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Proof System for L

Two aspects of a formal language.
@ Syntax
e formulas
@ connectives
@ Semantics
e truth value/truth assignment
e truth table/truth function
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Proof System for L

@ Propositional Logic

@ Proof System for Ly
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Proof System for L Definition of proof in Lg

A proof system for L

Suppose that @1, w2 and @3 are Lo-formulas. Then each of the
following Ly-formulas is a logical axiom:

(Group | axioms)
o (p1 = (p2 = ¢3)) = ((p1 = 2) = (1 = ¢3))
o Y1 =¥
° 1 — (2 — 1)

(Group Il axioms)
° p1 = (—p1 = ¢2)
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Proof System for L Definition of proof in Lg

(Group Il axioms)
o (1 = 1) = ¢

(Group IV axioms)
° ~p1 = (p1 = ¢2)
o 1 = (2 = ~(p1 = ¥2))

Ag denote the set of all logical axioms.
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Proof System for L Definition of proof in Lg

(Group Il axioms)
o (1 = 1) = ¢

(Group IV axioms)
° ~p1 = (p1 = ¢2)
o 1 = (2 = ~(p1 = ¥2))

Ag denote the set of all logical axioms.

Proposition 3.1

Every logical axioms above is a tautology.
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Proof System for L Definition of proof in Lg

['-proof

Suppose that I" < L.

Definition 3.1

Suppose that s = {p; : i < n) is a finite sequence of propositional
formulas. s is a I'-proof if for each ¢ < n at least one of the
following happens:

o p; el
@ ; is a logical axiom;

@ there exists j1, j2 < i such that ¢;, = ¢;; — ;. This rule is
called Modus Ponens.
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['-proof

Suppose that I" < L.

Definition 3.1

Suppose that s = {p; : i < n) is a finite sequence of propositional
formulas. s is a I'-proof if for each ¢ < n at least one of the
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Proof System for L Definition of proof in Lg

Definition 3.2
I' = ¢ (I" proves ) iff there exists a finite sequence
s ={p; : i < ny such that s is a I'-proof and such that ¢,, = ¢.

Such sequence s is called a proof from I' to ¢, and ¢ is called a
consequence of I'.

When I' = @, write - .

A
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Proof System for L Definition of proof in Lg

Some properties of I'-proofs

@ If sis a ['-proof, and ¢ is an initial segment of s, then ¢ is also
a ['-proof.

Q If s={p;:i<nyandt=_;:i<m)are two I'-proofs,
then so is

S+t:<9017"'790na¢1>-"7¢m>-
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Proof System for L Definition of proof in Lg

Definition 3.3
Suppose that T' € L.
@ [ is inconsistent if for some formula ¢, [' - ¢ and ' - —¢.

@ T is consistent if I is not inconsistent.

© I is maximally consistent if and only if for each formula ¥ if
I' U {9} is consistent then ¢ € T'.

A
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Proof System for L Definition of proof in Lg

Definition 3.3
Suppose that T' € L.

@ T is inconsistent if for some formula ¢, I' - ¢ and T' - —¢.
@ T is consistent if I is not inconsistent.

© [ is maximally consistent if and only if for each formula ¥ if
I U {9} is consistent then ¢ € I'.
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Proof System for L Completeness of Lg

Compare with I being satisfiable. Our ultimate goal is to show
that

I" is consistent if and only if I' is satisfiable.

We first show the ‘if” direction.
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Proof System for L Completeness of L

Soundness

Theorem 3.2 (Soundness, version )

If T' € Ly is satisfiable. Then T is consistent.

Definition 3.4 (Logical implication)
Suppose I' € Ly and ¢ € Ly. Then I' logically implies ¢, write
I' = ¢, if and only if for every truth assignment v, v = I" implies

vEp.
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Proof System for L Completeness of Lg

Theorem 3.3 (Soundness, version II)

Suppose that T' < Ly, p € Ly and that T — ¢. Then T |= .
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Proof System for L Completeness of Lg

Theorem 3.3 (Soundness, version II)

Suppose that T' < Ly, p € Ly and that T — ¢. Then T |= .

Suppose s = {p; :i=1,--- ,ny is a I'-proof. Prove by induction on |s],
the length of s.

BASE STEP n =1: ¢ € ' U Ag.
INDUCTIVE STEP n = k + 1: Suppose the theorem is true for all proofs
of length < k, in particular, true for ¢'s in s|i = {p1,- -, ;) for i < k.
Consider j11. there are three cases:

Q@ Y1 € r

® pr+1 €A

@ 1 is obtained by MP O
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Proof System for L Completeness of L

Lemmas for the completeness of L

Lemma 1 (Inference)

Suppose I € Ly, ¢, € Ly. Suppose I' =1 and T - (¢ — ).
Then T — .
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Proof System for L Completeness of L

Lemmas for the completeness of L

Lemma 1 (Inference)

Suppose I € Ly, ¢, € Ly. Suppose I' =1 and T - (¢ — ).
Then T — .

No logical axioms required.

Let s be a I'-proof for I" - 2, (denoted as I - v)
t be a I-proof for T - (¢ — ¢).
Then s+t + {p) is a I'-proof for I - . O
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Proof System for L Completeness of Lg

Lemma 2 (Deduction)
Suppose I' € Ly, ¢, € Lo and T U {p} 1. ThenT (¢ — ).
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Proof System for L Completeness of Lg

Lemma 2 (Deduction)
Suppose I' € Ly, ¢, € Lo and T U {p} 1. ThenT (¢ — ).

Proof (Group | axioms are needed).

Let s =<{p1, - ,on = ) be a T' U {p}-proof for T U {p} - 1. We
prove by induction on |s| that there is a T-proof s* for T' - (¢ — ¢p).

BASE STEP |s| = 1: then ¢; € T U {¢}

If o1 = o, let s* = {(p1 = p1))-

If o1 # ¢, let s* ={p1,01 = (9 = 91),90 = ©1).
INDUCTIVE STEP |s| =k + 1:

vr+1 € T U {p} U Ag: same as the case |s| = 1.
@k41 is obtained by MP: ¢, wi, = @i, — Qry1.° O

?Students fill in the rest.
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Proof System for L Completeness of Lg

Suppose I' € Ly and 1) € Ly. Suppose that ' is inconsistent.
Then T 4.
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Proof System for L Completeness of Lg

Suppose I' € Ly and 1) € Ly. Suppose that ' is inconsistent.
Then T 4.

Uses the Deduction lemma and Group |l axioms.

Let ¢, s,t be such that I" 5 ¢ and I' ; —. Below is a I'-proof for
'

s+t+{p— (e =), —p — b, P). O
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Proof System for L Completeness of Lg

Suppose I' € Ly and ¢ € Ly. Suppose that T is consistent. Then
at least one of T' U {¢} or T" U {—¢} is consistent, possibly both.
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Proof System for L Completeness of Lg

Suppose I' € Ly and ¢ € Ly. Suppose that T is consistent. Then
at least one of T'u {¢} or T' U {—} is consistent, possibly both.

Proof Needs Group Il axioms.

Towards a contradiction, suppose both are inconsistent.

@ Apply Lemma3toT'=T u {—p} and ¢ = ¢, we get
Lo {—¢} I o
By deduction, I' - (—¢ — ).

Use Ag-lll axiom, (—p — @) — .

By Inference, I' - ¢.

T U {¢} is inconsistent, by Lemma 3, I" U {¢} - —.

Use Deduction and Inference, we have I' - (¢ — —¢) and hence
I' = —p. Therefore T is inconsistent. Contradiction! O
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Proof System for L Completeness of Lg

Corollary 3.4

Suppose I' € Ly and ¢ € Ly. Suppose that ' is maximally
consistent. Then

Q Eitherpel or (—p)eT.
Q@ If ' ¢ then pel.
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Proof System for L Completeness of Lg

Corollary 3.4

Suppose I' € Ly and ¢ € Ly. Suppose that ' is maximally
consistent. Then

Q Eitherpel or (—p)eT.
Q@ If ' ¢ then pel.

© By Lemma 4, either I U {¢} is consistent or I U {—} is consistent,
by maximality, either p € T" or —p € T'.

Q If p¢ I', then —p e I'. Therefore I' - —¢, plus the assumption
I' - ¢, T must be inconsistent. Contradiction! O

v
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Proof System for L Completeness of Lg

Suppose I € Ly and ¢1, pa € Ly. Suppose that T' is maximally
consistent. Then (p1 — @2) € I iff either o1 ¢ T or o € T.
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Proof System for L Completeness of Lg

Suppose I € Ly and ¢1, pa € Ly. Suppose that T' is maximally
consistent. Then (p1 — @3) € T iff either p1 ¢ T or po € T.

Proof

“ ”

= .

Uses Group IV axioms.

@ Suppose ¢ ¢ I'. By maximality, —¢; € I'. Use Axiom Ag-I1V-2:
—¢1 — (1 — @2). By MP and maximality, (o1 — @2) € .

@ Suppose ¢y € I'. Use Axiom Ag-I-3: w2 — (¢1 — @2). Thus using
Deduction and maximality, one has (¢1 — ¢2) € T.

“=": Suppose 1 € I' and @3 ¢ I'. Use Axiom Ay-1V-2,2
1 = (—p2 = —=(p1 = 2)).

Apply Deduction twice, one has —(p; — o) € I'. As I is consistent, it
must be that (o1 — o) ¢ T O

?One can prove "“=" without using Ao-1V-2.
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Proof System for L Completeness of Lg

Suppose that T' € Ly and that T' is maximally consistent. Then T’
is satisfiable.
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Proof System for L Completeness of Lg

Suppose that T' € Ly and that T' is maximally consistent. Then I’

is satisfiable. )

Define a truth assignment v as follows. For i € N,

)T, if{Anyel
v(4n) = {F if (4,0 ¢ T

CLAIM. This U works. In fact, for every p € Lo, v(p) =T iff p €T
Prove by induction on the construction of .

@ Corollary 3.4 takes care of the case p = (=)

@ Lemma 5 is for the case p = (1 — ¥2). O]
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Proof System for L Completeness of Lg

Suppose that T' < Ly and that T is consistent. Then there exists
aset I' < Ly such that T' < I'* and such that T'* is maximally
consistent.
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Proof System for L Completeness of Lg

Suppose that T' < Ly and that T is consistent. Then there exists
aset I' < Ly such that T' < I'* and such that T'* is maximally

consistent.

@ Enumerate all propositional formulas {¢,, : n € N}: At step n,
enumerate all (finitely many) Ly formulas of length < n and using
only proportional symbols in Ay, -, A,.

@ Extending I in w many steps: 'y < --- < T, < -, so that each
T, is consistent. Let I'y11 =T U {pn} if Ty U {©n} is consistent;
otherwise let 'y, 11 =T,

@ At last, let I'* = J,,I',. Verify that I'* is maximally consistent. []

V
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Completeness Theorem

Theorem 3.5 (Completeness, version )

Suppose that T' € Ly and that T is consistent. Then T is
satisfiable.
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Proof System for L Completeness of L

Completeness Theorem

Theorem 3.5 (Completeness, version )

Suppose that T' € Ly and that T is consistent. Then T is
satisfiable.

This follows from Lemma 7 and then Lemma 6.
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Proof System for L Completeness of L

Completeness Theorem

Theorem 3.5 (Completeness, version )

Suppose that T' € Ly and that T is consistent. Then T is
satisfiable.

This follows from Lemma 7 and then Lemma 6.

Theorem 3.6 (Completeness, version I1)
Suppose that T' < Ly, ¢ € Lo and that T' = . Then T | .
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Proof System for L Completeness of Lg

@ Find out which of the following formulas is a tautology
without using Truth table.

o (((A1 — A1) — A2) — A2)
o ((((A1 — A2)— Az)— Az)— A»)

@ ForI' € Ly and ¥ in Ly, show that
Fu{eteEvy ifandonlyif T E(p— ).

© Two physicists, A and B, and a logician C, are wearing hats,
which they know are either black or white but not all white. A
can see the hats of B and C; B can see the hats of A and C; C
is blind. Each is asked in turn if they know the color of their
own hat. The answers are: A:"No”. B:"No"”. C:"Yes". What
color is C's hat and how does C know.
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Exercise (&%)

Show that

QF———a—-a«a

Q@+ (a——p)— (8- —a)

QFa——«

Q +(a—pB) o (=f——a)

Q@ IfTu{a}BandT'u {—a}+ 3, then T |- 3.
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