∇u)‖L2

+Cτ s
∑
j>j0

2j(
N
2 +1−α)‖P∆̇j (T∇uu)+P∆̇jR(u,∇u)‖L2

⩽ C‖u‖
Ḃ
N
2 +1

2,1

τ s‖h(σ)‖
Ḃ
N
2
2,1

+C‖u‖
Ḃ
N
2 +1

2,1

τ s‖uh‖
Ḃ
N
2 +1−α

2,1

⩽ C‖u(τ)‖
Ḃ
N
2 +1

2,1

Zs,̄s (τ) .

Hence collecting the above estimates yields (5.26), as desired.

5.3. Proof of proposition 5.1

Firstly, we prove a sketchy version of the decay estimate:

Zs,̄s (t) = Zℓs,̄s (t)+ Zhs (t)⩽ C, (5.29)

where (Zℓs,̄s,Z
h
s ,Zs,̄s) is given by (5.8)–(5.10), and (s, s̄) satisfies that{

s ∈ [0,1− 1
α ), if s̄= N

2 + 1−α,

s⩾ 0, s̄+ sα⩽ N
2 + 1−α, if s̄=−s0 ∈ (−N

2 ,
N
2 + 1−α).

(5.30)
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We first consider the proof of (5.29) with an additional condition 0⩽ s< 1. Through com-
bining (5.13) with (5.26), we have

Zs,̄s (t)⩽ C+C
ˆ t

0

(
Φ(t, τ)+ ‖u(τ)‖

Ḃ
N
2 +1

2,1

)
Zs,̄s (τ)dτ,

where C depends on ‖σ0‖B̃s̄, N2 and ‖u0‖B̃s̄, N2 +1−α (noting that if s̄=−s0, the additional assump-

tion (σℓ
0,u

ℓ
0) ∈ Ḃ

−s0
2,∞ is needed). Gronwall’s inequality guarantees that

Zs,̄s (t)⩽ Cexp

{
C
ˆ t

0

(
Φ(t, τ)+ ‖u(τ)‖

Ḃ
N
2 +1

2,1

)
dτ

}
.

Recalling the definition of Φ in (5.14) and using Hölder’s inequality, we infer that for every
1

1−s < r<∞ and 1
r +

1
r ′ = 1,

ˆ t

0
Φ(t, τ)dτ

⩽ C

∑
j⩽ j0

∑
j ′⩽j+4

2−( j−j ′) α
r ′ 2j

′( N2 +1− α
r ′ )‖∆̇j ′u‖Lrt (L2)

+
∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+δsα− α
r ′ )2j

′( N2 +1− α
r ′ )‖∆̇j ′u‖Lrt (L2)

(sup
j∈Z

ˆ t

0
ψr

′

j (t, τ)2jαdτ

) 1
r ′

=: C(I1 + I2)

(
sup
j∈Z

ˆ t

0
ψr

′

j (t, τ)2jαdτ

) 1
r ′

. (5.31)

In order to treat the integral term on the right-hand of (5.31), we recall the following ele-
mentary result (it can be easily deduced by respectively considering the contribution from
[0, t/2] and [t/2, t], e.g. see [51, lemma 3.4]).

Lemma 5.5. Let α ∈ (0,2), c> 0 and j ∈ Z. Then for every 0⩽ s< 1 we have

ˆ t

0
e−c2jα(t−τ)tsτ−sdτ ⩽ C2−jα.

Thanks to lemma 5.5, we have that for every r ′ ∈ (1, 1s ),

sup
j∈Z

ˆ t

0
ψr

′

j (t, τ)2jαdτ = sup
j∈Z

2jα
ˆ t

0
e−r ′µ̄2jα(t−τ)tsr

′
τ−sr ′dτ ⩽ C.

On the other hand, if s̄= N
2 + 1−α and s ∈ (0,1− 1

α ), we have δ= 0 (recalling that δ is given
by (5.15)) and N

2 + s̄+ δsα− sα > N+ 2(1−α)> 0; if s̄=−s0 ∈ (−N
2 ,

N
2 + 1−α) and s ∈

(0,1) satisfy s̄+ sα⩽ N
2 + 1−α, it is evident that δ= 1 and N

2 + s̄+ δsα− sα= N
2 + s̄> 0.

Moreover, due to 1
r ′ ∈ (s,1), we can let 1

r ′ be sufficiently close to s so that
N
2 + s̄+ δsα− α

r ′ >
0. Consequently, the discrete Young’s inequality implies that

I1 + I2 ⩽ C‖u‖
L̃rt

(
Ḃ
N
2 +1−α+α

r
2,1

) ⩽ C‖u‖
L̃∞t

(
Ḃ
N
2 +1−α

2,1

) +C‖u‖
L̃1t

(
Ḃ
N
2 +1

2,1

). (5.32)

42



Nonlinearity 37 (2024) 025007 X Bai et al

Hence gathering the above estimates with (5.1) we deduce that for every (s, s̄) satisfying (5.30)
and s ∈ (0,1),

Zs,̄s (t)⩽ Cexp

{
C‖u‖

L̃∞t

(
Ḃ
N
2 +1−α

2,1

) +C‖u‖
L̃1t

(
Ḃ
N
2 +1

2,1

)
}

⩽ C.

Then we prove (5.29) for general s ∈ [n,n+ 1) with n ∈ Z+. We only need to treat the case
s̄=−s0 and s̄+ sα⩽ N

2 + 1−α. Combining (5.22) with (5.26) leads to

Zs,̄s (t)⩽ C+CZs−1,̄s (t)+C
ˆ t

0

(
Ψ(t, τ)+ ‖u(τ)‖

Ḃ
N
2 +1

2,1

)
Zs,̄s (τ)dτ.

Gronwall’s inequality gives that

Zs,̄s (t)⩽ C(1+Zs−1,̄s (t))exp

{
C
ˆ t

0

(
Ψ(t, τ)+ ‖u(τ)‖

Ḃ
N
2 +1

2,1

)
dτ

}
.

Recalling that Ψ(t, τ) is given by (5.23), and by using Hölder’s inequality, lemma 5.5
and (5.32), we see that for every r ′ ∈ (1,+∞),

ˆ t

0
Ψ(t, τ)dτ

⩽ C

(
sup
j∈Z

ˆ t

0
e−µ̄r ′2jα(t−τ)2jαdτ

) 1
r ′
(∑

j⩽ j0

∑
j ′⩽j+4

2( j
′−j) α

r ′ 2j
′( N2 +1− α

r ′ )‖∆̇j ′u‖Lrt (L2)

+
∑
j⩽ j0

∑
j ′>j−4

2( j−j ′)( N2 +s̄+sα−
α
r ′ )2j

′( N2 +1− α
r ′ )‖∆̇j ′u‖Lrt (L2)

)

⩽ C

(
‖u‖

L̃∞t

(
Ḃ
N
2 +1−α

2,1

) + ‖u‖
L̃1t

(
Ḃ
N
2 +1

2,1

)
)
,

where in the last linewe have used the fact N2 + s̄+ sα−α > 0. Thus the above two inequalities
guarantee that for every s̄=−s0, s ∈ [n,n+ 1) and s̄+ sα⩽ N

2 + 1−α,

Zs,̄s (t)⩽ C+CZs−1,̄s (t) .

Hence, after an iteration of finite times and using the above 0⩽ s< 1 result, we conclude the
proof of (5.29) for every (s, s̄) satisfying (5.30).

Next, we prove inequalities (5.2) and (5.4) from (5.29). When t⩽ 1, noticing that (t+ 1)s ⩽
2s and 2jsα ⩽ 2j0sα for every j⩽ j0, we thus have

(t+ 1)s
(
‖(σ,u)ℓ (t)‖Ḃs̄+sα

2,1
+ ‖σh (t)‖

Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

)
⩽ C

(
‖(σ,u)ℓ (t)‖Ḃs̄2,1 + ‖σh (t)‖

Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

)
⩽ C.

(5.33)

The last inequality of (5.33) is provided by (5.29) with s= 0. When t> 1, it is clear that (t+
1)st−s ⩽ 2s, and consequently,

(t+ 1)s
(
‖(σ,u)ℓ (t)‖Ḃs̄+sα

2,1
+ ‖σh (t)‖

Ḃ
N
2
2,1

+ ‖uh (t)‖
Ḃ
N
2 +1−α

2,1

)
⩽ 2sZs,̄s (t)⩽ C. (5.34)

43



Nonlinearity 37 (2024) 025007 X Bai et al

• If (σ0,u0) ∈ B̃
N
2 +1−α, N2 × Ḃ

N
2 +1−α, we take s̄= N

2 + 1−α and s ∈ [0,1− 1
α ), thus the

desired inequality (5.2) follows from (5.33) and (5.34).
• If the additional condition (σℓ

0,u
ℓ
0) ∈ Ḃ

−s0
2,∞ with s0 ∈ (α− N

2 − 1, N2 ] is assumed, we have

(σ0,u0) ∈ B̃s̄,
N
2 × B̃s̄,

N
2 +1−α with s̄=−s0, and by letting s1 = s̄+ sα, we see that s1 ∈

[−s0, N2 + 1−α], and (5.33)–(5.34) yield the decay estimate (5.4).
Besides, we prove the asymptotic behaviour (5.3). For any ε> 0, in view of (5.1), there

exists an integer N0 > |j0| (recalling j0 is given by (3.15)) such that

sup
t⩾0

∑
j⩽−N0

2j(
N
2 +1−α)

(
‖∆̇jσ (t)‖L2 + ‖∆̇ju(t)‖L2

)
⩽ ε

3
.

In addition, according to the decay estimate (5.2), we infer that for 0< s< 1− 1
α ,∑

−N0<j⩽ j0

2j(
N
2 +1−α)

(
‖∆̇jσ (t)‖L2 + ‖∆̇ju(t)‖L2

)
⩽ 2N0sα

∑
−N0<j⩽ j0

2j(
N
2 +1−α+sα)

(
‖∆̇jσ (t)‖L2 + ‖∆̇ju(t)‖L2

)
⩽ C(1+ t)−s

,

and ∑
j>j0

(
2j

N
2 ‖∆̇jσ (t)‖L2 + 2j(

N
2 +1−α)‖∆̇ju(t)‖L2

)
⩽ C(1+ t)−s

.

Then there exists a positive real number T0 such that for every t⩾ T0,∑
j>−N0

2j(
N
2 +1−α)

(
‖∆̇jσ (t)‖L2 + ‖∆̇ju(t)‖L2

)
⩽ 2ε

3
.

Hence for any ε> 0, we have that for every t⩾ T0,

‖σ (t)‖
B̃
N
2 +1−α, N2

+ ‖u(t)‖
Ḃ
N
2 +1−α

2,1

⩽ ε.

In other words, the inequality (5.3) holds. We thus finish the proof of proposition 5.1.
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