Mathematical Logic

Xianghui Shi

School of Mathematical Science Beijing Normal University

Spring, 2025

1 Propositional Logic

- \mathcal{L}_0 -formulas
- Truth Assignments
- Proof System for \mathcal{L}_0
- Compactness of \mathcal{L}_0

Definition 4.1

We say $\Gamma \subseteq \mathcal{L}_0$ is finitely satisfiable if every finite $\Gamma_0 \subset \Gamma$ is satisfiable, i.e. there is a truth assignment ν such that for all $\psi \in \Gamma_0$, $\bar{\nu}(\psi) = T$.

Theorem 4.1 (Compactness for \mathcal{L}_0)

Suppose that $\Gamma \subseteq \mathcal{L}_0$, $\varphi \in \mathcal{L}_0$ and $\Gamma \models \varphi$. Then there is a finite $\Gamma_0 \subset \Gamma$ such that $\Gamma_0 \models \varphi$.

Theorem 4.2 (Compactness, Version II)

A set of formulas is satisfiable if and only if every finite subset is satisfiable.^a

^aThis version can be proved using ultraproduct of models.

Topological Compactness

Underlying set: the set of all truth assignments.

$$V = \{ \nu \mid \nu : S_0 \to \{T, F\} \}.$$

Topology: $\tau = \{\mathcal{O}_{\Gamma} \mid \Gamma \subset \mathcal{L}_0\}$, where for each Γ ,

 $\mathcal{O}_{\Gamma} = \{ \nu \mid \bar{\nu}(\varphi) = F, \exists \varphi \in \Gamma \}$

The closed sets are exactly of the form

$$\mathcal{B}_{\Gamma} = \{ \nu \mid \bar{\nu}(\varphi) = T, \ \forall \ \varphi \in \Gamma \}.$$

Topological Compactness

Underlying set: the set of all truth assignments.

$$V = \{ \nu \mid \nu : S_0 \to \{T, F\} \}.$$

Topology: $\tau = \{\mathcal{O}_{\Gamma} \mid \Gamma \subset \mathcal{L}_0\}$, where for each Γ ,

 $\mathcal{O}_{\Gamma} = \{ \nu \mid \bar{\nu}(\varphi) = F, \exists \varphi \in \Gamma \}$

The closed sets are exactly of the form

$$\mathcal{B}_{\Gamma} = \{ \nu \mid \bar{\nu}(\varphi) = T, \ \forall \ \varphi \in \Gamma \}.$$

Clearly, Γ is satisfiable $\Leftrightarrow \mathcal{B}_{\Gamma} \neq \emptyset$.

Topological Compactness

Underlying set: the set of all truth assignments.

$$V = \{ \nu \mid \nu : S_0 \to \{T, F\} \}.$$

Topology: $\tau = \{\mathcal{O}_{\Gamma} \mid \Gamma \subset \mathcal{L}_0\}$, where for each Γ ,

 $\mathcal{O}_{\Gamma} = \{ \nu \mid \bar{\nu}(\varphi) = F, \exists \varphi \in \Gamma \}$

The closed sets are exactly of the form

$$\mathcal{B}_{\Gamma} = \{ \nu \mid \bar{\nu}(\varphi) = T, \ \forall \ \varphi \in \Gamma \}.$$

Clearly, Γ is satisfiable $\Leftrightarrow \mathcal{B}_{\Gamma} \neq \emptyset$.

Theorem 4.3

The space (V, τ) is Hausdorff and Compact.

 $\underline{\mathrm{CLAIM}}.\ \tau$ is a topology.

<u>CLAIM</u>. (V, τ) is Hausdorff.

$\underline{\mathrm{CLAIM}}.\ \tau$ is a topology.

<u>CLAIM</u>. (V, τ) is Hausdorff.

<u>CLAIM</u>. τ is a topology.

<u>CLAIM</u>. (V, τ) is Hausdorff.

Suppose $\nu_1, \nu_2 \in V$ and $\nu_1 \neq \nu_2$. Let n be s.t.

$$\nu_1(A_n) \neq \nu_2(A_n).$$

We may assume that $\nu_1(A_n) = 0$ and $\nu_2(A_n) = 1$. Then $\nu_1 \in \mathcal{O}_{\{A_n\}}$ and $\nu_2 \in \mathcal{O}_{\{\neg A_n\}}$, and

$$\mathcal{O}_{\{A_n\}} \cap \mathcal{O}_{\{\neg A_n\}} = \varnothing.$$

Topological Compactness

Let (X,τ) be a topological space. Suppose (X,τ) is a Hausdorff.

Definition

- Let *F* be a collection of closed subsets of *X*. If every nonempty finite subcollection *F*₀ ⊂ *F* has nonempty intersection, i.e. ∩*F*₀ ≠ Ø, we say *F* has finite intersection property (FIP).
- We say (X, τ) is compact, if any nonempty collection F of closed subsets of X with FIP has nonempty intersection, i.e. ∩F ≠ Ø.
- The Compactness theorem in fact is a consequence of Tychonoff's theorem (which says the product of compact spaces is compact) applied to compact Stone spaces (Hausdorff + totally disconnected).

• Here we show that the logical compactness is equivalent to the topological compactness of (V, τ) .

• Here we show that the logical compactness is equivalent to the topological compactness of (V, τ) .

Top. \Rightarrow Log. Finite satisfiability says that $\{\mathcal{B}_{\{\varphi\}} \mid \varphi \in \Gamma\}$ has the finite intersection property (FIP). By Top. Comp., $\bigcap_{\varphi \in \Gamma} \mathcal{B}_{\{\varphi\}} = \mathcal{B}_{\Gamma} \neq \emptyset.$ • Here we show that the logical compactness is equivalent to the topological compactness of (V, τ) .

Top. \Rightarrow Log. Finite satisfiability says that $\{\mathcal{B}_{\{\varphi\}} \mid \varphi \in \Gamma\}$ has the finite intersection property (FIP). By Top. Comp., $\bigcap_{\varphi \in \Gamma} \mathcal{B}_{\{\varphi\}} = \mathcal{B}_{\Gamma} \neq \emptyset.$

Log. \Rightarrow Top. Suppose $\{B_{\Gamma} \mid \Gamma \in \mathcal{G}\}$ has the FIP. We show $\bigcup_{\Gamma \in \mathcal{G}} \Gamma$ is finitely satisfiable. Let $\Lambda \subseteq \bigcup \mathcal{G}$ be finite, choose finite $\mathcal{G}_0 \subseteq \mathcal{G}$, such that $\Lambda \subseteq \bigcup \mathcal{G}_0$. By FIP,

$$\mathcal{B}_{\Lambda} \supseteq \mathcal{B}_{\cup \mathcal{G}_0} = \bigcap_{\Gamma \in \mathcal{G}_0} \mathcal{B}_{\Gamma} \neq \emptyset.$$

Applications of Compactness

Theorem 4.4

Every set M can be (totally) ordered.

Applications of Compactness

Theorem 4.4

Every set M can be (totally) ordered.

Assign p_{ab} for each $(a,b) \in M \times M$. Consider a Σ_M s.t.

•
$$p_{ab} \rightarrow \neg p_{ba}$$
, for $a \in M$.

$$p_{ab} \wedge p_{bc} \rightarrow p_{ac}, \text{ for } a, b, c \in M.$$

$$\ \, \bullet \ \, p_{ab} \lor p_{ba}, \text{ for } a, b \in M, a \neq b.$$

Applications of Compactness

Theorem 4.4

Every set M can be (totally) ordered.

Assign p_{ab} for each $(a,b) \in M \times M$. Consider a Σ_M s.t.

2
$$p_{ab} \wedge p_{bc} \rightarrow p_{ac}$$
, for $a, b, c \in M$.

$$\ \, {\bf 0} \ \, p_{ab} \lor p_{ba}, \ \, {\rm for} \ \, a,b \in M, a \neq b.$$

If an assignment $\nu \models \Sigma_M$, then the set

 $\{(a,b) \mid \nu(p_{ab}) = T\}$ is a total order over M.

To show every finite $\Sigma \subset \Sigma_M$ is satisfiable, it suffices to show that

CLAIM. For every finite $K \subset M$, the corresponding $\Sigma_K = \Sigma_M | K$ is satisfiable, i.e. every finite K is totally orderable.

¹Such u exists, as otherwise K would be infinite.

To show every finite $\Sigma \subset \Sigma_M$ is satisfiable, it suffices to show that

CLAIM. For every finite $K \subset M$, the corresponding $\Sigma_K = \Sigma_M | K$ is satisfiable, i.e. every finite K is totally orderable.

PROOF. Prove by induction on |K|.

- The case |K| = 1 is trivial. Suppose the claim holds for all K' of size < |K|, and now consider K.
- Select a $u \in K$ such that there is no $v \in K$ satisfies that $\Sigma_K \vdash p_{vu}$.¹ Let $K' = K \setminus \{u\}$. |K'| < |K|, by the inductive hypothesis, $\Sigma_{K'}$ is satisfiable, say via ν' .
- Extend ν' by setting $\nu(p_{uv}) = 1$ for any $v \in K'$ and $\nu(p_{vu}) = 0$ for all $v \in K$, and $\nu \upharpoonright K' = \nu'$. It is routine to check that ν gives a total order on K, i.e. $\nu \models \Sigma_K$.

¹Such u exists, as otherwise K would be infinite.

4-coloring infinite planar graphs

Theorem 4.5

A graph (V, E) is k-colorable iff every finite subgraph (V_0, E_0) is k-colorable.

4-coloring infinite planar graphs

Theorem 4.5

A graph (V, E) is k-colorable iff every finite subgraph (V_0, E_0) is k-colorable.

So the famous 4-color theorem (every finite planar graph is 4-colorable) implies that all planar graph is 4-colorable.

4-coloring infinite planar graphs

Theorem 4.5

A graph (V, E) is k-colorable iff every finite subgraph (V_0, E_0) is k-colorable.

So the famous 4-color theorem (every finite planar graph is 4-colorable) implies that all planar graph is 4-colorable. Assign $p_{v,i}$ for each $v \in V$ and $1 \leq i \leq k$. Consider a set Σ such that

2)
$$\neg (p_{vi} \land p_{vj})$$
, for $v \in V$, $1 \leq i < j \leq k$;

The ultrafilter theorem

Theorem 4.6

Every subset $\mathcal{F} \subset \mathscr{P}(X)$ with the FIP property, i.e.: for all finite $F \subset \mathcal{F}$, $\bigcap F \neq \emptyset$

can be extended to an ultrafilter on X.

The ultrafilter theorem

Theorem 4.6

Every subset $\mathcal{F} \subset \mathscr{P}(X)$ with the FIP property, i.e.:

for all finite $F \subset \mathcal{F}$, $\bigcap F \neq \emptyset$

can be extended to an ultrafilter on X.

Assign p_u for each $u\in \mathscr{P}(X).$ Consider a Σ such that for $u,v\in \mathscr{P}(X),$

- p_X , $\neg p_\varnothing$;
- $p_u \rightarrow p_v$, if $u \subseteq v$;
- $p_u \wedge p_v \rightarrow p_{u \cap v}$;
- $p_{u^c} \leftrightarrow \neg p_u$, where $u^c := u^c$;
- p_f , for $f \in \mathcal{F}$.

- $\bullet\,$ Without loss of generality, we may assume that ${\cal F}$ is a filter.
- For $A \subseteq \mathscr{P}(X)$, let $\langle A \rangle$ be the smallest subset of $\mathscr{P}(X)$ containing A and closed under complement and finite \cap, \cup .
- $(\langle A \rangle, \cup, \cap, *^c, \subset)$ is the subalgebra of $(\mathscr{P}(X), \cup, \cap, *^c, \subseteq)$ generated by A.
- Let $\Sigma_{\langle A \rangle} = \Sigma | \langle A \rangle$, i.e. the part of Σ with only $u, v \in \langle A \rangle$ and $f \in \mathcal{F} \cap \langle A \rangle$.
- If $\Sigma_0 \subset \Sigma$ is finite, then there is a finite $A \subset \mathscr{P}(X)$ such that $\Sigma_0 \subset \Sigma_{\langle A \rangle}$, thus it sufffices to show that

- $\bullet\,$ Without loss of generality, we may assume that ${\cal F}$ is a filter.
- For $A \subseteq \mathscr{P}(X)$, let $\langle A \rangle$ be the smallest subset of $\mathscr{P}(X)$ containing A and closed under complement and finite \cap, \cup .
- $(\langle A \rangle, \cup, \cap, *^c, \subset)$ is the subalgebra of $(\mathscr{P}(X), \cup, \cap, *^c, \subseteq)$ generated by A.
- Let $\Sigma_{\langle A \rangle} = \Sigma | \langle A \rangle$, i.e. the part of Σ with only $u, v \in \langle A \rangle$ and $f \in \mathcal{F} \cap \langle A \rangle$.
- If $\Sigma_0 \subset \Sigma$ is finite, then there is a finite $A \subset \mathscr{P}(X)$ such that $\Sigma_0 \subset \Sigma_{\langle A \rangle}$, thus it sufffices to show that

CLAIM. For every finite $A \subseteq \mathscr{P}(X)$, $\Sigma_{\langle A \rangle}$ is satisfiable.

- $\bullet\,$ Without loss of generality, we may assume that ${\cal F}$ is a filter.
- For $A \subseteq \mathscr{P}(X)$, let $\langle A \rangle$ be the smallest subset of $\mathscr{P}(X)$ containing A and closed under complement and finite \cap, \cup .
- $(\langle A \rangle, \cup, \cap, *^c, \subset)$ is the subalgebra of $(\mathscr{P}(X), \cup, \cap, *^c, \subseteq)$ generated by A.
- Let $\Sigma_{\langle A \rangle} = \Sigma | \langle A \rangle$, i.e. the part of Σ with only $u, v \in \langle A \rangle$ and $f \in \mathcal{F} \cap \langle A \rangle$.
- If $\Sigma_0 \subset \Sigma$ is finite, then there is a finite $A \subset \mathscr{P}(X)$ such that $\Sigma_0 \subset \Sigma_{\langle A \rangle}$, thus it sufffices to show that

CLAIM. For every finite $A \subseteq \mathscr{P}(X)$, $\Sigma_{\langle A \rangle}$ is satisfiable.

For ⟨A⟩ there is a ⊂-minimal A* ⊆ A such that ⟨A⟩ = ⟨A*⟩. We may assume that A = such A*.

Prove by induction on |A|. The case n = 1 is trivial. Now suppose the claim holds for all A' with |A'| < |A|, work with |A|. There are two cases:

- for every $u \in \langle A \rangle$, $\Sigma_{\langle A \rangle} \vdash p_u \lor p_{u^c}$.
 - As $\emptyset \notin \mathcal{F}$, for every $u \in \langle A \rangle$, exactly one of $\{u, u^c\}$ is in \mathcal{F} .
 - Thus $\Sigma_{\langle A \rangle} \vdash \mathcal{F} \cap \langle A \rangle$ is an ultrafilter over $\langle A \rangle$.
 - For $u \in \langle A \rangle$, set ν such that

$$\nu(p_u) = 1 \quad \text{iff} \quad u \in \mathcal{F}.$$

Otherwise, ...

• there is a $u \in \langle A \rangle$ such that $\Sigma_{\langle A \rangle} \not\vdash p_u \lor p_{u^c}$.

- Let A' be maximal such that $A' \subset A$ and $\langle A' \rangle \subseteq \langle A \rangle \backslash \{u\}$.
- By the minimality assumption on A, we may assume that |A'| + 1 = |A|. By the ind. hyp., there is some $\nu' \models \Sigma_{\langle A' \rangle}$.
- Let $\mathcal{U}_{A'} = \{ w \in \langle A' \rangle \mid \nu'(p_w) = 1 \}.$
- $\mathcal{U}_{A'}$ is finite, so $\bigcap \mathcal{U}_{A'} \neq \emptyset$.
- One of $\{u, u^c\}$ has non-empty intersection with $\bigcap U_{A'}$, say u.
- For $w \in \langle A \rangle$, set ν such that

$$\nu(p_w) = 1 \quad \text{iff} \quad w \supset u \cap (\bigcap \mathcal{U}_{A'})$$

Verify that $\nu \models \Sigma_{\langle A \rangle}$.

Exercise 4.1

Use Compactness to show that every partial order $<_0$ on a set X can be extended to a total order < on X.

Exercise (思考题)

- Suppose $\emptyset \notin \mathcal{F} \neq \emptyset$. Prove that \mathcal{F} is a filter on X iff $u \cap v \in \mathcal{F} \Leftrightarrow u \in \mathcal{F} \land v \in \mathcal{F}$ for every $u, v \subseteq X$.
- **2** Suppose $\emptyset \notin \mathcal{F} \neq \emptyset$ is a filter on *X*. Show that \mathcal{F} is an ultrafilter iff $u \cup v \in \mathcal{F} \Leftrightarrow u \in \mathcal{F} \lor v \in \mathcal{F}$.
- On ultrafilter U on X is principal iff there is an x ∈ X such that U = {u ⊂ X | x ∈ u}. Show that every ultrafilter on a finite X is principal.

König's tree lemma

Theorem 4.7 (König's Lemma)

If T is a tree such that every node has finitely many successors, and contains arbitrarily long finite path, then T has an infinite path.

König's tree lemma

Theorem 4.7 (König's Lemma)

If T is a tree such that every node has finitely many successors, and contains arbitrarily long finite path, then T has an infinite path.

Assign p_t for each $t \in T$. Let Γ consist of

$$\ \, \bigcirc \, \bigvee_{t\in T_k} p_t, \text{ for } k\in \mathbb{N};$$

$$\ 2 \ \neg (p_s \land p_t) \text{ for } s \neq t \in T_k, \ k \in \mathbb{N}.$$

3
$$p_t \rightarrow p_s$$
 for $s, t \in T$ such that $s \prec_T t$.

Here T_k is the k-th level of T.

The marriage problem (in Linguistic)

Theorem 4.8

Suppose each word has finitely many meanings and every k words have $\geq k$ different meanings. Then there is an injective $f : \{W \text{ords}\} \rightarrow \{M \text{eanings}\}.$

The marriage problem (in Linguistic)

Theorem 4.8

Suppose each word has finitely many meanings and every k words have $\geq k$ different meanings. Then there is an injective $f : \{W \text{ords}\} \rightarrow \{M \text{eanings}\}.$

Finite cases are easy. For infinite W, for $(v,n)\in W\times M,$ assign $p_{vn}.$ Consider a set Σ such that

- **1** $p_{vn_1} \vee \cdots \vee p_{vn_l}$, for $v \in W$, n_i 's are the meanings of v.
- $\ \ \, \bigcirc \ \ \, \neg(p_{vm} \land p_{vn}), \text{ for } v \in W \text{ and } m \neq n \in M.$